1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
4  *
5  * Copyright (C) 2008 Nokia Corporation
6  *
7  * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
8  *          Peter Ujfalusi <peter.ujfalusi@ti.com>
9  */
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/of.h>
16 #include <sound/core.h>
17 #include <sound/pcm.h>
18 #include <sound/pcm_params.h>
19 #include <sound/initval.h>
20 #include <sound/soc.h>
21 #include <sound/dmaengine_pcm.h>
22 
23 #include "omap-mcbsp-priv.h"
24 #include "omap-mcbsp.h"
25 #include "sdma-pcm.h"
26 
27 #define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
28 
29 enum {
30 	OMAP_MCBSP_WORD_8 = 0,
31 	OMAP_MCBSP_WORD_12,
32 	OMAP_MCBSP_WORD_16,
33 	OMAP_MCBSP_WORD_20,
34 	OMAP_MCBSP_WORD_24,
35 	OMAP_MCBSP_WORD_32,
36 };
37 
omap_mcbsp_dump_reg(struct omap_mcbsp * mcbsp)38 static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
39 {
40 	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
41 	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n", MCBSP_READ(mcbsp, DRR2));
42 	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n", MCBSP_READ(mcbsp, DRR1));
43 	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n", MCBSP_READ(mcbsp, DXR2));
44 	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n", MCBSP_READ(mcbsp, DXR1));
45 	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
46 	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
47 	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n", MCBSP_READ(mcbsp, RCR2));
48 	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n", MCBSP_READ(mcbsp, RCR1));
49 	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n", MCBSP_READ(mcbsp, XCR2));
50 	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n", MCBSP_READ(mcbsp, XCR1));
51 	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
52 	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
53 	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n", MCBSP_READ(mcbsp, PCR0));
54 	dev_dbg(mcbsp->dev, "***********************\n");
55 }
56 
omap2_mcbsp_set_clks_src(struct omap_mcbsp * mcbsp,u8 fck_src_id)57 static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
58 {
59 	struct clk *fck_src;
60 	const char *src;
61 	int r;
62 
63 	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
64 		src = "pad_fck";
65 	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
66 		src = "prcm_fck";
67 	else
68 		return -EINVAL;
69 
70 	fck_src = clk_get(mcbsp->dev, src);
71 	if (IS_ERR(fck_src)) {
72 		dev_info(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
73 		return 0;
74 	}
75 
76 	if (mcbsp->active)
77 		pm_runtime_put_sync(mcbsp->dev);
78 
79 	r = clk_set_parent(mcbsp->fclk, fck_src);
80 	if (r)
81 		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
82 			src);
83 
84 	if (mcbsp->active)
85 		pm_runtime_get_sync(mcbsp->dev);
86 
87 	clk_put(fck_src);
88 
89 	return r;
90 }
91 
omap_mcbsp_irq_handler(int irq,void * data)92 static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
93 {
94 	struct omap_mcbsp *mcbsp = data;
95 	u16 irqst;
96 
97 	irqst = MCBSP_READ(mcbsp, IRQST);
98 	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
99 
100 	if (irqst & RSYNCERREN)
101 		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
102 	if (irqst & RFSREN)
103 		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
104 	if (irqst & REOFEN)
105 		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
106 	if (irqst & RRDYEN)
107 		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
108 	if (irqst & RUNDFLEN)
109 		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
110 	if (irqst & ROVFLEN)
111 		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
112 
113 	if (irqst & XSYNCERREN)
114 		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
115 	if (irqst & XFSXEN)
116 		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
117 	if (irqst & XEOFEN)
118 		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
119 	if (irqst & XRDYEN)
120 		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
121 	if (irqst & XUNDFLEN)
122 		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
123 	if (irqst & XOVFLEN)
124 		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
125 	if (irqst & XEMPTYEOFEN)
126 		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
127 
128 	MCBSP_WRITE(mcbsp, IRQST, irqst);
129 
130 	return IRQ_HANDLED;
131 }
132 
omap_mcbsp_tx_irq_handler(int irq,void * data)133 static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
134 {
135 	struct omap_mcbsp *mcbsp = data;
136 	u16 irqst_spcr2;
137 
138 	irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
139 	dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
140 
141 	if (irqst_spcr2 & XSYNC_ERR) {
142 		dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
143 			irqst_spcr2);
144 		/* Writing zero to XSYNC_ERR clears the IRQ */
145 		MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
146 	}
147 
148 	return IRQ_HANDLED;
149 }
150 
omap_mcbsp_rx_irq_handler(int irq,void * data)151 static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
152 {
153 	struct omap_mcbsp *mcbsp = data;
154 	u16 irqst_spcr1;
155 
156 	irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
157 	dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
158 
159 	if (irqst_spcr1 & RSYNC_ERR) {
160 		dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
161 			irqst_spcr1);
162 		/* Writing zero to RSYNC_ERR clears the IRQ */
163 		MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
164 	}
165 
166 	return IRQ_HANDLED;
167 }
168 
169 /*
170  * omap_mcbsp_config simply write a config to the
171  * appropriate McBSP.
172  * You either call this function or set the McBSP registers
173  * by yourself before calling omap_mcbsp_start().
