xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_rx.c (revision 8b3dca18206e1a0461492f082fa6e270b092c035)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include "hal_hw_headers.h"
21 #include "dp_types.h"
22 #include "dp_rx.h"
23 #include "dp_tx.h"
24 #include "dp_peer.h"
25 #include "hal_rx.h"
26 #include "hal_api.h"
27 #include "qdf_nbuf.h"
28 #ifdef MESH_MODE_SUPPORT
29 #include "if_meta_hdr.h"
30 #endif
31 #include "dp_internal.h"
32 #include "dp_ipa.h"
33 #include "dp_hist.h"
34 #include "dp_rx_buffer_pool.h"
35 #ifdef WIFI_MONITOR_SUPPORT
36 #include "dp_htt.h"
37 #include <dp_mon.h>
38 #endif
39 #ifdef FEATURE_WDS
40 #include "dp_txrx_wds.h"
41 #endif
42 #ifdef DP_RATETABLE_SUPPORT
43 #include "dp_ratetable.h"
44 #endif
45 
46 #ifdef DUP_RX_DESC_WAR
47 void dp_rx_dump_info_and_assert(struct dp_soc *soc,
48 				hal_ring_handle_t hal_ring,
49 				hal_ring_desc_t ring_desc,
50 				struct dp_rx_desc *rx_desc)
51 {
52 	void *hal_soc = soc->hal_soc;
53 
54 	hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
55 	dp_rx_desc_dump(rx_desc);
56 }
57 #else
58 void dp_rx_dump_info_and_assert(struct dp_soc *soc,
59 				hal_ring_handle_t hal_ring_hdl,
60 				hal_ring_desc_t ring_desc,
61 				struct dp_rx_desc *rx_desc)
62 {
63 	hal_soc_handle_t hal_soc = soc->hal_soc;
64 
65 	dp_rx_desc_dump(rx_desc);
66 	hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
67 	hal_srng_dump_ring(hal_soc, hal_ring_hdl);
68 	qdf_assert_always(0);
69 }
70 #endif
71 
72 #ifndef QCA_HOST_MODE_WIFI_DISABLED
73 #ifdef RX_DESC_SANITY_WAR
74 QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
75 			     hal_ring_handle_t hal_ring_hdl,
76 			     hal_ring_desc_t ring_desc,
77 			     struct dp_rx_desc *rx_desc)
78 {
79 	uint8_t return_buffer_manager;
80 
81 	if (qdf_unlikely(!rx_desc)) {
82 		/*
83 		 * This is an unlikely case where the cookie obtained
84 		 * from the ring_desc is invalid and hence we are not
85 		 * able to find the corresponding rx_desc
86 		 */
87 		goto fail;
88 	}
89 
90 	return_buffer_manager = hal_rx_ret_buf_manager_get(hal_soc, ring_desc);
91 	if (qdf_unlikely(!(return_buffer_manager ==
92 				HAL_RX_BUF_RBM_SW1_BM(soc->wbm_sw0_bm_id) ||
93 			 return_buffer_manager ==
94 				HAL_RX_BUF_RBM_SW3_BM(soc->wbm_sw0_bm_id)))) {
95 		goto fail;
96 	}
97 
98 	return QDF_STATUS_SUCCESS;
99 
100 fail:
101 	DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
102 	dp_err("Ring Desc:");
103 	hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
104 				ring_desc);
105 	return QDF_STATUS_E_NULL_VALUE;
106 
107 }
108 #endif
109 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
110 
111 /**
112  * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
113  *
114  * @dp_soc: struct dp_soc *
115  * @nbuf_frag_info_t: nbuf frag info
116  * @dp_pdev: struct dp_pdev *
117  * @rx_desc_pool: Rx desc pool
118  *
119  * Return: QDF_STATUS
120  */
121 #ifdef DP_RX_MON_MEM_FRAG
122 static inline QDF_STATUS
123 dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
124 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
125 			   struct dp_pdev *dp_pdev,
126 			   struct rx_desc_pool *rx_desc_pool)
127 {
128 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
129 
130 	(nbuf_frag_info_t->virt_addr).vaddr =
131 			qdf_frag_alloc(NULL, rx_desc_pool->buf_size);
132 
133 	if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
134 		dp_err("Frag alloc failed");
135 		DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
136 		return QDF_STATUS_E_NOMEM;
137 	}
138 
139 	ret = qdf_mem_map_page(dp_soc->osdev,
140 			       (nbuf_frag_info_t->virt_addr).vaddr,
141 			       QDF_DMA_FROM_DEVICE,
142 			       rx_desc_pool->buf_size,
143 			       &nbuf_frag_info_t->paddr);
144 
145 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
146 		qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
147 		dp_err("Frag map failed");
148 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
149 		return QDF_STATUS_E_FAULT;
150 	}
151 
152 	return QDF_STATUS_SUCCESS;
153 }
154 #else
155 static inline QDF_STATUS
156 dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
157 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
158 			   struct dp_pdev *dp_pdev,
159 			   struct rx_desc_pool *rx_desc_pool)
160 {
161 	return QDF_STATUS_SUCCESS;
162 }
163 #endif /* DP_RX_MON_MEM_FRAG */
164 
165 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
166 /**
167  * dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history
168  * @soc: Datapath soc structure
169  * @ring_num: Refill ring number
170  * @num_req: number of buffers requested for refill
171  * @num_refill: number of buffers refilled
172  *
173  * Returns: None
174  */
175 static inline void
176 dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
177 			       hal_ring_handle_t hal_ring_hdl,
178 			       uint32_t num_req, uint32_t num_refill)
179 {
180 	struct dp_refill_info_record *record;
181 	uint32_t idx;
182 	uint32_t tp;
183 	uint32_t hp;
184 
185 	if (qdf_unlikely(ring_num >= MAX_PDEV_CNT ||
186 			 !soc->rx_refill_ring_history[ring_num]))
187 		return;
188 
189 	idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index,
190 					DP_RX_REFILL_HIST_MAX);
191 
192 	/* No NULL check needed for record since its an array */
193 	record = &soc->rx_refill_ring_history[ring_num]->entry[idx];
194 
195 	hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp);
196 	record->timestamp = qdf_get_log_timestamp();
197 	record->num_req = num_req;
198 	record->num_refill = num_refill;
199 	record->hp = hp;
200 	record->tp = tp;
201 }
202 #else
203 static inline void
204 dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
205 			       hal_ring_handle_t hal_ring_hdl,
206 			       uint32_t num_req, uint32_t num_refill)
207 {
208 }
209 #endif
210 
211 /**
212  * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
213  *
214  * @dp_soc: struct dp_soc *
215  * @mac_id: Mac id
216  * @num_entries_avail: num_entries_avail
217  * @nbuf_frag_info_t: nbuf frag info
218  * @dp_pdev: struct dp_pdev *
219  * @rx_desc_pool: Rx desc pool
220  *
221  * Return: QDF_STATUS
222  */
223 static inline QDF_STATUS
224 dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
225 				     uint32_t mac_id,
226 				     uint32_t num_entries_avail,
227 				     struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
228 				     struct dp_pdev *dp_pdev,
229 				     struct rx_desc_pool *rx_desc_pool)
230 {
231 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
232 
233 	(nbuf_frag_info_t->virt_addr).nbuf =
234 		dp_rx_buffer_pool_nbuf_alloc(dp_soc,
235 					     mac_id,
236 					     rx_desc_pool,
237 					     num_entries_avail);
238 	if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
239 		dp_err("nbuf alloc failed");
240 		DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
241 		return QDF_STATUS_E_NOMEM;
242 	}
243 
244 	ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
245 					 nbuf_frag_info_t);
246 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
247 		dp_rx_buffer_pool_nbuf_free(dp_soc,
248 			(nbuf_frag_info_t->virt_addr).nbuf, mac_id);
249 		dp_err("nbuf map failed");
250 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
251 		return QDF_STATUS_E_FAULT;
252 	}
253 
254 	nbuf_frag_info_t->paddr =
255 		qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
256 		dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, (qdf_nbuf_t)(
257 						  (nbuf_frag_info_t->virt_addr).nbuf),
258 						  rx_desc_pool->buf_size,
259 						  true, __func__, __LINE__);
260 
261 	ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
262 			     &nbuf_frag_info_t->paddr,
263 			     rx_desc_pool);
264 	if (ret == QDF_STATUS_E_FAILURE) {
265 		DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
266 		return QDF_STATUS_E_ADDRNOTAVAIL;
267 	}
268 
269 	return QDF_STATUS_SUCCESS;
270 }
271 
272 #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
273 QDF_STATUS
274 __dp_rx_buffers_no_map_lt_replenish(struct dp_soc *soc, uint32_t mac_id,
275 				    struct dp_srng *dp_rxdma_srng,
276 				    struct rx_desc_pool *rx_desc_pool)
277 {
278 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
279 	uint32_t count;
280 	void *rxdma_ring_entry;
281 	union dp_rx_desc_list_elem_t *next = NULL;
282 	void *rxdma_srng;
283 	qdf_nbuf_t nbuf;
284 	qdf_dma_addr_t paddr;
285 	uint16_t num_entries_avail = 0;
286 	uint16_t num_alloc_desc = 0;
287 	union dp_rx_desc_list_elem_t *desc_list = NULL;
288 	union dp_rx_desc_list_elem_t *tail = NULL;
289 	int sync_hw_ptr = 0;
290 
291 	rxdma_srng = dp_rxdma_srng->hal_srng;
292 
293 	if (qdf_unlikely(!dp_pdev)) {
294 		dp_rx_err("%pK: pdev is null for mac_id = %d", soc, mac_id);
295 		return QDF_STATUS_E_FAILURE;
296 	}
297 
298 	if (qdf_unlikely(!rxdma_srng)) {
299 		dp_rx_debug("%pK: rxdma srng not initialized", soc);
300 		return QDF_STATUS_E_FAILURE;
301 	}
302 
303 	hal_srng_access_start(soc->hal_soc, rxdma_srng);
304 
305 	num_entries_avail = hal_srng_src_num_avail(soc->hal_soc,
306 						   rxdma_srng,
307 						   sync_hw_ptr);
308 
309 	dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
310 		    soc, num_entries_avail);
311 
312 	if (qdf_unlikely(num_entries_avail <
313 			 ((dp_rxdma_srng->num_entries * 3) / 4))) {
314 		hal_srng_access_end(soc->hal_soc, rxdma_srng);
315 		return QDF_STATUS_E_FAILURE;
316 	}
317 
318 	DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
319 	num_alloc_desc = dp_rx_get_free_desc_list(soc, mac_id,
320 						  rx_desc_pool,
321 						  num_entries_avail,
322 						  &desc_list,
323 						  &tail);
324 
325 	if (!num_alloc_desc) {
326 		dp_rx_err("%pK: no free rx_descs in freelist", soc);
327 		DP_STATS_INC(dp_pdev, err.desc_lt_alloc_fail,
328 			     num_entries_avail);
329 		hal_srng_access_end(soc->hal_soc, rxdma_srng);
330 		return QDF_STATUS_E_NOMEM;
331 	}
332 
333 	for (count = 0; count < num_alloc_desc; count++) {
334 		next = desc_list->next;
335 		qdf_prefetch(next);
336 		nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
337 		if (qdf_unlikely(!nbuf)) {
338 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
339 			break;
340 		}
341 
342 		paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
343 					       rx_desc_pool->buf_size);
344 
345 		rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc,
346 							 rxdma_srng);
347 		qdf_assert_always(rxdma_ring_entry);
348 
349 		desc_list->rx_desc.nbuf = nbuf;
350 		desc_list->rx_desc.rx_buf_start = nbuf->data;
351 		desc_list->rx_desc.unmapped = 0;
352 
353 		/* rx_desc.in_use should be zero at this time*/
354 		qdf_assert_always(desc_list->rx_desc.in_use == 0);
355 
356 		desc_list->rx_desc.in_use = 1;
357 		desc_list->rx_desc.in_err_state = 0;
358 
359 		hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
360 					     paddr,
361 					     desc_list->rx_desc.cookie,
362 					     rx_desc_pool->owner);
363 
364 		desc_list = next;
365 	}
366 	qdf_dsb();
367 	hal_srng_access_end(soc->hal_soc, rxdma_srng);
368 
369 	/* No need to count the number of bytes received during replenish.
370 	 * Therefore set replenish.pkts.bytes as 0.
371 	 */
372 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
373 	DP_STATS_INC(dp_pdev, buf_freelist, (num_alloc_desc - count));
374 	/*
375 	 * add any available free desc back to the free list
376 	 */
377 	if (desc_list)
378 		dp_rx_add_desc_list_to_free_list(soc, &desc_list, &tail,
379 						 mac_id, rx_desc_pool);
380 
381 	return QDF_STATUS_SUCCESS;
382 }
383 
384 QDF_STATUS
385 __dp_rx_buffers_no_map_replenish(struct dp_soc *soc, uint32_t mac_id,
386 				 struct dp_srng *dp_rxdma_srng,
387 				 struct rx_desc_pool *rx_desc_pool,
388 				 uint32_t num_req_buffers,
389 				 union dp_rx_desc_list_elem_t **desc_list,
390 				 union dp_rx_desc_list_elem_t **tail)
391 {
392 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
393 	uint32_t count;
394 	void *rxdma_ring_entry;
395 	union dp_rx_desc_list_elem_t *next;
396 	void *rxdma_srng;
397 	qdf_nbuf_t nbuf;
398 	qdf_dma_addr_t paddr;
399 
400 	rxdma_srng = dp_rxdma_srng->hal_srng;
401 
402 	if (qdf_unlikely(!dp_pdev)) {
403 		dp_rx_err("%pK: pdev is null for mac_id = %d",
404 			  soc, mac_id);
405 		return QDF_STATUS_E_FAILURE;
406 	}
407 
408 	if (qdf_unlikely(!rxdma_srng)) {
409 		dp_rx_debug("%pK: rxdma srng not initialized", soc);
410 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
411 		return QDF_STATUS_E_FAILURE;
412 	}
413 
414 	dp_rx_debug("%pK: requested %d buffers for replenish",
415 		    soc, num_req_buffers);
416 
417 	hal_srng_access_start(soc->hal_soc, rxdma_srng);
418 
419 	for (count = 0; count < num_req_buffers; count++) {
420 		next = (*desc_list)->next;
421 		qdf_prefetch(next);
422 		nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
423 		if (qdf_unlikely(!nbuf)) {
424 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
425 			break;
426 		}
427 
428 		paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
429 					       rx_desc_pool->buf_size);
430 		rxdma_ring_entry = (struct dp_buffer_addr_info *)
431 			hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
432 		if (!rxdma_ring_entry)
433 			break;
434 
435 		qdf_assert_always(rxdma_ring_entry);
436 
437 		(*desc_list)->rx_desc.nbuf = nbuf;
438 		(*desc_list)->rx_desc.rx_buf_start = nbuf->data;
439 		(*desc_list)->rx_desc.unmapped = 0;
440 
441 		/* rx_desc.in_use should be zero at this time*/
442 		qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
443 
444 		(*desc_list)->rx_desc.in_use = 1;
445 		(*desc_list)->rx_desc.in_err_state = 0;
446 
447 		hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
448 					     paddr,
449 					     (*desc_list)->rx_desc.cookie,
450 					     rx_desc_pool->owner);
451 
452 		*desc_list = next;
453 	}
454 	qdf_dsb();
455 	hal_srng_access_end(soc->hal_soc, rxdma_srng);
456 
457 	/* No need to count the number of bytes received during replenish.
