1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Stress userfaultfd syscall.
4  *
5  *  Copyright (C) 2015  Red Hat, Inc.
6  *
7  * This test allocates two virtual areas and bounces the physical
8  * memory across the two virtual areas (from area_src to area_dst)
9  * using userfaultfd.
10  *
11  * There are three threads running per CPU:
12  *
13  * 1) one per-CPU thread takes a per-page pthread_mutex in a random
14  *    page of the area_dst (while the physical page may still be in
15  *    area_src), and increments a per-page counter in the same page,
16  *    and checks its value against a verification region.
17  *
18  * 2) another per-CPU thread handles the userfaults generated by
19  *    thread 1 above. userfaultfd blocking reads or poll() modes are
20  *    exercised interleaved.
21  *
22  * 3) one last per-CPU thread transfers the memory in the background
23  *    at maximum bandwidth (if not already transferred by thread
24  *    2). Each cpu thread takes cares of transferring a portion of the
25  *    area.
26  *
27  * When all threads of type 3 completed the transfer, one bounce is
28  * complete. area_src and area_dst are then swapped. All threads are
29  * respawned and so the bounce is immediately restarted in the
30  * opposite direction.
31  *
32  * per-CPU threads 1 by triggering userfaults inside
33  * pthread_mutex_lock will also verify the atomicity of the memory
34  * transfer (UFFDIO_COPY).
35  */
36 #include <asm-generic/unistd.h>
37 #include "uffd-common.h"
38 
39 uint64_t features;
40 
41 #define BOUNCE_RANDOM		(1<<0)
42 #define BOUNCE_RACINGFAULTS	(1<<1)
43 #define BOUNCE_VERIFY		(1<<2)
44 #define BOUNCE_POLL		(1<<3)
45 static int bounces;
46 
47 /* exercise the test_uffdio_*_eexist every ALARM_INTERVAL_SECS */
48 #define ALARM_INTERVAL_SECS 10
49 static char *zeropage;
50 pthread_attr_t attr;
51 
52 #define swap(a, b) \
53 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
54 
55 const char *examples =
56 	"# Run anonymous memory test on 100MiB region with 99999 bounces:\n"
57 	"./uffd-stress anon 100 99999\n\n"
58 	"# Run share memory test on 1GiB region with 99 bounces:\n"
59 	"./uffd-stress shmem 1000 99\n\n"
60 	"# Run hugetlb memory test on 256MiB region with 50 bounces:\n"
61 	"./uffd-stress hugetlb 256 50\n\n"
62 	"# Run the same hugetlb test but using private file:\n"
63 	"./uffd-stress hugetlb-private 256 50\n\n"
64 	"# 10MiB-~6GiB 999 bounces anonymous test, "
65 	"continue forever unless an error triggers\n"
66 	"while ./uffd-stress anon $[RANDOM % 6000 + 10] 999; do true; done\n\n";
67 
usage(void)68 static void usage(void)
69 {
70 	fprintf(stderr, "\nUsage: ./uffd-stress <test type> <MiB> <bounces>\n\n");
71 	fprintf(stderr, "Supported <test type>: anon, hugetlb, "
72 		"hugetlb-private, shmem, shmem-private\n\n");
73 	fprintf(stderr, "Examples:\n\n");
74 	fprintf(stderr, "%s", examples);
75 	exit(1);
76 }
77 
uffd_stats_reset(struct uffd_args * args,unsigned long n_cpus)78 static void uffd_stats_reset(struct uffd_args *args, unsigned long n_cpus)
79 {
80 	int i;
81 
82 	for (i = 0; i < n_cpus; i++) {
83 		args[i].cpu = i;
84 		args[i].apply_wp = test_uffdio_wp;
85 		args[i].missing_faults = 0;
86 		args[i].wp_faults = 0;
87 		args[i].minor_faults = 0;
88 	}
89 }
90 
locking_thread(void * arg)91 static void *locking_thread(void *arg)
92 {
93 	unsigned long cpu = (unsigned long) arg;
94 	unsigned long page_nr;
95 	unsigned long long count;
96 
97 	if (!(bounces & BOUNCE_RANDOM)) {
98 		page_nr = -bounces;
99 		if (!(bounces & BOUNCE_RACINGFAULTS))
100 			page_nr += cpu * nr_pages_per_cpu;
101 	}
102 
103 	while (!finished) {
104 		if (bounces & BOUNCE_RANDOM) {
105 			if (getrandom(&page_nr, sizeof(page_nr), 0) != sizeof(page_nr))
