/* * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include "hal_hw_headers.h" #include "dp_types.h" #include "dp_rx.h" #include "dp_tx.h" #include "dp_peer.h" #include "hal_rx.h" #include "hal_api.h" #include "qdf_nbuf.h" #ifdef MESH_MODE_SUPPORT #include "if_meta_hdr.h" #endif #include "dp_internal.h" #include "dp_ipa.h" #include "dp_hist.h" #include "dp_rx_buffer_pool.h" #ifdef WIFI_MONITOR_SUPPORT #include "dp_htt.h" #include #endif #ifdef FEATURE_WDS #include "dp_txrx_wds.h" #endif #ifdef DP_RATETABLE_SUPPORT #include "dp_ratetable.h" #endif #ifdef DUP_RX_DESC_WAR void dp_rx_dump_info_and_assert(struct dp_soc *soc, hal_ring_handle_t hal_ring, hal_ring_desc_t ring_desc, struct dp_rx_desc *rx_desc) { void *hal_soc = soc->hal_soc; hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc); dp_rx_desc_dump(rx_desc); } #else void dp_rx_dump_info_and_assert(struct dp_soc *soc, hal_ring_handle_t hal_ring_hdl, hal_ring_desc_t ring_desc, struct dp_rx_desc *rx_desc) { hal_soc_handle_t hal_soc = soc->hal_soc; dp_rx_desc_dump(rx_desc); hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc); hal_srng_dump_ring(hal_soc, hal_ring_hdl); qdf_assert_always(0); } #endif #ifndef QCA_HOST_MODE_WIFI_DISABLED #ifdef RX_DESC_SANITY_WAR QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc, hal_ring_handle_t hal_ring_hdl, hal_ring_desc_t ring_desc, struct dp_rx_desc *rx_desc) { uint8_t return_buffer_manager; if (qdf_unlikely(!rx_desc)) { /* * This is an unlikely case where the cookie obtained * from the ring_desc is invalid and hence we are not * able to find the corresponding rx_desc */ goto fail; } return_buffer_manager = hal_rx_ret_buf_manager_get(hal_soc, ring_desc); if (qdf_unlikely(!(return_buffer_manager == HAL_RX_BUF_RBM_SW1_BM(soc->wbm_sw0_bm_id) || return_buffer_manager == HAL_RX_BUF_RBM_SW3_BM(soc->wbm_sw0_bm_id)))) { goto fail; } return QDF_STATUS_SUCCESS; fail: DP_STATS_INC(soc, rx.err.invalid_cookie, 1); dp_err("Ring Desc:"); hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc); return QDF_STATUS_E_NULL_VALUE; } #endif #endif /* QCA_HOST_MODE_WIFI_DISABLED */ /** * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map * * @dp_soc: struct dp_soc * * @nbuf_frag_info_t: nbuf frag info * @dp_pdev: struct dp_pdev * * @rx_desc_pool: Rx desc pool * * Return: QDF_STATUS */ #ifdef DP_RX_MON_MEM_FRAG static inline QDF_STATUS dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc, struct dp_rx_nbuf_frag_info *nbuf_frag_info_t, struct dp_pdev *dp_pdev, struct rx_desc_pool *rx_desc_pool) { QDF_STATUS ret = QDF_STATUS_E_FAILURE; (nbuf_frag_info_t->virt_addr).vaddr = qdf_frag_alloc(NULL, rx_desc_pool->buf_size); if (!((nbuf_frag_info_t->virt_addr).vaddr)) { dp_err("Frag alloc failed"); DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1); return QDF_STATUS_E_NOMEM; } ret = qdf_mem_map_page(dp_soc->osdev, (nbuf_frag_info_t->virt_addr).vaddr, QDF_DMA_FROM_DEVICE, rx_desc_pool->buf_size, &nbuf_frag_info_t->paddr); if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) { qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr); dp_err("Frag map failed"); DP_STATS_INC(dp_pdev, replenish.map_err, 1); return QDF_STATUS_E_FAULT; } return QDF_STATUS_SUCCESS; } #else static inline QDF_STATUS dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc, struct dp_rx_nbuf_frag_info *nbuf_frag_info_t, struct dp_pdev *dp_pdev, struct rx_desc_pool *rx_desc_pool) { return QDF_STATUS_SUCCESS; } #endif /* DP_RX_MON_MEM_FRAG */ #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY /** * dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history * @soc: Datapath soc structure * @ring_num: Refill ring number * @num_req: number of buffers requested for refill * @num_refill: number of buffers refilled * * Returns: None */ static inline void dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num, hal_ring_handle_t hal_ring_hdl, uint32_t num_req, uint32_t num_refill) { struct dp_refill_info_record *record; uint32_t idx; uint32_t tp; uint32_t hp; if (qdf_unlikely(ring_num >= MAX_PDEV_CNT || !soc->rx_refill_ring_history[ring_num])) return; idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index, DP_RX_REFILL_HIST_MAX); /* No NULL check needed for record since its an array */ record = &soc->rx_refill_ring_history[ring_num]->entry[idx]; hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp); record->timestamp = qdf_get_log_timestamp(); record->num_req = num_req; record->num_refill = num_refill; record->hp = hp; record->tp = tp; } #else static inline void dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num, hal_ring_handle_t hal_ring_hdl, uint32_t num_req, uint32_t num_refill) { } #endif /** * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map * * @dp_soc: struct dp_soc * * @mac_id: Mac id * @num_entries_avail: num_entries_avail * @nbuf_frag_info_t: nbuf frag info * @dp_pdev: struct dp_pdev * * @rx_desc_pool: Rx desc pool * * Return: QDF_STATUS */ static inline QDF_STATUS dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc, uint32_t mac_id, uint32_t num_entries_avail, struct dp_rx_nbuf_frag_info *nbuf_frag_info_t, struct dp_pdev *dp_pdev, struct rx_desc_pool *rx_desc_pool) { QDF_STATUS ret = QDF_STATUS_E_FAILURE; (nbuf_frag_info_t->virt_addr).nbuf = dp_rx_buffer_pool_nbuf_alloc(dp_soc, mac_id, rx_desc_pool, num_entries_avail); if (!((nbuf_frag_info_t->virt_addr).nbuf)) { dp_err("nbuf alloc failed"); DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1); return QDF_STATUS_E_NOMEM; } ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool, nbuf_frag_info_t); if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) { dp_rx_buffer_pool_nbuf_free(dp_soc, (nbuf_frag_info_t->virt_addr).nbuf, mac_id); dp_err("nbuf map failed"); DP_STATS_INC(dp_pdev, replenish.map_err, 1); return QDF_STATUS_E_FAULT; } nbuf_frag_info_t->paddr = qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0); dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, (qdf_nbuf_t)( (nbuf_frag_info_t->virt_addr).nbuf), rx_desc_pool->buf_size, true, __func__, __LINE__); ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf), &nbuf_frag_info_t->paddr, rx_desc_pool); if (ret == QDF_STATUS_E_FAILURE) { DP_STATS_INC(dp_pdev, replenish.x86_fail, 1); return QDF_STATUS_E_ADDRNOTAVAIL; } return QDF_STATUS_SUCCESS; } #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86) QDF_STATUS __dp_rx_buffers_no_map_lt_replenish(struct dp_soc *soc, uint32_t mac_id, struct dp_srng *dp_rxdma_srng, struct rx_desc_pool *rx_desc_pool) { struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id); uint32_t count; void *rxdma_ring_entry; union dp_rx_desc_list_elem_t *next = NULL; void *rxdma_srng; qdf_nbuf_t nbuf; qdf_dma_addr_t paddr; uint16_t num_entries_avail = 0; uint16_t num_alloc_desc = 0; union dp_rx_desc_list_elem_t *desc_list = NULL; union dp_rx_desc_list_elem_t *tail = NULL; int sync_hw_ptr = 0; rxdma_srng = dp_rxdma_srng->hal_srng; if (qdf_unlikely(!dp_pdev)) { dp_rx_err("%pK: pdev is null for mac_id = %d", soc, mac_id); return QDF_STATUS_E_FAILURE; } if (qdf_unlikely(!rxdma_srng)) { dp_rx_debug("%pK: rxdma srng not initialized", soc); return QDF_STATUS_E_FAILURE; } hal_srng_access_start(soc->hal_soc, rxdma_srng); num_entries_avail = hal_srng_src_num_avail(soc->hal_soc, rxdma_srng, sync_hw_ptr); dp_rx_debug("%pK: no of available entries in rxdma ring: %d", soc, num_entries_avail); if (qdf_unlikely(num_entries_avail < ((dp_rxdma_srng->num_entries * 3) / 4))) { hal_srng_access_end(soc->hal_soc, rxdma_srng); return QDF_STATUS_E_FAILURE; } DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1); num_alloc_desc = dp_rx_get_free_desc_list(soc, mac_id, rx_desc_pool, num_entries_avail, &desc_list, &tail); if (!num_alloc_desc) { dp_rx_err("%pK: no free rx_descs in freelist", soc); DP_STATS_INC(dp_pdev, err.desc_lt_alloc_fail, num_entries_avail); hal_srng_access_end(soc->hal_soc, rxdma_srng); return QDF_STATUS_E_NOMEM; } for (count = 0; count < num_alloc_desc; count++) { next = desc_list->next; qdf_prefetch(next); nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool); if (qdf_unlikely(!nbuf)) { DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1); break; } paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf, rx_desc_pool->buf_size); rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc, rxdma_srng); qdf_assert_always(rxdma_ring_entry); desc_list->rx_desc.nbuf = nbuf; desc_list->rx_desc.rx_buf_start = nbuf->data; desc_list->rx_desc.unmapped = 0; /* rx_desc.in_use should be zero at this time*/ qdf_assert_always(desc_list->rx_desc.in_use == 0); desc_list->rx_desc.in_use = 1; desc_list->rx_desc.in_err_state = 0; hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry, paddr, desc_list->rx_desc.cookie, rx_desc_pool->owner); desc_list = next; } qdf_dsb(); hal_srng_access_end(soc->hal_soc, rxdma_srng); /* No need to count the number of bytes received during replenish. * Therefore set replenish.pkts.bytes as 0. */ DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0); DP_STATS_INC(dp_pdev, buf_freelist, (num_alloc_desc - count)); /* * add any available free desc back to the free list */ if (desc_list) dp_rx_add_desc_list_to_free_list(soc, &desc_list, &tail, mac_id, rx_desc_pool); return QDF_STATUS_SUCCESS; } QDF_STATUS __dp_rx_buffers_no_map_replenish(struct dp_soc *soc, uint32_t mac_id, struct dp_srng *dp_rxdma_srng, struct rx_desc_pool *rx_desc_pool, uint32_t num_req_buffers, union dp_rx_desc_list_elem_t **desc_list, union dp_rx_desc_list_elem_t **tail) { struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id); uint32_t count; void *rxdma_ring_entry; union dp_rx_desc_list_elem_t *next; void *rxdma_srng; qdf_nbuf_t nbuf; qdf_dma_addr_t paddr; rxdma_srng = dp_rxdma_srng->hal_srng; if (qdf_unlikely(!dp_pdev)) { dp_rx_err("%pK: pdev is null for mac_id = %d", soc, mac_id); return QDF_STATUS_E_FAILURE; } if (qdf_unlikely(!rxdma_srng)) { dp_rx_debug("%pK: rxdma srng not initialized", soc); DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers); return QDF_STATUS_E_FAILURE; } dp_rx_debug("%pK: requested %d buffers for replenish", soc, num_req_buffers); hal_srng_access_start(soc->hal_soc, rxdma_srng); for (count = 0; count < num_req_buffers; count++) { next = (*desc_list)->next; qdf_prefetch(next); nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool); if (qdf_unlikely(!nbuf)) { DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1); break; } paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf, rx_desc_pool->buf_size); rxdma_ring_entry = (struct dp_buffer_addr_info *) hal_srng_src_get_next(soc->hal_soc, rxdma_srng); if (!rxdma_ring_entry) break; qdf_assert_always(rxdma_ring_entry); (*desc_list)->rx_desc.nbuf = nbuf; (*desc_list)->rx_desc.rx_buf_start = nbuf->data; (*desc_list)->rx_desc.unmapped = 0; /* rx_desc.in_use should be zero at this time*/ qdf_assert_always((*desc_list)->rx_desc.in_use == 0); (*desc_list)->rx_desc.in_use = 1; (*desc_list)->rx_desc.in_err_state = 0; hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry, paddr, (*desc_list)->rx_desc.cookie, rx_desc_pool->owner); *desc_list = next; } qdf_dsb(); hal_srng_access_end(soc->hal_soc, rxdma_srng); /* No need to count the number of bytes received during replenish. * Therefore set replenish.pkts.bytes as 0. */ DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0); DP_STATS_INC(dp_pdev, buf_freelist, (num_req_buffers - count)); /* * add any available free desc back to the free list */ if (*desc_list) dp_rx_add_desc_list_to_free_list(soc, desc_list, tail, mac_id, rx_desc_pool); return QDF_STATUS_SUCCESS; } QDF_STATUS __dp_pdev_rx_buffers_no_map_attach(struct dp_soc *soc, uint32_t mac_id, struct dp_srng *dp_rxdma_srng, struct rx_desc_pool *rx_desc_pool, uint32_t num_req_buffers) { struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id); uint32_t count; uint32_t nr_descs = 0; void *rxdma_ring_entry; union dp_rx_desc_list_elem_t *next; void *rxdma_srng; qdf_nbuf_t nbuf; qdf_dma_addr_t paddr; union dp_rx_desc_list_elem_t *desc_list = NULL; union dp_rx_desc_list_elem_t *tail = NULL; rxdma_srng = dp_rxdma_srng->hal_srng; if (qdf_unlikely(!dp_pdev)) { dp_rx_err("%pK: pdev is null for mac_id = %d", soc, mac_id); return QDF_STATUS_E_FAILURE; } if (qdf_unlikely(!rxdma_srng)) { dp_rx_debug("%pK: rxdma srng not initialized", soc); DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers); return QDF_STATUS_E_FAILURE; } dp_rx_debug("%pK: requested %d buffers for replenish", soc, num_req_buffers); nr_descs = dp_rx_get_free_desc_list(soc, mac_id, rx_desc_pool, num_req_buffers, &desc_list, &tail); if (!nr_descs) { dp_err("no free rx_descs in freelist"); DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers); return QDF_STATUS_E_NOMEM; } dp_debug("got %u RX descs for driver attach", nr_descs); hal_srng_access_start(soc->hal_soc, rxdma_srng); for (count = 0; count < nr_descs; count++) { next = desc_list->next; qdf_prefetch(next); nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool); if (qdf_unlikely(!nbuf)) { DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1); break; } paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf, rx_desc_pool->buf_size); rxdma_ring_entry = (struct dp_buffer_addr_info *) hal_srng_src_get_next(soc->hal_soc, rxdma_srng); if (!rxdma_ring_entry) break; qdf_assert_always(rxdma_ring_entry); desc_list->rx_desc.nbuf = nbuf; desc_list->rx_desc.rx_buf_start = nbuf->data; desc_list->rx_desc.unmapped = 0; /* rx_desc.in_use should be zero at this time*/ qdf_assert_always(desc_list->rx_desc.in_use == 0); desc_list->rx_desc.in_use = 1; desc_list->rx_desc.in_err_state = 0; hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry, paddr, desc_list->rx_desc.cookie, rx_desc_pool->owner); desc_list = next; } qdf_dsb(); hal_srng_access_end(soc->hal_soc, rxdma_srng); /* No need to count the number of bytes received during replenish. * Therefore set replenish.pkts.bytes as 0. */ DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0); return QDF_STATUS_SUCCESS; } #endif #ifdef DP_UMAC_HW_RESET_SUPPORT #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86) static inline qdf_dma_addr_t dp_rx_rep_retrieve_paddr(struct dp_soc *dp_soc, qdf_nbuf_t nbuf, uint32_t buf_size) { return dp_rx_nbuf_sync_no_dsb(soc, nbuf, rx_desc_pool->buf_size); } #else static inline qdf_dma_addr_t dp_rx_rep_retrieve_paddr(struct dp_soc *dp_soc, qdf_nbuf_t nbuf, uint32_t buf_size) { return qdf_nbuf_get_frag_paddr(nbuf, 0); } #endif /* * dp_rx_desc_replenish() - Replenish the rx descriptors one at a time * * @soc: core txrx main context * @dp_rxdma_srng: rxdma ring * @rx_desc_pool: rx descriptor pool * @rx_desc:rx descriptor * * Return: void */ static inline void dp_rx_desc_replenish(struct dp_soc *soc, struct dp_srng *dp_rxdma_srng, struct rx_desc_pool *rx_desc_pool, struct dp_rx_desc *rx_desc) { void *rxdma_srng; void *rxdma_ring_entry; qdf_dma_addr_t paddr; rxdma_srng = dp_rxdma_srng->hal_srng; /* No one else should be accessing the srng at this point */ hal_srng_access_start_unlocked(soc->hal_soc, rxdma_srng); rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc, rxdma_srng); qdf_assert_always(rxdma_ring_entry); rx_desc->in_err_state = 0; paddr = dp_rx_rep_retrieve_paddr(soc, rx_desc->nbuf, rx_desc_pool->buf_size); hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry, paddr, rx_desc->cookie, rx_desc_pool->owner); hal_srng_access_end_unlocked(soc->hal_soc, rxdma_srng); } /* * dp_rx_desc_reuse() - Reuse the rx descriptors to fill the rx buf ring * * @soc: core txrx main context * @nbuf_list: nbuf list for delayed free * * Return: void */ void dp_rx_desc_reuse(struct dp_soc *soc, qdf_nbuf_t *nbuf_list) { int mac_id, i, j; union dp_rx_desc_list_elem_t *head = NULL; union dp_rx_desc_list_elem_t *tail = NULL; for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) { struct dp_srng *dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_id]; struct rx_desc_pool *rx_desc_pool = &soc->rx_desc_buf[mac_id]; uint32_t rx_sw_desc_num = rx_desc_pool->pool_size; /* Only fill up 1/3 of the ring size */ uint32_t num_req_decs; if (!dp_rxdma_srng || !dp_rxdma_srng->hal_srng || !rx_desc_pool->array) continue; num_req_decs = dp_rxdma_srng->num_entries / 3; for (i = 0, j = 0; i < rx_sw_desc_num; i++) { struct dp_rx_desc *rx_desc = (struct dp_rx_desc *)&rx_desc_pool->array[i]; if (rx_desc->in_use) { if (j < dp_rxdma_srng->num_entries) { dp_rx_desc_replenish(soc, dp_rxdma_srng, rx_desc_pool, rx_desc); } else { dp_rx_nbuf_unmap(soc, rx_desc, 0); rx_desc->unmapped = 0; rx_desc->nbuf->next = *nbuf_list; *nbuf_list = rx_desc->nbuf; dp_rx_add_to_free_desc_list(&head, &tail, rx_desc); } j++; } } if (head) dp_rx_add_desc_list_to_free_list(soc, &head, &tail, mac_id, rx_desc_pool); /* If num of descs in use were less, then we need to replenish * the ring with some buffers */ head = NULL; tail = NULL; if (j < (num_req_decs - 1)) dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng, rx_desc_pool, ((num_req_decs - 1) - j), &head, &tail, true); } } #endif /* * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs * called during dp rx initialization * and at the end of dp_rx_process. * * @soc: core txrx main context * @mac_id: mac_id which is one of 3 mac_ids * @dp_rxdma_srng: dp rxdma circular ring * @rx_desc_pool: Pointer to free Rx descriptor pool * @num_req_buffers: number of buffer to be replenished * @desc_list: list of descs if called from dp_rx_process * or NULL during dp rx initialization or out of buffer * interrupt. * @tail: tail of descs list * @req_only: If true don't replenish more than req buffers * @func_name: name of the caller function * Return: return success or failure */ QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id, struct dp_srng *dp_rxdma_srng, struct rx_desc_pool *rx_desc_pool, uint32_t num_req_buffers, union dp_rx_desc_list_elem_t **desc_list, union dp_rx_desc_list_elem_t **tail, bool req_only, const char *func_name) { uint32_t num_alloc_desc; uint16_t num_desc_to_free = 0; struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id); uint32_t num_entries_avail; uint32_t count; int sync_hw_ptr = 1; struct dp_rx_nbuf_frag_info nbuf_frag_info = {0}; void *rxdma_ring_entry; union dp_rx_desc_list_elem_t *next; QDF_STATUS ret; void *rxdma_srng; union dp_rx_desc_list_elem_t *desc_list_append = NULL; union dp_rx_desc_list_elem_t *tail_append = NULL; union dp_rx_desc_list_elem_t *temp_list = NULL; rxdma_srng = dp_rxdma_srng->hal_srng; if (qdf_unlikely(!dp_pdev)) { dp_rx_err("%pK: pdev is null for mac_id = %d", dp_soc, mac_id); return QDF_STATUS_E_FAILURE; } if (qdf_unlikely(!rxdma_srng)) { dp_rx_debug("%pK: rxdma srng not initialized", dp_soc); DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers); return QDF_STATUS_E_FAILURE; } dp_verbose_debug("%pK: requested %d buffers for replenish", dp_soc, num_req_buffers); hal_srng_access_start(dp_soc->hal_soc, rxdma_srng); num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc, rxdma_srng, sync_hw_ptr); dp_verbose_debug("%pK: no of available entries in rxdma ring: %d", dp_soc, num_entries_avail); if (!req_only && !(*desc_list) && (num_entries_avail > ((dp_rxdma_srng->num_entries * 3) / 4))) { num_req_buffers = num_entries_avail; DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1); } else if (num_entries_avail < num_req_buffers) { num_desc_to_free = num_req_buffers - num_entries_avail; num_req_buffers = num_entries_avail; } else if ((*desc_list) && dp_rxdma_srng->num_entries - num_entries_avail < CRITICAL_BUFFER_THRESHOLD) { /* Append some free descriptors to tail */ num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool, CRITICAL_BUFFER_THRESHOLD, &desc_list_append, &tail_append); if (num_alloc_desc) { temp_list = *desc_list; *desc_list = desc_list_append; tail_append->next = temp_list; num_req_buffers += num_alloc_desc; DP_STATS_DEC(dp_pdev, replenish.free_list, num_alloc_desc); } else dp_err_rl("%pK: no free rx_descs in freelist", dp_soc); } if (qdf_unlikely(!num_req_buffers)) { num_desc_to_free = num_req_buffers; hal_srng_access_end(dp_soc->hal_soc, rxdma_srng); goto free_descs; } /* * if desc_list is NULL, allocate the descs from freelist */ if (!