1 // SPDX-License-Identifier: GPL-2.0
2 #include <fcntl.h>
3 #include <pthread.h>
4 #include <sched.h>
5 #include <semaphore.h>
6 #include <signal.h>
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <sys/ioctl.h>
11 #include <sys/mman.h>
12 
13 #include <linux/compiler.h>
14 
15 #include <test_util.h>
16 #include <kvm_util.h>
17 #include <processor.h>
18 
19 /*
20  * s390x needs at least 1MB alignment, and the x86_64 MOVE/DELETE tests need a
21  * 2MB sized and aligned region so that the initial region corresponds to
22  * exactly one large page.
23  */
24 #define MEM_REGION_SIZE		0x200000
25 
26 #ifdef __x86_64__
27 /*
28  * Somewhat arbitrary location and slot, intended to not overlap anything.
29  */
30 #define MEM_REGION_GPA		0xc0000000
31 #define MEM_REGION_SLOT		10
32 
33 static const uint64_t MMIO_VAL = 0xbeefull;
34 
35 extern const uint64_t final_rip_start;
36 extern const uint64_t final_rip_end;
37 
38 static sem_t vcpu_ready;
39 
guest_spin_on_val(uint64_t spin_val)40 static inline uint64_t guest_spin_on_val(uint64_t spin_val)
41 {
42 	uint64_t val;
43 
44 	do {
45 		val = READ_ONCE(*((uint64_t *)MEM_REGION_GPA));
46 	} while (val == spin_val);
47 
48 	GUEST_SYNC(0);
49 	return val;
50 }
51 
vcpu_worker(void * data)52 static void *vcpu_worker(void *data)
53 {
54 	struct kvm_vcpu *vcpu = data;
55 	struct kvm_run *run = vcpu->run;
56 	struct ucall uc;
57 	uint64_t cmd;
58 
59 	/*
60 	 * Loop until the guest is done.  Re-enter the guest on all MMIO exits,
61 	 * which will occur if the guest attempts to access a memslot after it
62 	 * has been deleted or while it is being moved .
63 	 */
64 	while (1) {
65 		vcpu_run(vcpu);
66 
67 		if (run->exit_reason == KVM_EXIT_IO) {
68 			cmd = get_ucall(vcpu, &uc);
69 			if (cmd != UCALL_SYNC)
70 				break;
71 
72 			sem_post(&vcpu_ready);
73 			continue;
74 		}
75 
76 		if (run->exit_reason != KVM_EXIT_MMIO)
77 			break;
78 
79 		TEST_ASSERT(!run->mmio.is_write, "Unexpected exit mmio write");
80 		TEST_ASSERT(run->mmio.len == 8,
81 			    "Unexpected exit mmio size = %u", run->mmio.len);
82 
83 		TEST_ASSERT(run->mmio.phys_addr == MEM_REGION_GPA,
84 			    "Unexpected exit mmio address = 0x%llx",
85 			    run->mmio.phys_addr);
86 		memcpy(run->mmio.data, &MMIO_VAL, 8);
87 	}
88 
89 	if (run->exit_reason == KVM_EXIT_IO && cmd == UCALL_ABORT)
90 		REPORT_GUEST_ASSERT(uc);
91 
92 	return NULL;
93 }
94 
wait_for_vcpu(void)95 static void wait_for_vcpu(void)
96 {
97 	struct timespec ts;
98 
99 	TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts),
100 		    "clock_gettime() failed: %d", errno);
101 
102 	ts.tv_sec += 2;
103 	TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts),
104 		    "sem_timedwait() failed: %d", errno);
105 
106 	/* Wait for the vCPU thread to reenter the guest. */
107 	usleep(100000);
108 }
109 
spawn_vm(struct kvm_vcpu ** vcpu,pthread_t * vcpu_thread,void * guest_code)110 static struct kvm_vm *spawn_vm(struct kvm_vcpu **vcpu, pthread_t *vcpu_thread,
111 			       void *guest_code)
112 {
113 	struct kvm_vm *vm;
114 	uint64_t *hva;
115 	uint64_t gpa;
116 
117 	vm = vm_create_with_one_vcpu(vcpu, guest_code);
118 
119 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS_THP,
120 				    MEM_REGION_GPA, MEM_REGION_SLOT,
121 				    MEM_REGION_SIZE / getpagesize(), 0);
122 
123 	/*
124 	 * Allocate and map two pages so that the GPA accessed by guest_code()
125 	 * stays valid across the memslot move.