458 	 * Therefore set replenish.pkts.bytes as 0.
459 	 */
460 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
461 	DP_STATS_INC(dp_pdev, buf_freelist, (num_req_buffers - count));
462 	/*
463 	 * add any available free desc back to the free list
464 	 */
465 	if (*desc_list)
466 		dp_rx_add_desc_list_to_free_list(soc, desc_list, tail,
467 						 mac_id, rx_desc_pool);
468 
469 	return QDF_STATUS_SUCCESS;
470 }
471 
472 QDF_STATUS __dp_pdev_rx_buffers_no_map_attach(struct dp_soc *soc,
473 					      uint32_t mac_id,
474 					      struct dp_srng *dp_rxdma_srng,
475 					      struct rx_desc_pool *rx_desc_pool,
476 					      uint32_t num_req_buffers)
477 {
478 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
479 	uint32_t count;
480 	uint32_t nr_descs = 0;
481 	void *rxdma_ring_entry;
482 	union dp_rx_desc_list_elem_t *next;
483 	void *rxdma_srng;
484 	qdf_nbuf_t nbuf;
485 	qdf_dma_addr_t paddr;
486 	union dp_rx_desc_list_elem_t *desc_list = NULL;
487 	union dp_rx_desc_list_elem_t *tail = NULL;
488 
489 	rxdma_srng = dp_rxdma_srng->hal_srng;
490 
491 	if (qdf_unlikely(!dp_pdev)) {
492 		dp_rx_err("%pK: pdev is null for mac_id = %d",
493 			  soc, mac_id);
494 		return QDF_STATUS_E_FAILURE;
495 	}
496 
497 	if (qdf_unlikely(!rxdma_srng)) {
498 		dp_rx_debug("%pK: rxdma srng not initialized", soc);
499 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
500 		return QDF_STATUS_E_FAILURE;
501 	}
502 
503 	dp_rx_debug("%pK: requested %d buffers for replenish",
504 		    soc, num_req_buffers);
505 
506 	nr_descs = dp_rx_get_free_desc_list(soc, mac_id, rx_desc_pool,
507 					    num_req_buffers, &desc_list, &tail);
508 	if (!nr_descs) {
509 		dp_err("no free rx_descs in freelist");
510 		DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
511 		return QDF_STATUS_E_NOMEM;
512 	}
513 
514 	dp_debug("got %u RX descs for driver attach", nr_descs);
515 
516 	hal_srng_access_start(soc->hal_soc, rxdma_srng);
517 
518 	for (count = 0; count < nr_descs; count++) {
519 		next = desc_list->next;
520 		qdf_prefetch(next);
521 		nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
522 		if (qdf_unlikely(!nbuf)) {
523 			DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
524 			break;
525 		}
526 
527 		paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
528 					       rx_desc_pool->buf_size);
529 		rxdma_ring_entry = (struct dp_buffer_addr_info *)
530 			hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
531 		if (!rxdma_ring_entry)
532 			break;
533 
534 		qdf_assert_always(rxdma_ring_entry);
535 
536 		desc_list->rx_desc.nbuf = nbuf;
537 		desc_list->rx_desc.rx_buf_start = nbuf->data;
538 		desc_list->rx_desc.unmapped = 0;
539 
540 		/* rx_desc.in_use should be zero at this time*/
541 		qdf_assert_always(desc_list->rx_desc.in_use == 0);
542 
543 		desc_list->rx_desc.in_use = 1;
544 		desc_list->rx_desc.in_err_state = 0;
545 
546 		hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
547 					     paddr,
548 					     desc_list->rx_desc.cookie,
549 					     rx_desc_pool->owner);
550 
551 		desc_list = next;
552 	}
553 	qdf_dsb();
554 	hal_srng_access_end(soc->hal_soc, rxdma_srng);
555 
556 	/* No need to count the number of bytes received during replenish.
557 	 * Therefore set replenish.pkts.bytes as 0.
558 	 */
559 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
560 
561 	return QDF_STATUS_SUCCESS;
562 }
563 #endif
564 
565 #ifdef DP_UMAC_HW_RESET_SUPPORT
566 #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
567 static inline
568 qdf_dma_addr_t dp_rx_rep_retrieve_paddr(struct dp_soc *dp_soc, qdf_nbuf_t nbuf,
569 					uint32_t buf_size)
570 {
571 	return dp_rx_nbuf_sync_no_dsb(soc, nbuf, rx_desc_pool->buf_size);
572 }
573 #else
574 static inline
575 qdf_dma_addr_t dp_rx_rep_retrieve_paddr(struct dp_soc *dp_soc, qdf_nbuf_t nbuf,
576 					uint32_t buf_size)
577 {
578 	return qdf_nbuf_get_frag_paddr(nbuf, 0);
579 }
580 #endif
581 
582 /*
583  * dp_rx_desc_replenish() - Replenish the rx descriptors one at a time
584  *
585  * @soc: core txrx main context
586  * @dp_rxdma_srng: rxdma ring
587  * @rx_desc_pool: rx descriptor pool
588  * @rx_desc:rx descriptor
589  *
590  * Return: void
591  */
592 static inline
593 void dp_rx_desc_replenish(struct dp_soc *soc, struct dp_srng *dp_rxdma_srng,
594 			  struct rx_desc_pool *rx_desc_pool,
595 			  struct dp_rx_desc *rx_desc)
596 {
597 	void *rxdma_srng;
598 	void *rxdma_ring_entry;
599 	qdf_dma_addr_t paddr;
600 
601 	rxdma_srng = dp_rxdma_srng->hal_srng;
602 
603 	/* No one else should be accessing the srng at this point */
604 	hal_srng_access_start_unlocked(soc->hal_soc, rxdma_srng);
605 
606 	rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
607 
608 	qdf_assert_always(rxdma_ring_entry);
609 	rx_desc->in_err_state = 0;
610 
611 	paddr = dp_rx_rep_retrieve_paddr(soc, rx_desc->nbuf,
612 					 rx_desc_pool->buf_size);
613 	hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry, paddr,
614 				     rx_desc->cookie, rx_desc_pool->owner);
615 
616 	hal_srng_access_end_unlocked(soc->hal_soc, rxdma_srng);
617 }
618 
619 /*
620  * dp_rx_desc_reuse() - Reuse the rx descriptors to fill the rx buf ring
621  *
622  * @soc: core txrx main context
623  * @nbuf_list: nbuf list for delayed free
624  *
625  * Return: void
626  */
627 void dp_rx_desc_reuse(struct dp_soc *soc, qdf_nbuf_t *nbuf_list)
628 {
629 	int mac_id, i, j;
630 	union dp_rx_desc_list_elem_t *head = NULL;
631 	union dp_rx_desc_list_elem_t *tail = NULL;
632 
633 	for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
634 		struct dp_srng *dp_rxdma_srng =
635 					&soc->rx_refill_buf_ring[mac_id];
636 		struct rx_desc_pool *rx_desc_pool = &soc->rx_desc_buf[mac_id];
637 		uint32_t rx_sw_desc_num = rx_desc_pool->pool_size;
638 		/* Only fill up 1/3 of the ring size */
639 		uint32_t num_req_decs;
640 
641 		if (!dp_rxdma_srng || !dp_rxdma_srng->hal_srng ||
642 		    !rx_desc_pool->array)
643 			continue;
644 
645 		num_req_decs = dp_rxdma_srng->num_entries / 3;
646 
647 		for (i = 0, j = 0; i < rx_sw_desc_num; i++) {
648 			struct dp_rx_desc *rx_desc =
649 				(struct dp_rx_desc *)&rx_desc_pool->array[i];
650 
651 			if (rx_desc->in_use) {
652 				if (j < dp_rxdma_srng->num_entries) {
653 					dp_rx_desc_replenish(soc, dp_rxdma_srng,
654 							     rx_desc_pool,
655 							     rx_desc);
656 				} else {
657 					dp_rx_nbuf_unmap(soc, rx_desc, 0);
658 					rx_desc->unmapped = 0;
659 
660 					rx_desc->nbuf->next = *nbuf_list;
661 					*nbuf_list = rx_desc->nbuf;
662 
663 					dp_rx_add_to_free_desc_list(&head,
664 								    &tail,
665 								    rx_desc);
666 				}
667 				j++;
668 			}
669 		}
670 
671 		if (head)
672 			dp_rx_add_desc_list_to_free_list(soc, &head, &tail,
673 							 mac_id, rx_desc_pool);
674 
675 		/* If num of descs in use were less, then we need to replenish
676 		 * the ring with some buffers
677 		 */
678 		head = NULL;
679 		tail = NULL;
680 
681 		if (j < (num_req_decs - 1))
682 			dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
683 						rx_desc_pool,
684 						((num_req_decs - 1) - j),
685 						&head, &tail, true);
686 	}
687 }
688 #endif
689 
690 /*
691  * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
692  *			       called during dp rx initialization
693  *			       and at the end of dp_rx_process.
694  *
695  * @soc: core txrx main context
696  * @mac_id: mac_id which is one of 3 mac_ids
697  * @dp_rxdma_srng: dp rxdma circular ring
698  * @rx_desc_pool: Pointer to free Rx descriptor pool
699  * @num_req_buffers: number of buffer to be replenished
700  * @desc_list: list of descs if called from dp_rx_process
701  *	       or NULL during dp rx initialization or out of buffer
702  *	       interrupt.
703  * @tail: tail of descs list
704  * @req_only: If true don't replenish more than req buffers
705  * @func_name: name of the caller function
706  * Return: return success or failure
707  */
708 QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
709 				struct dp_srng *dp_rxdma_srng,
710 				struct rx_desc_pool *rx_desc_pool,
711 				uint32_t num_req_buffers,
712 				union dp_rx_desc_list_elem_t **desc_list,
713 				union dp_rx_desc_list_elem_t **tail,
714 				bool req_only, const char *func_name)
715 {
716 	uint32_t num_alloc_desc;
717 	uint16_t num_desc_to_free = 0;
718 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
719 	uint32_t num_entries_avail;
720 	uint32_t count;
721 	int sync_hw_ptr = 1;
722 	struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
723 	void *rxdma_ring_entry;
724 	union dp_rx_desc_list_elem_t *next;
725 	QDF_STATUS ret;
726 	void *rxdma_srng;
727 	union dp_rx_desc_list_elem_t *desc_list_append = NULL;
728 	union dp_rx_desc_list_elem_t *tail_append = NULL;
729 	union dp_rx_desc_list_elem_t *temp_list = NULL;
730 
731 	rxdma_srng = dp_rxdma_srng->hal_srng;
732 
733 	if (qdf_unlikely(!dp_pdev)) {
734 		dp_rx_err("%pK: pdev is null for mac_id = %d",
735 			  dp_soc, mac_id);
736 		return QDF_STATUS_E_FAILURE;
737 	}
738 
739 	if (qdf_unlikely(!rxdma_srng)) {
740 		dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
741 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
742 		return QDF_STATUS_E_FAILURE;
743 	}
744 
745 	dp_verbose_debug("%pK: requested %d buffers for replenish",
746 			 dp_soc, num_req_buffers);
747 
748 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
749 
750 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
751 						   rxdma_srng,
752 						   sync_hw_ptr);
753 
754 	dp_verbose_debug("%pK: no of available entries in rxdma ring: %d",
755 			 dp_soc, num_entries_avail);
756 
757 	if (!req_only && !(*desc_list) && (num_entries_avail >
758 		((dp_rxdma_srng->num_entries * 3) / 4))) {
759 		num_req_buffers = num_entries_avail;
760 		DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
761 	} else if (num_entries_avail < num_req_buffers) {
762 		num_desc_to_free = num_req_buffers - num_entries_avail;
763 		num_req_buffers = num_entries_avail;
764 	} else if ((*desc_list) &&
765 		   dp_rxdma_srng->num_entries - num_entries_avail <
766 		   CRITICAL_BUFFER_THRESHOLD) {
767 		/* Append some free descriptors to tail */
768 		num_alloc_desc =
769 			dp_rx_get_free_desc_list(dp_soc, mac_id,
770 						 rx_desc_pool,
771 						 CRITICAL_BUFFER_THRESHOLD,
772 						 &desc_list_append,
773 						 &tail_append);
774 
775 		if (num_alloc_desc) {
776 			temp_list = *desc_list;
777 			*desc_list = desc_list_append;
778 			tail_append->next = temp_list;
779 			num_req_buffers += num_alloc_desc;
780 
781 			DP_STATS_DEC(dp_pdev,
782 				     replenish.free_list,
783 				     num_alloc_desc);
784 		} else
785 			dp_err_rl("%pK:  no free rx_descs in freelist", dp_soc);
786 	}
787 
788 	if (qdf_unlikely(!num_req_buffers)) {
789 		num_desc_to_free = num_req_buffers;
790 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
791 		goto free_descs;
792 	}
793 
794 	/*
795 	 * if desc_list is NULL, allocate the descs from freelist
796 	 */
797 	if (!(*desc_list)) {
798 		num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
799 							  rx_desc_pool,
800 							  num_req_buffers,
801 							  desc_list,
802 							  tail);
803 
804 		if (!num_alloc_desc) {
805 			dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
806 			DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
807 					num_req_buffers);
808 			hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
809 			return QDF_STATUS_E_NOMEM;
810 		}
811 
812 		dp_verbose_debug("%pK: %d rx desc allocated", dp_soc,
813 				 num_alloc_desc);
814 		num_req_buffers = num_alloc_desc;
815 	}
816 
817 
818 	count = 0;
819 
820 	while (count < num_req_buffers) {
821 		/* Flag is set while pdev rx_desc_pool initialization */
822 		if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
823 			ret = dp_pdev_frag_alloc_and_map(dp_soc,
824 							 &nbuf_frag_info,
825 							 dp_pdev,
826 							 rx_desc_pool);
827 		else
828 			ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
829 								   mac_id,
830 					num_entries_avail, &nbuf_frag_info,
831 					dp_pdev, rx_desc_pool);
832 
833 		if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
834 			if (qdf_unlikely(ret  == QDF_STATUS_E_FAULT))
835 				continue;
836 			break;
837 		}
838 
839 		count++;
840 
841 		rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
842 							 rxdma_srng);
843 		qdf_assert_always(rxdma_ring_entry);
844 
845 		next = (*desc_list)->next;
846 
847 		/* Flag is set while pdev rx_desc_pool initialization */
848 		if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
849 			dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
850 					     &nbuf_frag_info);
851 		else
852 			dp_rx_desc_prep(&((*desc_list)->rx_desc),
853 					&nbuf_frag_info);
854 
855 		/* rx_desc.in_use should be zero at this time*/
856 		qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
857 
858 		(*desc_list)->rx_desc.in_use = 1;
859 		(*desc_list)->rx_desc.in_err_state = 0;
860 		dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
861 					   func_name, RX_DESC_REPLENISHED);
862 		dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
863 				 nbuf_frag_info.virt_addr.nbuf,
864 				 (unsigned long long)(nbuf_frag_info.paddr),
865 				 (*desc_list)->rx_desc.cookie);
866 
867 		hal_rxdma_buff_addr_info_set(dp_soc->hal_soc, rxdma_ring_entry,
868 					     nbuf_frag_info.paddr,
869 						(*desc_list)->rx_desc.cookie,
870 						rx_desc_pool->owner);
871 
872 		*desc_list = next;
873 
874 	}
875 
876 	dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng,
877 				       num_req_buffers, count);
878 
879 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
880 
881 	dp_rx_schedule_refill_thread(dp_soc);
882 
883 	dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
884 			 count, num_desc_to_free);
885 
886 	/* No need to count the number of bytes received during replenish.