(*desc_list)) { num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool, num_req_buffers, desc_list, tail); if (!num_alloc_desc) { dp_rx_err("%pK: no free rx_descs in freelist", dp_soc); DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers); hal_srng_access_end(dp_soc->hal_soc, rxdma_srng); return QDF_STATUS_E_NOMEM; } dp_verbose_debug("%pK: %d rx desc allocated", dp_soc, num_alloc_desc); num_req_buffers = num_alloc_desc; } count = 0; while (count < num_req_buffers) { /* Flag is set while pdev rx_desc_pool initialization */ if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable)) ret = dp_pdev_frag_alloc_and_map(dp_soc, &nbuf_frag_info, dp_pdev, rx_desc_pool); else ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc, mac_id, num_entries_avail, &nbuf_frag_info, dp_pdev, rx_desc_pool); if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) { if (qdf_unlikely(ret == QDF_STATUS_E_FAULT)) continue; break; } count++; rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc, rxdma_srng); qdf_assert_always(rxdma_ring_entry); next = (*desc_list)->next; /* Flag is set while pdev rx_desc_pool initialization */ if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable)) dp_rx_desc_frag_prep(&((*desc_list)->rx_desc), &nbuf_frag_info); else dp_rx_desc_prep(&((*desc_list)->rx_desc), &nbuf_frag_info); /* rx_desc.in_use should be zero at this time*/ qdf_assert_always((*desc_list)->rx_desc.in_use == 0); (*desc_list)->rx_desc.in_use = 1; (*desc_list)->rx_desc.in_err_state = 0; dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc, func_name, RX_DESC_REPLENISHED); dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d", nbuf_frag_info.virt_addr.nbuf, (unsigned long long)(nbuf_frag_info.paddr), (*desc_list)->rx_desc.cookie); hal_rxdma_buff_addr_info_set(dp_soc->hal_soc, rxdma_ring_entry, nbuf_frag_info.paddr, (*desc_list)->rx_desc.cookie, rx_desc_pool->owner); *desc_list = next; } dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng, num_req_buffers, count); hal_srng_access_end(dp_soc->hal_soc, rxdma_srng); dp_rx_schedule_refill_thread(dp_soc); dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u", count, num_desc_to_free); /* No need to count the number of bytes received during replenish. * Therefore set replenish.pkts.bytes as 0. */ DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0); DP_STATS_INC(dp_pdev, replenish.free_list, num_req_buffers - count); free_descs: DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free); /* * add any available free desc back to the free list */ if (*desc_list) dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail, mac_id, rx_desc_pool); return QDF_STATUS_SUCCESS; } qdf_export_symbol(__dp_rx_buffers_replenish); /* * dp_rx_deliver_raw() - process RAW mode pkts and hand over the * pkts to RAW mode simulation to * decapsulate the pkt. * * @vdev: vdev on which RAW mode is enabled * @nbuf_list: list of RAW pkts to process * @txrx_peer: peer object from which the pkt is rx * * Return: void */ void dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list, struct dp_txrx_peer *txrx_peer) { qdf_nbuf_t deliver_list_head = NULL; qdf_nbuf_t deliver_list_tail = NULL; qdf_nbuf_t nbuf; nbuf = nbuf_list; while (nbuf) { qdf_nbuf_t next = qdf_nbuf_next(nbuf); DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf); DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1); DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.raw, 1, qdf_nbuf_len(nbuf)); /* * reset the chfrag_start and chfrag_end bits in nbuf cb * as this is a non-amsdu pkt and RAW mode simulation expects * these bit s to be 0 for non-amsdu pkt. */ if (qdf_nbuf_is_rx_chfrag_start(nbuf) && qdf_nbuf_is_rx_chfrag_end(nbuf)) { qdf_nbuf_set_rx_chfrag_start(nbuf, 0); qdf_nbuf_set_rx_chfrag_end(nbuf, 0); } nbuf = next; } vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head, &deliver_list_tail); vdev->osif_rx(vdev->osif_vdev, deliver_list_head); } #ifndef QCA_HOST_MODE_WIFI_DISABLED #ifndef FEATURE_WDS void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr, struct dp_txrx_peer *ta_peer, qdf_nbuf_t nbuf) { } #endif #ifdef QCA_SUPPORT_TX_MIN_RATES_FOR_SPECIAL_FRAMES /* * dp_classify_critical_pkts() - API for marking critical packets * @soc: dp_soc context * @vdev: vdev on which packet is to be sent * @nbuf: nbuf that has to be classified * * The function parses the packet, identifies whether its a critical frame and * marks QDF_NBUF_CB_TX_EXTRA_IS_CRITICAL bit in qdf_nbuf_cb for the nbuf. * Code for marking which frames are CRITICAL is accessed via callback. * EAPOL, ARP, DHCP, DHCPv6, ICMPv6 NS/NA are the typical critical frames. * * Return: None */ static void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev, qdf_nbuf_t nbuf) { if (vdev->tx_classify_critical_pkt_cb) vdev->tx_classify_critical_pkt_cb(vdev->osif_vdev, nbuf); } #else static inline void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev, qdf_nbuf_t nbuf) { } #endif #ifdef QCA_OL_TX_MULTIQ_SUPPORT static inline void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id) { qdf_nbuf_set_queue_mapping(nbuf, ring_id); } #else static inline void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id) { } #endif /* * dp_rx_intrabss_mcbc_fwd() - Does intrabss forward for mcast packets * * @soc: core txrx main context * @ta_peer : source peer entry * @rx_tlv_hdr : start address of rx tlvs * @nbuf : nbuf that has to be intrabss forwarded * @tid_stats : tid stats pointer * * Return: bool: true if it is forwarded else false */ bool dp_rx_intrabss_mcbc_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer, uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf, struct cdp_tid_rx_stats *tid_stats) { uint16_t len; qdf_nbuf_t nbuf_copy; if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr, nbuf)) return true; if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf)) return false; /* If the source peer in the isolation list * then dont forward instead push to bridge stack */ if (dp_get_peer_isolation(ta_peer)) return false; nbuf_copy = qdf_nbuf_copy(nbuf); if (!nbuf_copy) return false; len = QDF_NBUF_CB_RX_PKT_LEN(nbuf); qdf_mem_set(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb)); dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf_copy); if (soc->arch_ops.dp_rx_intrabss_handle_nawds(soc, ta_peer, nbuf_copy, tid_stats)) return false; if (dp_tx_send((struct cdp_soc_t *)soc, ta_peer->vdev->vdev_id, nbuf_copy)) { DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len); tid_stats->fail_cnt[INTRABSS_DROP]++; dp_rx_nbuf_free(nbuf_copy); } else { DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len); tid_stats->intrabss_cnt++; } return false; } /* * dp_rx_intrabss_ucast_fwd() - Does intrabss forward for unicast packets * * @soc: core txrx main context * @ta_peer: source peer entry * @tx_vdev_id: VDEV ID for Intra-BSS TX * @rx_tlv_hdr: start address of rx tlvs * @nbuf: nbuf that has to be intrabss forwarded * @tid_stats: tid stats pointer * * Return: bool: true if it is forwarded else false */ bool dp_rx_intrabss_ucast_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer, uint8_t tx_vdev_id, uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf, struct cdp_tid_rx_stats *tid_stats) { uint16_t len; len = QDF_NBUF_CB_RX_PKT_LEN(nbuf); /* linearize the nbuf just before we send to * dp_tx_send() */ if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) { if (qdf_nbuf_linearize(nbuf) == -ENOMEM) return false; nbuf = qdf_nbuf_unshare(nbuf); if (!nbuf) { DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len); /* return true even though the pkt is * not forwarded. Basically skb_unshare * failed and we want to continue with * next nbuf. */ tid_stats->fail_cnt[INTRABSS_DROP]++; return false; } } qdf_mem_set(nbuf->cb, 0x0, sizeof(nbuf->cb)); dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf); if (!dp_tx_send((struct cdp_soc_t *)soc, tx_vdev_id, nbuf)) { DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len); } else { DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len); tid_stats->fail_cnt[INTRABSS_DROP]++; return false; } return true; } #endif /* QCA_HOST_MODE_WIFI_DISABLED */ #ifdef MESH_MODE_SUPPORT /** * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats * * @vdev: DP Virtual device handle * @nbuf: Buffer pointer * @rx_tlv_hdr: start of rx tlv header * @txrx_peer: pointer to peer * * This function allocated memory for mesh receive stats and fill the * required stats. Stores the memory address in skb cb. * * Return: void */ void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer) { struct mesh_recv_hdr_s *rx_info = NULL; uint32_t pkt_type; uint32_t nss; uint32_t rate_mcs; uint32_t bw; uint8_t primary_chan_num; uint32_t center_chan_freq; struct dp_soc *soc = vdev->pdev->soc; struct dp_peer *peer; struct dp_peer *primary_link_peer; struct dp_soc *link_peer_soc; cdp_peer_stats_param_t buf = {0}; /* fill recv mesh stats */ rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s)); /* upper layers are resposible to free this memory */ if (!rx_info) { dp_rx_err("%pK: Memory allocation failed for mesh rx stats", vdev->pdev->soc); DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1); return; } rx_info->rs_flags = MESH_RXHDR_VER1; if (qdf_nbuf_is_rx_chfrag_start(nbuf)) rx_info->rs_flags |= MESH_RX_FIRST_MSDU; if (qdf_nbuf_is_rx_chfrag_end(nbuf)) rx_info->rs_flags |= MESH_RX_LAST_MSDU; peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id, DP_MOD_ID_MESH); if (peer) { if (hal_rx_tlv_get_is_decrypted(soc->hal_soc, rx_tlv_hdr)) { rx_info->rs_flags |= MESH_RX_DECRYPTED; rx_info->rs_keyix = hal_rx_msdu_get_keyid(soc->hal_soc, rx_tlv_hdr); if (vdev->osif_get_key) vdev->osif_get_key(vdev->osif_vdev, &rx_info->rs_decryptkey[0], &peer->mac_addr.raw[0], rx_info->rs_keyix); } dp_peer_unref_delete(peer, DP_MOD_ID_MESH); } primary_link_peer = dp_get_primary_link_peer_by_id(soc, txrx_peer->peer_id, DP_MOD_ID_MESH); if (qdf_likely(primary_link_peer)) { link_peer_soc = primary_link_peer->vdev->pdev->soc; dp_monitor_peer_get_stats_param(link_peer_soc, primary_link_peer, cdp_peer_rx_snr, &buf); rx_info->rs_snr = buf.rx_snr; dp_peer_unref_delete(primary_link_peer, DP_MOD_ID_MESH); } rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR; soc = vdev->pdev->soc; primary_chan_num = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr); center_chan_freq = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr) >> 16; if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) { rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band( soc->ctrl_psoc, vdev->pdev->pdev_id, center_chan_freq); } rx_info->rs_channel = primary_chan_num; pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr); rate_mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr); bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr); nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr); rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) | (bw << 24); qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO); QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED, FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"), rx_info->rs_flags, rx_info->rs_rssi, rx_info->rs_channel, rx_info->rs_ratephy1, rx_info->rs_keyix, rx_info->rs_snr); } /** * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets * * @vdev: DP Virtual device handle * @nbuf: Buffer pointer * @rx_tlv_hdr: start of rx tlv header * * This checks if the received packet is matching any filter out * catogery and and drop the packet if it matches. * * Return: status(0 indicates drop, 1 indicate to no drop) */ QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr) { union dp_align_mac_addr mac_addr; struct dp_soc *soc = vdev->pdev->soc; if (qdf_unlikely(vdev->mesh_rx_filter)) { if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS) if (hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr)) return QDF_STATUS_SUCCESS; if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS) if (hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr)) return QDF_STATUS_SUCCESS; if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS) if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr) && !hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr)) return QDF_STATUS_SUCCESS; if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) { if (hal_rx_mpdu_get_addr1(soc->hal_soc, rx_tlv_hdr, &mac_addr.raw[0])) return