106 				err("getrandom failed");
107 		} else
108 			page_nr += 1;
109 		page_nr %= nr_pages;
110 		pthread_mutex_lock(area_mutex(area_dst, page_nr));
111 		count = *area_count(area_dst, page_nr);
112 		if (count != count_verify[page_nr])
113 			err("page_nr %lu memory corruption %llu %llu",
114 			    page_nr, count, count_verify[page_nr]);
115 		count++;
116 		*area_count(area_dst, page_nr) = count_verify[page_nr] = count;
117 		pthread_mutex_unlock(area_mutex(area_dst, page_nr));
118 	}
119 
120 	return NULL;
121 }
122 
copy_page_retry(int ufd,unsigned long offset)123 static int copy_page_retry(int ufd, unsigned long offset)
124 {
125 	return __copy_page(ufd, offset, true, test_uffdio_wp);
126 }
127 
128 pthread_mutex_t uffd_read_mutex = PTHREAD_MUTEX_INITIALIZER;
129 
uffd_read_thread(void * arg)130 static void *uffd_read_thread(void *arg)
131 {
132 	struct uffd_args *args = (struct uffd_args *)arg;
133 	struct uffd_msg msg;
134 
135 	pthread_mutex_unlock(&uffd_read_mutex);
136 	/* from here cancellation is ok */
137 
138 	for (;;) {
139 		if (uffd_read_msg(uffd, &msg))
140 			continue;
141 		uffd_handle_page_fault(&msg, args);
142 	}
143 
144 	return NULL;
145 }
146 
background_thread(void * arg)147 static void *background_thread(void *arg)
148 {
149 	unsigned long cpu = (unsigned long) arg;
150 	unsigned long page_nr, start_nr, mid_nr, end_nr;
151 
152 	start_nr = cpu * nr_pages_per_cpu;
153 	end_nr = (cpu+1) * nr_pages_per_cpu;
154 	mid_nr = (start_nr + end_nr) / 2;
155 
156 	/* Copy the first half of the pages */
157 	for (page_nr = start_nr; page_nr < mid_nr; page_nr++)
158 		copy_page_retry(uffd, page_nr * page_size);
159 
160 	/*
161 	 * If we need to test uffd-wp, set it up now.  Then we'll have
162 	 * at least the first half of the pages mapped already which
163 	 * can be write-protected for testing
164 	 */
165 	if (test_uffdio_wp)
166 		wp_range(uffd, (unsigned long)area_dst + start_nr * page_size,
167 			nr_pages_per_cpu * page_size, true);
168 
169 	/*
170 	 * Continue the 2nd half of the page copying, handling write
171 	 * protection faults if any
172 	 */
173 	for (page_nr = mid_nr; page_nr < end_nr; page_nr++)
174 		copy_page_retry(uffd, page_nr * page_size);
175 
176 	return NULL;
177 }
178 
stress(struct uffd_args * args)179 static int stress(struct uffd_args *args)
180 {
181 	unsigned long cpu;
182 	pthread_t locking_threads[nr_cpus];
183 	pthread_t uffd_threads[nr_cpus];
184 	pthread_t background_threads[nr_cpus];
185 
186 	finished = 0;
187 	for (cpu = 0; cpu < nr_cpus; cpu++) {
188 		if (pthread_create(&locking_threads[cpu], &attr,
189 				   locking_thread, (void *)cpu))
190 			return 1;
191 		if (bounces & BOUNCE_POLL) {
192 			if (pthread_create(&uffd_threads[cpu], &attr, uffd_poll_thread, &args[cpu]))
193 				err("uffd_poll_thread create");
194 		} else {
195 			if (pthread_create(&uffd_threads[cpu], &attr,
196 					   uffd_read_thread,
197 					   (void *)&args[cpu]))
198 				return 1;
199 			pthread_mutex_lock(&uffd_read_mutex);
200 		}
201 		if (pthread_create(&background_threads[cpu], &attr,
202 				   background_thread, (void *)cpu))
203 			return 1;
204 	}
205 	for (cpu = 0; cpu < nr_cpus; cpu++)
206 		if (pthread_join(background_threads[cpu], NULL))
207 			return 1;
208 
209 	/*
210 	 * Be strict and immediately zap area_src, the whole area has
211 	 * been transferred already by the background treads. The
212 	 * area_src could then be faulted in a racy way by still
213 	 * running uffdio_threads reading zeropages after we zapped
214 	 * area_src (but they're guaranteed to get -EEXIST from
215 	 * UFFDIO_COPY without writing zero pages into area_dst
216 	 * because the background threads already completed).