887 	 * Therefore set replenish.pkts.bytes as 0.
888 	 */
889 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
890 	DP_STATS_INC(dp_pdev, replenish.free_list, num_req_buffers - count);
891 
892 free_descs:
893 	DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
894 	/*
895 	 * add any available free desc back to the free list
896 	 */
897 	if (*desc_list)
898 		dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
899 			mac_id, rx_desc_pool);
900 
901 	return QDF_STATUS_SUCCESS;
902 }
903 
904 qdf_export_symbol(__dp_rx_buffers_replenish);
905 
906 /*
907  * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
908  *				pkts to RAW mode simulation to
909  *				decapsulate the pkt.
910  *
911  * @vdev: vdev on which RAW mode is enabled
912  * @nbuf_list: list of RAW pkts to process
913  * @txrx_peer: peer object from which the pkt is rx
914  *
915  * Return: void
916  */
917 void
918 dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
919 		  struct dp_txrx_peer *txrx_peer)
920 {
921 	qdf_nbuf_t deliver_list_head = NULL;
922 	qdf_nbuf_t deliver_list_tail = NULL;
923 	qdf_nbuf_t nbuf;
924 
925 	nbuf = nbuf_list;
926 	while (nbuf) {
927 		qdf_nbuf_t next = qdf_nbuf_next(nbuf);
928 
929 		DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
930 
931 		DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
932 		DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.raw, 1,
933 					      qdf_nbuf_len(nbuf));
934 		/*
935 		 * reset the chfrag_start and chfrag_end bits in nbuf cb
936 		 * as this is a non-amsdu pkt and RAW mode simulation expects
937 		 * these bit s to be 0 for non-amsdu pkt.
938 		 */
939 		if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
940 			 qdf_nbuf_is_rx_chfrag_end(nbuf)) {
941 			qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
942 			qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
943 		}
944 
945 		nbuf = next;
946 	}
947 
948 	vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
949 				 &deliver_list_tail);
950 
951 	vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
952 }
953 
954 #ifndef QCA_HOST_MODE_WIFI_DISABLED
955 #ifndef FEATURE_WDS
956 void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr,
957 		    struct dp_txrx_peer *ta_peer, qdf_nbuf_t nbuf)
958 {
959 }
960 #endif
961 
962 #ifdef QCA_SUPPORT_TX_MIN_RATES_FOR_SPECIAL_FRAMES
963 /*
964  * dp_classify_critical_pkts() - API for marking critical packets
965  * @soc: dp_soc context
966  * @vdev: vdev on which packet is to be sent
967  * @nbuf: nbuf that has to be classified
968  *
969  * The function parses the packet, identifies whether its a critical frame and
970  * marks QDF_NBUF_CB_TX_EXTRA_IS_CRITICAL bit in qdf_nbuf_cb for the nbuf.
971  * Code for marking which frames are CRITICAL is accessed via callback.
972  * EAPOL, ARP, DHCP, DHCPv6, ICMPv6 NS/NA are the typical critical frames.
973  *
974  * Return: None
975  */
976 static
977 void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
978 			       qdf_nbuf_t nbuf)
979 {
980 	if (vdev->tx_classify_critical_pkt_cb)
981 		vdev->tx_classify_critical_pkt_cb(vdev->osif_vdev, nbuf);
982 }
983 #else
984 static inline
985 void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
986 			       qdf_nbuf_t nbuf)
987 {
988 }
989 #endif
990 
991 #ifdef QCA_OL_TX_MULTIQ_SUPPORT
992 static inline
993 void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
994 {
995 	qdf_nbuf_set_queue_mapping(nbuf, ring_id);
996 }
997 #else
998 static inline
999 void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
1000 {
1001 }
1002 #endif
1003 
1004 /*
1005  * dp_rx_intrabss_mcbc_fwd() - Does intrabss forward for mcast packets
1006  *
1007  * @soc: core txrx main context
1008  * @ta_peer	: source peer entry
1009  * @rx_tlv_hdr	: start address of rx tlvs
1010  * @nbuf	: nbuf that has to be intrabss forwarded
1011  * @tid_stats	: tid stats pointer
1012  *
1013  * Return: bool: true if it is forwarded else false
1014  */
1015 bool dp_rx_intrabss_mcbc_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
1016 			     uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
1017 			     struct cdp_tid_rx_stats *tid_stats)
1018 {
1019 	uint16_t len;
1020 	qdf_nbuf_t nbuf_copy;
1021 
1022 	if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr,
1023 					    nbuf))
1024 		return true;
1025 
1026 	if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
1027 		return false;
1028 
1029 	/* If the source peer in the isolation list
1030 	 * then dont forward instead push to bridge stack
1031 	 */
1032 	if (dp_get_peer_isolation(ta_peer))
1033 		return false;
1034 
1035 	nbuf_copy = qdf_nbuf_copy(nbuf);
1036 	if (!nbuf_copy)
1037 		return false;
1038 
1039 	len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
1040 
1041 	qdf_mem_set(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
1042 	dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf_copy);
1043 
1044 	if (soc->arch_ops.dp_rx_intrabss_handle_nawds(soc, ta_peer, nbuf_copy,
1045 						      tid_stats))
1046 		return false;
1047 
1048 	if (dp_tx_send((struct cdp_soc_t *)soc,
1049 		       ta_peer->vdev->vdev_id, nbuf_copy)) {
1050 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
1051 					      len);
1052 		tid_stats->fail_cnt[INTRABSS_DROP]++;
1053 		dp_rx_nbuf_free(nbuf_copy);
1054 	} else {
1055 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
1056 					      len);
1057 		tid_stats->intrabss_cnt++;
1058 	}
1059 	return false;
1060 }
1061 
1062 /*
1063  * dp_rx_intrabss_ucast_fwd() - Does intrabss forward for unicast packets
1064  *
1065  * @soc: core txrx main context
1066  * @ta_peer: source peer entry
1067  * @tx_vdev_id: VDEV ID for Intra-BSS TX
1068  * @rx_tlv_hdr: start address of rx tlvs
1069  * @nbuf: nbuf that has to be intrabss forwarded
1070  * @tid_stats: tid stats pointer
1071  *
1072  * Return: bool: true if it is forwarded else false
1073  */
1074 bool dp_rx_intrabss_ucast_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
1075 			      uint8_t tx_vdev_id,
1076 			      uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
1077 			      struct cdp_tid_rx_stats *tid_stats)
1078 {
1079 	uint16_t len;
1080 
1081 	len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
1082 
1083 	/* linearize the nbuf just before we send to
1084 	 * dp_tx_send()
1085 	 */
1086 	if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
1087 		if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
1088 			return false;
1089 
1090 		nbuf = qdf_nbuf_unshare(nbuf);
1091 		if (!nbuf) {
1092 			DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer,
1093 						      rx.intra_bss.fail,
1094 						      1, len);
1095 			/* return true even though the pkt is
1096 			 * not forwarded. Basically skb_unshare
1097 			 * failed and we want to continue with
1098 			 * next nbuf.
1099 			 */
1100 			tid_stats->fail_cnt[INTRABSS_DROP]++;
1101 			return false;
1102 		}
1103 	}
1104 
1105 	qdf_mem_set(nbuf->cb, 0x0, sizeof(nbuf->cb));
1106 	dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf);
1107 
1108 	if (!dp_tx_send((struct cdp_soc_t *)soc,
1109 			tx_vdev_id, nbuf)) {
1110 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
1111 					      len);
1112 	} else {
1113 		DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
1114 					      len);
1115 		tid_stats->fail_cnt[INTRABSS_DROP]++;
1116 		return false;
1117 	}
1118 
1119 	return true;
1120 }
1121 
1122 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
1123 
1124 #ifdef MESH_MODE_SUPPORT
1125 
1126 /**
1127  * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
1128  *
1129  * @vdev: DP Virtual device handle
1130  * @nbuf: Buffer pointer
1131  * @rx_tlv_hdr: start of rx tlv header
1132  * @txrx_peer: pointer to peer
1133  *
1134  * This function allocated memory for mesh receive stats and fill the
1135  * required stats. Stores the memory address in skb cb.
1136  *
1137  * Return: void
1138  */
1139 
1140 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1141 			   uint8_t *rx_tlv_hdr,
1142 			   struct dp_txrx_peer *txrx_peer)
1143 {
1144 	struct mesh_recv_hdr_s *rx_info = NULL;
1145 	uint32_t pkt_type;
1146 	uint32_t nss;
1147 	uint32_t rate_mcs;
1148 	uint32_t bw;
1149 	uint8_t primary_chan_num;
1150 	uint32_t center_chan_freq;
1151 	struct dp_soc *soc = vdev->pdev->soc;
1152 	struct dp_peer *peer;
1153 	struct dp_peer *primary_link_peer;
1154 	struct dp_soc *link_peer_soc;
1155 	cdp_peer_stats_param_t buf = {0};
1156 
1157 	/* fill recv mesh stats */
1158 	rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
1159 
1160 	/* upper layers are resposible to free this memory */
1161 
1162 	if (!rx_info) {
1163 		dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
1164 			  vdev->pdev->soc);
1165 		DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
1166 		return;
1167 	}
1168 
1169 	rx_info->rs_flags = MESH_RXHDR_VER1;
1170 	if (qdf_nbuf_is_rx_chfrag_start(nbuf))
1171 		rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
1172 
1173 	if (qdf_nbuf_is_rx_chfrag_end(nbuf))
1174 		rx_info->rs_flags |= MESH_RX_LAST_MSDU;
1175 
1176 	peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id, DP_MOD_ID_MESH);
1177 	if (peer) {
1178 		if (hal_rx_tlv_get_is_decrypted(soc->hal_soc, rx_tlv_hdr)) {
1179 			rx_info->rs_flags |= MESH_RX_DECRYPTED;
1180 			rx_info->rs_keyix = hal_rx_msdu_get_keyid(soc->hal_soc,
1181 								  rx_tlv_hdr);
1182 			if (vdev->osif_get_key)
1183 				vdev->osif_get_key(vdev->osif_vdev,
1184 						   &rx_info->rs_decryptkey[0],
1185 						   &peer->mac_addr.raw[0],
1186 						   rx_info->rs_keyix);
1187 		}
1188 
1189 		dp_peer_unref_delete(peer, DP_MOD_ID_MESH);
1190 	}
1191 
1192 	primary_link_peer = dp_get_primary_link_peer_by_id(soc,
1193 							   txrx_peer->peer_id,
1194 							   DP_MOD_ID_MESH);
1195 
1196 	if (qdf_likely(primary_link_peer)) {
1197 		link_peer_soc = primary_link_peer->vdev->pdev->soc;
1198 		dp_monitor_peer_get_stats_param(link_peer_soc,
1199 						primary_link_peer,
1200 						cdp_peer_rx_snr, &buf);
1201 		rx_info->rs_snr = buf.rx_snr;
1202 		dp_peer_unref_delete(primary_link_peer, DP_MOD_ID_MESH);
1203 	}
1204 
1205 	rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
1206 
1207 	soc = vdev->pdev->soc;
1208 	primary_chan_num = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr);
1209 	center_chan_freq = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr) >> 16;
1210 
1211 	if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
1212 		rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
1213 							soc->ctrl_psoc,
1214 							vdev->pdev->pdev_id,
1215 							center_chan_freq);
1216 	}
1217 	rx_info->rs_channel = primary_chan_num;
1218 	pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
1219 	rate_mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
1220 	bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
1221 	nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
1222 	rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
1223 				(bw << 24);
1224 
1225 	qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
1226 
1227 	QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
1228 		FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
1229 						rx_info->rs_flags,
1230 						rx_info->rs_rssi,
1231 						rx_info->rs_channel,
1232 						rx_info->rs_ratephy1,
1233 						rx_info->rs_keyix,
1234 						rx_info->rs_snr);
1235 
1236 }
1237 
1238 /**
1239  * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
1240  *
1241  * @vdev: DP Virtual device handle
1242  * @nbuf: Buffer pointer
1243  * @rx_tlv_hdr: start of rx tlv header
1244  *
1245  * This checks if the received packet is matching any filter out
1246  * catogery and and drop the packet if it matches.