QDF_STATUS_E_FAILURE; if (!qdf_mem_cmp(&mac_addr.raw[0], &vdev->mac_addr.raw[0], QDF_MAC_ADDR_SIZE)) return QDF_STATUS_SUCCESS; } if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) { if (hal_rx_mpdu_get_addr2(soc->hal_soc, rx_tlv_hdr, &mac_addr.raw[0])) return QDF_STATUS_E_FAILURE; if (!qdf_mem_cmp(&mac_addr.raw[0], &vdev->mac_addr.raw[0], QDF_MAC_ADDR_SIZE)) return QDF_STATUS_SUCCESS; } } return QDF_STATUS_E_FAILURE; } #else void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr, struct dp_txrx_peer *peer) { } QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr) { return QDF_STATUS_E_FAILURE; } #endif #ifdef FEATURE_NAC_RSSI /** * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac * @soc: DP SOC handle * @mpdu: mpdu for which peer is invalid * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and * pool_id has same mapping) * * return: integer type */ uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu, uint8_t mac_id) { struct dp_invalid_peer_msg msg; struct dp_vdev *vdev = NULL; struct dp_pdev *pdev = NULL; struct ieee80211_frame *wh; qdf_nbuf_t curr_nbuf, next_nbuf; uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu); uint8_t *rx_pkt_hdr = NULL; int i = 0; if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) { dp_rx_debug("%pK: Drop decapped frames", soc); goto free; } /* In RAW packet, packet header will be part of data */ rx_pkt_hdr = rx_tlv_hdr + soc->rx_pkt_tlv_size; wh = (struct ieee80211_frame *)rx_pkt_hdr; if (!DP_FRAME_IS_DATA(wh)) { dp_rx_debug("%pK: NAWDS valid only for data frames", soc); goto free; } if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) { dp_rx_err("%pK: Invalid nbuf length", soc); goto free; } /* In DMAC case the rx_desc_pools are common across PDEVs * so PDEV cannot be derived from the pool_id. * * link_id need to derived from the TLV tag word which is * disabled by default. For now adding a WAR to get vdev * with brute force this need to fixed with word based subscription * support is added by enabling TLV tag word */ if (soc->features.dmac_cmn_src_rxbuf_ring_enabled) { for (i = 0; i < MAX_PDEV_CNT; i++) { pdev = soc->pdev_list[i]; if (!pdev || qdf_unlikely(pdev->is_pdev_down)) continue; TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) { if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw, QDF_MAC_ADDR_SIZE) == 0) { goto out; } } } } else { pdev = dp_get_pdev_for_lmac_id(soc, mac_id); if (!pdev || qdf_unlikely(pdev->is_pdev_down)) { dp_rx_err("%pK: PDEV %s", soc, !pdev ? "not found" : "down"); goto free; } if (dp_monitor_filter_neighbour_peer(pdev, rx_pkt_hdr) == QDF_STATUS_SUCCESS) return 0; TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) { if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw, QDF_MAC_ADDR_SIZE) == 0) { goto out; } } } if (!vdev) { dp_rx_err("%pK: VDEV not found", soc); goto free; } out: msg.wh = wh; qdf_nbuf_pull_head(mpdu, soc->rx_pkt_tlv_size); msg.nbuf = mpdu; msg.vdev_id = vdev->vdev_id; /* * NOTE: Only valid for HKv1. * If smart monitor mode is enabled on RE, we are getting invalid * peer frames with RA as STA mac of RE and the TA not matching * with any NAC list or the the BSSID.Such frames need to dropped * in order to avoid HM_WDS false addition. */ if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) { if (dp_monitor_drop_inv_peer_pkts(vdev) == QDF_STATUS_SUCCESS) { dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm", soc, wh->i_addr1); goto free; } pdev->soc->cdp_soc.ol_ops->rx_invalid_peer( (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc, pdev->pdev_id, &msg); } free: /* Drop and free packet */ curr_nbuf = mpdu; while (curr_nbuf) { next_nbuf = qdf_nbuf_next(curr_nbuf); dp_rx_nbuf_free(curr_nbuf); curr_nbuf = next_nbuf; } return 0; } /** * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler * @soc: DP SOC handle * @mpdu: mpdu for which peer is invalid * @mpdu_done: if an mpdu is completed * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and * pool_id has same mapping) * * return: integer type */ void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc, qdf_nbuf_t mpdu, bool mpdu_done, uint8_t mac_id) { /* Only trigger the process when mpdu is completed */ if (mpdu_done) dp_rx_process_invalid_peer(soc, mpdu, mac_id); } #else uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu, uint8_t mac_id) { qdf_nbuf_t curr_nbuf, next_nbuf; struct dp_pdev *pdev; struct dp_vdev *vdev = NULL; struct ieee80211_frame *wh; uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu); uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr); wh = (struct ieee80211_frame *)rx_pkt_hdr; if (!DP_FRAME_IS_DATA(wh)) { QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP, "only for data frames"); goto free; } if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) { dp_rx_info_rl("%pK: Invalid nbuf length", soc); goto free; } pdev = dp_get_pdev_for_lmac_id(soc, mac_id); if (!pdev) { dp_rx_info_rl("%pK: PDEV not found", soc); goto free; } qdf_spin_lock_bh(&pdev->vdev_list_lock); DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) { if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw, QDF_MAC_ADDR_SIZE) == 0) { qdf_spin_unlock_bh(&pdev->vdev_list_lock); goto out; } } qdf_spin_unlock_bh(&pdev->vdev_list_lock); if (!vdev) { dp_rx_info_rl("%pK: VDEV not found", soc); goto free; } out: if (soc->cdp_soc.ol_ops->rx_invalid_peer) soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh); free: /* Drop and free packet */ curr_nbuf = mpdu; while (curr_nbuf) { next_nbuf = qdf_nbuf_next(curr_nbuf); dp_rx_nbuf_free(curr_nbuf); curr_nbuf = next_nbuf; } /* Reset the head and tail pointers */ pdev = dp_get_pdev_for_lmac_id(soc, mac_id); if (pdev) { pdev->invalid_peer_head_msdu = NULL; pdev->invalid_peer_tail_msdu = NULL; } return 0; } void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc, qdf_nbuf_t mpdu, bool mpdu_done, uint8_t mac_id) { /* Process the nbuf */ dp_rx_process_invalid_peer(soc, mpdu, mac_id); } #endif #ifndef QCA_HOST_MODE_WIFI_DISABLED #ifdef RECEIVE_OFFLOAD /** * dp_rx_print_offload_info() - Print offload info from RX TLV * @soc: dp soc handle * @msdu: MSDU for which the offload info is to be printed * * Return: None */ static void dp_rx_print_offload_info(struct dp_soc *soc, qdf_nbuf_t msdu) { dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------"); dp_verbose_debug("lro_eligible 0x%x", QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu)); dp_verbose_debug("pure_ack 0x%x", QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu)); dp_verbose_debug("chksum 0x%x", QDF_NBUF_CB_RX_TCP_CHKSUM(msdu)); dp_verbose_debug("TCP seq num 0x%x", QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu)); dp_verbose_debug("TCP ack num 0x%x", QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu)); dp_verbose_debug("TCP window 0x%x", QDF_NBUF_CB_RX_TCP_WIN(msdu)); dp_verbose_debug("TCP protocol 0x%x", QDF_NBUF_CB_RX_TCP_PROTO(msdu)); dp_verbose_debug("TCP offset 0x%x", QDF_NBUF_CB_RX_TCP_OFFSET(msdu)); dp_verbose_debug("toeplitz 0x%x", QDF_NBUF_CB_RX_FLOW_ID(msdu)); dp_verbose_debug("---------------------------------------------------------"); } /** * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb * @soc: DP SOC handle * @rx_tlv: RX TLV received for the msdu * @msdu: msdu for which GRO info needs to be filled * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets * * Return: None */ void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv, qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt) { struct hal_offload_info offload_info; if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx)) return; if (hal_rx_tlv_get_offload_info(soc->hal_soc, rx_tlv, &offload_info)) return; *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1; QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = offload_info.lro_eligible; QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = offload_info.tcp_pure_ack; QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) = hal_rx_tlv_get_tcp_chksum(soc->hal_soc, rx_tlv); QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = offload_info.tcp_seq_num; QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = offload_info.tcp_ack_num; QDF_NBUF_CB_RX_TCP_WIN(msdu) = offload_info.tcp_win; QDF_NBUF_CB_RX_TCP_PROTO(msdu) = offload_info.tcp_proto; QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = offload_info.ipv6_proto; QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = offload_info.tcp_offset; QDF_NBUF_CB_RX_FLOW_ID(msdu) = offload_info.flow_id; dp_rx_print_offload_info(soc, msdu); } #endif /* RECEIVE_OFFLOAD */ /** * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf. * * @soc: DP soc handle * @nbuf: pointer to msdu. * @mpdu_len: mpdu length * @l3_pad_len: L3 padding length by HW * * Return: returns true if nbuf is last msdu of mpdu else retuns false. */ static inline bool dp_rx_adjust_nbuf_len(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t *mpdu_len, uint32_t l3_pad_len) { bool last_nbuf; uint32_t pkt_hdr_size; pkt_hdr_size = soc->rx_pkt_tlv_size + l3_pad_len; if ((*mpdu_len + pkt_hdr_size) > RX_DATA_BUFFER_SIZE) { qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE); last_nbuf = false; *mpdu_len -= (RX_DATA_BUFFER_SIZE - pkt_hdr_size); } else { qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + pkt_hdr_size)); last_nbuf = true; *mpdu_len = 0; } return last_nbuf; } /** * dp_get_l3_hdr_pad_len() - get L3 header padding length. * * @soc: DP soc handle * @nbuf: pointer to msdu. * * Return: returns padding length in bytes. */ static inline uint32_t dp_get_l3_hdr_pad_len(struct dp_soc *soc, qdf_nbuf_t nbuf) { uint32_t l3_hdr_pad = 0; uint8_t *rx_tlv_hdr; struct hal_rx_msdu_metadata msdu_metadata; while (nbuf) { if (!qdf_nbuf_is_rx_chfrag_cont(nbuf)) { /* scattered msdu end with continuation is 0 */ rx_tlv_hdr = qdf_nbuf_data(nbuf); hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr, &msdu_metadata); l3_hdr_pad = msdu_metadata.l3_hdr_pad; break; } nbuf = nbuf->next; } return l3_hdr_pad; } /** * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across * multiple nbufs. * @soc: DP SOC handle * @nbuf: pointer to the first msdu of an amsdu. * * This function implements the creation of RX frag_list for cases * where an MSDU is spread across multiple nbufs. * * Return: returns the head nbuf which contains complete frag_list. */ qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf) { qdf_nbuf_t parent, frag_list, next = NULL; uint16_t frag_list_len = 0; uint16_t mpdu_len; bool last_nbuf; uint32_t l3_hdr_pad_offset = 0; /* * Use msdu len got from REO entry descriptor instead since * there is case the RX PKT TLV is corrupted while msdu_len * from REO descriptor is right for non-raw RX scatter msdu. */ mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf); /* * this is a case where the complete