126 	 */
127 	gpa = vm_phy_pages_alloc(vm, 2, MEM_REGION_GPA, MEM_REGION_SLOT);
128 	TEST_ASSERT(gpa == MEM_REGION_GPA, "Failed vm_phy_pages_alloc\n");
129 
130 	virt_map(vm, MEM_REGION_GPA, MEM_REGION_GPA, 2);
131 
132 	/* Ditto for the host mapping so that both pages can be zeroed. */
133 	hva = addr_gpa2hva(vm, MEM_REGION_GPA);
134 	memset(hva, 0, 2 * 4096);
135 
136 	pthread_create(vcpu_thread, NULL, vcpu_worker, *vcpu);
137 
138 	/* Ensure the guest thread is spun up. */
139 	wait_for_vcpu();
140 
141 	return vm;
142 }
143 
144 
guest_code_move_memory_region(void)145 static void guest_code_move_memory_region(void)
146 {
147 	uint64_t val;
148 
149 	GUEST_SYNC(0);
150 
151 	/*
152 	 * Spin until the memory region starts getting moved to a
153 	 * misaligned address.
154 	 * Every region move may or may not trigger MMIO, as the
155 	 * window where the memslot is invalid is usually quite small.
156 	 */
157 	val = guest_spin_on_val(0);
158 	__GUEST_ASSERT(val == 1 || val == MMIO_VAL,
159 		       "Expected '1' or MMIO ('%lx'), got '%lx'", MMIO_VAL, val);
160 
161 	/* Spin until the misaligning memory region move completes. */
162 	val = guest_spin_on_val(MMIO_VAL);
163 	__GUEST_ASSERT(val == 1 || val == 0,
164 		       "Expected '0' or '1' (no MMIO), got '%lx'", val);
165 
166 	/* Spin until the memory region starts to get re-aligned. */
167 	val = guest_spin_on_val(0);
168 	__GUEST_ASSERT(val == 1 || val == MMIO_VAL,
169 		       "Expected '1' or MMIO ('%lx'), got '%lx'", MMIO_VAL, val);
170 
171 	/* Spin until the re-aligning memory region move completes. */
172 	val = guest_spin_on_val(MMIO_VAL);
173 	GUEST_ASSERT_EQ(val, 1);
174 
175 	GUEST_DONE();
176 }
177 
test_move_memory_region(bool disable_slot_zap_quirk)178 static void test_move_memory_region(bool disable_slot_zap_quirk)
179 {
180 	pthread_t vcpu_thread;
181 	struct kvm_vcpu *vcpu;
182 	struct kvm_vm *vm;
183 	uint64_t *hva;
184 
185 	vm = spawn_vm(&vcpu, &vcpu_thread, guest_code_move_memory_region);
186 
187 	if (disable_slot_zap_quirk)
188 		vm_enable_cap(vm, KVM_CAP_DISABLE_QUIRKS2, KVM_X86_QUIRK_SLOT_ZAP_ALL);
189 
190 	hva = addr_gpa2hva(vm, MEM_REGION_GPA);
191 
192 	/*
193 	 * Shift the region's base GPA.  The guest should not see "2" as the
194 	 * hva->gpa translation is misaligned, i.e. the guest is accessing a
195 	 * different host pfn.
196 	 */
197 	vm_mem_region_move(vm, MEM_REGION_SLOT, MEM_REGION_GPA - 4096);
198 	WRITE_ONCE(*hva, 2);
199 
200 	/*
201 	 * The guest _might_ see an invalid memslot and trigger MMIO, but it's
202 	 * a tiny window.  Spin and defer the sync until the memslot is
203 	 * restored and guest behavior is once again deterministic.
204 	 */
205 	usleep(100000);
206 
207 	/*
208 	 * Note, value in memory needs to be changed *before* restoring the
209 	 * memslot, else the guest could race the update and see "2".
210 	 */
211 	WRITE_ONCE(*hva, 1);
212 
213 	/* Restore the original base, the guest should see "1". */
214 	vm_mem_region_move(vm, MEM_REGION_SLOT, MEM_REGION_GPA);
215 	wait_for_vcpu();
216 	/* Defered sync from when the memslot was misaligned (above). */
217 	wait_for_vcpu();
218 
219 	pthread_join(vcpu_thread, NULL);
220 
221 	kvm_vm_free(vm);
222 }
223 
guest_code_delete_memory_region(void)224 static void guest_code_delete_memory_region(void)
225 {
226 	struct desc_ptr idt;
227 	uint64_t val;
228 
229 	/*
230 	 * Clobber the IDT so that a #PF due to the memory region being deleted
231 	 * escalates to triple-fault shutdown.  Because the memory region is
232 	 * deleted, there will be no valid mappings.  As a result, KVM will
233 	 * repeatedly intercepts the state-2 page fault that occurs when trying
234 	 * to vector the guest's #PF.  I.e. trying to actually handle the #PF
235 	 * in the guest will never succeed, and so isn't an option.