1247  *
1248  * Return: status(0 indicates drop, 1 indicate to no drop)
1249  */
1250 
1251 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1252 					uint8_t *rx_tlv_hdr)
1253 {
1254 	union dp_align_mac_addr mac_addr;
1255 	struct dp_soc *soc = vdev->pdev->soc;
1256 
1257 	if (qdf_unlikely(vdev->mesh_rx_filter)) {
1258 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
1259 			if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
1260 						  rx_tlv_hdr))
1261 				return  QDF_STATUS_SUCCESS;
1262 
1263 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
1264 			if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
1265 						  rx_tlv_hdr))
1266 				return  QDF_STATUS_SUCCESS;
1267 
1268 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
1269 			if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
1270 						   rx_tlv_hdr) &&
1271 			    !hal_rx_mpdu_get_to_ds(soc->hal_soc,
1272 						   rx_tlv_hdr))
1273 				return  QDF_STATUS_SUCCESS;
1274 
1275 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
1276 			if (hal_rx_mpdu_get_addr1(soc->hal_soc,
1277 						  rx_tlv_hdr,
1278 					&mac_addr.raw[0]))
1279 				return QDF_STATUS_E_FAILURE;
1280 
1281 			if (!qdf_mem_cmp(&mac_addr.raw[0],
1282 					&vdev->mac_addr.raw[0],
1283 					QDF_MAC_ADDR_SIZE))
1284 				return  QDF_STATUS_SUCCESS;
1285 		}
1286 
1287 		if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
1288 			if (hal_rx_mpdu_get_addr2(soc->hal_soc,
1289 						  rx_tlv_hdr,
1290 						  &mac_addr.raw[0]))
1291 				return QDF_STATUS_E_FAILURE;
1292 
1293 			if (!qdf_mem_cmp(&mac_addr.raw[0],
1294 					&vdev->mac_addr.raw[0],
1295 					QDF_MAC_ADDR_SIZE))
1296 				return  QDF_STATUS_SUCCESS;
1297 		}
1298 	}
1299 
1300 	return QDF_STATUS_E_FAILURE;
1301 }
1302 
1303 #else
1304 void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1305 				uint8_t *rx_tlv_hdr, struct dp_txrx_peer *peer)
1306 {
1307 }
1308 
1309 QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
1310 					uint8_t *rx_tlv_hdr)
1311 {
1312 	return QDF_STATUS_E_FAILURE;
1313 }
1314 
1315 #endif
1316 
1317 #ifdef FEATURE_NAC_RSSI
1318 /**
1319  * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
1320  * @soc: DP SOC handle
1321  * @mpdu: mpdu for which peer is invalid
1322  * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
1323  * pool_id has same mapping)
1324  *
1325  * return: integer type
1326  */
1327 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
1328 				   uint8_t mac_id)
1329 {
1330 	struct dp_invalid_peer_msg msg;
1331 	struct dp_vdev *vdev = NULL;
1332 	struct dp_pdev *pdev = NULL;
1333 	struct ieee80211_frame *wh;
1334 	qdf_nbuf_t curr_nbuf, next_nbuf;
1335 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
1336 	uint8_t *rx_pkt_hdr = NULL;
1337 	int i = 0;
1338 
1339 	if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
1340 		dp_rx_debug("%pK: Drop decapped frames", soc);
1341 		goto free;
1342 	}
1343 
1344 	/* In RAW packet, packet header will be part of data */
1345 	rx_pkt_hdr = rx_tlv_hdr + soc->rx_pkt_tlv_size;
1346 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
1347 
1348 	if (!DP_FRAME_IS_DATA(wh)) {
1349 		dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
1350 		goto free;
1351 	}
1352 
1353 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
1354 		dp_rx_err("%pK: Invalid nbuf length", soc);
1355 		goto free;
1356 	}
1357 
1358 	/* In DMAC case the rx_desc_pools are common across PDEVs
1359 	 * so PDEV cannot be derived from the pool_id.
1360 	 *
1361 	 * link_id need to derived from the TLV tag word which is
1362 	 * disabled by default. For now adding a WAR to get vdev
1363 	 * with brute force this need to fixed with word based subscription
1364 	 * support is added by enabling TLV tag word
1365 	 */
1366 	if (soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
1367 		for (i = 0; i < MAX_PDEV_CNT; i++) {
1368 			pdev = soc->pdev_list[i];
1369 
1370 			if (!pdev || qdf_unlikely(pdev->is_pdev_down))
1371 				continue;
1372 
1373 			TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
1374 				if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
1375 						QDF_MAC_ADDR_SIZE) == 0) {
1376 					goto out;
1377 				}
1378 			}
1379 		}
1380 	} else {
1381 		pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1382 
1383 		if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
1384 			dp_rx_err("%pK: PDEV %s",
1385 				  soc, !pdev ? "not found" : "down");
1386 			goto free;
1387 		}
1388 
1389 		if (dp_monitor_filter_neighbour_peer(pdev, rx_pkt_hdr) ==
1390 		    QDF_STATUS_SUCCESS)
1391 			return 0;
1392 
1393 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
1394 			if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
1395 					QDF_MAC_ADDR_SIZE) == 0) {
1396 				goto out;
1397 			}
1398 		}
1399 	}
1400 
1401 	if (!vdev) {
1402 		dp_rx_err("%pK: VDEV not found", soc);
1403 		goto free;
1404 	}
1405 out:
1406 	msg.wh = wh;
1407 	qdf_nbuf_pull_head(mpdu, soc->rx_pkt_tlv_size);
1408 	msg.nbuf = mpdu;
1409 	msg.vdev_id = vdev->vdev_id;
1410 
1411 	/*
1412 	 * NOTE: Only valid for HKv1.
1413 	 * If smart monitor mode is enabled on RE, we are getting invalid
1414 	 * peer frames with RA as STA mac of RE and the TA not matching
1415 	 * with any NAC list or the the BSSID.Such frames need to dropped
1416 	 * in order to avoid HM_WDS false addition.
1417 	 */
1418 	if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
1419 		if (dp_monitor_drop_inv_peer_pkts(vdev) == QDF_STATUS_SUCCESS) {
1420 			dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
1421 				   soc, wh->i_addr1);
1422 			goto free;
1423 		}
1424 		pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
1425 				(struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
1426 				pdev->pdev_id, &msg);
1427 	}
1428 
1429 free:
1430 	/* Drop and free packet */
1431 	curr_nbuf = mpdu;
1432 	while (curr_nbuf) {
1433 		next_nbuf = qdf_nbuf_next(curr_nbuf);
1434 		dp_rx_nbuf_free(curr_nbuf);
1435 		curr_nbuf = next_nbuf;
1436 	}
1437 
1438 	return 0;
1439 }
1440 
1441 /**
1442  * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
1443  * @soc: DP SOC handle
1444  * @mpdu: mpdu for which peer is invalid
1445  * @mpdu_done: if an mpdu is completed
1446  * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
1447  * pool_id has same mapping)
1448  *
1449  * return: integer type
1450  */
1451 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
1452 					qdf_nbuf_t mpdu, bool mpdu_done,
1453 					uint8_t mac_id)
1454 {
1455 	/* Only trigger the process when mpdu is completed */
1456 	if (mpdu_done)
1457 		dp_rx_process_invalid_peer(soc, mpdu, mac_id);
1458 }
1459 #else
1460 uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
1461 				   uint8_t mac_id)
1462 {
1463 	qdf_nbuf_t curr_nbuf, next_nbuf;
1464 	struct dp_pdev *pdev;
1465 	struct dp_vdev *vdev = NULL;
1466 	struct ieee80211_frame *wh;
1467 	uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
1468 	uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
1469 
1470 	wh = (struct ieee80211_frame *)rx_pkt_hdr;
1471 
1472 	if (!DP_FRAME_IS_DATA(wh)) {
1473 		QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
1474 				   "only for data frames");
1475 		goto free;
1476 	}
1477 
1478 	if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
1479 		dp_rx_info_rl("%pK: Invalid nbuf length", soc);
1480 		goto free;
1481 	}
1482 
1483 	pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1484 	if (!pdev) {
1485 		dp_rx_info_rl("%pK: PDEV not found", soc);
1486 		goto free;
1487 	}
1488 
1489 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
1490 	DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
1491 		if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
1492 				QDF_MAC_ADDR_SIZE) == 0) {
1493 			qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1494 			goto out;
1495 		}
1496 	}
1497 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1498 
1499 	if (!vdev) {
1500 		dp_rx_info_rl("%pK: VDEV not found", soc);
1501 		goto free;
1502 	}
1503 
1504 out:
1505 	if (soc->cdp_soc.ol_ops->rx_invalid_peer)
1506 		soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
1507 free:
1508 
1509 	/* Drop and free packet */
1510 	curr_nbuf = mpdu;
1511 	while (curr_nbuf) {
1512 		next_nbuf = qdf_nbuf_next(curr_nbuf);
1513 		dp_rx_nbuf_free(curr_nbuf);
1514 		curr_nbuf = next_nbuf;
1515 	}
1516 
1517 	/* Reset the head and tail pointers */
1518 	pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
1519 	if (pdev) {
1520 		pdev->invalid_peer_head_msdu = NULL;
1521 		pdev->invalid_peer_tail_msdu = NULL;
1522 	}
1523 
1524 	return 0;
1525 }
1526 
1527 void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
1528 					qdf_nbuf_t mpdu, bool mpdu_done,
1529 					uint8_t mac_id)
1530 {
1531 	/* Process the nbuf */
1532 	dp_rx_process_invalid_peer(soc, mpdu, mac_id);
1533 }
1534 #endif
1535 
1536 #ifndef QCA_HOST_MODE_WIFI_DISABLED
1537 
1538 #ifdef RECEIVE_OFFLOAD
1539 /**
1540  * dp_rx_print_offload_info() - Print offload info from RX TLV
1541  * @soc: dp soc handle
1542  * @msdu: MSDU for which the offload info is to be printed
1543  *
1544  * Return: None
1545  */
1546 static void dp_rx_print_offload_info(struct dp_soc *soc,
1547 				     qdf_nbuf_t msdu)
1548 {
1549 	dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
1550 	dp_verbose_debug("lro_eligible 0x%x",
1551 			 QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu));
1552 	dp_verbose_debug("pure_ack 0x%x", QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu));
1553 	dp_verbose_debug("chksum 0x%x", QDF_NBUF_CB_RX_TCP_CHKSUM(msdu));
1554 	dp_verbose_debug("TCP seq num 0x%x", QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu));
1555 	dp_verbose_debug("TCP ack num 0x%x", QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu));
1556 	dp_verbose_debug("TCP window 0x%x", QDF_NBUF_CB_RX_TCP_WIN(msdu));
1557 	dp_verbose_debug("TCP protocol 0x%x", QDF_NBUF_CB_RX_TCP_PROTO(msdu));
1558 	dp_verbose_debug("TCP offset 0x%x", QDF_NBUF_CB_RX_TCP_OFFSET(msdu));
1559 	dp_verbose_debug("toeplitz 0x%x", QDF_NBUF_CB_RX_FLOW_ID(msdu));
1560 	dp_verbose_debug("---------------------------------------------------------");
1561 }
1562 
1563 /**
1564  * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
1565  * @soc: DP SOC handle
1566  * @rx_tlv: RX TLV received for the msdu
1567  * @msdu: msdu for which GRO info needs to be filled
1568  * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
1569  *
1570  * Return: None
1571  */
1572 void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
1573 			 qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
1574 {
1575 	struct hal_offload_info offload_info;
1576 
1577 	if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
1578 		return;
1579 
1580 	if (hal_rx_tlv_get_offload_info(soc->hal_soc, rx_tlv, &offload_info))
1581 		return;
1582 
1583 	*rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
1584 
1585 	QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = offload_info.lro_eligible;
1586 	QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = offload_info.tcp_pure_ack;
1587 	QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
1588 			hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
1589 						  rx_tlv);
1590 	QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = offload_info.tcp_seq_num;
1591 	QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = offload_info.tcp_ack_num;
1592 	QDF_NBUF_CB_RX_TCP_WIN(msdu) = offload_info.tcp_win;
1593 	QDF_NBUF_CB_RX_TCP_PROTO(msdu) = offload_info.tcp_proto;
1594 	QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = offload_info.ipv6_proto;
1595 	QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = offload_info.tcp_offset;
1596 	QDF_NBUF_CB_RX_FLOW_ID(msdu) = offload_info.flow_id;
1597 
1598 	dp_rx_print_offload_info(soc, msdu);
1599 }
1600 #endif /* RECEIVE_OFFLOAD */
1601 
1602 /**
1603  * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
1604  *
1605  * @soc: DP soc handle
1606  * @nbuf: pointer to msdu.
1607  * @mpdu_len: mpdu length
1608  * @l3_pad_len: L3 padding length by HW
1609  *
1610  * Return: returns true if nbuf is last msdu of mpdu else retuns false.
1611  */
1612 static inline bool dp_rx_adjust_nbuf_len(struct dp_soc *soc,
1613 					 qdf_nbuf_t nbuf,
1614 					 uint16_t *mpdu_len,
1615 					 uint32_t l3_pad_len)
1616 {
1617 	bool last_nbuf;
1618 	uint32_t pkt_hdr_size;
1619 
1620 	pkt_hdr_size = soc->rx_pkt_tlv_size + l3_pad_len;
1621 
1622 	if ((*mpdu_len + pkt_hdr_size) > RX_DATA_BUFFER_SIZE) {
1623 		qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
1624 		last_nbuf = false;
1625 		*mpdu_len -= (RX_DATA_BUFFER_SIZE - pkt_hdr_size);
1626 	} else {
1627 		qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + pkt_hdr_size));
1628 		last_nbuf = true;
1629 		*mpdu_len = 0;
1630 	}
1631 
1632 	return last_nbuf;
1633 }
1634 
1635 /**
1636  * dp_get_l3_hdr_pad_len() - get L3 header padding length.
1637  *
1638  * @soc: DP soc handle
1639  * @nbuf: pointer to msdu.
1640  *
1641  * Return: returns padding length in bytes.
1642  */
1643 static inline uint32_t dp_get_l3_hdr_pad_len(struct dp_soc *soc,
1644 					     qdf_nbuf_t nbuf)
1645 {
1646 	uint32_t l3_hdr_pad = 0;
1647 	uint8_t *rx_tlv_hdr;
1648 	struct hal_rx_msdu_metadata msdu_metadata;
1649 
1650 	while (nbuf) {
1651 		if (!qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
1652 			/* scattered msdu end with continuation is 0 */
1653 			rx_tlv_hdr = qdf_nbuf_data(nbuf);
1654 			hal_rx_msdu_metadata_get(soc->hal_soc,
1655 						 rx_tlv_hdr,
1656 						 &msdu_metadata);
1657 			l3_hdr_pad = msdu_metadata.l3_hdr_pad;
1658 			break;
1659 		}
1660 		nbuf = nbuf->next;
1661 	}
1662 
1663 	return l3_hdr_pad;
1664 }
1665 
1666 /**
1667  * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
1668  *		     multiple nbufs.
1669  * @soc: DP SOC handle
1670  * @nbuf: pointer to the first msdu of an amsdu.
1671  *
1672  * This function implements the creation of RX frag_list for cases
1673  * where an MSDU is spread across multiple nbufs.
1674  *
1675  * Return: returns the head nbuf which contains complete frag_list.