174  */
omap_mcbsp_config(struct omap_mcbsp * mcbsp,const struct omap_mcbsp_reg_cfg * config)175 static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
176 			      const struct omap_mcbsp_reg_cfg *config)
177 {
178 	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
179 		mcbsp->id, mcbsp->phys_base);
180 
181 	/* We write the given config */
182 	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
183 	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
184 	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
185 	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
186 	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
187 	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
188 	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
189 	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
190 	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
191 	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
192 	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
193 	if (mcbsp->pdata->has_ccr) {
194 		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
195 		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
196 	}
197 	/* Enable wakeup behavior */
198 	if (mcbsp->pdata->has_wakeup)
199 		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
200 
201 	/* Enable TX/RX sync error interrupts by default */
202 	if (mcbsp->irq)
203 		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
204 			    RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
205 }
206 
207 /**
208  * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
209  * @mcbsp: omap_mcbsp struct for the McBSP instance
210  * @stream: Stream direction (playback/capture)
211  *
212  * Returns the address of mcbsp data transmit register or data receive register
213  * to be used by DMA for transferring/receiving data
214  */
omap_mcbsp_dma_reg_params(struct omap_mcbsp * mcbsp,unsigned int stream)215 static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
216 				     unsigned int stream)
217 {
218 	int data_reg;
219 
220 	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
221 		if (mcbsp->pdata->reg_size == 2)
222 			data_reg = OMAP_MCBSP_REG_DXR1;
223 		else
224 			data_reg = OMAP_MCBSP_REG_DXR;
225 	} else {
226 		if (mcbsp->pdata->reg_size == 2)
227 			data_reg = OMAP_MCBSP_REG_DRR1;
228 		else
229 			data_reg = OMAP_MCBSP_REG_DRR;
230 	}
231 
232 	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
233 }
234 
235 /*
236  * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
237  * The threshold parameter is 1 based, and it is converted (threshold - 1)
238  * for the THRSH2 register.
239  */
omap_mcbsp_set_tx_threshold(struct omap_mcbsp * mcbsp,u16 threshold)240 static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
241 {
242 	if (threshold && threshold <= mcbsp->max_tx_thres)
243 		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
244 }
245 
246 /*
247  * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
248  * The threshold parameter is 1 based, and it is converted (threshold - 1)
249  * for the THRSH1 register.
250  */
omap_mcbsp_set_rx_threshold(struct omap_mcbsp * mcbsp,u16 threshold)251 static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
252 {
253 	if (threshold && threshold <= mcbsp->max_rx_thres)
254 		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
255 }
256 
257 /*
258  * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
259  */
omap_mcbsp_get_tx_delay(struct omap_mcbsp * mcbsp)260 static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
261 {
262 	u16 buffstat;
263 
264 	/* Returns the number of free locations in the buffer */
265 	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
266 
267 	/* Number of slots are different in McBSP ports */
268 	return mcbsp->pdata->buffer_size - buffstat;
269 }
270 
271 /*
272  * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
273  * to reach the threshold value (when the DMA will be triggered to read it)
274  */
omap_mcbsp_get_rx_delay(struct omap_mcbsp * mcbsp)275 static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
276 {
277 	u16 buffstat, threshold;
278 
279 	/* Returns the number of used locations in the buffer */
280 	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
281 	/* RX threshold */
282 	threshold = MCBSP_READ(mcbsp, THRSH1);
283 
284 	/* Return the number of location till we reach the threshold limit */
285 	if (threshold <= buffstat)
286 		return 0;
287 	else
288 		return threshold - buffstat;
289 }
290 
omap_mcbsp_request(struct omap_mcbsp * mcbsp)291 static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
292 {
293 	void *reg_cache;
294 	int err;
295 
296 	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
297 	if (!reg_cache)
298 		return -ENOMEM;
299 
300 	spin_lock(&mcbsp->lock);
301 	if (!mcbsp->free) {
302 		dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
303 		err = -EBUSY;
304 		goto err_kfree;
305 	}
306 
307 	mcbsp->free = false;
308 	mcbsp->reg_cache = reg_cache;
309 	spin_unlock(&mcbsp->lock);
310 
311 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
312 		mcbsp->pdata->ops->request(mcbsp->id - 1);
313 
314 	/*
315 	 * Make sure that transmitter, receiver and sample-rate generator are
316 	 * not running before activating IRQs.
317 	 */
318 	MCBSP_WRITE(mcbsp, SPCR1, 0);
319 	MCBSP_WRITE(mcbsp, SPCR2, 0);
320 
321 	if (mcbsp->irq) {
322 		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
323 				  "McBSP", (void *)mcbsp);
324 		if (err != 0) {
325 			dev_err(mcbsp->dev, "Unable to request IRQ\n");
326 			goto err_clk_disable;
327 		}
328 	} else {
329 		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
330 				  "McBSP TX", (void *)mcbsp);
331 		if (err != 0) {
332 			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
333 			goto err_clk_disable;
334 		}
335 
336 		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
337 				  "McBSP RX", (void *)mcbsp);
338 		if (err != 0) {
339 			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
340 			goto err_free_irq;
341 		}
342 	}
343 
344 	return 0;
345 err_free_irq:
346 	free_irq(mcbsp->tx_irq, (void *)mcbsp);
347 err_clk_disable:
348 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
349 		mcbsp->pdata->ops->free(mcbsp->id - 1);
350 
351 	/* Disable wakeup behavior */
352 	if (mcbsp->pdata->has_wakeup)
353 		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
354 
355 	spin_lock(&mcbsp->lock);
356 	mcbsp->free = true;
357 	mcbsp->reg_cache = NULL;
358 err_kfree:
359 	spin_unlock(&mcbsp->lock);
360 	kfree(reg_cache);
361 
362 	return err;
363 }
364 
omap_mcbsp_free(struct omap_mcbsp * mcbsp)365 static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
366 {
367 	void *reg_cache;
368 
369 	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
370 		mcbsp->pdata->ops->free(mcbsp->id - 1);
371 
372 	/* Disable wakeup behavior */
373 	if (mcbsp->pdata->has_wakeup)
374 		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
375 
376 	/* Disable interrupt requests */
377 	if (mcbsp->irq) {
378 		MCBSP_WRITE(mcbsp, IRQEN, 0);
379 
380 		free_irq(mcbsp->irq, (void *)mcbsp);
381 	} else {
382 		free_irq(mcbsp->rx_irq, (void *)mcbsp);
383 		free_irq(mcbsp->tx_irq, (void *)mcbsp);
384 	}
385 
386 	reg_cache = mcbsp->reg_cache;
387 
388 	/*
389 	 * Select CLKS source from internal source unconditionally before
390 	 * marking the McBSP port as free.