236 	 */
237 	memset(&idt, 0, sizeof(idt));
238 	__asm__ __volatile__("lidt %0" :: "m"(idt));
239 
240 	GUEST_SYNC(0);
241 
242 	/* Spin until the memory region is deleted. */
243 	val = guest_spin_on_val(0);
244 	GUEST_ASSERT_EQ(val, MMIO_VAL);
245 
246 	/* Spin until the memory region is recreated. */
247 	val = guest_spin_on_val(MMIO_VAL);
248 	GUEST_ASSERT_EQ(val, 0);
249 
250 	/* Spin until the memory region is deleted. */
251 	val = guest_spin_on_val(0);
252 	GUEST_ASSERT_EQ(val, MMIO_VAL);
253 
254 	asm("1:\n\t"
255 	    ".pushsection .rodata\n\t"
256 	    ".global final_rip_start\n\t"
257 	    "final_rip_start: .quad 1b\n\t"
258 	    ".popsection");
259 
260 	/* Spin indefinitely (until the code memslot is deleted). */
261 	guest_spin_on_val(MMIO_VAL);
262 
263 	asm("1:\n\t"
264 	    ".pushsection .rodata\n\t"
265 	    ".global final_rip_end\n\t"
266 	    "final_rip_end: .quad 1b\n\t"
267 	    ".popsection");
268 
269 	GUEST_ASSERT(0);
270 }
271 
test_delete_memory_region(bool disable_slot_zap_quirk)272 static void test_delete_memory_region(bool disable_slot_zap_quirk)
273 {
274 	pthread_t vcpu_thread;
275 	struct kvm_vcpu *vcpu;
276 	struct kvm_regs regs;
277 	struct kvm_run *run;
278 	struct kvm_vm *vm;
279 
280 	vm = spawn_vm(&vcpu, &vcpu_thread, guest_code_delete_memory_region);
281 
282 	if (disable_slot_zap_quirk)
283 		vm_enable_cap(vm, KVM_CAP_DISABLE_QUIRKS2, KVM_X86_QUIRK_SLOT_ZAP_ALL);
284 
285 	/* Delete the memory region, the guest should not die. */
286 	vm_mem_region_delete(vm, MEM_REGION_SLOT);
287 	wait_for_vcpu();
288 
289 	/* Recreate the memory region.  The guest should see "0". */
290 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS_THP,
291 				    MEM_REGION_GPA, MEM_REGION_SLOT,
292 				    MEM_REGION_SIZE / getpagesize(), 0);
293 	wait_for_vcpu();
294 
295 	/* Delete the region again so that there's only one memslot left. */
296 	vm_mem_region_delete(vm, MEM_REGION_SLOT);
297 	wait_for_vcpu();
298 
299 	/*
300 	 * Delete the primary memslot.  This should cause an emulation error or
301 	 * shutdown due to the page tables getting nuked.
302 	 */
303 	vm_mem_region_delete(vm, 0);
304 
305 	pthread_join(vcpu_thread, NULL);
306 
307 	run = vcpu->run;
308 
309 	TEST_ASSERT(run->exit_reason == KVM_EXIT_SHUTDOWN ||
310 		    run->exit_reason == KVM_EXIT_INTERNAL_ERROR,
311 		    "Unexpected exit reason = %d", run->exit_reason);
312 
313 	vcpu_regs_get(vcpu, &regs);
314 
315 	/*
316 	 * On AMD, after KVM_EXIT_SHUTDOWN the VMCB has been reinitialized already,
317 	 * so the instruction pointer would point to the reset vector.