1676  */
1677 qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
1678 {
1679 	qdf_nbuf_t parent, frag_list, next = NULL;
1680 	uint16_t frag_list_len = 0;
1681 	uint16_t mpdu_len;
1682 	bool last_nbuf;
1683 	uint32_t l3_hdr_pad_offset = 0;
1684 
1685 	/*
1686 	 * Use msdu len got from REO entry descriptor instead since
1687 	 * there is case the RX PKT TLV is corrupted while msdu_len
1688 	 * from REO descriptor is right for non-raw RX scatter msdu.
1689 	 */
1690 	mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
1691 
1692 	/*
1693 	 * this is a case where the complete msdu fits in one single nbuf.
1694 	 * in this case HW sets both start and end bit and we only need to
1695 	 * reset these bits for RAW mode simulator to decap the pkt
1696 	 */
1697 	if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
1698 					qdf_nbuf_is_rx_chfrag_end(nbuf)) {
1699 		qdf_nbuf_set_pktlen(nbuf, mpdu_len + soc->rx_pkt_tlv_size);
1700 		qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size);
1701 		return nbuf;
1702 	}
1703 
1704 	l3_hdr_pad_offset = dp_get_l3_hdr_pad_len(soc, nbuf);
1705 	/*
1706 	 * This is a case where we have multiple msdus (A-MSDU) spread across
1707 	 * multiple nbufs. here we create a fraglist out of these nbufs.
1708 	 *
1709 	 * the moment we encounter a nbuf with continuation bit set we
1710 	 * know for sure we have an MSDU which is spread across multiple
1711 	 * nbufs. We loop through and reap nbufs till we reach last nbuf.
1712 	 */
1713 	parent = nbuf;
1714 	frag_list = nbuf->next;
1715 	nbuf = nbuf->next;
1716 
1717 	/*
1718 	 * set the start bit in the first nbuf we encounter with continuation
1719 	 * bit set. This has the proper mpdu length set as it is the first
1720 	 * msdu of the mpdu. this becomes the parent nbuf and the subsequent
1721 	 * nbufs will form the frag_list of the parent nbuf.
1722 	 */
1723 	qdf_nbuf_set_rx_chfrag_start(parent, 1);
1724 	/*
1725 	 * L3 header padding is only needed for the 1st buffer
1726 	 * in a scattered msdu
1727 	 */
1728 	last_nbuf = dp_rx_adjust_nbuf_len(soc, parent, &mpdu_len,
1729 					  l3_hdr_pad_offset);
1730 
1731 	/*
1732 	 * MSDU cont bit is set but reported MPDU length can fit
1733 	 * in to single buffer
1734 	 *
1735 	 * Increment error stats and avoid SG list creation
1736 	 */
1737 	if (last_nbuf) {
1738 		DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
1739 		qdf_nbuf_pull_head(parent,
1740 				   soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
1741 		return parent;
1742 	}
1743 
1744 	/*
1745 	 * this is where we set the length of the fragments which are
1746 	 * associated to the parent nbuf. We iterate through the frag_list
1747 	 * till we hit the last_nbuf of the list.
1748 	 */
1749 	do {
1750 		last_nbuf = dp_rx_adjust_nbuf_len(soc, nbuf, &mpdu_len, 0);
1751 		qdf_nbuf_pull_head(nbuf,
1752 				   soc->rx_pkt_tlv_size);
1753 		frag_list_len += qdf_nbuf_len(nbuf);
1754 
1755 		if (last_nbuf) {
1756 			next = nbuf->next;
1757 			nbuf->next = NULL;
1758 			break;
1759 		} else if (qdf_nbuf_is_rx_chfrag_end(nbuf)) {
1760 			dp_err("Invalid packet length\n");
1761 			qdf_assert_always(0);
1762 		}
1763 		nbuf = nbuf->next;
1764 	} while (!last_nbuf);
1765 
1766 	qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
1767 	qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
1768 	parent->next = next;
1769 
1770 	qdf_nbuf_pull_head(parent,
1771 			   soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
1772 	return parent;
1773 }
1774 
1775 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
1776 
1777 #ifdef QCA_PEER_EXT_STATS
1778 /*
1779  * dp_rx_compute_tid_delay - Computer per TID delay stats
1780  * @peer: DP soc context
1781  * @nbuf: NBuffer
1782  *
1783  * Return: Void
1784  */
1785 void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
1786 			     qdf_nbuf_t nbuf)
1787 {
1788 	struct cdp_delay_rx_stats  *rx_delay = &stats->rx_delay;
1789 	uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
1790 
1791 	dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
1792 }
1793 #endif /* QCA_PEER_EXT_STATS */
1794 
1795 /**
1796  * dp_rx_compute_delay() - Compute and fill in all timestamps
1797  *				to pass in correct fields
1798  *
1799  * @vdev: pdev handle
1800  * @tx_desc: tx descriptor
1801  * @tid: tid value
1802  * Return: none
1803  */
1804 void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
1805 {
1806 	uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
1807 	int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
1808 	uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
1809 	uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
1810 	uint32_t interframe_delay =
1811 		(uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
1812 	struct cdp_tid_rx_stats *rstats =
1813 		&vdev->pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
1814 
1815 	dp_update_delay_stats(NULL, rstats, to_stack, tid,
1816 			      CDP_DELAY_STATS_REAP_STACK, ring_id, false);
1817 	/*
1818 	 * Update interframe delay stats calculated at deliver_data_ol point.
1819 	 * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
1820 	 * interframe delay will not be calculate correctly for 1st frame.
1821 	 * On the other side, this will help in avoiding extra per packet check
1822 	 * of vdev->prev_rx_deliver_tstamp.
1823 	 */
1824 	dp_update_delay_stats(NULL, rstats, interframe_delay, tid,
1825 			      CDP_DELAY_STATS_RX_INTERFRAME, ring_id, false);
1826 	vdev->prev_rx_deliver_tstamp = current_ts;
1827 }
1828 
1829 /**
1830  * dp_rx_drop_nbuf_list() - drop an nbuf list
1831  * @pdev: dp pdev reference
1832  * @buf_list: buffer list to be dropepd
1833  *
1834  * Return: int (number of bufs dropped)
1835  */
1836 static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
1837 				       qdf_nbuf_t buf_list)
1838 {
1839 	struct cdp_tid_rx_stats *stats = NULL;
1840 	uint8_t tid = 0, ring_id = 0;
1841 	int num_dropped = 0;
1842 	qdf_nbuf_t buf, next_buf;
1843 
1844 	buf = buf_list;
1845 	while (buf) {
1846 		ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
1847 		next_buf = qdf_nbuf_queue_next(buf);
1848 		tid = qdf_nbuf_get_tid_val(buf);
1849 		if (qdf_likely(pdev)) {
1850 			stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
1851 			stats->fail_cnt[INVALID_PEER_VDEV]++;
1852 			stats->delivered_to_stack--;
1853 		}
1854 		dp_rx_nbuf_free(buf);
1855 		buf = next_buf;
1856 		num_dropped++;
1857 	}
1858 
1859 	return num_dropped;
1860 }
1861 
1862 #ifdef QCA_SUPPORT_WDS_EXTENDED
1863 /**
1864  * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
1865  * @soc: core txrx main context
1866  * @vdev: vdev
1867  * @txrx_peer: txrx peer
1868  * @nbuf_head: skb list head
1869  *
1870  * Return: true if packet is delivered to netdev per STA.
1871  */
1872 static inline bool
1873 dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
1874 			   struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
1875 {
1876 	/*
1877 	 * When extended WDS is disabled, frames are sent to AP netdevice.
1878 	 */
1879 	if (qdf_likely(!vdev->wds_ext_enabled))
1880 		return false;
1881 
1882 	/*
1883 	 * There can be 2 cases:
1884 	 * 1. Send frame to parent netdev if its not for netdev per STA
1885 	 * 2. If frame is meant for netdev per STA:
1886 	 *    a. Send frame to appropriate netdev using registered fp.
1887 	 *    b. If fp is NULL, drop the frames.
1888 	 */
1889 	if (!txrx_peer->wds_ext.init)
1890 		return false;
1891 
1892 	if (txrx_peer->osif_rx)
1893 		txrx_peer->osif_rx(txrx_peer->wds_ext.osif_peer, nbuf_head);
1894 	else
1895 		dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
1896 
1897 	return true;
1898 }
1899 
1900 #else
1901 static inline bool
1902 dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
1903 			   struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
1904 {
1905 	return false;
1906 }
1907 #endif
1908 
1909 #ifdef PEER_CACHE_RX_PKTS
1910 /**
1911  * dp_rx_flush_rx_cached() - flush cached rx frames
1912  * @peer: peer
1913  * @drop: flag to drop frames or forward to net stack
1914  *
1915  * Return: None
1916  */
1917 void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
1918 {
1919 	struct dp_peer_cached_bufq *bufqi;
1920 	struct dp_rx_cached_buf *cache_buf = NULL;
1921 	ol_txrx_rx_fp data_rx = NULL;
1922 	int num_buff_elem;
1923 	QDF_STATUS status;
1924 
1925 	/*
1926 	 * Flush dp cached frames only for mld peers and legacy peers, as
1927 	 * link peers don't store cached frames
1928 	 */
1929 	if (IS_MLO_DP_LINK_PEER(peer))
1930 		return;
1931 
1932 	if (!peer->txrx_peer) {
1933 		dp_err("txrx_peer NULL!! peer mac_addr("QDF_MAC_ADDR_FMT")",
1934 			QDF_MAC_ADDR_REF(peer->mac_addr.raw));
1935 		return;
1936 	}
1937 
1938 	if (qdf_atomic_inc_return(&peer->txrx_peer->flush_in_progress) > 1) {
1939 		qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
1940 		return;
1941 	}
1942 
1943 	qdf_spin_lock_bh(&peer->peer_info_lock);
1944 	if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
1945 		data_rx = peer->vdev->osif_rx;
1946 	else
1947 		drop = true;
1948 	qdf_spin_unlock_bh(&peer->peer_info_lock);
1949 
1950 	bufqi = &peer->txrx_peer->bufq_info;
1951 
1952 	qdf_spin_lock_bh(&bufqi->bufq_lock);
1953 	qdf_list_remove_front(&bufqi->cached_bufq,
1954 			      (qdf_list_node_t **)&cache_buf);
1955 	while (cache_buf) {
1956 		num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
1957 								cache_buf->buf);
1958 		bufqi->entries -= num_buff_elem;
1959 		qdf_spin_unlock_bh(&bufqi->bufq_lock);
1960 		if (drop) {
1961 			bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
1962 							      cache_buf->buf);
1963 		} else {
1964 			/* Flush the cached frames to OSIF DEV */
1965 			status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
1966 			if (status != QDF_STATUS_SUCCESS)
1967 				bufqi->dropped = dp_rx_drop_nbuf_list(
1968 							peer->vdev->pdev,
1969 							cache_buf->buf);
1970 		}
1971 		qdf_mem_free(cache_buf);
1972 		cache_buf = NULL;
1973 		qdf_spin_lock_bh(&bufqi->bufq_lock);
1974 		qdf_list_remove_front(&bufqi->cached_bufq,
1975 				      (qdf_list_node_t **)&cache_buf);
1976 	}
1977 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
1978 	qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
1979 }
1980 
1981 /**
1982  * dp_rx_enqueue_rx() - cache rx frames
1983  * @peer: peer
1984  * @rx_buf_list: cache buffer list
1985  *
1986  * Return: None
1987  */
1988 static QDF_STATUS
1989 dp_rx_enqueue_rx(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t rx_buf_list)
1990 {
1991 	struct dp_rx_cached_buf *cache_buf;
1992 	struct dp_peer_cached_bufq *bufqi = &txrx_peer->bufq_info;
1993 	int num_buff_elem;
1994 	QDF_STATUS ret = QDF_STATUS_SUCCESS;
1995 	struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
1996 	struct dp_peer *peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id,
1997 						     DP_MOD_ID_RX);
1998 
1999 	if (!peer) {
2000 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
2001 						      rx_buf_list);
2002 		return QDF_STATUS_E_INVAL;
2003 	}
2004 
2005 	dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
2006 		    bufqi->dropped);
2007 	if (!peer->valid) {
2008 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
2009 						      rx_buf_list);
2010 		ret = QDF_STATUS_E_INVAL;
2011 		goto fail;
2012 	}
2013 
2014 	qdf_spin_lock_bh(&bufqi->bufq_lock);
2015 	if (bufqi->entries >= bufqi->thresh) {
2016 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
2017 						      rx_buf_list);
2018 		qdf_spin_unlock_bh(&bufqi->bufq_lock);
2019 		ret = QDF_STATUS_E_RESOURCES;
2020 		goto fail;
2021 	}
2022 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
2023 
2024 	num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
2025 
2026 	cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
2027 	if (!cache_buf) {
2028 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
2029 			  "Failed to allocate buf to cache rx frames");
2030 		bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
2031 						      rx_buf_list);
2032 		ret = QDF_STATUS_E_NOMEM;
2033 		goto fail;
2034 	}
2035 
2036 	cache_buf->buf = rx_buf_list;
2037 
2038 	qdf_spin_lock_bh(&bufqi->bufq_lock);
2039 	qdf_list_insert_back(&bufqi->cached_bufq,
2040 			     &cache_buf->node);
2041 	bufqi->entries += num_buff_elem;
2042 	qdf_spin_unlock_bh(&bufqi->bufq_lock);
2043 
2044 fail:
2045 	dp_peer_unref_delete(peer, DP_MOD_ID_RX);
2046 	return ret;
2047 }
2048 
2049 static inline
2050 bool dp_rx_is_peer_cache_bufq_supported(void)
2051 {
2052 	return true;
2053 }
2054 #else
2055 static inline
2056 bool dp_rx_is_peer_cache_bufq_supported(void)
2057 {
2058 	return false;
2059 }
2060 
2061 static inline QDF_STATUS
2062 dp_rx_enqueue_rx(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t rx_buf_list)
2063 {
2064 	return QDF_STATUS_SUCCESS;
2065 }
2066 #endif
2067 
2068 #ifndef DELIVERY_TO_STACK_STATUS_CHECK
2069 /**
2070  * dp_rx_check_delivery_to_stack() - Deliver pkts to network
2071  * using the appropriate call back functions.