391 	 * If the external clock source via MCBSP_CLKS pin has been selected the
392 	 * system will refuse to enter idle if the CLKS pin source is not reset
393 	 * back to internal source.
394 	 */
395 	if (!mcbsp_omap1())
396 		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
397 
398 	spin_lock(&mcbsp->lock);
399 	if (mcbsp->free)
400 		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
401 	else
402 		mcbsp->free = true;
403 	mcbsp->reg_cache = NULL;
404 	spin_unlock(&mcbsp->lock);
405 
406 	kfree(reg_cache);
407 }
408 
409 /*
410  * Here we start the McBSP, by enabling transmitter, receiver or both.
411  * If no transmitter or receiver is active prior calling, then sample-rate
412  * generator and frame sync are started.
413  */
omap_mcbsp_start(struct omap_mcbsp * mcbsp,int stream)414 static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
415 {
416 	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
417 	int rx = !tx;
418 	int enable_srg = 0;
419 	u16 w;
420 
421 	if (mcbsp->st_data)
422 		omap_mcbsp_st_start(mcbsp);
423 
424 	/* Only enable SRG, if McBSP is master */
425 	w = MCBSP_READ_CACHE(mcbsp, PCR0);
426 	if (w & (FSXM | FSRM | CLKXM | CLKRM))
427 		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
428 				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
429 
430 	if (enable_srg) {
431 		/* Start the sample generator */
432 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
433 		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
434 	}
435 
436 	/* Enable transmitter and receiver */
437 	tx &= 1;
438 	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
439 	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
440 
441 	rx &= 1;
442 	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
443 	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
444 
445 	/*
446 	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
447 	 * REVISIT: 100us may give enough time for two CLKSRG, however
448 	 * due to some unknown PM related, clock gating etc. reason it
449 	 * is now at 500us.
450 	 */
451 	udelay(500);
452 
453 	if (enable_srg) {
454 		/* Start frame sync */
455 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
456 		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
457 	}
458 
459 	if (mcbsp->pdata->has_ccr) {
460 		/* Release the transmitter and receiver */
461 		w = MCBSP_READ_CACHE(mcbsp, XCCR);
462 		w &= ~(tx ? XDISABLE : 0);
463 		MCBSP_WRITE(mcbsp, XCCR, w);
464 		w = MCBSP_READ_CACHE(mcbsp, RCCR);
465 		w &= ~(rx ? RDISABLE : 0);
466 		MCBSP_WRITE(mcbsp, RCCR, w);
467 	}
468 
469 	/* Dump McBSP Regs */
470 	omap_mcbsp_dump_reg(mcbsp);
471 }
472 
omap_mcbsp_stop(struct omap_mcbsp * mcbsp,int stream)473 static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
474 {
475 	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
476 	int rx = !tx;
477 	int idle;
478 	u16 w;
479 
480 	/* Reset transmitter */
481 	tx &= 1;
482 	if (mcbsp->pdata->has_ccr) {
483 		w = MCBSP_READ_CACHE(mcbsp, XCCR);
484 		w |= (tx ? XDISABLE : 0);
485 		MCBSP_WRITE(mcbsp, XCCR, w);
486 	}
487 	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
488 	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
489 
490 	/* Reset receiver */
491 	rx &= 1;
492 	if (mcbsp->pdata->has_ccr) {
493 		w = MCBSP_READ_CACHE(mcbsp, RCCR);
494 		w |= (rx ? RDISABLE : 0);
495 		MCBSP_WRITE(mcbsp, RCCR, w);
496 	}
497 	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
498 	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
499 
500 	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
501 			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
502 
503 	if (idle) {
504 		/* Reset the sample rate generator */
505 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
506 		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
507 	}
508 
509 	if (mcbsp->st_data)
510 		omap_mcbsp_st_stop(mcbsp);
511 }
512 
513 #define max_thres(m)			(mcbsp->pdata->buffer_size)
514 #define valid_threshold(m, val)		((val) <= max_thres(m))
515 #define THRESHOLD_PROP_BUILDER(prop)					\
516 static ssize_t prop##_show(struct device *dev,				\
517 			struct device_attribute *attr, char *buf)	\
518 {									\
519 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
520 									\
521 	return sysfs_emit(buf, "%u\n", mcbsp->prop);			\
522 }									\
523 									\
524 static ssize_t prop##_store(struct device *dev,				\
525 				struct device_attribute *attr,		\
526 				const char *buf, size_t size)		\
527 {									\
528 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
529 	unsigned long val;						\
530 	int status;							\
531 									\
532 	status = kstrtoul(buf, 0, &val);				\
533 	if (status)							\
534 		return status;						\
535 									\
536 	if (!valid_threshold(mcbsp, val))				\
537 		return -EDOM;						\
538 									\
539 	mcbsp->prop = val;						\
540 	return size;							\
541 }									\
542 									\
543 static DEVICE_ATTR_RW(prop)
544 
545 THRESHOLD_PROP_BUILDER(max_tx_thres);
546 THRESHOLD_PROP_BUILDER(max_rx_thres);
547 
548 static const char * const dma_op_modes[] = {
549 	"element", "threshold",
550 };
551 
dma_op_mode_show(struct device * dev,struct device_attribute * attr,char * buf)552 static ssize_t dma_op_mode_show(struct device *dev,
553 				struct device_attribute *attr, char *buf)
554 {
555 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
556 	int dma_op_mode, i = 0;
557 	ssize_t len = 0;
558 	const char * const *s;
559 
560 	dma_op_mode = mcbsp->dma_op_mode;
561 
562 	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
563 		if (dma_op_mode == i)
564 			len += sysfs_emit_at(buf, len, "[%s] ", *s);
565 		else
566 			len += sysfs_emit_at(buf, len, "%s ", *s);
567 	}
568 	len += sysfs_emit_at(buf, len, "\n");
569 
570 	return len;
571 }
572 
dma_op_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)573 static ssize_t dma_op_mode_store(struct device *dev,
574 				 struct device_attribute *attr, const char *buf,
575 				 size_t size)
576 {
577 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
578 	int i;
579 
580 	i = sysfs_match_string(dma_op_modes, buf);
581 	if (i < 0)
582 		return i;
583 
584 	spin_lock_irq(&mcbsp->lock);
585 	if (!mcbsp->free) {
586 		size = -EBUSY;
587 		goto unlock;
588 	}
589 	mcbsp->dma_op_mode = i;
590 
591 unlock:
592 	spin_unlock_irq(&mcbsp->lock);
593 
594 	return size;
595 }
596 
597 static DEVICE_ATTR_RW(dma_op_mode);
598 
599 static const struct attribute *additional_attrs[] = {
600 	&dev_attr_max_tx_thres.attr,
601 	&dev_attr_max_rx_thres.attr,
602 	&dev_attr_dma_op_mode.attr,
603 	NULL,
604 };
605 
606 static const struct attribute_group additional_attr_group = {
607 	.attrs = (struct attribute **)additional_attrs,
608 };
609 
610 /*
611  * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
612  * 730 has only 2 McBSP, and both of them are MPU peripherals.