217 	 */
218 	uffd_test_ops->release_pages(area_src);
219 
220 	finished = 1;
221 	for (cpu = 0; cpu < nr_cpus; cpu++)
222 		if (pthread_join(locking_threads[cpu], NULL))
223 			return 1;
224 
225 	for (cpu = 0; cpu < nr_cpus; cpu++) {
226 		char c;
227 		if (bounces & BOUNCE_POLL) {
228 			if (write(pipefd[cpu*2+1], &c, 1) != 1)
229 				err("pipefd write error");
230 			if (pthread_join(uffd_threads[cpu],
231 					 (void *)&args[cpu]))
232 				return 1;
233 		} else {
234 			if (pthread_cancel(uffd_threads[cpu]))
235 				return 1;
236 			if (pthread_join(uffd_threads[cpu], NULL))
237 				return 1;
238 		}
239 	}
240 
241 	return 0;
242 }
243 
userfaultfd_stress(void)244 static int userfaultfd_stress(void)
245 {
246 	void *area;
247 	unsigned long nr;
248 	struct uffd_args args[nr_cpus];
249 	uint64_t mem_size = nr_pages * page_size;
250 	int flags = 0;
251 
252 	memset(args, 0, sizeof(struct uffd_args) * nr_cpus);
253 
254 	if (features & UFFD_FEATURE_WP_UNPOPULATED && test_type == TEST_ANON)
255 		flags = UFFD_FEATURE_WP_UNPOPULATED;
256 
257 	if (uffd_test_ctx_init(flags, NULL))
258 		err("context init failed");
259 
260 	if (posix_memalign(&area, page_size, page_size))
261 		err("out of memory");
262 	zeropage = area;
263 	bzero(zeropage, page_size);
264 
265 	pthread_mutex_lock(&uffd_read_mutex);
266 
267 	pthread_attr_init(&attr);
268 	pthread_attr_setstacksize(&attr, 16*1024*1024);
269 
270 	while (bounces--) {
271 		printf("bounces: %d, mode:", bounces);
272 		if (bounces & BOUNCE_RANDOM)
273 			printf(" rnd");
274 		if (bounces & BOUNCE_RACINGFAULTS)
275 			printf(" racing");
276 		if (bounces & BOUNCE_VERIFY)
277 			printf(" ver");
278 		if (bounces & BOUNCE_POLL)
279 			printf(" poll");
280 		else
281 			printf(" read");
282 		printf(", ");
283 		fflush(stdout);
284 
285 		if (bounces & BOUNCE_POLL)
286 			fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK);
287 		else
288 			fcntl(uffd, F_SETFL, uffd_flags & ~O_NONBLOCK);
289 
290 		/* register */
291 		if (uffd_register(uffd, area_dst, mem_size,
292 				  true, test_uffdio_wp, false))
293 			err("register failure");
294 
295 		if (area_dst_alias) {
296 			if (uffd_register(uffd, area_dst_alias, mem_size,
297 					  true, test_uffdio_wp, false))
298 				err("register failure alias");
299 		}
300 
301 		/*
302 		 * The madvise done previously isn't enough: some
303 		 * uffd_thread could have read userfaults (one of
304 		 * those already resolved by the background thread)
305 		 * and it may be in the process of calling
306 		 * UFFDIO_COPY. UFFDIO_COPY will read the zapped
307 		 * area_src and it would map a zero page in it (of
308 		 * course such a UFFDIO_COPY is perfectly safe as it'd
309 		 * return -EEXIST). The problem comes at the next
310 		 * bounce though: that racing UFFDIO_COPY would
311 		 * generate zeropages in the area_src, so invalidating
312 		 * the previous MADV_DONTNEED. Without this additional
313 		 * MADV_DONTNEED those zeropages leftovers in the
314 		 * area_src would lead to -EEXIST failure during the
315 		 * next bounce, effectively leaving a zeropage in the
316 		 * area_dst.
317 		 *
318 		 * Try to comment this out madvise to see the memory
319 		 * corruption being caught pretty quick.
320 		 *
321 		 * khugepaged is also inhibited to collapse THP after
322 		 * MADV_DONTNEED only after the UFFDIO_REGISTER, so it's
323 		 * required to MADV_DONTNEED here.