318 	 */
319 	if (run->exit_reason == KVM_EXIT_INTERNAL_ERROR)
320 		TEST_ASSERT(regs.rip >= final_rip_start &&
321 			    regs.rip < final_rip_end,
322 			    "Bad rip, expected 0x%lx - 0x%lx, got 0x%llx",
323 			    final_rip_start, final_rip_end, regs.rip);
324 
325 	kvm_vm_free(vm);
326 }
327 
test_zero_memory_regions(void)328 static void test_zero_memory_regions(void)
329 {
330 	struct kvm_vcpu *vcpu;
331 	struct kvm_vm *vm;
332 
333 	pr_info("Testing KVM_RUN with zero added memory regions\n");
334 
335 	vm = vm_create_barebones();
336 	vcpu = __vm_vcpu_add(vm, 0);
337 
338 	vm_ioctl(vm, KVM_SET_NR_MMU_PAGES, (void *)64ul);
339 	vcpu_run(vcpu);
340 	TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_INTERNAL_ERROR);
341 
342 	kvm_vm_free(vm);
343 }
344 #endif /* __x86_64__ */
345 
test_invalid_memory_region_flags(void)346 static void test_invalid_memory_region_flags(void)
347 {
348 	uint32_t supported_flags = KVM_MEM_LOG_DIRTY_PAGES;
349 	const uint32_t v2_only_flags = KVM_MEM_GUEST_MEMFD;
350 	struct kvm_vm *vm;
351 	int r, i;
352 
353 #if defined __aarch64__ || defined __riscv || defined __x86_64__
354 	supported_flags |= KVM_MEM_READONLY;
355 #endif
356 
357 #ifdef __x86_64__
358 	if (kvm_check_cap(KVM_CAP_VM_TYPES) & BIT(KVM_X86_SW_PROTECTED_VM))
359 		vm = vm_create_barebones_type(KVM_X86_SW_PROTECTED_VM);
360 	else
361 #endif
362 		vm = vm_create_barebones();
363 
364 	if (kvm_check_cap(KVM_CAP_MEMORY_ATTRIBUTES) & KVM_MEMORY_ATTRIBUTE_PRIVATE)
365 		supported_flags |= KVM_MEM_GUEST_MEMFD;
366 
367 	for (i = 0; i < 32; i++) {
368 		if ((supported_flags & BIT(i)) && !(v2_only_flags & BIT(i)))
369 			continue;
370 
371 		r = __vm_set_user_memory_region(vm, 0, BIT(i),
372 						0, MEM_REGION_SIZE, NULL);
373 
374 		TEST_ASSERT(r && errno == EINVAL,
375 			    "KVM_SET_USER_MEMORY_REGION should have failed on v2 only flag 0x%lx", BIT(i));
376 
377 		if (supported_flags & BIT(i))
378 			continue;
379 
380 		r = __vm_set_user_memory_region2(vm, 0, BIT(i),
381 						 0, MEM_REGION_SIZE, NULL, 0, 0);
382 		TEST_ASSERT(r && errno == EINVAL,
383 			    "KVM_SET_USER_MEMORY_REGION2 should have failed on unsupported flag 0x%lx", BIT(i));
384 	}
385 
386 	if (supported_flags & KVM_MEM_GUEST_MEMFD) {
387 		int guest_memfd = vm_create_guest_memfd(vm, MEM_REGION_SIZE, 0);
388 
389 		r = __vm_set_user_memory_region2(vm, 0,
390 						 KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_GUEST_MEMFD,
391 						 0, MEM_REGION_SIZE, NULL, guest_memfd, 0);
392 		TEST_ASSERT(r && errno == EINVAL,
393 			    "KVM_SET_USER_MEMORY_REGION2 should have failed, dirty logging private memory is unsupported");
394 
395 		r = __vm_set_user_memory_region2(vm, 0,
396 						 KVM_MEM_READONLY | KVM_MEM_GUEST_MEMFD,
397 						 0, MEM_REGION_SIZE, NULL, guest_memfd, 0);
398 		TEST_ASSERT(r && errno == EINVAL,
399 			    "KVM_SET_USER_MEMORY_REGION2 should have failed, read-only GUEST_MEMFD memslots are unsupported");
400 
401 		close(guest_memfd);
402 	}
403 }
404 
405 /*
406  * Test it can be added memory slots up to KVM_CAP_NR_MEMSLOTS, then any
407  * tentative to add further slots should fail.