613  */
omap_mcbsp_init(struct platform_device * pdev)614 static int omap_mcbsp_init(struct platform_device *pdev)
615 {
616 	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
617 	struct resource *res;
618 	int ret;
619 
620 	spin_lock_init(&mcbsp->lock);
621 	mcbsp->free = true;
622 
623 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
624 	if (!res)
625 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
626 
627 	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
628 	if (IS_ERR(mcbsp->io_base))
629 		return PTR_ERR(mcbsp->io_base);
630 
631 	mcbsp->phys_base = res->start;
632 	mcbsp->reg_cache_size = resource_size(res);
633 
634 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
635 	if (!res)
636 		mcbsp->phys_dma_base = mcbsp->phys_base;
637 	else
638 		mcbsp->phys_dma_base = res->start;
639 
640 	/*
641 	 * OMAP1, 2 uses two interrupt lines: TX, RX
642 	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
643 	 * OMAP4 and newer SoC only have the combined IRQ line.
644 	 * Use the combined IRQ if available since it gives better debugging
645 	 * possibilities.
646 	 */
647 	mcbsp->irq = platform_get_irq_byname(pdev, "common");
648 	if (mcbsp->irq == -ENXIO) {
649 		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
650 
651 		if (mcbsp->tx_irq == -ENXIO) {
652 			mcbsp->irq = platform_get_irq(pdev, 0);
653 			mcbsp->tx_irq = 0;
654 		} else {
655 			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
656 			mcbsp->irq = 0;
657 		}
658 	}
659 
660 	if (!pdev->dev.of_node) {
661 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
662 		if (!res) {
663 			dev_err(&pdev->dev, "invalid tx DMA channel\n");
664 			return -ENODEV;
665 		}
666 		mcbsp->dma_req[0] = res->start;
667 		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
668 
669 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
670 		if (!res) {
671 			dev_err(&pdev->dev, "invalid rx DMA channel\n");
672 			return -ENODEV;
673 		}
674 		mcbsp->dma_req[1] = res->start;
675 		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
676 	} else {
677 		mcbsp->dma_data[0].filter_data = "tx";
678 		mcbsp->dma_data[1].filter_data = "rx";
679 	}
680 
681 	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
682 						SNDRV_PCM_STREAM_PLAYBACK);
683 	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
684 						SNDRV_PCM_STREAM_CAPTURE);
685 
686 	mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
687 	if (IS_ERR(mcbsp->fclk)) {
688 		ret = PTR_ERR(mcbsp->fclk);
689 		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
690 		return ret;
691 	}
692 
693 	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
694 	if (mcbsp->pdata->buffer_size) {
695 		/*
696 		 * Initially configure the maximum thresholds to a safe value.
697 		 * The McBSP FIFO usage with these values should not go under
698 		 * 16 locations.
699 		 * If the whole FIFO without safety buffer is used, than there
700 		 * is a possibility that the DMA will be not able to push the
701 		 * new data on time, causing channel shifts in runtime.
702 		 */
703 		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
704 		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
705 
706 		ret = devm_device_add_group(mcbsp->dev, &additional_attr_group);
707 		if (ret) {
708 			dev_err(mcbsp->dev,
709 				"Unable to create additional controls\n");
710 			return ret;
711 		}
712 	}
713 
714 	return omap_mcbsp_st_init(pdev);
715 }
716 
717 /*
718  * Stream DMA parameters. DMA request line and port address are set runtime
719  * since they are different between OMAP1 and later OMAPs
720  */
omap_mcbsp_set_threshold(struct snd_pcm_substream * substream,unsigned int packet_size)721 static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
722 		unsigned int packet_size)
723 {
724 	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
725 	struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0);
726 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
727 	int words;
728 
729 	/* No need to proceed further if McBSP does not have FIFO */
730 	if (mcbsp->pdata->buffer_size == 0)
731 		return;
732 
733 	/*
734 	 * Configure McBSP threshold based on either:
735 	 * packet_size, when the sDMA is in packet mode, or based on the
736 	 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
737 	 * for mono streams.