2072  * @soc: soc
2073  * @vdev: vdev
2074  * @peer: peer
2075  * @nbuf_head: skb list head
2076  * @nbuf_tail: skb list tail
2077  *
2078  * Return: None
2079  */
2080 static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
2081 					  struct dp_vdev *vdev,
2082 					  struct dp_txrx_peer *txrx_peer,
2083 					  qdf_nbuf_t nbuf_head)
2084 {
2085 	if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
2086 						    txrx_peer, nbuf_head)))
2087 		return;
2088 
2089 	/* Function pointer initialized only when FISA is enabled */
2090 	if (vdev->osif_fisa_rx)
2091 		/* on failure send it via regular path */
2092 		vdev->osif_fisa_rx(soc, vdev, nbuf_head);
2093 	else
2094 		vdev->osif_rx(vdev->osif_vdev, nbuf_head);
2095 }
2096 
2097 #else
2098 /**
2099  * dp_rx_check_delivery_to_stack() - Deliver pkts to network
2100  * using the appropriate call back functions.
2101  * @soc: soc
2102  * @vdev: vdev
2103  * @txrx_peer: txrx peer
2104  * @nbuf_head: skb list head
2105  * @nbuf_tail: skb list tail
2106  *
2107  * Check the return status of the call back function and drop
2108  * the packets if the return status indicates a failure.
2109  *
2110  * Return: None
2111  */
2112 static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
2113 					  struct dp_vdev *vdev,
2114 					  struct dp_txrx_peer *txrx_peer,
2115 					  qdf_nbuf_t nbuf_head)
2116 {
2117 	int num_nbuf = 0;
2118 	QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
2119 
2120 	/* Function pointer initialized only when FISA is enabled */
2121 	if (vdev->osif_fisa_rx)
2122 		/* on failure send it via regular path */
2123 		ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
2124 	else if (vdev->osif_rx)
2125 		ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
2126 
2127 	if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
2128 		num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
2129 		DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
2130 		if (txrx_peer)
2131 			DP_PEER_STATS_FLAT_DEC(txrx_peer, to_stack.num,
2132 					       num_nbuf);
2133 	}
2134 }
2135 #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
2136 
2137 /*
2138  * dp_rx_validate_rx_callbacks() - validate rx callbacks
2139  * @soc DP soc
2140  * @vdev: DP vdev handle
2141  * @txrx_peer: pointer to the txrx peer object
2142  * nbuf_head: skb list head
2143  *
2144  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
2145  *			QDF_STATUS_E_FAILURE
2146  */
2147 static inline QDF_STATUS
2148 dp_rx_validate_rx_callbacks(struct dp_soc *soc,
2149 			    struct dp_vdev *vdev,
2150 			    struct dp_txrx_peer *txrx_peer,
2151 			    qdf_nbuf_t nbuf_head)
2152 {
2153 	int num_nbuf;
2154 
2155 	if (qdf_unlikely(!vdev || vdev->delete.pending)) {
2156 		num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
2157 		/*
2158 		 * This is a special case where vdev is invalid,
2159 		 * so we cannot know the pdev to which this packet
2160 		 * belonged. Hence we update the soc rx error stats.
2161 		 */
2162 		DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
2163 		return QDF_STATUS_E_FAILURE;
2164 	}
2165 
2166 	/*
2167 	 * highly unlikely to have a vdev without a registered rx
2168 	 * callback function. if so let us free the nbuf_list.
2169 	 */
2170 	if (qdf_unlikely(!vdev->osif_rx)) {
2171 		if (txrx_peer && dp_rx_is_peer_cache_bufq_supported()) {
2172 			dp_rx_enqueue_rx(txrx_peer, nbuf_head);
2173 		} else {
2174 			num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
2175 							nbuf_head);
2176 			DP_PEER_TO_STACK_DECC(txrx_peer, num_nbuf,
2177 					      vdev->pdev->enhanced_stats_en);
2178 		}
2179 		return QDF_STATUS_E_FAILURE;
2180 	}
2181 
2182 	return QDF_STATUS_SUCCESS;
2183 }
2184 
2185 QDF_STATUS dp_rx_deliver_to_stack(struct dp_soc *soc,
2186 				  struct dp_vdev *vdev,
2187 				  struct dp_txrx_peer *txrx_peer,
2188 				  qdf_nbuf_t nbuf_head,
2189 				  qdf_nbuf_t nbuf_tail)
2190 {
2191 	if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
2192 					QDF_STATUS_SUCCESS)
2193 		return QDF_STATUS_E_FAILURE;
2194 
2195 	if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
2196 			(vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
2197 		vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
2198 					 &nbuf_tail);
2199 	}
2200 
2201 	dp_rx_check_delivery_to_stack(soc, vdev, txrx_peer, nbuf_head);
2202 
2203 	return QDF_STATUS_SUCCESS;
2204 }
2205 
2206 #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
2207 QDF_STATUS dp_rx_eapol_deliver_to_stack(struct dp_soc *soc,
2208 					struct dp_vdev *vdev,
2209 					struct dp_txrx_peer *txrx_peer,
2210 					qdf_nbuf_t nbuf_head,
2211 					qdf_nbuf_t nbuf_tail)
2212 {
2213 	if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
2214 					QDF_STATUS_SUCCESS)
2215 		return QDF_STATUS_E_FAILURE;
2216 
2217 	vdev->osif_rx_eapol(vdev->osif_vdev, nbuf_head);
2218 
2219 	return QDF_STATUS_SUCCESS;
2220 }
2221 #endif
2222 
2223 #ifndef QCA_HOST_MODE_WIFI_DISABLED
2224 #ifdef VDEV_PEER_PROTOCOL_COUNT
2225 #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer) \
2226 { \
2227 	qdf_nbuf_t nbuf_local; \
2228 	struct dp_txrx_peer *txrx_peer_local; \
2229 	struct dp_vdev *vdev_local = vdev_hdl; \
2230 	do { \
2231 		if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
2232 			break; \
2233 		nbuf_local = nbuf; \
2234 		txrx_peer_local = txrx_peer; \
2235 		if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
2236 			break; \
2237 		else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
2238 			break; \
2239 		dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
2240 						       (nbuf_local), \
2241 						       (txrx_peer_local), 0, 1); \
2242 	} while (0); \
2243 }
2244 #else
2245 #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer)
2246 #endif
2247 
2248 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
2249 /**
2250  * dp_rx_rates_stats_update() - update rate stats
2251  * from rx msdu.
2252  * @soc: datapath soc handle
2253  * @nbuf: received msdu buffer
2254  * @rx_tlv_hdr: rx tlv header
2255  * @txrx_peer: datapath txrx_peer handle
2256  * @sgi: Short Guard Interval
2257  * @mcs: Modulation and Coding Set
2258  * @nss: Number of Spatial Streams
2259  * @bw: BandWidth
2260  * @pkt_type: Corresponds to preamble
2261  *
2262  * To be precisely record rates, following factors are considered:
2263  * Exclude specific frames, ARP, DHCP, ssdp, etc.
2264  * Make sure to affect rx throughput as least as possible.
2265  *
2266  * Return: void
2267  */
2268 static void
2269 dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2270 			 uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
2271 			 uint32_t sgi, uint32_t mcs,
2272 			 uint32_t nss, uint32_t bw, uint32_t pkt_type)
2273 {
2274 	uint32_t rix;
2275 	uint16_t ratecode;
2276 	uint32_t avg_rx_rate;
2277 	uint32_t ratekbps;
2278 	enum cdp_punctured_modes punc_mode = NO_PUNCTURE;
2279 
2280 	if (soc->high_throughput ||
2281 	    dp_rx_data_is_specific(soc->hal_soc, rx_tlv_hdr, nbuf)) {
2282 		return;
2283 	}
2284 
2285 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.rx_rate, mcs);
2286 
2287 	/* In 11b mode, the nss we get from tlv is 0, invalid and should be 1 */
2288 	if (qdf_unlikely(pkt_type == DOT11_B))
2289 		nss = 1;
2290 
2291 	/* here pkt_type corresponds to preamble */
2292 	ratekbps = dp_getrateindex(sgi,
2293 				   mcs,
2294 				   nss - 1,
2295 				   pkt_type,
2296 				   bw,
2297 				   punc_mode,
2298 				   &rix,
2299 				   &ratecode);
2300 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.last_rx_rate, ratekbps);
2301 	avg_rx_rate =
2302 		dp_ath_rate_lpf(txrx_peer->stats.extd_stats.rx.avg_rx_rate,
2303 				ratekbps);
2304 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.avg_rx_rate, avg_rx_rate);
2305 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.nss_info, nss);
2306 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.mcs_info, mcs);
2307 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.bw_info, bw);
2308 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.gi_info, sgi);
2309 	DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.preamble_info, pkt_type);
2310 }
2311 #else
2312 static inline void
2313 dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2314 			 uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
2315 			 uint32_t sgi, uint32_t mcs,
2316 			 uint32_t nss, uint32_t bw, uint32_t pkt_type)
2317 {
2318 }
2319 #endif /* FEATURE_RX_LINKSPEED_ROAM_TRIGGER */
2320 
2321 #ifndef QCA_ENHANCED_STATS_SUPPORT
2322 /**
2323  * dp_rx_msdu_extd_stats_update(): Update Rx extended path stats for peer
2324  *
2325  * @soc: datapath soc handle
2326  * @nbuf: received msdu buffer
2327  * @rx_tlv_hdr: rx tlv header
2328  * @txrx_peer: datapath txrx_peer handle
2329  *
2330  * Return: void
2331  */
2332 static inline
2333 void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2334 				  uint8_t *rx_tlv_hdr,
2335 				  struct dp_txrx_peer *txrx_peer)
2336 {
2337 	bool is_ampdu;
2338 	uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
2339 	uint8_t dst_mcs_idx;
2340 
2341 	/*
2342 	 * TODO - For KIWI this field is present in ring_desc
2343 	 * Try to use ring desc instead of tlv.
2344 	 */
2345 	is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(soc->hal_soc, rx_tlv_hdr);
2346 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.ampdu_cnt, 1, is_ampdu);
2347 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
2348 
2349 	sgi = hal_rx_tlv_sgi_get(soc->hal_soc, rx_tlv_hdr);
2350 	mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
2351 	tid = qdf_nbuf_get_tid_val(nbuf);
2352 	bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
2353 	reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
2354 							      rx_tlv_hdr);
2355 	nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
2356 	pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
2357 	/* do HW to SW pkt type conversion */
2358 	pkt_type = (pkt_type >= HAL_DOT11_MAX ? DOT11_MAX :
2359 		    hal_2_dp_pkt_type_map[pkt_type]);
2360 
2361 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[mcs], 1,
2362 		      ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
2363 	DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
2364 		      ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
2365 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.bw[bw], 1);
2366 	/*
2367 	 * only if nss > 0 and pkt_type is 11N/AC/AX,
2368 	 * then increase index [nss - 1] in array counter.
2369 	 */
2370 	if (nss > 0 && CDP_IS_PKT_TYPE_SUPPORT_NSS(pkt_type))
2371 		DP_PEER_EXTD_STATS_INC(txrx_peer, rx.nss[nss - 1], 1);
2372 
2373 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.sgi_count[sgi], 1);
2374 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.mic_err, 1,
2375 				   hal_rx_tlv_mic_err_get(soc->hal_soc,
2376 				   rx_tlv_hdr));
2377 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.decrypt_err, 1,
2378 				   hal_rx_tlv_decrypt_err_get(soc->hal_soc,
2379 				   rx_tlv_hdr));
2380 
2381 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
2382 	DP_PEER_EXTD_STATS_INC(txrx_peer, rx.reception_type[reception_type], 1);
2383 
2384 	dst_mcs_idx = dp_get_mcs_array_index_by_pkt_type_mcs(pkt_type, mcs);
2385 	if (MCS_INVALID_ARRAY_INDEX != dst_mcs_idx)
2386 		DP_PEER_EXTD_STATS_INC(txrx_peer,
2387 				       rx.pkt_type[pkt_type].mcs_count[dst_mcs_idx],
2388 				       1);
2389 
2390 	dp_rx_rates_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer,
2391 				 sgi, mcs, nss, bw, pkt_type);
2392 }
2393 #else
2394 static inline
2395 void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2396 				  uint8_t *rx_tlv_hdr,
2397 				  struct dp_txrx_peer *txrx_peer)
2398 {
2399 }
2400 #endif
2401 
2402 #if defined(DP_PKT_STATS_PER_LMAC) && defined(WLAN_FEATURE_11BE_MLO)
2403 static inline void
2404 dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer,
2405 			       qdf_nbuf_t nbuf)
2406 {
2407 	uint8_t lmac_id = qdf_nbuf_get_lmac_id(nbuf);
2408 
2409 	if (qdf_unlikely(lmac_id >= CDP_MAX_LMACS)) {
2410 		dp_err_rl("Invalid lmac_id: %u vdev_id: %u",
2411 			  lmac_id, QDF_NBUF_CB_RX_VDEV_ID(nbuf));
2412 
2413 		if (qdf_likely(txrx_peer))
2414 			dp_err_rl("peer_id: %u", txrx_peer->peer_id);
2415 
2416 		return;
2417 	}
2418 
2419 	/* only count stats per lmac for MLO connection*/
2420 	DP_PEER_PER_PKT_STATS_INCC_PKT(txrx_peer, rx.rx_lmac[lmac_id], 1,
2421 				       QDF_NBUF_CB_RX_PKT_LEN(nbuf),
2422 				       txrx_peer->mld_peer);
2423 }
2424 #else
2425 static inline void
2426 dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer,
2427 			       qdf_nbuf_t nbuf)
2428 {
2429 }
2430 #endif
2431 
2432 /**
2433  * dp_rx_msdu_stats_update() - update per msdu stats.
2434  * @soc: core txrx main context
2435  * @nbuf: pointer to the first msdu of an amsdu.
2436  * @rx_tlv_hdr: pointer to the start of RX TLV headers.
2437  * @txrx_peer: pointer to the txrx peer object.
2438  * @ring_id: reo dest ring number on which pkt is reaped.
2439  * @tid_stats: per tid rx stats.
2440  *
2441  * update all the per msdu stats for that nbuf.