408  */
test_add_max_memory_regions(void)409 static void test_add_max_memory_regions(void)
410 {
411 	int ret;
412 	struct kvm_vm *vm;
413 	uint32_t max_mem_slots;
414 	uint32_t slot;
415 	void *mem, *mem_aligned, *mem_extra;
416 	size_t alignment;
417 
418 #ifdef __s390x__
419 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
420 	alignment = 0x100000;
421 #else
422 	alignment = 1;
423 #endif
424 
425 	max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
426 	TEST_ASSERT(max_mem_slots > 0,
427 		    "KVM_CAP_NR_MEMSLOTS should be greater than 0");
428 	pr_info("Allowed number of memory slots: %i\n", max_mem_slots);
429 
430 	vm = vm_create_barebones();
431 
432 	/* Check it can be added memory slots up to the maximum allowed */
433 	pr_info("Adding slots 0..%i, each memory region with %dK size\n",
434 		(max_mem_slots - 1), MEM_REGION_SIZE >> 10);
435 
436 	mem = mmap(NULL, (size_t)max_mem_slots * MEM_REGION_SIZE + alignment,
437 		   PROT_READ | PROT_WRITE,
438 		   MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -1, 0);
439 	TEST_ASSERT(mem != MAP_FAILED, "Failed to mmap() host");
440 	mem_aligned = (void *)(((size_t) mem + alignment - 1) & ~(alignment - 1));
441 
442 	for (slot = 0; slot < max_mem_slots; slot++)
443 		vm_set_user_memory_region(vm, slot, 0,
444 					  ((uint64_t)slot * MEM_REGION_SIZE),
445 					  MEM_REGION_SIZE,
446 					  mem_aligned + (uint64_t)slot * MEM_REGION_SIZE);
447 
448 	/* Check it cannot be added memory slots beyond the limit */
449 	mem_extra = mmap(NULL, MEM_REGION_SIZE, PROT_READ | PROT_WRITE,
450 			 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
451 	TEST_ASSERT(mem_extra != MAP_FAILED, "Failed to mmap() host");
452 
453 	ret = __vm_set_user_memory_region(vm, max_mem_slots, 0,
454 					  (uint64_t)max_mem_slots * MEM_REGION_SIZE,
455 					  MEM_REGION_SIZE, mem_extra);
456 	TEST_ASSERT(ret == -1 && errno == EINVAL,
457 		    "Adding one more memory slot should fail with EINVAL");
458 
459 	munmap(mem, (size_t)max_mem_slots * MEM_REGION_SIZE + alignment);
460 	munmap(mem_extra, MEM_REGION_SIZE);
461 	kvm_vm_free(vm);
462 }
463 
464 
465 #ifdef __x86_64__
test_invalid_guest_memfd(struct kvm_vm * vm,int memfd,size_t offset,const char * msg)466 static void test_invalid_guest_memfd(struct kvm_vm *vm, int memfd,
467 				     size_t offset, const char *msg)
468 {
469 	int r = __vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD,
470 					     MEM_REGION_GPA, MEM_REGION_SIZE,
471 					     0, memfd, offset);
472 	TEST_ASSERT(r == -1 && errno == EINVAL, "%s", msg);
473 }
474 
test_add_private_memory_region(void)475 static void test_add_private_memory_region(void)
476 {
477 	struct kvm_vm *vm, *vm2;
478 	int memfd, i;
479 
480 	pr_info("Testing ADD of KVM_MEM_GUEST_MEMFD memory regions\n");
481 
482 	vm = vm_create_barebones_type(KVM_X86_SW_PROTECTED_VM);
483 
484 	test_invalid_guest_memfd(vm, vm->kvm_fd, 0, "KVM fd should fail");
485 	test_invalid_guest_memfd(vm, vm->fd, 0, "VM's fd should fail");
486 
487 	memfd = kvm_memfd_alloc(MEM_REGION_SIZE, false);
488 	test_invalid_guest_memfd(vm, memfd, 0, "Regular memfd() should fail");
489 	close(memfd);
490 
491 	vm2 = vm_create_barebones_type(KVM_X86_SW_PROTECTED_VM);
492 	memfd = vm_create_guest_memfd(vm2, MEM_REGION_SIZE, 0);
493 	test_invalid_guest_memfd(vm, memfd, 0, "Other VM's guest_memfd() should fail");
494 
495 	vm_set_user_memory_region2(vm2, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD,
496 				   MEM_REGION_GPA, MEM_REGION_SIZE, 0, memfd, 0);
497 	close(memfd);
498 	kvm_vm_free(vm2);
499 