738 	 */
739 	if (packet_size)
740 		words = packet_size;
741 	else
742 		words = 1;
743 
744 	/* Configure McBSP internal buffer usage */
745 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
746 		omap_mcbsp_set_tx_threshold(mcbsp, words);
747 	else
748 		omap_mcbsp_set_rx_threshold(mcbsp, words);
749 }
750 
omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)751 static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
752 				    struct snd_pcm_hw_rule *rule)
753 {
754 	struct snd_interval *buffer_size = hw_param_interval(params,
755 					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
756 	struct snd_interval *channels = hw_param_interval(params,
757 					SNDRV_PCM_HW_PARAM_CHANNELS);
758 	struct omap_mcbsp *mcbsp = rule->private;
759 	struct snd_interval frames;
760 	int size;
761 
762 	snd_interval_any(&frames);
763 	size = mcbsp->pdata->buffer_size;
764 
765 	frames.min = size / channels->min;
766 	frames.integer = 1;
767 	return snd_interval_refine(buffer_size, &frames);
768 }
769 
omap_mcbsp_dai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)770 static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
771 				  struct snd_soc_dai *cpu_dai)
772 {
773 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
774 	int err = 0;
775 
776 	if (!snd_soc_dai_active(cpu_dai))
777 		err = omap_mcbsp_request(mcbsp);
778 
779 	/*
780 	 * OMAP3 McBSP FIFO is word structured.
781 	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
782 	 * McBSP1,3,4,5 has 128 word long buffer
783 	 * This means that the size of the FIFO depends on the sample format.
784 	 * For example on McBSP3:
785 	 * 16bit samples: size is 128 * 2 = 256 bytes
786 	 * 32bit samples: size is 128 * 4 = 512 bytes
787 	 * It is simpler to place constraint for buffer and period based on
788 	 * channels.
789 	 * McBSP3 as example again (16 or 32 bit samples):
790 	 * 1 channel (mono): size is 128 frames (128 words)
791 	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
792 	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
793 	 */
794 	if (mcbsp->pdata->buffer_size) {
795 		/*
796 		* Rule for the buffer size. We should not allow
797 		* smaller buffer than the FIFO size to avoid underruns.
798 		* This applies only for the playback stream.
799 		*/
800 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
801 			snd_pcm_hw_rule_add(substream->runtime, 0,
802 					    SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
803 					    omap_mcbsp_hwrule_min_buffersize,
804 					    mcbsp,
805 					    SNDRV_PCM_HW_PARAM_CHANNELS, -1);
806 
807 		/* Make sure, that the period size is always even */
808 		snd_pcm_hw_constraint_step(substream->runtime, 0,
809 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
810 	}
811 
812 	return err;
813 }
814 
omap_mcbsp_dai_shutdown(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)815 static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
816 				    struct snd_soc_dai *cpu_dai)
817 {
818 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
819 	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
820 	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
821 	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
822 
823 	if (mcbsp->latency[stream2])
824 		cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
825 					       mcbsp->latency[stream2]);
826 	else if (mcbsp->latency[stream1])
827 		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
828 
829 	mcbsp->latency[stream1] = 0;
830 
831 	if (!snd_soc_dai_active(cpu_dai)) {
832 		omap_mcbsp_free(mcbsp);
833 		mcbsp->configured = 0;
834 	}
835 }
836 
omap_mcbsp_dai_prepare(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)837 static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
838 				  struct snd_soc_dai *cpu_dai)
839 {
840 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
841 	struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
842 	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
843 	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
844 	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
845 	int latency = mcbsp->latency[stream2];
846 
847 	/* Prevent omap hardware from hitting off between FIFO fills */
848 	if (!latency || mcbsp->latency[stream1] < latency)
849 		latency = mcbsp->latency[stream1];
850 
851 	if (cpu_latency_qos_request_active(pm_qos_req))
852 		cpu_latency_qos_update_request(pm_qos_req, latency);
853 	else if (latency)
854 		cpu_latency_qos_add_request(pm_qos_req, latency);
855 
856 	return 0;
857 }
858 
omap_mcbsp_dai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)859 static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
860 				  struct snd_soc_dai *cpu_dai)
861 {
862 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
863 
864 	switch (cmd) {
865 	case SNDRV_PCM_TRIGGER_START:
866 	case SNDRV_PCM_TRIGGER_RESUME:
867 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
868 		mcbsp->active++;
869 		omap_mcbsp_start(mcbsp, substream->stream);
870 		break;
871 
872 	case SNDRV_PCM_TRIGGER_STOP:
873 	case SNDRV_PCM_TRIGGER_SUSPEND:
874 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
875 		omap_mcbsp_stop(mcbsp, substream->stream);
876 		mcbsp->active--;
877 		break;
878 	default:
879 		return -EINVAL;
880 	}
881 
882 	return 0;
883 }
884 
omap_mcbsp_dai_delay(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)885 static snd_pcm_sframes_t omap_mcbsp_dai_delay(
886 			struct snd_pcm_substream *substream,
887 			struct snd_soc_dai *dai)
888 {
889 	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
890 	struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0);
891 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
892 	u16 fifo_use;
893 	snd_pcm_sframes_t delay;
894 
895 	/* No need to proceed further if McBSP does not have FIFO */
896 	if (mcbsp->pdata->buffer_size == 0)
897 		return 0;
898 
899 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
900 		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
901 	else
902 		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
903 
904 	/*
905 	 * Divide the used locations with the channel count to get the
906 	 * FIFO usage in samples (don't care about partial samples in the
907 	 * buffer).