msdu fits in one single nbuf. * in this case HW sets both start and end bit and we only need to * reset these bits for RAW mode simulator to decap the pkt */ if (qdf_nbuf_is_rx_chfrag_start(nbuf) && qdf_nbuf_is_rx_chfrag_end(nbuf)) { qdf_nbuf_set_pktlen(nbuf, mpdu_len + soc->rx_pkt_tlv_size); qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size); return nbuf; } l3_hdr_pad_offset = dp_get_l3_hdr_pad_len(soc, nbuf); /* * This is a case where we have multiple msdus (A-MSDU) spread across * multiple nbufs. here we create a fraglist out of these nbufs. * * the moment we encounter a nbuf with continuation bit set we * know for sure we have an MSDU which is spread across multiple * nbufs. We loop through and reap nbufs till we reach last nbuf. */ parent = nbuf; frag_list = nbuf->next; nbuf = nbuf->next; /* * set the start bit in the first nbuf we encounter with continuation * bit set. This has the proper mpdu length set as it is the first * msdu of the mpdu. this becomes the parent nbuf and the subsequent * nbufs will form the frag_list of the parent nbuf. */ qdf_nbuf_set_rx_chfrag_start(parent, 1); /* * L3 header padding is only needed for the 1st buffer * in a scattered msdu */ last_nbuf = dp_rx_adjust_nbuf_len(soc, parent, &mpdu_len, l3_hdr_pad_offset); /* * MSDU cont bit is set but reported MPDU length can fit * in to single buffer * * Increment error stats and avoid SG list creation */ if (last_nbuf) { DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1); qdf_nbuf_pull_head(parent, soc->rx_pkt_tlv_size + l3_hdr_pad_offset); return parent; } /* * this is where we set the length of the fragments which are * associated to the parent nbuf. We iterate through the frag_list * till we hit the last_nbuf of the list. */ do { last_nbuf = dp_rx_adjust_nbuf_len(soc, nbuf, &mpdu_len, 0); qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size); frag_list_len += qdf_nbuf_len(nbuf); if (last_nbuf) { next = nbuf->next; nbuf->next = NULL; break; } else if (qdf_nbuf_is_rx_chfrag_end(nbuf)) { dp_err("Invalid packet length\n"); qdf_assert_always(0); } nbuf = nbuf->next; } while (!last_nbuf); qdf_nbuf_set_rx_chfrag_start(nbuf, 0); qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len); parent->next = next; qdf_nbuf_pull_head(parent, soc->rx_pkt_tlv_size + l3_hdr_pad_offset); return parent; } #endif /* QCA_HOST_MODE_WIFI_DISABLED */ #ifdef QCA_PEER_EXT_STATS /* * dp_rx_compute_tid_delay - Computer per TID delay stats * @peer: DP soc context * @nbuf: NBuffer * * Return: Void */ void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats, qdf_nbuf_t nbuf) { struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay; uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf); dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack); } #endif /* QCA_PEER_EXT_STATS */ /** * dp_rx_compute_delay() - Compute and fill in all timestamps * to pass in correct fields * * @vdev: pdev handle * @tx_desc: tx descriptor * @tid: tid value * Return: none */ void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf) { uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf); int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get()); uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf); uint8_t tid = qdf_nbuf_get_tid_val(nbuf); uint32_t interframe_delay = (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp); struct cdp_tid_rx_stats *rstats = &vdev->pdev->stats.tid_stats.tid_rx_stats[ring_id][tid]; dp_update_delay_stats(NULL, rstats, to_stack, tid, CDP_DELAY_STATS_REAP_STACK, ring_id, false); /* * Update interframe delay stats calculated at deliver_data_ol point. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so * interframe delay will not be calculate correctly for 1st frame. * On the other side, this will help in avoiding extra per packet check * of vdev->prev_rx_deliver_tstamp. */ dp_update_delay_stats(NULL, rstats, interframe_delay, tid, CDP_DELAY_STATS_RX_INTERFRAME, ring_id, false); vdev->prev_rx_deliver_tstamp = current_ts; } /** * dp_rx_drop_nbuf_list() - drop an nbuf list * @pdev: dp pdev reference * @buf_list: buffer list to be dropepd * * Return: int (number of bufs dropped) */ static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev, qdf_nbuf_t buf_list) { struct cdp_tid_rx_stats *stats = NULL; uint8_t tid = 0, ring_id = 0; int num_dropped = 0; qdf_nbuf_t buf, next_buf; buf = buf_list; while (buf) { ring_id = QDF_NBUF_CB_RX_CTX_ID(buf); next_buf = qdf_nbuf_queue_next(buf); tid = qdf_nbuf_get_tid_val(buf); if (qdf_likely(pdev)) { stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid]; stats->fail_cnt[INVALID_PEER_VDEV]++; stats->delivered_to_stack--; } dp_rx_nbuf_free(buf); buf = next_buf; num_dropped++; } return num_dropped; } #ifdef QCA_SUPPORT_WDS_EXTENDED /** * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta * @soc: core txrx main context * @vdev: vdev * @txrx_peer: txrx peer * @nbuf_head: skb list head * * Return: true if packet is delivered to netdev per STA. */ static inline bool dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head) { /* * When extended WDS is disabled, frames are sent to AP netdevice. */ if (qdf_likely(!vdev->wds_ext_enabled)) return false; /* * There can be 2 cases: * 1. Send frame to parent netdev if its not for netdev per STA * 2. If frame is meant for netdev per STA: * a. Send frame to appropriate netdev using registered fp. * b. If fp is NULL, drop the frames. */ if (!txrx_peer->wds_ext.init) return false; if (txrx_peer->osif_rx) txrx_peer->osif_rx(txrx_peer->wds_ext.osif_peer, nbuf_head); else dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head); return true; } #else static inline bool dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head) { return false; } #endif #ifdef PEER_CACHE_RX_PKTS /** * dp_rx_flush_rx_cached() - flush cached rx frames * @peer: peer * @drop: flag to drop frames or forward to net stack * * Return: None */ void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop) { struct dp_peer_cached_bufq *bufqi; struct dp_rx_cached_buf *cache_buf = NULL; ol_txrx_rx_fp data_rx = NULL; int num_buff_elem; QDF_STATUS status; /* * Flush dp cached frames only for mld peers and legacy peers, as * link peers don't store cached frames */ if (IS_MLO_DP_LINK_PEER(peer)) return; if (!peer->txrx_peer) { dp_err("txrx_peer NULL!! peer mac_addr("QDF_MAC_ADDR_FMT")", QDF_MAC_ADDR_REF(peer->mac_addr.raw)); return; } if (qdf_atomic_inc_return(&peer->txrx_peer->flush_in_progress) > 1) { qdf_atomic_dec(&peer->txrx_peer->flush_in_progress); return; } qdf_spin_lock_bh(&peer->peer_info_lock); if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx) data_rx = peer->vdev->osif_rx; else drop = true; qdf_spin_unlock_bh(&peer->peer_info_lock); bufqi = &peer->txrx_peer->bufq_info; qdf_spin_lock_bh(&bufqi->bufq_lock); qdf_list_remove_front(&bufqi->cached_bufq, (qdf_list_node_t **)&cache_buf); while (cache_buf) { num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST( cache_buf->buf); bufqi->entries -= num_buff_elem; qdf_spin_unlock_bh(&bufqi->bufq_lock); if (drop) { bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev, cache_buf->buf); } else { /* Flush the cached frames to OSIF DEV */ status = data_rx(peer->vdev->osif_vdev, cache_buf->buf); if (status != QDF_STATUS_SUCCESS) bufqi->dropped = dp_rx_drop_nbuf_list( peer->vdev->pdev, cache_buf->buf); } qdf_mem_free(cache_buf); cache_buf = NULL; qdf_spin_lock_bh(&bufqi->bufq_lock); qdf_list_remove_front(&bufqi->cached_bufq, (qdf_list_node_t **)&cache_buf); } qdf_spin_unlock_bh(&bufqi->bufq_lock); qdf_atomic_dec(&peer->txrx_peer->flush_in_progress); } /** * dp_rx_enqueue_rx() - cache rx frames * @peer: peer * @rx_buf_list: cache buffer list * * Return: None */ static QDF_STATUS dp_rx_enqueue_rx(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t rx_buf_list) { struct dp_rx_cached_buf *cache_buf; struct dp_peer_cached_bufq *bufqi = &txrx_peer->bufq_info; int num_buff_elem; QDF_STATUS ret = QDF_STATUS_SUCCESS; struct dp_soc *soc = txrx_peer->vdev->pdev->soc; struct dp_peer *peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id, DP_MOD_ID_RX); if (!peer) { bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev, rx_buf_list); return QDF_STATUS_E_INVAL; } dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries, bufqi->dropped); if (!peer->valid) { bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev, rx_buf_list); ret = QDF_STATUS_E_INVAL; goto fail; } qdf_spin_lock_bh(&bufqi->bufq_lock); if (bufqi->entries >= bufqi->thresh) { bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev, rx_buf_list); qdf_spin_unlock_bh(&bufqi->bufq_lock); ret = QDF_STATUS_E_RESOURCES; goto fail; } qdf_spin_unlock_bh(&bufqi->bufq_lock); num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list); cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf)); if (!cache_buf) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "Failed to allocate buf to cache rx frames"); bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev, rx_buf_list); ret = QDF_STATUS_E_NOMEM; goto fail; } cache_buf->buf = rx_buf_list; qdf_spin_lock_bh(&bufqi->bufq_lock); qdf_list_insert_back(&bufqi->cached_bufq, &cache_buf->node); bufqi->entries += num_buff_elem; qdf_spin_unlock_bh(&bufqi->bufq_lock); fail: dp_peer_unref_delete(peer, DP_MOD_ID_RX); return ret; } static inline bool dp_rx_is_peer_cache_bufq_supported(void) { return true; } #else static inline bool dp_rx_is_peer_cache_bufq_supported(void) { return false; } static inline QDF_STATUS dp_rx_enqueue_rx(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t rx_buf_list) { return QDF_STATUS_SUCCESS; } #endif #ifndef DELIVERY_TO_STACK_STATUS_CHECK /** * dp_rx_check_delivery_to_stack() - Deliver pkts to network * using the appropriate call back functions. * @soc: soc * @vdev: vdev * @peer: peer * @nbuf_head: skb list head * @nbuf_tail: skb list tail * * Return: None */ static void dp_rx_check_delivery_to_stack(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head) { if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev, txrx_peer, nbuf_head))) return; /* Function pointer initialized only when FISA is enabled */ if (vdev->osif_fisa_rx) /* on failure send it via regular path */ vdev->osif_fisa_rx(soc, vdev, nbuf_head); else vdev->osif_rx(vdev->osif_vdev, nbuf_head); } #else /** * dp_rx_check_delivery_to_stack() - Deliver pkts to network * using the appropriate call back functions. * @soc: soc * @vdev: vdev * @txrx_peer: txrx peer * @nbuf_head: skb list head * @nbuf_tail: skb list tail * * Check the return status of the call back function and drop * the packets if the return status indicates a failure. * * Return: None */ static void dp_rx_check_delivery_to_stack(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head) { int num_nbuf = 0; QDF_STATUS ret_val = QDF_STATUS_E_FAILURE; /* Function