324 		 */
325 		uffd_test_ops->release_pages(area_dst);
326 
327 		uffd_stats_reset(args, nr_cpus);
328 
329 		/* bounce pass */
330 		if (stress(args)) {
331 			uffd_test_ctx_clear();
332 			return 1;
333 		}
334 
335 		/* Clear all the write protections if there is any */
336 		if (test_uffdio_wp)
337 			wp_range(uffd, (unsigned long)area_dst,
338 				 nr_pages * page_size, false);
339 
340 		/* unregister */
341 		if (uffd_unregister(uffd, area_dst, mem_size))
342 			err("unregister failure");
343 		if (area_dst_alias) {
344 			if (uffd_unregister(uffd, area_dst_alias, mem_size))
345 				err("unregister failure alias");
346 		}
347 
348 		/* verification */
349 		if (bounces & BOUNCE_VERIFY)
350 			for (nr = 0; nr < nr_pages; nr++)
351 				if (*area_count(area_dst, nr) != count_verify[nr])
352 					err("error area_count %llu %llu %lu\n",
353 					    *area_count(area_src, nr),
354 					    count_verify[nr], nr);
355 
356 		/* prepare next bounce */
357 		swap(area_src, area_dst);
358 
359 		swap(area_src_alias, area_dst_alias);
360 
361 		uffd_stats_report(args, nr_cpus);
362 	}
363 	uffd_test_ctx_clear();
364 
365 	return 0;
366 }
367 
set_test_type(const char * type)368 static void set_test_type(const char *type)
369 {
370 	if (!strcmp(type, "anon")) {
371 		test_type = TEST_ANON;
372 		uffd_test_ops = &anon_uffd_test_ops;
373 	} else if (!strcmp(type, "hugetlb")) {
374 		test_type = TEST_HUGETLB;
375 		uffd_test_ops = &hugetlb_uffd_test_ops;
376 		map_shared = true;
377 	} else if (!strcmp(type, "hugetlb-private")) {
378 		test_type = TEST_HUGETLB;
379 		uffd_test_ops = &hugetlb_uffd_test_ops;
380 	} else if (!strcmp(type, "shmem")) {
381 		map_shared = true;
382 		test_type = TEST_SHMEM;
383 		uffd_test_ops = &shmem_uffd_test_ops;
384 	} else if (!strcmp(type, "shmem-private")) {
385 		test_type = TEST_SHMEM;
386 		uffd_test_ops = &shmem_uffd_test_ops;
387 	}
388 }
389 
parse_test_type_arg(const char * raw_type)390 static void parse_test_type_arg(const char *raw_type)
391 {
392 	set_test_type(raw_type);
393 
394 	if (!test_type)
395 		err("failed to parse test type argument: '%s'", raw_type);
396 
397 	if (test_type == TEST_HUGETLB)
398 		page_size = default_huge_page_size();
399 	else
400 		page_size = sysconf(_SC_PAGE_SIZE);
401 
402 	if (!page_size)
403 		err("Unable to determine page size");
404 	if ((unsigned long) area_count(NULL, 0) + sizeof(unsigned long long) * 2
405 	    > page_size)
406 		err("Impossible to run this test");
407 
408 	/*
409 	 * Whether we can test certain features depends not just on test type,
410 	 * but also on whether or not this particular kernel supports the
411 	 * feature.
412 	 */
413 
414 	if (uffd_get_features(&features))
415 		err("failed to get available features");
416 
417 	test_uffdio_wp = test_uffdio_wp &&
418 		(features & UFFD_FEATURE_PAGEFAULT_FLAG_WP);
419 
420 	if (test_type != TEST_ANON && !(features & UFFD_FEATURE_WP_HUGETLBFS_SHMEM))
421 		test_uffdio_wp = false;
422 
423 	close(uffd);
424 	uffd = -1;
425 }
426 
sigalrm(int sig)427 static void sigalrm(int sig)
428 {
429 	if (sig != SIGALRM)
430 		abort();
431 	test_uffdio_copy_eexist = true;
432 	alarm(ALARM_INTERVAL_SECS);
433 }
434 
main(int argc,char ** argv)435 int main(int argc, char **argv)
436 {
437 	size_t bytes;
438 
439 	if (argc < 4)
440 		usage();
441 
442 	if (signal(SIGALRM, sigalrm) == SIG_ERR)
443 		err("failed to arm SIGALRM");
444 	alarm(ALARM_INTERVAL_SECS);
445 
446 	parse_test_type_arg(argv[1]);
447 	bytes = atol(argv[2]) * 1024 * 1024;
448 
449 	if (test_type == TEST_HUGETLB &&
450 	   get_free_hugepages() < bytes / page_size) {
451 		printf("skip: Skipping userfaultfd... not enough hugepages\n");
452 		return KSFT_SKIP;
453 	}
454 
455 	nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
456 
457 	nr_pages_per_cpu = bytes / page_size / nr_cpus;
458 	if (!nr_pages_per_cpu) {
459 		_err("invalid MiB");
460 		usage();
461 	}
462 
463 	bounces = atoi(argv[3]);
464 	if (bounces <= 0) {
465 		_err("invalid bounces");
466 		usage();
467 	}
468 	nr_pages = nr_pages_per_cpu * nr_cpus;
469 
470 	printf("nr_pages: %lu, nr_pages_per_cpu: %lu\n",
471 	       nr_pages, nr_pages_per_cpu);
472 	return userfaultfd_stress();
473 }
474