908 	 */
909 	delay = fifo_use / substream->runtime->channels;
910 
911 	return delay;
912 }
913 
omap_mcbsp_dai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)914 static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
915 				    struct snd_pcm_hw_params *params,
916 				    struct snd_soc_dai *cpu_dai)
917 {
918 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
919 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
920 	struct snd_dmaengine_dai_dma_data *dma_data;
921 	int wlen, channels, wpf;
922 	int pkt_size = 0;
923 	unsigned int format, div, framesize, master;
924 	unsigned int buffer_size = mcbsp->pdata->buffer_size;
925 
926 	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
927 	channels = params_channels(params);
928 
929 	switch (params_format(params)) {
930 	case SNDRV_PCM_FORMAT_S16_LE:
931 		wlen = 16;
932 		break;
933 	case SNDRV_PCM_FORMAT_S32_LE:
934 		wlen = 32;
935 		break;
936 	default:
937 		return -EINVAL;
938 	}
939 	if (buffer_size) {
940 		int latency;
941 
942 		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
943 			int period_words, max_thrsh;
944 			int divider = 0;
945 
946 			period_words = params_period_bytes(params) / (wlen / 8);
947 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
948 				max_thrsh = mcbsp->max_tx_thres;
949 			else
950 				max_thrsh = mcbsp->max_rx_thres;
951 			/*
952 			 * Use sDMA packet mode if McBSP is in threshold mode:
953 			 * If period words less than the FIFO size the packet
954 			 * size is set to the number of period words, otherwise
955 			 * Look for the biggest threshold value which divides
956 			 * the period size evenly.
957 			 */
958 			divider = period_words / max_thrsh;
959 			if (period_words % max_thrsh)
960 				divider++;
961 			while (period_words % divider &&
962 				divider < period_words)
963 				divider++;
964 			if (divider == period_words)
965 				return -EINVAL;
966 
967 			pkt_size = period_words / divider;
968 		} else if (channels > 1) {
969 			/* Use packet mode for non mono streams */
970 			pkt_size = channels;
971 		}
972 
973 		latency = (buffer_size - pkt_size) / channels;
974 		latency = latency * USEC_PER_SEC /
975 			  (params->rate_num / params->rate_den);
976 		mcbsp->latency[substream->stream] = latency;
977 
978 		omap_mcbsp_set_threshold(substream, pkt_size);
979 	}
980 
981 	dma_data->maxburst = pkt_size;
982 
983 	if (mcbsp->configured) {
984 		/* McBSP already configured by another stream */
985 		return 0;
986 	}
987 
988 	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
989 	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
990 	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
991 	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
992 	format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
993 	wpf = channels;
994 	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
995 			      format == SND_SOC_DAIFMT_LEFT_J)) {
996 		/* Use dual-phase frames */
997 		regs->rcr2	|= RPHASE;
998 		regs->xcr2	|= XPHASE;
999 		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
1000 		wpf--;
1001 		regs->rcr2	|= RFRLEN2(wpf - 1);
1002 		regs->xcr2	|= XFRLEN2(wpf - 1);
1003 	}
1004 
1005 	regs->rcr1	|= RFRLEN1(wpf - 1);
1006 	regs->xcr1	|= XFRLEN1(wpf - 1);
1007 
1008 	switch (params_format(params)) {
1009 	case SNDRV_PCM_FORMAT_S16_LE:
1010 		/* Set word lengths */
1011 		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
1012 		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
1013 		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
1014 		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
1015 		break;
1016 	case SNDRV_PCM_FORMAT_S32_LE:
1017 		/* Set word lengths */
1018 		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
1019 		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
1020 		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
1021 		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
1022 		break;
1023 	default:
1024 		/* Unsupported PCM format */
1025 		return -EINVAL;
1026 	}
1027 
1028 	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
1029 	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1030 	master = mcbsp->fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK;
1031 	if (master == SND_SOC_DAIFMT_BP_FP) {
1032 		div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1033 		framesize = (mcbsp->in_freq / div) / params_rate(params);
1034 
1035 		if (framesize < wlen * channels) {
1036 			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1037 					"channels\n", __func__);
1038 			return -EINVAL;
1039 		}
1040 	} else
1041 		framesize = wlen * channels;
1042 
1043 	/* Set FS period and length in terms of bit clock periods */
1044 	regs->srgr2	&= ~FPER(0xfff);
1045 	regs->srgr1	&= ~FWID(0xff);
1046 	switch (format) {
1047 	case SND_SOC_DAIFMT_I2S:
1048 	case SND_SOC_DAIFMT_LEFT_J:
1049 		regs->srgr2	|= FPER(framesize - 1);
1050 		regs->srgr1	|= FWID((framesize >> 1) - 1);
1051 		break;
1052 	case SND_SOC_DAIFMT_DSP_A:
1053 	case SND_SOC_DAIFMT_DSP_B:
1054 		regs->srgr2	|= FPER(framesize - 1);
1055 		regs->srgr1	|= FWID(0);
1056 		break;
1057 	}
1058 
1059 	omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1060 	mcbsp->wlen = wlen;
1061 	mcbsp->configured = 1;
1062 
1063 	return 0;
1064 }
1065 
1066 /*
1067  * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1068  * cache is initialized here
1069  */
omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)1070 static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1071 				      unsigned int fmt)