2442  * Return: void
2443  */
2444 void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
2445 			     uint8_t *rx_tlv_hdr,
2446 			     struct dp_txrx_peer *txrx_peer,
2447 			     uint8_t ring_id,
2448 			     struct cdp_tid_rx_stats *tid_stats)
2449 {
2450 	bool is_not_amsdu;
2451 	struct dp_vdev *vdev = txrx_peer->vdev;
2452 	bool enh_flag;
2453 	qdf_ether_header_t *eh;
2454 	uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
2455 
2456 	dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, txrx_peer);
2457 	is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
2458 			qdf_nbuf_is_rx_chfrag_end(nbuf);
2459 	DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.rcvd_reo[ring_id], 1,
2460 				      msdu_len);
2461 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.non_amsdu_cnt, 1,
2462 				   is_not_amsdu);
2463 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.amsdu_cnt, 1, !is_not_amsdu);
2464 	DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.rx_retries, 1,
2465 				   qdf_nbuf_is_rx_retry_flag(nbuf));
2466 	dp_peer_update_rx_pkt_per_lmac(txrx_peer, nbuf);
2467 	tid_stats->msdu_cnt++;
2468 	if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
2469 			 (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
2470 		eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
2471 		enh_flag = vdev->pdev->enhanced_stats_en;
2472 		DP_PEER_MC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
2473 		tid_stats->mcast_msdu_cnt++;
2474 		if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
2475 			DP_PEER_BC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag);
2476 			tid_stats->bcast_msdu_cnt++;
2477 		}
2478 	}
2479 
2480 	txrx_peer->stats.per_pkt_stats.rx.last_rx_ts = qdf_system_ticks();
2481 
2482 	dp_rx_msdu_extd_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer);
2483 }
2484 
2485 #ifndef WDS_VENDOR_EXTENSION
2486 int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
2487 			   struct dp_vdev *vdev,
2488 			   struct dp_txrx_peer *txrx_peer)
2489 {
2490 	return 1;
2491 }
2492 #endif
2493 
2494 #ifdef RX_DESC_DEBUG_CHECK
2495 /**
2496  * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
2497  *				  corruption
2498  *
2499  * @ring_desc: REO ring descriptor
2500  * @rx_desc: Rx descriptor
2501  *
2502  * Return: NONE
2503  */
2504 QDF_STATUS dp_rx_desc_nbuf_sanity_check(struct dp_soc *soc,
2505 					hal_ring_desc_t ring_desc,
2506 					struct dp_rx_desc *rx_desc)
2507 {
2508 	struct hal_buf_info hbi;
2509 
2510 	hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
2511 	/* Sanity check for possible buffer paddr corruption */
2512 	if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
2513 		return QDF_STATUS_SUCCESS;
2514 
2515 	return QDF_STATUS_E_FAILURE;
2516 }
2517 
2518 /**
2519  * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
2520  *				      out of bound access from H.W
2521  *
2522  * @soc: DP soc
2523  * @pkt_len: Packet length received from H.W
2524  *
2525  * Return: NONE
2526  */
2527 static inline void
2528 dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
2529 				 uint32_t pkt_len)
2530 {
2531 	struct rx_desc_pool *rx_desc_pool;
2532 
2533 	rx_desc_pool = &soc->rx_desc_buf[0];
2534 	qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
2535 }
2536 #else
2537 static inline void
2538 dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
2539 #endif
2540 
2541 #ifdef DP_RX_PKT_NO_PEER_DELIVER
2542 #ifdef DP_RX_UDP_OVER_PEER_ROAM
2543 /**
2544  * dp_rx_is_udp_allowed_over_roam_peer() - check if udp data received
2545  *					   during roaming
2546  * @vdev: dp_vdev pointer
2547  * @rx_tlv_hdr: rx tlv header
2548  * @nbuf: pkt skb pointer
2549  *
2550  * This function will check if rx udp data is received from authorised
2551  * roamed peer before peer map indication is received from FW after
2552  * roaming. This is needed for VoIP scenarios in which packet loss
2553  * expected during roaming is minimal.
2554  *
2555  * Return: bool
2556  */
2557 static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
2558 						uint8_t *rx_tlv_hdr,
2559 						qdf_nbuf_t nbuf)
2560 {
2561 	char *hdr_desc;
2562 	struct ieee80211_frame *wh = NULL;
2563 
2564 	hdr_desc = hal_rx_desc_get_80211_hdr(vdev->pdev->soc->hal_soc,
2565 					     rx_tlv_hdr);
2566 	wh = (struct ieee80211_frame *)hdr_desc;
2567 
2568 	if (vdev->roaming_peer_status ==
2569 	    WLAN_ROAM_PEER_AUTH_STATUS_AUTHENTICATED &&
2570 	    !qdf_mem_cmp(vdev->roaming_peer_mac.raw, wh->i_addr2,
2571 	    QDF_MAC_ADDR_SIZE) && (qdf_nbuf_is_ipv4_udp_pkt(nbuf) ||
2572 	    qdf_nbuf_is_ipv6_udp_pkt(nbuf)))
2573 		return true;
2574 
2575 	return false;
2576 }
2577 #else
2578 static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
2579 						uint8_t *rx_tlv_hdr,
2580 						qdf_nbuf_t nbuf)
2581 {
2582 	return false;
2583 }
2584 #endif
2585 /**
2586  * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
2587  *				      no corresbonding peer found
2588  * @soc: core txrx main context
2589  * @nbuf: pkt skb pointer
2590  *
2591  * This function will try to deliver some RX special frames to stack
2592  * even there is no peer matched found. for instance, LFR case, some
2593  * eapol data will be sent to host before peer_map done.
2594  *
2595  * Return: None
2596  */
2597 void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
2598 {
2599 	uint16_t peer_id;
2600 	uint8_t vdev_id;
2601 	struct dp_vdev *vdev = NULL;
2602 	uint32_t l2_hdr_offset = 0;
2603 	uint16_t msdu_len = 0;
2604 	uint32_t pkt_len = 0;
2605 	uint8_t *rx_tlv_hdr;
2606 	uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
2607 				FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
2608 
2609 	peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
2610 	if (peer_id > soc->max_peer_id)
2611 		goto deliver_fail;
2612 
2613 	vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
2614 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
2615 	if (!vdev || vdev->delete.pending || !vdev->osif_rx)
2616 		goto deliver_fail;
2617 
2618 	if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
2619 		goto deliver_fail;
2620 
2621 	rx_tlv_hdr = qdf_nbuf_data(nbuf);
2622 	l2_hdr_offset =
2623 		hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
2624 
2625 	msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
2626 	pkt_len = msdu_len + l2_hdr_offset + soc->rx_pkt_tlv_size;
2627 	QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
2628 
2629 	qdf_nbuf_set_pktlen(nbuf, pkt_len);
2630 	qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + l2_hdr_offset);
2631 
2632 	if (dp_rx_is_special_frame(nbuf, frame_mask) ||
2633 	    dp_rx_is_udp_allowed_over_roam_peer(vdev, rx_tlv_hdr, nbuf)) {
2634 		qdf_nbuf_set_exc_frame(nbuf, 1);
2635 		if (QDF_STATUS_SUCCESS !=
2636 		    vdev->osif_rx(vdev->osif_vdev, nbuf))
2637 			goto deliver_fail;
2638 		DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
2639 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
2640 		return;
2641 	}
2642 
2643 deliver_fail:
2644 	DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
2645 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2646 	dp_rx_nbuf_free(nbuf);
2647 	if (vdev)
2648 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
2649 }
2650 #else
2651 void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
2652 {
2653 	DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
2654 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2655 	dp_rx_nbuf_free(nbuf);
2656 }
2657 #endif
2658 
2659 /**
2660  * dp_rx_srng_get_num_pending() - get number of pending entries
2661  * @hal_soc: hal soc opaque pointer
2662  * @hal_ring: opaque pointer to the HAL Rx Ring
2663  * @num_entries: number of entries in the hal_ring.
2664  * @near_full: pointer to a boolean. This is set if ring is near full.
2665  *
2666  * The function returns the number of entries in a destination ring which are
2667  * yet to be reaped. The function also checks if the ring is near full.
2668  * If more than half of the ring needs to be reaped, the ring is considered
2669  * approaching full.
2670  * The function useses hal_srng_dst_num_valid_locked to get the number of valid
2671  * entries. It should not be called within a SRNG lock. HW pointer value is
2672  * synced into cached_hp.
2673  *
2674  * Return: Number of pending entries if any
2675  */
2676 uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
2677 				    hal_ring_handle_t hal_ring_hdl,
2678 				    uint32_t num_entries,
2679 				    bool *near_full)
2680 {
2681 	uint32_t num_pending = 0;
2682 
2683 	num_pending = hal_srng_dst_num_valid_locked(hal_soc,
2684 						    hal_ring_hdl,
2685 						    true);
2686 
2687 	if (num_entries && (num_pending >= num_entries >> 1))
2688 		*near_full = true;
2689 	else
2690 		*near_full = false;
2691 
2692 	return num_pending;
2693 }
2694 
2695 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
2696 
2697 #ifdef WLAN_SUPPORT_RX_FISA
2698 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
2699 {
2700 	QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
2701 	qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
2702 }
2703 #else
2704 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
2705 {
2706 	qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
2707 }
2708 #endif
2709 
2710 #ifndef QCA_HOST_MODE_WIFI_DISABLED
2711 
2712 #ifdef DP_RX_DROP_RAW_FRM
2713 /**
2714  * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
2715  * @nbuf: pkt skb pointer
2716  *
2717  * Return: true - raw frame, dropped
2718  *	   false - not raw frame, do nothing
2719  */
2720 bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
2721 {
2722 	if (qdf_nbuf_is_raw_frame(nbuf)) {
2723 		dp_rx_nbuf_free(nbuf);
2724 		return true;
2725 	}
2726 
2727 	return false;
2728 }
2729 #endif
2730 
2731 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
2732 /**
2733  * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
2734  * @soc: Datapath soc structure
2735  * @ring_num: REO ring number
2736  * @ring_desc: REO ring descriptor
2737  *
2738  * Returns: None
2739  */
2740 void
2741 dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
2742 			hal_ring_desc_t ring_desc)
2743 {
2744 	struct dp_buf_info_record *record;
2745 	struct hal_buf_info hbi;
2746 	uint32_t idx;
2747 
2748 	if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
2749 		return;
2750 
2751 	hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
2752 
2753 	/* buffer_addr_info is the first element of ring_desc */
2754 	hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)ring_desc,
2755 				  &hbi);
2756 
2757 	idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
2758 					DP_RX_HIST_MAX);
2759 
2760 	/* No NULL check needed for record since its an array */
2761 	record = &soc->rx_ring_history[ring_num]->entry[idx];
2762 
2763 	record->timestamp = qdf_get_log_timestamp();
2764 	record->hbi.paddr = hbi.paddr;
2765 	record->hbi.sw_cookie = hbi.sw_cookie;
2766 	record->hbi.rbm = hbi.rbm;
2767 }
2768 #endif
2769 
2770 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
2771 /**
2772  * dp_rx_update_stats() - Update soc level rx packet count
2773  * @soc: DP soc handle
2774  * @nbuf: nbuf received
2775  *
2776  * Returns: none
2777  */
2778 void dp_rx_update_stats(struct dp_soc *soc, qdf_nbuf_t nbuf)
2779 {
2780 	DP_STATS_INC_PKT(soc, rx.ingress, 1,
2781 			 QDF_NBUF_CB_RX_PKT_LEN(nbuf));
2782 }
2783 #endif
2784 
2785 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
2786 /**
2787  * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
2788  * @soc : dp_soc handle
2789  * @pdev: dp_pdev handle
2790  * @peer_id: peer_id of the peer for which completion came
2791  * @ppdu_id: ppdu_id
2792  * @netbuf: Buffer pointer
2793  *
2794  * This function is used to deliver rx packet to packet capture
2795  */
2796 void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc,  struct dp_pdev *pdev,
2797 				  uint16_t peer_id, uint32_t is_offload,
2798 				  qdf_nbuf_t netbuf)
2799 {
2800 	if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
2801 		dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
2802 				     peer_id, is_offload, pdev->pdev_id);
2803 }
2804 
2805 void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
2806 					  uint32_t is_offload)
2807 {
2808 	if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
2809 		dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA_NO_PEER,
2810 				     soc, nbuf, HTT_INVALID_VDEV,
2811 				     is_offload, 0);
2812 }
2813 #endif
2814 
2815 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
2816 
2817 QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
2818 {
2819 	QDF_STATUS ret;
2820 
2821 	if (vdev->osif_rx_flush) {
2822 		ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
2823 		if (!QDF_IS_STATUS_SUCCESS(ret)) {
2824 			dp_err("Failed to flush rx pkts for vdev %d\n",
2825 			       vdev->vdev_id);
2826 			return ret;
2827 		}
2828 	}
2829 
2830 	return QDF_STATUS_SUCCESS;
2831 }
2832 
2833 static QDF_STATUS
2834 dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
2835 			   struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
2836 			   struct dp_pdev *dp_pdev,
2837 			   struct rx_desc_pool *rx_desc_pool)
2838 {
2839 	QDF_STATUS ret = QDF_STATUS_E_FAILURE;
2840 
2841 	(nbuf_frag_info_t->virt_addr).nbuf =
2842 		qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
2843 			       RX_BUFFER_RESERVATION,
2844 			       rx_desc_pool->buf_alignment, FALSE);
2845 	if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
2846 		dp_err("nbuf alloc failed");
2847 		DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
2848 		return ret;
2849 	}
2850 
2851 	ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
2852 					 (nbuf_frag_info_t->virt_addr).nbuf,
2853 					 QDF_DMA_FROM_DEVICE,
2854 					 rx_desc_pool->buf_size);
2855 
2856 	if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
2857 		qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
2858 		dp_err("nbuf map failed");
2859 		DP_STATS_INC(dp_pdev, replenish.map_err, 1);
2860 		return ret;
2861 	}
2862 
2863 	nbuf_frag_info_t->paddr =
2864 		qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
2865 
2866 	ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
2867 			     &nbuf_frag_info_t->paddr,
2868 			     rx_desc_pool);
2869 	if (ret == QDF_STATUS_E_FAILURE) {
2870 		dp_err("nbuf check x86 failed");
2871 		DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
2872 		return ret;
2873 	}
2874 
2875 	return QDF_STATUS_SUCCESS;
2876 }
2877 
2878 QDF_STATUS
2879 dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
2880 			  struct dp_srng *dp_rxdma_srng,
2881 			  struct rx_desc_pool *rx_desc_pool,
2882 			  uint32_t num_req_buffers)
2883 {
2884 	struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
2885 	hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
2886 	union dp_rx_desc_list_elem_t *next;
2887 	void *rxdma_ring_entry;
2888 	qdf_dma_addr_t paddr;
2889 	struct dp_rx_nbuf_frag_info *nf_info;
2890 	uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
2891 	uint32_t buffer_index, nbuf_ptrs_per_page;
2892 	qdf_nbuf_t nbuf;
2893 	QDF_STATUS ret;
2894 	int page_idx, total_pages;
2895 	union dp_rx_desc_list_elem_t *desc_list = NULL;
2896 	union dp_rx_desc_list_elem_t *tail = NULL;
2897 	int sync_hw_ptr = 1;
2898 	uint32_t num_entries_avail;
2899 
2900 	if (qdf_unlikely(!dp_pdev)) {
2901 		dp_rx_err("%pK: pdev is null for mac_id = %d",
2902 			  dp_soc, mac_id);
2903 		return QDF_STATUS_E_FAILURE;
2904 	}
2905 
2906 	if (qdf_unlikely(!rxdma_srng)) {
2907 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
2908 		return QDF_STATUS_E_FAILURE;
2909 	}
2910 
2911 	dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
2912 
2913 	hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
2914 	num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
2915 						   rxdma_srng,
2916 						   sync_hw_ptr);
2917 	hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
2918 
2919 	if (!num_entries_avail) {
2920 		dp_err("Num of available entries is zero, nothing to do");
2921 		return QDF_STATUS_E_NOMEM;
2922 	}
2923 
2924 	if (num_entries_avail < num_req_buffers)
2925 		num_req_buffers = num_entries_avail;
2926 
2927 	nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
2928 					    num_req_buffers, &desc_list, &tail);
2929 	if (!nr_descs) {
2930 		dp_err("no free rx_descs in freelist");
2931 		DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
2932 		return QDF_STATUS_E_NOMEM;
2933 	}
2934 
2935 	dp_debug("got %u RX descs for driver attach", nr_descs);
2936 
2937 	/*
2938 	 * Try to allocate pointers to the nbuf one page at a time.
