1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* Integer base 2 logarithm calculation
3  *
4  * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #ifndef _TOOLS_LINUX_LOG2_H
9 #define _TOOLS_LINUX_LOG2_H
10 
11 #include <linux/bitops.h>
12 #include <linux/types.h>
13 
14 /*
15  * non-constant log of base 2 calculators
16  * - the arch may override these in asm/bitops.h if they can be implemented
17  *   more efficiently than using fls() and fls64()
18  * - the arch is not required to handle n==0 if implementing the fallback
19  */
20 static inline __attribute__((const))
__ilog2_u32(u32 n)21 int __ilog2_u32(u32 n)
22 {
23 	return fls(n) - 1;
24 }
25 
26 static inline __attribute__((const))
__ilog2_u64(u64 n)27 int __ilog2_u64(u64 n)
28 {
29 	return fls64(n) - 1;
30 }
31 
32 /*
33  *  Determine whether some value is a power of two, where zero is
34  * *not* considered a power of two.
35  */
36 
37 static inline __attribute__((const))
is_power_of_2(unsigned long n)38 bool is_power_of_2(unsigned long n)
39 {
40 	return (n != 0 && ((n & (n - 1)) == 0));
41 }
42 
43 /*
44  * round up to nearest power of two
45  */
46 static inline __attribute__((const))
__roundup_pow_of_two(unsigned long n)47 unsigned long __roundup_pow_of_two(unsigned long n)
48 {
49 	return 1UL << fls_long(n - 1);
50 }
51 
52 /*
53  * round down to nearest power of two
54  */
55 static inline __attribute__((const))
__rounddown_pow_of_two(unsigned long n)56 unsigned long __rounddown_pow_of_two(unsigned long n)
57 {
58 	return 1UL << (fls_long(n) - 1);
59 }
60 
61 /**
62  * ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value
63  * @n - parameter
64  *
65  * constant-capable log of base 2 calculation
66  * - this can be used to initialise global variables from constant data, hence
67  *   the massive ternary operator construction
68  *
69  * selects the appropriately-sized optimised version depending on sizeof(n)
70  */
71 #define ilog2(n)				\
72 (						\
73 	__builtin_constant_p(n) ? (		\
74 		(n) < 2 ? 0 :			\
75 		(n) & (1ULL << 63) ? 63 :	\
76 		(n) & (1ULL << 62) ? 62 :	\
77 		(n) & (1ULL << 61) ? 61 :	\
78 		(n) & (1ULL << 60) ? 60 :	\
79 		(n) & (1ULL << 59) ? 59 :	\
80 		(n) & (1ULL << 58) ? 58 :	\
81 		(n) & (1ULL << 57) ? 57 :	\
82 		(n) & (1ULL << 56) ? 56 :	\
83 		(n) & (1ULL << 55) ? 55 :	\
84 		(n) & (1ULL << 54) ? 54 :	\
85 		(n) & (1ULL << 53) ? 53 :	\
86 		(n) & (1ULL << 52) ? 52 :	\
87 		(n) & (1ULL << 51) ? 51 :	\
88 		(n) & (1ULL << 50) ? 50 :	\
89 		(n) & (1ULL << 49) ? 49 :	\
90 		(n) & (1ULL << 48) ? 48 :	\
91 		(n) & (1ULL << 47) ? 47 :	\
92 		(n) & (1ULL << 46) ? 46 :	\
93 		(n) & (1ULL << 45) ? 45 :	\
94 		(n) & (1ULL << 44) ? 44 :	\
95 		(n) & (1ULL << 43) ? 43 :	\
96 		(n) & (1ULL << 42) ? 42 :	\
97 		(n) & (1ULL << 41) ? 41 :	\
98 		(n) & (1ULL << 40) ? 40 :	\
99 		(n) & (1ULL << 39) ? 39 :	\
100 		(n) & (1ULL << 38) ? 38 :	\
101 		(n) & (1ULL << 37) ? 37 :	\
102 		(n) & (1ULL << 36) ? 36 :	\
103 		(n) & (1ULL << 35) ? 35 :	\
104 		(n) & (1ULL << 34) ? 34 :	\
105 		(n) & (1ULL << 33) ? 33 :	\
106 		(n) & (1ULL << 32) ? 32 :	\
107 		(n) & (1ULL << 31) ? 31 :	\
108 		(n) & (1ULL << 30) ? 30 :	\
109 		(n) & (1ULL << 29) ? 29 :	\
110 		(n) & (1ULL << 28) ? 28 :	\
111 		(n) & (1ULL << 27) ? 27 :	\
112 		(n) & (1ULL << 26) ? 26 :	\
113 		(n) & (1ULL << 25) ? 25 :	\
114 		(n) & (1ULL << 24) ? 24 :	\
115 		(n) & (1ULL << 23) ? 23 :	\
116 		(n) & (1ULL << 22) ? 22 :	\
117 		(n) & (1ULL << 21) ? 21 :	\
118 		(n) & (1ULL << 20) ? 20 :	\
119 		(n) & (1ULL << 19) ? 19 :	\
120 		(n) & (1ULL << 18) ? 18 :	\
121 		(n) & (1ULL << 17) ? 17 :	\
122 		(n) & (1ULL << 16) ? 16 :	\
123 		(n) & (1ULL << 15) ? 15 :	\
124 		(n) & (1ULL << 14) ? 14 :	\
125 		(n) & (1ULL << 13) ? 13 :	\
126 		(n) & (1ULL << 12) ? 12 :	\
127 		(n) & (1ULL << 11) ? 11 :	\
128 		(n) & (1ULL << 10) ? 10 :	\
129 		(n) & (1ULL <<  9) ?  9 :	\
130 		(n) & (1ULL <<  8) ?  8 :	\
131 		(n) & (1ULL <<  7) ?  7 :	\
132 		(n) & (1ULL <<  6) ?  6 :	\
133 		(n) & (1ULL <<  5) ?  5 :	\
134 		(n) & (1ULL <<  4) ?  4 :	\
135 		(n) & (1ULL <<  3) ?  3 :	\
136 		(n) & (1ULL <<  2) ?  2 :	\
137 		1 ) :				\
138 	(sizeof(n) <= 4) ?			\
139 	__ilog2_u32(n) :			\
140 	__ilog2_u64(n)				\
141  )
142 
143 /**
144  * roundup_pow_of_two - round the given value up to nearest power of two
145  * @n - parameter
146  *
147  * round the given value up to the nearest power of two
148  * - the result is undefined when n == 0
149  * - this can be used to initialise global variables from constant data
150  */
151 #define roundup_pow_of_two(n)			\
152 (						\
153 	__builtin_constant_p(n) ? (		\
154 		(n == 1) ? 1 :			\
155 		(1UL << (ilog2((n) - 1) + 1))	\
156 				   ) :		\
157 	__roundup_pow_of_two(n)			\
158  )
159 
160 /**
161  * rounddown_pow_of_two - round the given value down to nearest power of two
162  * @n - parameter
163  *
164  * round the given value down to the nearest power of two
165  * - the result is undefined when n == 0
166  * - this can be used to initialise global variables from constant data
167  */
168 #define rounddown_pow_of_two(n)			\
169 (						\
170 	__builtin_constant_p(n) ? (		\
171 		(1UL << ilog2(n))) :		\
172 	__rounddown_pow_of_two(n)		\
173  )
174 
175 #endif /* _TOOLS_LINUX_LOG2_H */
176