1072 {
1073 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1074 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1075 	bool inv_fs = false;
1076 
1077 	if (mcbsp->configured)
1078 		return 0;
1079 
1080 	mcbsp->fmt = fmt;
1081 	memset(regs, 0, sizeof(*regs));
1082 	/* Generic McBSP register settings */
1083 	regs->spcr2	|= XINTM(3) | FREE;
1084 	regs->spcr1	|= RINTM(3);
1085 	/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1086 	if (!mcbsp->pdata->has_ccr) {
1087 		regs->rcr2	|= RFIG;
1088 		regs->xcr2	|= XFIG;
1089 	}
1090 
1091 	/* Configure XCCR/RCCR only for revisions which have ccr registers */
1092 	if (mcbsp->pdata->has_ccr) {
1093 		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1094 		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1095 	}
1096 
1097 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1098 	case SND_SOC_DAIFMT_I2S:
1099 		/* 1-bit data delay */
1100 		regs->rcr2	|= RDATDLY(1);
1101 		regs->xcr2	|= XDATDLY(1);
1102 		break;
1103 	case SND_SOC_DAIFMT_LEFT_J:
1104 		/* 0-bit data delay */
1105 		regs->rcr2	|= RDATDLY(0);
1106 		regs->xcr2	|= XDATDLY(0);
1107 		regs->spcr1	|= RJUST(2);
1108 		/* Invert FS polarity configuration */
1109 		inv_fs = true;
1110 		break;
1111 	case SND_SOC_DAIFMT_DSP_A:
1112 		/* 1-bit data delay */
1113 		regs->rcr2      |= RDATDLY(1);
1114 		regs->xcr2      |= XDATDLY(1);
1115 		/* Invert FS polarity configuration */
1116 		inv_fs = true;
1117 		break;
1118 	case SND_SOC_DAIFMT_DSP_B:
1119 		/* 0-bit data delay */
1120 		regs->rcr2      |= RDATDLY(0);
1121 		regs->xcr2      |= XDATDLY(0);
1122 		/* Invert FS polarity configuration */
1123 		inv_fs = true;
1124 		break;
1125 	default:
1126 		/* Unsupported data format */
1127 		return -EINVAL;
1128 	}
1129 
1130 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
1131 	case SND_SOC_DAIFMT_BP_FP:
1132 		/* McBSP master. Set FS and bit clocks as outputs */
1133 		regs->pcr0	|= FSXM | FSRM |
1134 				   CLKXM | CLKRM;
1135 		/* Sample rate generator drives the FS */
1136 		regs->srgr2	|= FSGM;
1137 		break;
1138 	case SND_SOC_DAIFMT_BC_FP:
1139 		/* McBSP slave. FS clock as output */
1140 		regs->srgr2	|= FSGM;
1141 		regs->pcr0	|= FSXM | FSRM;
1142 		break;
1143 	case SND_SOC_DAIFMT_BC_FC:
1144 		/* McBSP slave */
1145 		break;
1146 	default:
1147 		/* Unsupported master/slave configuration */
1148 		return -EINVAL;
1149 	}
1150 
1151 	/* Set bit clock (CLKX/CLKR) and FS polarities */
1152 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1153 	case SND_SOC_DAIFMT_NB_NF:
1154 		/*
1155 		 * Normal BCLK + FS.
1156 		 * FS active low. TX data driven on falling edge of bit clock
1157 		 * and RX data sampled on rising edge of bit clock.
1158 		 */
1159 		regs->pcr0	|= FSXP | FSRP |
1160 				   CLKXP | CLKRP;
1161 		break;
1162 	case SND_SOC_DAIFMT_NB_IF:
1163 		regs->pcr0	|= CLKXP | CLKRP;
1164 		break;
1165 	case SND_SOC_DAIFMT_IB_NF:
1166 		regs->pcr0	|= FSXP | FSRP;
1167 		break;
1168 	case SND_SOC_DAIFMT_IB_IF:
1169 		break;
1170 	default:
1171 		return -EINVAL;
1172 	}
1173 	if (inv_fs)
1174 		regs->pcr0 ^= FSXP | FSRP;
1175 
1176 	return 0;
1177 }
1178 
omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai * cpu_dai,int div_id,int div)1179 static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1180 				     int div_id, int div)
1181 {
1182 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1183 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1184 
1185 	if (div_id != OMAP_MCBSP_CLKGDV)
1186 		return -ENODEV;
1187 
1188 	mcbsp->clk_div = div;
1189 	regs->srgr1	&= ~CLKGDV(0xff);
1190 	regs->srgr1	|= CLKGDV(div - 1);
1191 
1192 	return 0;
1193 }
1194 
omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)1195 static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1196 					 int clk_id, unsigned int freq,
1197 					 int dir)
1198 {
1199 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1200 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1201 	int err = 0;
1202 
1203 	if (mcbsp->active) {
1204 		if (freq == mcbsp->in_freq)
1205 			return 0;
1206 		else
1207 			return -EBUSY;
1208 	}
1209 
1210 	mcbsp->in_freq = freq;
1211 	regs->srgr2 &= ~CLKSM;
1212 	regs->pcr0 &= ~SCLKME;
1213 
1214 	switch (clk_id) {
1215 	case OMAP_MCBSP_SYSCLK_CLK:
1216 		regs->srgr2	|= CLKSM;
1217 		break;
1218 	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1219 		if (mcbsp_omap1()) {
1220 			err = -EINVAL;
1221 			break;
1222 		}
1223 		err = omap2_mcbsp_set_clks_src(mcbsp,
1224 					       MCBSP_CLKS_PRCM_SRC);
1225 		break;
1226 	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1227 		if (mcbsp_omap1()) {
1228 			err = 0;
1229 			break;
1230 		}
1231 		err = omap2_mcbsp_set_clks_src(mcbsp,
1232 					       MCBSP_CLKS_PAD_SRC);
1233 		break;
1234 
1235 	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1236 		regs->srgr2	|= CLKSM;
1237 		regs->pcr0	|= SCLKME;
1238 		/*
1239 		 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1240 		 * disable output on those pins. This enables to inject the
1241 		 * reference clock through CLKX/CLKR. For this to work
1242 		 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1243 		 */
1244 		regs->pcr0	&= ~CLKXM;
1245 		break;
1246 	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1247 		regs->pcr0	|= SCLKME;
1248 		/* Disable ouput on CLKR pin in master mode */
1249 		regs->pcr0	&= ~CLKRM;
1250 		break;
1251 	default:
1252 		err = -ENODEV;
1253 	}
1254 
1255 	return err;
1256 }
1257 