2939 	 * Take pointers that can fit in one page of memory and
2940 	 * iterate through the total descriptors that need to be
2941 	 * allocated in order of pages. Reuse the pointers that
2942 	 * have been allocated to fit in one page across each
2943 	 * iteration to index into the nbuf.
2944 	 */
2945 	total_pages = (nr_descs * sizeof(*nf_info)) / DP_BLOCKMEM_SIZE;
2946 
2947 	/*
2948 	 * Add an extra page to store the remainder if any
2949 	 */
2950 	if ((nr_descs * sizeof(*nf_info)) % DP_BLOCKMEM_SIZE)
2951 		total_pages++;
2952 	nf_info = qdf_mem_malloc(DP_BLOCKMEM_SIZE);
2953 	if (!nf_info) {
2954 		dp_err("failed to allocate nbuf array");
2955 		DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
2956 		QDF_BUG(0);
2957 		return QDF_STATUS_E_NOMEM;
2958 	}
2959 	nbuf_ptrs_per_page = DP_BLOCKMEM_SIZE / sizeof(*nf_info);
2960 
2961 	for (page_idx = 0; page_idx < total_pages; page_idx++) {
2962 		qdf_mem_zero(nf_info, DP_BLOCKMEM_SIZE);
2963 
2964 		for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
2965 			/*
2966 			 * The last page of buffer pointers may not be required
2967 			 * completely based on the number of descriptors. Below
2968 			 * check will ensure we are allocating only the
2969 			 * required number of descriptors.
2970 			 */
2971 			if (nr_nbuf_total >= nr_descs)
2972 				break;
2973 			/* Flag is set while pdev rx_desc_pool initialization */
2974 			if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
2975 				ret = dp_pdev_frag_alloc_and_map(dp_soc,
2976 						&nf_info[nr_nbuf], dp_pdev,
2977 						rx_desc_pool);
2978 			else
2979 				ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
2980 						&nf_info[nr_nbuf], dp_pdev,
2981 						rx_desc_pool);
2982 			if (QDF_IS_STATUS_ERROR(ret))
2983 				break;
2984 
2985 			nr_nbuf_total++;
2986 		}
2987 
2988 		hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
2989 
2990 		for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
2991 			rxdma_ring_entry =
2992 				hal_srng_src_get_next(dp_soc->hal_soc,
2993 						      rxdma_srng);
2994 			qdf_assert_always(rxdma_ring_entry);
2995 
2996 			next = desc_list->next;
2997 			paddr = nf_info[buffer_index].paddr;
2998 			nbuf = nf_info[buffer_index].virt_addr.nbuf;
2999 
3000 			/* Flag is set while pdev rx_desc_pool initialization */
3001 			if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
3002 				dp_rx_desc_frag_prep(&desc_list->rx_desc,
3003 						     &nf_info[buffer_index]);
3004 			else
3005 				dp_rx_desc_prep(&desc_list->rx_desc,
3006 						&nf_info[buffer_index]);
3007 			desc_list->rx_desc.in_use = 1;
3008 			dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
3009 			dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
3010 						   __func__,
3011 						   RX_DESC_REPLENISHED);
3012 
3013 			hal_rxdma_buff_addr_info_set(dp_soc->hal_soc ,rxdma_ring_entry, paddr,
3014 						     desc_list->rx_desc.cookie,
3015 						     rx_desc_pool->owner);
3016 
3017 			dp_ipa_handle_rx_buf_smmu_mapping(
3018 					dp_soc, nbuf,
3019 					rx_desc_pool->buf_size, true,
3020 					__func__, __LINE__);
3021 
3022 			desc_list = next;
3023 		}
3024 
3025 		dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id,
3026 					       rxdma_srng, nr_nbuf, nr_nbuf);
3027 		hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
3028 	}
3029 
3030 	dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
3031 	qdf_mem_free(nf_info);
3032 
3033 	if (!nr_nbuf_total) {
3034 		dp_err("No nbuf's allocated");
3035 		QDF_BUG(0);
3036 		return QDF_STATUS_E_RESOURCES;
3037 	}
3038 
3039 	/* No need to count the number of bytes received during replenish.
3040 	 * Therefore set replenish.pkts.bytes as 0.
3041 	 */
3042 	DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
3043 
3044 	return QDF_STATUS_SUCCESS;
3045 }
3046 
3047 qdf_export_symbol(dp_pdev_rx_buffers_attach);
3048 
3049 /**
3050  * dp_rx_enable_mon_dest_frag() - Enable frag processing for
3051  *              monitor destination ring via frag.
3052  *
3053  * Enable this flag only for monitor destination buffer processing
3054  * if DP_RX_MON_MEM_FRAG feature is enabled.
3055  * If flag is set then frag based function will be called for alloc,
3056  * map, prep desc and free ops for desc buffer else normal nbuf based
3057  * function will be called.
3058  *
3059  * @rx_desc_pool: Rx desc pool
3060  * @is_mon_dest_desc: Is it for monitor dest buffer
3061  *
3062  * Return: None
3063  */
3064 #ifdef DP_RX_MON_MEM_FRAG
3065 void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
3066 				bool is_mon_dest_desc)
3067 {
3068 	rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
3069 	if (is_mon_dest_desc)
3070 		dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
3071 }
3072 #else
3073 void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
3074 				bool is_mon_dest_desc)
3075 {
3076 	rx_desc_pool->rx_mon_dest_frag_enable = false;
3077 	if (is_mon_dest_desc)
3078 		dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
3079 }
3080 #endif
3081 
3082 qdf_export_symbol(dp_rx_enable_mon_dest_frag);
3083 
3084 /*
3085  * dp_rx_pdev_desc_pool_alloc() -  allocate memory for software rx descriptor
3086  *				   pool
3087  *
3088  * @pdev: core txrx pdev context
3089  *
3090  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
3091  *			QDF_STATUS_E_NOMEM
3092  */
3093 QDF_STATUS
3094 dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
3095 {
3096 	struct dp_soc *soc = pdev->soc;
3097 	uint32_t rxdma_entries;
3098 	uint32_t rx_sw_desc_num;
3099 	struct dp_srng *dp_rxdma_srng;
3100 	struct rx_desc_pool *rx_desc_pool;
3101 	uint32_t status = QDF_STATUS_SUCCESS;
3102 	int mac_for_pdev;
3103 
3104 	mac_for_pdev = pdev->lmac_id;
3105 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
3106 		dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
3107 			   soc, mac_for_pdev);
3108 		return status;
3109 	}
3110 
3111 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
3112 	rxdma_entries = dp_rxdma_srng->num_entries;
3113 
3114 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3115 	rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
3116 
3117 	rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
3118 	status = dp_rx_desc_pool_alloc(soc,
3119 				       rx_sw_desc_num,
3120 				       rx_desc_pool);
3121 	if (status != QDF_STATUS_SUCCESS)
3122 		return status;
3123 
3124 	return status;
3125 }
3126 
3127 /*
3128  * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
3129  *
3130  * @pdev: core txrx pdev context
3131  */
3132 void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
3133 {
3134 	int mac_for_pdev = pdev->lmac_id;
3135 	struct dp_soc *soc = pdev->soc;
3136 	struct rx_desc_pool *rx_desc_pool;
3137 
3138 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3139 
3140 	dp_rx_desc_pool_free(soc, rx_desc_pool);
3141 }
3142 
3143 /*
3144  * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
3145  *
3146  * @pdev: core txrx pdev context
3147  *
3148  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
3149  *			QDF_STATUS_E_NOMEM
3150  */
3151 QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
3152 {
3153 	int mac_for_pdev = pdev->lmac_id;
3154 	struct dp_soc *soc = pdev->soc;
3155 	uint32_t rxdma_entries;
3156 	uint32_t rx_sw_desc_num;
3157 	struct dp_srng *dp_rxdma_srng;
3158 	struct rx_desc_pool *rx_desc_pool;
3159 
3160 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3161 	if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
3162 		/**
3163 		 * If NSS is enabled, rx_desc_pool is already filled.
3164 		 * Hence, just disable desc_pool frag flag.
3165 		 */
3166 		dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
3167 
3168 		dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
3169 			   soc, mac_for_pdev);
3170 		return QDF_STATUS_SUCCESS;
3171 	}
3172 
3173 	if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
3174 		return QDF_STATUS_E_NOMEM;
3175 
3176 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
3177 	rxdma_entries = dp_rxdma_srng->num_entries;
3178 
3179 	soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
3180 
3181 	rx_sw_desc_num =
3182 	wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
3183 
3184 	rx_desc_pool->owner = dp_rx_get_rx_bm_id(soc);
3185 	rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
3186 	rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
3187 	/* Disable monitor dest processing via frag */
3188 	dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
3189 
3190 	dp_rx_desc_pool_init(soc, mac_for_pdev,
3191 			     rx_sw_desc_num, rx_desc_pool);
3192 	return QDF_STATUS_SUCCESS;
3193 }
3194 
3195 /*
3196  * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
3197  * @pdev: core txrx pdev context
3198  *
3199  * This function resets the freelist of rx descriptors and destroys locks
3200  * associated with this list of descriptors.
3201  */
3202 void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
3203 {
3204 	int mac_for_pdev = pdev->lmac_id;
3205 	struct dp_soc *soc = pdev->soc;
3206 	struct rx_desc_pool *rx_desc_pool;
3207 
3208 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3209 
3210 	dp_rx_desc_pool_deinit(soc, rx_desc_pool, mac_for_pdev);
3211 }
3212 
3213 /*
3214  * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
3215  *
3216  * @pdev: core txrx pdev context
3217  *
3218  * Return: QDF_STATUS - QDF_STATUS_SUCCESS
3219  *			QDF_STATUS_E_NOMEM
3220  */
3221 QDF_STATUS
3222 dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
3223 {
3224 	int mac_for_pdev = pdev->lmac_id;
3225 	struct dp_soc *soc = pdev->soc;
3226 	struct dp_srng *dp_rxdma_srng;
3227 	struct rx_desc_pool *rx_desc_pool;
3228 	uint32_t rxdma_entries;
3229 
3230 	dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
3231 	rxdma_entries = dp_rxdma_srng->num_entries;
3232 
3233 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3234 
3235 	/* Initialize RX buffer pool which will be
3236 	 * used during low memory conditions
3237 	 */
3238 	dp_rx_buffer_pool_init(soc, mac_for_pdev);
3239 
3240 	return dp_pdev_rx_buffers_attach_simple(soc, mac_for_pdev,
3241 						dp_rxdma_srng,
3242 						rx_desc_pool,
3243 						rxdma_entries - 1);
3244 }
3245 
3246 /*
3247  * dp_rx_pdev_buffers_free - Free nbufs (skbs)
3248  *
3249  * @pdev: core txrx pdev context
3250  */
3251 void
3252 dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
3253 {
3254 	int mac_for_pdev = pdev->lmac_id;
3255 	struct dp_soc *soc = pdev->soc;
3256 	struct rx_desc_pool *rx_desc_pool;
3257 
3258 	rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
3259 
3260 	dp_rx_desc_nbuf_free(soc, rx_desc_pool);
3261 	dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
3262 }
3263 
3264 #ifdef DP_RX_SPECIAL_FRAME_NEED
3265 bool dp_rx_deliver_special_frame(struct dp_soc *soc,
3266 				 struct dp_txrx_peer *txrx_peer,
3267 				 qdf_nbuf_t nbuf, uint32_t frame_mask,
3268 				 uint8_t *rx_tlv_hdr)
3269 {
3270 	uint32_t l2_hdr_offset = 0;
3271 	uint16_t msdu_len = 0;
3272 	uint32_t skip_len;
3273 
3274 	l2_hdr_offset =
3275 		hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
3276 
3277 	if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
3278 		skip_len = l2_hdr_offset;
3279 	} else {
3280 		msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
3281 		skip_len = l2_hdr_offset + soc->rx_pkt_tlv_size;
3282 		qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
3283 	}
3284 
3285 	QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
3286 	dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
3287 	qdf_nbuf_pull_head(nbuf, skip_len);
3288 
3289 	if (txrx_peer->vdev) {
3290 		dp_rx_send_pktlog(soc, txrx_peer->vdev->pdev, nbuf,
3291 				  QDF_TX_RX_STATUS_OK);
3292 	}
3293 
3294 	if (dp_rx_is_special_frame(nbuf, frame_mask)) {
3295 		dp_info("special frame, mpdu sn 0x%x",
3296 			hal_rx_get_rx_sequence(soc->hal_soc, rx_tlv_hdr));
3297 		qdf_nbuf_set_exc_frame(nbuf, 1);
3298 		dp_rx_deliver_to_stack(soc, txrx_peer->vdev, txrx_peer,
3299 				       nbuf, NULL);
3300 		return true;
3301 	}
3302 
3303 	return false;
3304 }
3305 #endif
3306 
3307 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
3308 void dp_rx_mark_first_packet_after_wow_wakeup(struct dp_pdev *pdev,
3309 					      uint8_t *rx_tlv,
3310 					      qdf_nbuf_t nbuf)
3311 {
3312 	struct dp_soc *soc;
3313 
3314 	if (!pdev->is_first_wakeup_packet)
3315 		return;
3316 
3317 	soc = pdev->soc;
3318 	if (hal_get_first_wow_wakeup_packet(soc->hal_soc, rx_tlv)) {
3319 		qdf_nbuf_mark_wakeup_frame(nbuf);
3320 		dp_info("First packet after WOW Wakeup rcvd");
3321 	}
3322 }
3323 #endif
3324