500 	memfd = vm_create_guest_memfd(vm, MEM_REGION_SIZE, 0);
501 	for (i = 1; i < PAGE_SIZE; i++)
502 		test_invalid_guest_memfd(vm, memfd, i, "Unaligned offset should fail");
503 
504 	vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD,
505 				   MEM_REGION_GPA, MEM_REGION_SIZE, 0, memfd, 0);
506 	close(memfd);
507 
508 	kvm_vm_free(vm);
509 }
510 
test_add_overlapping_private_memory_regions(void)511 static void test_add_overlapping_private_memory_regions(void)
512 {
513 	struct kvm_vm *vm;
514 	int memfd;
515 	int r;
516 
517 	pr_info("Testing ADD of overlapping KVM_MEM_GUEST_MEMFD memory regions\n");
518 
519 	vm = vm_create_barebones_type(KVM_X86_SW_PROTECTED_VM);
520 
521 	memfd = vm_create_guest_memfd(vm, MEM_REGION_SIZE * 4, 0);
522 
523 	vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD,
524 				   MEM_REGION_GPA, MEM_REGION_SIZE * 2, 0, memfd, 0);
525 
526 	vm_set_user_memory_region2(vm, MEM_REGION_SLOT + 1, KVM_MEM_GUEST_MEMFD,
527 				   MEM_REGION_GPA * 2, MEM_REGION_SIZE * 2,
528 				   0, memfd, MEM_REGION_SIZE * 2);
529 
530 	/*
531 	 * Delete the first memslot, and then attempt to recreate it except
532 	 * with a "bad" offset that results in overlap in the guest_memfd().
533 	 */
534 	vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD,
535 				   MEM_REGION_GPA, 0, NULL, -1, 0);
536 
537 	/* Overlap the front half of the other slot. */
538 	r = __vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD,
539 					 MEM_REGION_GPA * 2 - MEM_REGION_SIZE,
540 					 MEM_REGION_SIZE * 2,
541 					 0, memfd, 0);
542 	TEST_ASSERT(r == -1 && errno == EEXIST, "%s",
543 		    "Overlapping guest_memfd() bindings should fail with EEXIST");
544 
545 	/* And now the back half of the other slot. */
546 	r = __vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD,
547 					 MEM_REGION_GPA * 2 + MEM_REGION_SIZE,
548 					 MEM_REGION_SIZE * 2,
549 					 0, memfd, 0);
550 	TEST_ASSERT(r == -1 && errno == EEXIST, "%s",
551 		    "Overlapping guest_memfd() bindings should fail with EEXIST");
552 
553 	close(memfd);
554 	kvm_vm_free(vm);
555 }
556 #endif
557 
main(int argc,char * argv[])558 int main(int argc, char *argv[])
559 {
560 #ifdef __x86_64__
561 	int i, loops;
562 	int j, disable_slot_zap_quirk = 0;
563 
564 	if (kvm_check_cap(KVM_CAP_DISABLE_QUIRKS2) & KVM_X86_QUIRK_SLOT_ZAP_ALL)
565 		disable_slot_zap_quirk = 1;
566 	/*
567 	 * FIXME: the zero-memslot test fails on aarch64 and s390x because
568 	 * KVM_RUN fails with ENOEXEC or EFAULT.
569 	 */
570 	test_zero_memory_regions();
571 #endif
572 
573 	test_invalid_memory_region_flags();
574 
575 	test_add_max_memory_regions();
576 
577 #ifdef __x86_64__
578 	if (kvm_has_cap(KVM_CAP_GUEST_MEMFD) &&
579 	    (kvm_check_cap(KVM_CAP_VM_TYPES) & BIT(KVM_X86_SW_PROTECTED_VM))) {
580 		test_add_private_memory_region();
581 		test_add_overlapping_private_memory_regions();
582 	} else {
583 		pr_info("Skipping tests for KVM_MEM_GUEST_MEMFD memory regions\n");
584 	}
585 
586 	if (argc > 1)
587 		loops = atoi_positive("Number of iterations", argv[1]);
588 	else
589 		loops = 10;
590 
591 	for (j = 0; j <= disable_slot_zap_quirk; j++) {
592 		pr_info("Testing MOVE of in-use region, %d loops, slot zap quirk %s\n",
593 			loops, j ? "disabled" : "enabled");
594 		for (i = 0; i < loops; i++)
595 			test_move_memory_region(!!j);
596 
597 		pr_info("Testing DELETE of in-use region, %d loops, slot zap quirk %s\n",
598 			loops, j ? "disabled" : "enabled");
599 		for (i = 0; i < loops; i++)
600 			test_delete_memory_region(!!j);
601 	}
602 #endif
603 
604 	return 0;
605 }
606