omap_mcbsp_probe(struct snd_soc_dai * dai)1258 static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1259 {
1260 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1261 
1262 	pm_runtime_enable(mcbsp->dev);
1263 
1264 	snd_soc_dai_init_dma_data(dai,
1265 				  &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1266 				  &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1267 
1268 	return 0;
1269 }
1270 
omap_mcbsp_remove(struct snd_soc_dai * dai)1271 static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1272 {
1273 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1274 
1275 	pm_runtime_disable(mcbsp->dev);
1276 
1277 	return 0;
1278 }
1279 
1280 static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1281 	.probe		= omap_mcbsp_probe,
1282 	.remove		= omap_mcbsp_remove,
1283 	.startup	= omap_mcbsp_dai_startup,
1284 	.shutdown	= omap_mcbsp_dai_shutdown,
1285 	.prepare	= omap_mcbsp_dai_prepare,
1286 	.trigger	= omap_mcbsp_dai_trigger,
1287 	.delay		= omap_mcbsp_dai_delay,
1288 	.hw_params	= omap_mcbsp_dai_hw_params,
1289 	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
1290 	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
1291 	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
1292 };
1293 
1294 static struct snd_soc_dai_driver omap_mcbsp_dai = {
1295 	.playback = {
1296 		.channels_min = 1,
1297 		.channels_max = 16,
1298 		.rates = OMAP_MCBSP_RATES,
1299 		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1300 	},
1301 	.capture = {
1302 		.channels_min = 1,
1303 		.channels_max = 16,
1304 		.rates = OMAP_MCBSP_RATES,
1305 		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1306 	},
1307 	.ops = &mcbsp_dai_ops,
1308 };
1309 
1310 static const struct snd_soc_component_driver omap_mcbsp_component = {
1311 	.name			= "omap-mcbsp",
1312 	.legacy_dai_naming	= 1,
1313 };
1314 
1315 static struct omap_mcbsp_platform_data omap2420_pdata = {
1316 	.reg_step = 4,
1317 	.reg_size = 2,
1318 };
1319 
1320 static struct omap_mcbsp_platform_data omap2430_pdata = {
1321 	.reg_step = 4,
1322 	.reg_size = 4,
1323 	.has_ccr = true,
1324 };
1325 
1326 static struct omap_mcbsp_platform_data omap3_pdata = {
1327 	.reg_step = 4,
1328 	.reg_size = 4,
1329 	.has_ccr = true,
1330 	.has_wakeup = true,
1331 };
1332 
1333 static struct omap_mcbsp_platform_data omap4_pdata = {
1334 	.reg_step = 4,
1335 	.reg_size = 4,
1336 	.has_ccr = true,
1337 	.has_wakeup = true,
1338 };
1339 
1340 static const struct of_device_id omap_mcbsp_of_match[] = {
1341 	{
1342 		.compatible = "ti,omap2420-mcbsp",
1343 		.data = &omap2420_pdata,
1344 	},
1345 	{
1346 		.compatible = "ti,omap2430-mcbsp",
1347 		.data = &omap2430_pdata,
1348 	},
1349 	{
1350 		.compatible = "ti,omap3-mcbsp",
1351 		.data = &omap3_pdata,
1352 	},
1353 	{
1354 		.compatible = "ti,omap4-mcbsp",
1355 		.data = &omap4_pdata,
1356 	},
1357 	{ },
1358 };
1359 MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1360 
asoc_mcbsp_probe(struct platform_device * pdev)1361 static int asoc_mcbsp_probe(struct platform_device *pdev)
1362 {
1363 	struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1364 	const struct omap_mcbsp_platform_data *match_pdata =
1365 		device_get_match_data(&pdev->dev);
1366 	struct omap_mcbsp *mcbsp;
1367 	int ret;
1368 
1369 	if (match_pdata) {
1370 		struct device_node *node = pdev->dev.of_node;
1371 		struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1372 		int buffer_size;
1373 
1374 		pdata = devm_kmemdup(&pdev->dev, match_pdata,
1375 				     sizeof(struct omap_mcbsp_platform_data),
1376 				     GFP_KERNEL);
1377 		if (!pdata)
1378 			return -ENOMEM;
1379 
1380 		if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1381 			pdata->buffer_size = buffer_size;
1382 		if (pdata_quirk)
1383 			pdata->force_ick_on = pdata_quirk->force_ick_on;
1384 	} else if (!pdata) {
1385 		dev_err(&pdev->dev, "missing platform data.\n");
1386 		return -EINVAL;
1387 	}
1388 	mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1389 	if (!mcbsp)
1390 		return -ENOMEM;
1391 
1392 	mcbsp->id = pdev->id;
1393 	mcbsp->pdata = pdata;
1394 	mcbsp->dev = &pdev->dev;
1395 	platform_set_drvdata(pdev, mcbsp);
1396 
1397 	ret = omap_mcbsp_init(pdev);
1398 	if (ret)
1399 		return ret;
1400 
1401 	if (mcbsp->pdata->reg_size == 2) {
1402 		omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1403 		omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1404 	}
1405 
1406 	ret = devm_snd_soc_register_component(&pdev->dev,
1407 					      &omap_mcbsp_component,
1408 					      &omap_mcbsp_dai, 1);
1409 	if (ret)
1410 		return ret;
1411 
1412 	return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1413 }
1414 
asoc_mcbsp_remove(struct platform_device * pdev)1415 static void asoc_mcbsp_remove(struct platform_device *pdev)
1416 {
1417 	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1418 
1419 	if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1420 		mcbsp->pdata->ops->free(mcbsp->id);
1421 
1422 	if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
1423 		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
1424 }
1425 
1426 static struct platform_driver asoc_mcbsp_driver = {
1427 	.driver = {
1428 			.name = "omap-mcbsp",
1429 			.of_match_table = omap_mcbsp_of_match,
1430 	},
1431 
1432 	.probe = asoc_mcbsp_probe,
1433 	.remove = asoc_mcbsp_remove,
1434 };
1435 
1436 module_platform_driver(asoc_mcbsp_driver);
1437 
1438 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1439 MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1440 MODULE_LICENSE("GPL");
1441 MODULE_ALIAS("platform:omap-mcbsp");
1442