pointer initialized only when FISA is enabled */ if (vdev->osif_fisa_rx) /* on failure send it via regular path */ ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head); else if (vdev->osif_rx) ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head); if (!QDF_IS_STATUS_SUCCESS(ret_val)) { num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head); DP_STATS_INC(soc, rx.err.rejected, num_nbuf); if (txrx_peer) DP_PEER_STATS_FLAT_DEC(txrx_peer, to_stack.num, num_nbuf); } } #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */ /* * dp_rx_validate_rx_callbacks() - validate rx callbacks * @soc DP soc * @vdev: DP vdev handle * @txrx_peer: pointer to the txrx peer object * nbuf_head: skb list head * * Return: QDF_STATUS - QDF_STATUS_SUCCESS * QDF_STATUS_E_FAILURE */ static inline QDF_STATUS dp_rx_validate_rx_callbacks(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head) { int num_nbuf; if (qdf_unlikely(!vdev || vdev->delete.pending)) { num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head); /* * This is a special case where vdev is invalid, * so we cannot know the pdev to which this packet * belonged. Hence we update the soc rx error stats. */ DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf); return QDF_STATUS_E_FAILURE; } /* * highly unlikely to have a vdev without a registered rx * callback function. if so let us free the nbuf_list. */ if (qdf_unlikely(!vdev->osif_rx)) { if (txrx_peer && dp_rx_is_peer_cache_bufq_supported()) { dp_rx_enqueue_rx(txrx_peer, nbuf_head); } else { num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head); DP_PEER_TO_STACK_DECC(txrx_peer, num_nbuf, vdev->pdev->enhanced_stats_en); } return QDF_STATUS_E_FAILURE; } return QDF_STATUS_SUCCESS; } QDF_STATUS dp_rx_deliver_to_stack(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head, qdf_nbuf_t nbuf_tail) { if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) != QDF_STATUS_SUCCESS) return QDF_STATUS_E_FAILURE; if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) || (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) { vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head, &nbuf_tail); } dp_rx_check_delivery_to_stack(soc, vdev, txrx_peer, nbuf_head); return QDF_STATUS_SUCCESS; } #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT QDF_STATUS dp_rx_eapol_deliver_to_stack(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head, qdf_nbuf_t nbuf_tail) { if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) != QDF_STATUS_SUCCESS) return QDF_STATUS_E_FAILURE; vdev->osif_rx_eapol(vdev->osif_vdev, nbuf_head); return QDF_STATUS_SUCCESS; } #endif #ifndef QCA_HOST_MODE_WIFI_DISABLED #ifdef VDEV_PEER_PROTOCOL_COUNT #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer) \ { \ qdf_nbuf_t nbuf_local; \ struct dp_txrx_peer *txrx_peer_local; \ struct dp_vdev *vdev_local = vdev_hdl; \ do { \ if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \ break; \ nbuf_local = nbuf; \ txrx_peer_local = txrx_peer; \ if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \ break; \ else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \ break; \ dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \ (nbuf_local), \ (txrx_peer_local), 0, 1); \ } while (0); \ } #else #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer) #endif #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER /** * dp_rx_rates_stats_update() - update rate stats * from rx msdu. * @soc: datapath soc handle * @nbuf: received msdu buffer * @rx_tlv_hdr: rx tlv header * @txrx_peer: datapath txrx_peer handle * @sgi: Short Guard Interval * @mcs: Modulation and Coding Set * @nss: Number of Spatial Streams * @bw: BandWidth * @pkt_type: Corresponds to preamble * * To be precisely record rates, following factors are considered: * Exclude specific frames, ARP, DHCP, ssdp, etc. * Make sure to affect rx throughput as least as possible. * * Return: void */ static void dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer, uint32_t sgi, uint32_t mcs, uint32_t nss, uint32_t bw, uint32_t pkt_type) { uint32_t rix; uint16_t ratecode; uint32_t avg_rx_rate; uint32_t ratekbps; enum cdp_punctured_modes punc_mode = NO_PUNCTURE; if (soc->high_throughput || dp_rx_data_is_specific(soc->hal_soc, rx_tlv_hdr, nbuf)) { return; } DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.rx_rate, mcs); /* In 11b mode, the nss we get from tlv is 0, invalid and should be 1 */ if (qdf_unlikely(pkt_type == DOT11_B)) nss = 1; /* here pkt_type corresponds to preamble */ ratekbps = dp_getrateindex(sgi, mcs, nss - 1, pkt_type, bw, punc_mode, &rix, &ratecode); DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.last_rx_rate, ratekbps); avg_rx_rate = dp_ath_rate_lpf(txrx_peer->stats.extd_stats.rx.avg_rx_rate, ratekbps); DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.avg_rx_rate, avg_rx_rate); DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.nss_info, nss); DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.mcs_info, mcs); DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.bw_info, bw); DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.gi_info, sgi); DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.preamble_info, pkt_type); } #else static inline void dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer, uint32_t sgi, uint32_t mcs, uint32_t nss, uint32_t bw, uint32_t pkt_type) { } #endif /* FEATURE_RX_LINKSPEED_ROAM_TRIGGER */ #ifndef QCA_ENHANCED_STATS_SUPPORT /** * dp_rx_msdu_extd_stats_update(): Update Rx extended path stats for peer * * @soc: datapath soc handle * @nbuf: received msdu buffer * @rx_tlv_hdr: rx tlv header * @txrx_peer: datapath txrx_peer handle * * Return: void */ static inline void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer) { bool is_ampdu; uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type; uint8_t dst_mcs_idx; /* * TODO - For KIWI this field is present in ring_desc * Try to use ring desc instead of tlv. */ is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(soc->hal_soc, rx_tlv_hdr); DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.ampdu_cnt, 1, is_ampdu); DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.non_ampdu_cnt, 1, !(is_ampdu)); sgi = hal_rx_tlv_sgi_get(soc->hal_soc, rx_tlv_hdr); mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr); tid = qdf_nbuf_get_tid_val(nbuf); bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr); reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc, rx_tlv_hdr); nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr); pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr); /* do HW to SW pkt type conversion */ pkt_type = (pkt_type >= HAL_DOT11_MAX ? DOT11_MAX : hal_2_dp_pkt_type_map[pkt_type]); DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[mcs], 1, ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf))); DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1, ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf))); DP_PEER_EXTD_STATS_INC(txrx_peer, rx.bw[bw], 1); /* * only if nss > 0 and pkt_type is 11N/AC/AX, * then increase index [nss - 1] in array counter. */ if (nss > 0 && CDP_IS_PKT_TYPE_SUPPORT_NSS(pkt_type)) DP_PEER_EXTD_STATS_INC(txrx_peer, rx.nss[nss - 1], 1); DP_PEER_EXTD_STATS_INC(txrx_peer, rx.sgi_count[sgi], 1); DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.mic_err, 1, hal_rx_tlv_mic_err_get(soc->hal_soc, rx_tlv_hdr)); DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.decrypt_err, 1, hal_rx_tlv_decrypt_err_get(soc->hal_soc, rx_tlv_hdr)); DP_PEER_EXTD_STATS_INC(txrx_peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1); DP_PEER_EXTD_STATS_INC(txrx_peer, rx.reception_type[reception_type], 1); dst_mcs_idx = dp_get_mcs_array_index_by_pkt_type_mcs(pkt_type, mcs); if (MCS_INVALID_ARRAY_INDEX != dst_mcs_idx) DP_PEER_EXTD_STATS_INC(txrx_peer, rx.pkt_type[pkt_type].mcs_count[dst_mcs_idx], 1); dp_rx_rates_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer, sgi, mcs, nss, bw, pkt_type); } #else static inline void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer) { } #endif #if defined(DP_PKT_STATS_PER_LMAC) && defined(WLAN_FEATURE_11BE_MLO) static inline void dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf) { uint8_t lmac_id = qdf_nbuf_get_lmac_id(nbuf); if (qdf_unlikely(lmac_id >= CDP_MAX_LMACS)) { dp_err_rl("Invalid lmac_id: %u vdev_id: %u", lmac_id, QDF_NBUF_CB_RX_VDEV_ID(nbuf)); if (qdf_likely(txrx_peer)) dp_err_rl("peer_id: %u", txrx_peer->peer_id); return; } /* only count stats per lmac for MLO connection*/ DP_PEER_PER_PKT_STATS_INCC_PKT(txrx_peer, rx.rx_lmac[lmac_id], 1, QDF_NBUF_CB_RX_PKT_LEN(nbuf), txrx_peer->mld_peer); } #else static inline void dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf) { } #endif /** * dp_rx_msdu_stats_update() - update per msdu stats. * @soc: core txrx main context * @nbuf: pointer to the first msdu of an amsdu. * @rx_tlv_hdr: pointer to the start of RX TLV headers. * @txrx_peer: pointer to the txrx peer object. * @ring_id: reo dest ring number on which pkt is reaped. * @tid_stats: per tid rx stats. * * update all the per msdu stats for that nbuf. * Return: void */ void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer, uint8_t ring_id, struct cdp_tid_rx_stats *tid_stats) { bool is_not_amsdu; struct dp_vdev *vdev = txrx_peer->vdev; bool enh_flag; qdf_ether_header_t *eh; uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf); dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, txrx_peer); is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) & qdf_nbuf_is_rx_chfrag_end(nbuf); DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.rcvd_reo[ring_id], 1, msdu_len); DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.non_amsdu_cnt, 1, is_not_amsdu); DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.amsdu_cnt, 1, !is_not_amsdu); DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf)); dp_peer_update_rx_pkt_per_lmac(txrx_peer, nbuf); tid_stats->msdu_cnt++; if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) && (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) { eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf); enh_flag = vdev->pdev->enhanced_stats_en; DP_PEER_MC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag); tid_stats->mcast_msdu_cnt++; if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) { DP_PEER_BC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag); tid_stats->bcast_msdu_cnt++; } } txrx_peer->stats.per_pkt_stats.rx.last_rx_ts = qdf_system_ticks(); dp_rx_msdu_extd_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer); } #ifndef WDS_VENDOR_EXTENSION int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr, struct dp_vdev *vdev, struct dp_txrx_peer *txrx_peer) { return 1; } #endif #ifdef RX_DESC_DEBUG_CHECK /** * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr * corruption * * @ring_desc: REO ring descriptor * @rx_desc: Rx descriptor * * Return: NONE */ QDF_STATUS dp_rx_desc_nbuf_sanity_check(struct dp_soc *soc, hal_ring_desc_t ring_desc, struct dp_rx_desc *rx_desc) { struct hal_buf_info hbi; hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi); /* Sanity check for possible buffer paddr corruption */ if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr)) return QDF_STATUS_SUCCESS; return QDF_STATUS_E_FAILURE; } /** * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer * out of bound access from H.W * * @soc: DP soc * @pkt_len: Packet length received from H.W * * Return: NONE */ static inline void dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { struct rx_desc_pool *rx_desc_pool; rx_desc_pool = &soc->rx_desc_buf[0]; qdf_assert_always(pkt_len <= rx_desc_pool->buf_size); } #else static inline void dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { } #endif #ifdef DP_RX_PKT_NO_PEER_DELIVER #ifdef DP_RX_UDP_OVER_PEER_ROAM /** * dp_rx_is_udp_allowed_over_roam_peer() - check if udp data received * during roaming * @vdev: dp_vdev pointer * @rx_tlv_hdr: rx tlv header * @nbuf: pkt skb pointer * * This function will check if rx udp data is received from authorised * roamed peer before peer map indication is received from FW after * roaming. This is needed for VoIP scenarios in which packet loss * expected during roaming is minimal. * * Return: bool */ static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev, uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf) { char *hdr_desc; struct ieee80211_frame *wh = NULL; hdr_desc = hal_rx_desc_get_80211_hdr(vdev->pdev->soc->hal_soc, rx_tlv_hdr); wh = (struct ieee80211_frame *)hdr_desc; if (vdev->roaming_peer_status == WLAN_ROAM_PEER_AUTH_STATUS_AUTHENTICATED && !qdf_mem_cmp(vdev->roaming_peer_mac.raw, wh->i_addr2, QDF_MAC_ADDR_SIZE) && (qdf_nbuf_is_ipv4_udp_pkt(nbuf) || qdf_nbuf_is_ipv6_udp_pkt(nbuf))) return true; return false; } #else static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev, uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf) { return false; } #endif /** * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if * no corresbonding peer found * @soc: core txrx main context * @nbuf: pkt skb pointer * * This function will try to deliver some RX special frames to stack * even there is no peer matched found. for instance, LFR case, some * eapol data will be sent to host before peer_map done. * * Return: None */ void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf) { uint16_t peer_id; uint8_t vdev_id; struct dp_vdev *vdev = NULL; uint32_t l2_hdr_offset = 0; uint16_t msdu_len = 0; uint32_t pkt_len = 0; uint8_t *rx_tlv_hdr; uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP | FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP; peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf); if (peer_id > soc->max_peer_id) goto deliver_fail; vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf); vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX); if (!vdev || vdev->delete.pending || !vdev->osif_rx) goto deliver_fail; if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) goto deliver_fail; rx_tlv_hdr = qdf_nbuf_data(nbuf); l2_hdr_offset = hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr); msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf); pkt_len = msdu_len + l2_hdr_offset + soc->rx_pkt_tlv_size; QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1; qdf_nbuf_set_pktlen(nbuf, pkt_len); qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + l2_hdr_offset); if (dp_rx_is_special_frame(nbuf, frame_mask) || dp_rx_is_udp_allowed_over_roam_peer(vdev, rx_tlv_hdr, nbuf)) { qdf_nbuf_set_exc_frame(nbuf, 1); if (QDF_STATUS_SUCCESS != vdev->osif_rx(vdev->osif_vdev, nbuf)) goto deliver_fail; DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1); dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX); return; } deliver_fail: DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1, QDF_NBUF_CB_RX_PKT_LEN(nbuf)); dp_rx_nbuf_free(nbuf); if (vdev) dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX); } #else void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf) { DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1, QDF_NBUF_CB_RX_PKT_LEN(nbuf)); dp_rx_nbuf_free(nbuf); } #endif /** * dp_rx_srng_get_num_pending() - get number of pending entries * @hal_soc: hal soc opaque pointer * @hal_ring: opaque pointer to the HAL Rx Ring * @num_entries: number of entries in the hal_ring. * @near_full: pointer to a boolean. This is set if ring is near full. * * The function returns the number of entries in a destination ring which are * yet to be reaped. The function also checks if the ring is near full. * If more than half of the ring needs to be reaped, the ring is considered * approaching full. * The function useses hal_srng_dst_num_valid_locked to get the number of valid * entries. It should not be called within a SRNG lock. HW pointer value is * synced into cached_hp. * * Return: Number of pending entries if any */ uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc, hal_ring_handle_t hal_ring_hdl, uint32_t num_entries, bool *near_full) { uint32_t num_pending = 0; num_pending = hal_srng_dst_num_valid_locked(hal_soc, hal_ring_hdl, true); if (num_entries && (num_pending >= num_entries >> 1)) *near_full = true; else *near_full = false; return num_pending; } #endif /* QCA_HOST_MODE_WIFI_DISABLED */ #ifdef WLAN_SUPPORT_RX_FISA void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding) { QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding; qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size); } #else void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding) { qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size); } #endif #ifndef QCA_HOST_MODE_WIFI_DISABLED #ifdef DP_RX_DROP_RAW_FRM /** * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop * @nbuf: pkt skb pointer * * Return: true - raw frame, dropped * false - not raw frame, do nothing */ bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf) { if (qdf_nbuf_is_raw_frame(nbuf)) { dp_rx_nbuf_free(nbuf); return true; } return false; } #endif #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY /** * dp_rx_ring_record_entry() - Record an entry into the rx ring history. * @soc: Datapath soc structure * @ring_num: REO ring number * @ring_desc: REO ring descriptor * * Returns: None */ void dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num, hal_ring_desc_t ring_desc) { struct dp_buf_info_record *record; struct hal_buf_info hbi; uint32_t idx; if (qdf_unlikely(!soc->rx_ring_history[ring_num])) return; hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi); /* buffer_addr_info is the first element of ring_desc */ hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)ring_desc, &hbi); idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index, DP_RX_HIST_MAX); /* No NULL check needed for record since its an array */ record = &soc->rx_ring_history[ring_num]->entry[idx]; record->timestamp = qdf_get_log_timestamp(); record->hbi.paddr = hbi.paddr; record->hbi.sw_cookie = hbi.sw_cookie; record->hbi.rbm = hbi.rbm; } #endif #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR /** * dp_rx_update_stats() - Update soc level rx packet count * @soc: DP soc handle * @nbuf: nbuf received * * Returns: none */ void dp_rx_update_stats(struct dp_soc *soc, qdf_nbuf_t nbuf) { DP_STATS_INC_PKT(soc, rx.ingress, 1, QDF_NBUF_CB_RX_PKT_LEN(nbuf)); } #endif #ifdef WLAN_FEATURE_PKT_CAPTURE_V2 /** * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture * @soc : dp_soc handle * @pdev: dp_pdev handle * @peer_id: peer_id of the peer for which completion came * @ppdu_id: ppdu_id * @netbuf: Buffer pointer * * This function is used to deliver rx packet to packet capture */ void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc, struct dp_pdev *pdev, uint16_t peer_id, uint32_t is_offload, qdf_nbuf_t netbuf) { if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx)) dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf, peer_id, is_offload, pdev->pdev_id); } void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t is_offload) { if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx)) dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA_NO_PEER, soc, nbuf, HTT_INVALID_VDEV, is_offload, 0); } #endif #endif /* QCA_HOST_MODE_WIFI_DISABLED */ QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev) { QDF_STATUS ret; if (vdev->osif_rx_flush) { ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id); if (!QDF_IS_STATUS_SUCCESS(ret)) { dp_err("Failed to flush rx pkts for vdev %d\n", vdev->vdev_id); return ret; } } return QDF_STATUS_SUCCESS; } static QDF_STATUS dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc, struct dp_rx_nbuf_frag_info *nbuf_frag_info_t, struct dp_pdev *dp_pdev, struct rx_desc_pool *rx_desc_pool) { QDF_STATUS ret = QDF_STATUS_E_FAILURE; (nbuf_frag_info_t->virt_addr).nbuf = qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size, RX_BUFFER_RESERVATION, rx_desc_pool->buf_alignment, FALSE); if (!((nbuf_frag_info_t->virt_addr).nbuf)) { dp_err("nbuf alloc failed"); DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1); return ret; } ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev, (nbuf_frag_info_t->virt_addr).nbuf, QDF_DMA_FROM_DEVICE, rx_desc_pool->buf_size); if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) { qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf); dp_err("nbuf map failed"); DP_STATS_INC(dp_pdev, replenish.map_err, 1); return ret; } nbuf_frag_info_t->paddr = qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0); ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf), &nbuf_frag_info_t->paddr, rx_desc_pool); if (ret == QDF_STATUS_E_FAILURE) { dp_err("nbuf check x86 failed"); DP_STATS_INC(dp_pdev, replenish.x86_fail, 1); return ret; } return QDF_STATUS_SUCCESS; } QDF_STATUS dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id, struct dp_srng *dp_rxdma_srng, struct rx_desc_pool *rx_desc_pool, uint32_t num_req_buffers) { struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id); hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng; union dp_rx_desc_list_elem_t *next; void *rxdma_ring_entry; qdf_dma_addr_t paddr; struct dp_rx_nbuf_frag_info *nf_info; uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0; uint32_t buffer_index, nbuf_ptrs_per_page; qdf_nbuf_t nbuf; QDF_STATUS ret; int page_idx, total_pages; union dp_rx_desc_list_elem_t *desc_list = NULL; union dp_rx_desc_list_elem_t *tail = NULL; int sync_hw_ptr = 1; uint32_t num_entries_avail; if (qdf_unlikely(!dp_pdev)) { dp_rx_err("%pK: pdev is null for mac_id = %d", dp_soc, mac_id); return QDF_STATUS_E_FAILURE; } if (qdf_unlikely(!rxdma_srng)) { DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers); return QDF_STATUS_E_FAILURE; } dp_debug("requested %u RX buffers for driver attach", num_req_buffers); hal_srng_access_start(dp_soc->hal_soc, rxdma_srng); num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc, rxdma_srng, sync_hw_ptr); hal_srng_access_end(dp_soc->hal_soc, rxdma_srng); if (!num_entries_avail) { dp_err("Num of available entries is zero, nothing to do"); return QDF_STATUS_E_NOMEM; } if (num_entries_avail < num_req_buffers) num_req_buffers = num_entries_avail; nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool, num_req_buffers, &desc_list, &tail); if (!nr_descs) { dp_err("no free rx_descs in freelist"); DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers); return QDF_STATUS_E_NOMEM; } dp_debug("got %u RX descs for driver attach", nr_descs); /* * Try to allocate pointers to the nbuf one page at a time. * Take pointers that can fit in one page of memory and * iterate through the total descriptors that need to be * allocated in order of pages. Reuse the pointers that * have been allocated to fit in one page across each * iteration to index into the nbuf. */ total_pages = (nr_descs * sizeof(*nf_info)) / DP_BLOCKMEM_SIZE; /* * Add an extra page to store the remainder if any */ if ((nr_descs * sizeof(*nf_info)) % DP_BLOCKMEM_SIZE) total_pages++; nf_info = qdf_mem_malloc(DP_BLOCKMEM_SIZE); if (!nf_info) { dp_err("failed to allocate nbuf array"); DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers); QDF_BUG(0); return QDF_STATUS_E_NOMEM; } nbuf_ptrs_per_page = DP_BLOCKMEM_SIZE / sizeof(*nf_info); for (page_idx = 0; page_idx < total_pages; page_idx++) { qdf_mem_zero(nf_info, DP_BLOCKMEM_SIZE); for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) { /* * The last page of buffer pointers may not be required * completely based on the number of descriptors. Below * check will ensure we are allocating only the * required number of descriptors. */ if (nr_nbuf_total >= nr_descs) break; /* Flag is set while pdev rx_desc_pool initialization */ if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable)) ret = dp_pdev_frag_alloc_and_map(dp_soc, &nf_info[nr_nbuf], dp_pdev, rx_desc_pool); else ret = dp_pdev_nbuf_alloc_and_map(dp_soc, &nf_info[nr_nbuf], dp_pdev, rx_desc_pool); if (QDF_IS_STATUS_ERROR(ret)) break; nr_nbuf_total++; } hal_srng_access_start(dp_soc->hal_soc, rxdma_srng); for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) { rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc, rxdma_srng); qdf_assert_always(rxdma_ring_entry); next = desc_list->next; paddr = nf_info[buffer_index].paddr; nbuf = nf_info[buffer_index].virt_addr.nbuf; /* Flag is set while pdev rx_desc_pool initialization */ if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable)) dp_rx_desc_frag_prep(&desc_list->rx_desc, &nf_info[buffer_index]); else dp_rx_desc_prep(&desc_list->rx_desc, &nf_info[buffer_index]); desc_list->rx_desc.in_use = 1; dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc); dp_rx_desc_update_dbg_info(&desc_list->rx_desc, __func__, RX_DESC_REPLENISHED); hal_rxdma_buff_addr_info_set(dp_soc->hal_soc ,rxdma_ring_entry, paddr, desc_list->rx_desc.cookie, rx_desc_pool->owner); dp_ipa_handle_rx_buf_smmu_mapping( dp_soc, nbuf, rx_desc_pool->buf_size, true, __func__, __LINE__); desc_list = next; } dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng, nr_nbuf, nr_nbuf); hal_srng_access_end(dp_soc->hal_soc, rxdma_srng); } dp_info("filled %u RX buffers for driver attach", nr_nbuf_total); qdf_mem_free(nf_info); if (!nr_nbuf_total) { dp_err("No nbuf's allocated"); QDF_BUG(0); return QDF_STATUS_E_RESOURCES; } /* No need to count the number of bytes received during replenish. * Therefore set replenish.pkts.bytes as 0. */ DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0); return QDF_STATUS_SUCCESS; } qdf_export_symbol(dp_pdev_rx_buffers_attach); /** * dp_rx_enable_mon_dest_frag() - Enable frag processing for * monitor destination ring via frag. * * Enable this flag only for monitor destination buffer processing * if DP_RX_MON_MEM_FRAG feature is enabled. * If flag is set then frag based function will be called for alloc, * map, prep desc and free ops for desc buffer else normal nbuf based * function will be called. * * @rx_desc_pool: Rx desc pool * @is_mon_dest_desc: Is it for monitor dest buffer * * Return: None */ #ifdef DP_RX_MON_MEM_FRAG void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool, bool is_mon_dest_desc) { rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc; if (is_mon_dest_desc) dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled"); } #else void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool, bool is_mon_dest_desc) { rx_desc_pool->rx_mon_dest_frag_enable = false; if (is_mon_dest_desc) dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled"); } #endif qdf_export_symbol(dp_rx_enable_mon_dest_frag); /* * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor * pool * * @pdev: core txrx pdev context * * Return: QDF_STATUS - QDF_STATUS_SUCCESS * QDF_STATUS_E_NOMEM */ QDF_STATUS dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev) { struct dp_soc *soc = pdev->soc; uint32_t rxdma_entries; uint32_t rx_sw_desc_num; struct dp_srng *dp_rxdma_srng; struct rx_desc_pool *rx_desc_pool; uint32_t status = QDF_STATUS_SUCCESS; int mac_for_pdev; mac_for_pdev = pdev->lmac_id; if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) { dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d", soc, mac_for_pdev); return status; } dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev]; rxdma_entries = dp_rxdma_srng->num_entries; rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev]; rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx); rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE; status = dp_rx_desc_pool_alloc(soc, rx_sw_desc_num, rx_desc_pool); if (status != QDF_STATUS_SUCCESS) return status; return status; } /* * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool * * @pdev: core txrx pdev context */ void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev) { int mac_for_pdev = pdev->lmac_id; struct dp_soc *soc = pdev->soc; struct rx_desc_pool *rx_desc_pool; rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev]; dp_rx_desc_pool_free(soc, rx_desc_pool); } /* * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors * * @pdev: core txrx pdev context * * Return: QDF_STATUS - QDF_STATUS_SUCCESS * QDF_STATUS_E_NOMEM */ QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev) { int mac_for_pdev = pdev->lmac_id; struct dp_soc *soc = pdev->soc; uint32_t rxdma_entries; uint32_t rx_sw_desc_num; struct dp_srng *dp_rxdma_srng; struct rx_desc_pool *rx_desc_pool; rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev]; if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) { /** * If NSS is enabled, rx_desc_pool is already filled. * Hence, just disable desc_pool frag flag. */ dp_rx_enable_mon_dest_frag(rx_desc_pool, false); dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d", soc, mac_for_pdev); return QDF_STATUS_SUCCESS; } if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM) return QDF_STATUS_E_NOMEM; dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev]; rxdma_entries = dp_rxdma_srng->num_entries; soc->process_rx_status = CONFIG_PROCESS_RX_STATUS; rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx); rx_desc_pool->owner = dp_rx_get_rx_bm_id(soc); rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE; rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT; /* Disable monitor dest processing via frag */ dp_rx_enable_mon_dest_frag(rx_desc_pool, false); dp_rx_desc_pool_init(soc, mac_for_pdev, rx_sw_desc_num, rx_desc_pool); return QDF_STATUS_SUCCESS; } /* * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools * @pdev: core txrx pdev context * * This function resets the freelist of rx descriptors and destroys locks * associated with this list of descriptors. */ void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev) { int mac_for_pdev = pdev->lmac_id; struct dp_soc *soc = pdev->soc; struct rx_desc_pool *rx_desc_pool; rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev]; dp_rx_desc_pool_deinit(soc, rx_desc_pool, mac_for_pdev); } /* * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring * * @pdev: core txrx pdev context * * Return: QDF_STATUS - QDF_STATUS_SUCCESS * QDF_STATUS_E_NOMEM */ QDF_STATUS dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev) { int mac_for_pdev = pdev->lmac_id; struct dp_soc *soc = pdev->soc; struct dp_srng *dp_rxdma_srng; struct rx_desc_pool *rx_desc_pool; uint32_t rxdma_entries; dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev]; rxdma_entries = dp_rxdma_srng->num_entries; rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev]; /* Initialize RX buffer pool which will be * used during low memory conditions */ dp_rx_buffer_pool_init(soc, mac_for_pdev); return dp_pdev_rx_buffers_attach_simple(soc, mac_for_pdev, dp_rxdma_srng, rx_desc_pool, rxdma_entries - 1); } /* * dp_rx_pdev_buffers_free - Free nbufs (skbs) * * @pdev: core txrx pdev context */ void dp_rx_pdev_buffers_free(struct dp_pdev *pdev) { int mac_for_pdev = pdev->lmac_id; struct dp_soc *soc = pdev->soc; struct rx_desc_pool *rx_desc_pool; rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev]; dp_rx_desc_nbuf_free(soc, rx_desc_pool); dp_rx_buffer_pool_deinit(soc, mac_for_pdev); } #ifdef DP_RX_SPECIAL_FRAME_NEED bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf, uint32_t frame_mask, uint8_t *rx_tlv_hdr) { uint32_t l2_hdr_offset = 0; uint16_t msdu_len = 0; uint32_t skip_len; l2_hdr_offset = hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr); if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) { skip_len = l2_hdr_offset; } else { msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf); skip_len = l2_hdr_offset + soc->rx_pkt_tlv_size; qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len); } QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1; dp_rx_set_hdr_pad(nbuf, l2_hdr_offset); qdf_nbuf_pull_head(nbuf, skip_len); if (txrx_peer->vdev) { dp_rx_send_pktlog(soc, txrx_peer->vdev->pdev, nbuf, QDF_TX_RX_STATUS_OK); } if (dp_rx_is_special_frame(nbuf, frame_mask)) { dp_info("special frame, mpdu sn 0x%x", hal_rx_get_rx_sequence(soc->hal_soc, rx_tlv_hdr)); qdf_nbuf_set_exc_frame(nbuf, 1); dp_rx_deliver_to_stack(soc, txrx_peer->vdev, txrx_peer, nbuf, NULL); return true; } return false; } #endif #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET void dp_rx_mark_first_packet_after_wow_wakeup(struct dp_pdev *pdev, uint8_t *rx_tlv, qdf_nbuf_t nbuf) { struct dp_soc *soc; if (!pdev->is_first_wakeup_packet) return; soc = pdev->soc; if (hal_get_first_wow_wakeup_packet(soc->hal_soc, rx_tlv)) { qdf_nbuf_mark_wakeup_frame(nbuf); dp_info("First packet after WOW Wakeup rcvd"); } } #endif