1#!/usr/bin/gawk -f 2# SPDX-License-Identifier: GPL-2.0 3# generate_builtin_ranges.awk: Generate address range data for builtin modules 4# Written by Kris Van Hees <kris.van.hees@oracle.com> 5# 6# Usage: generate_builtin_ranges.awk modules.builtin vmlinux.map \ 7# vmlinux.o.map > modules.builtin.ranges 8# 9 10# Return the module name(s) (if any) associated with the given object. 11# 12# If we have seen this object before, return information from the cache. 13# Otherwise, retrieve it from the corresponding .cmd file. 14# 15function get_module_info(fn, mod, obj, s) { 16 if (fn in omod) 17 return omod[fn]; 18 19 if (match(fn, /\/[^/]+$/) == 0) 20 return ""; 21 22 obj = fn; 23 mod = ""; 24 fn = substr(fn, 1, RSTART) "." substr(fn, RSTART + 1) ".cmd"; 25 if (getline s <fn == 1) { 26 if (match(s, /DKBUILD_MODFILE=['"]+[^'"]+/) > 0) { 27 mod = substr(s, RSTART + 16, RLENGTH - 16); 28 gsub(/['"]/, "", mod); 29 } else if (match(s, /RUST_MODFILE=[^ ]+/) > 0) 30 mod = substr(s, RSTART + 13, RLENGTH - 13); 31 } 32 close(fn); 33 34 # A single module (common case) also reflects objects that are not part 35 # of a module. Some of those objects have names that are also a module 36 # name (e.g. core). We check the associated module file name, and if 37 # they do not match, the object is not part of a module. 38 if (mod !~ / /) { 39 if (!(mod in mods)) 40 mod = ""; 41 } 42 43 gsub(/([^/ ]*\/)+/, "", mod); 44 gsub(/-/, "_", mod); 45 46 # At this point, mod is a single (valid) module name, or a list of 47 # module names (that do not need validation). 48 omod[obj] = mod; 49 50 return mod; 51} 52 53# Update the ranges entry for the given module 'mod' in section 'osect'. 54# 55# We use a modified absolute start address (soff + base) as index because we 56# may need to insert an anchor record later that must be at the start of the 57# section data, and the first module may very well start at the same address. 58# So, we use (addr << 1) + 1 to allow a possible anchor record to be placed at 59# (addr << 1). This is safe because the index is only used to sort the entries 60# before writing them out. 61# 62function update_entry(osect, mod, soff, eoff, sect, idx) { 63 sect = sect_in[osect]; 64 idx = sprintf("%016x", (soff + sect_base[osect]) * 2 + 1); 65 entries[idx] = sprintf("%s %08x-%08x %s", sect, soff, eoff, mod); 66 count[sect]++; 67} 68 69# (1) Build a lookup map of built-in module names. 70# 71# The first file argument is used as input (modules.builtin). 72# 73# Lines will be like: 74# kernel/crypto/lzo-rle.ko 75# and we record the object name "crypto/lzo-rle". 76# 77ARGIND == 1 { 78 sub(/kernel\//, ""); # strip off "kernel/" prefix 79 sub(/\.ko$/, ""); # strip off .ko suffix 80 81 mods[$1] = 1; 82 next; 83} 84 85# (2) Collect address information for each section. 86# 87# The second file argument is used as input (vmlinux.map). 88# 89# We collect the base address of the section in order to convert all addresses 90# in the section into offset values. 91# 92# We collect the address of the anchor (or first symbol in the section if there 93# is no explicit anchor) to allow users of the range data to calculate address 94# ranges based on the actual load address of the section in the running kernel. 95# 96# We collect the start address of any sub-section (section included in the top 97# level section being processed). This is needed when the final linking was 98# done using vmlinux.a because then the list of objects contained in each 99# section is to be obtained from vmlinux.o.map. The offset of the sub-section 100# is recorded here, to be used as an addend when processing vmlinux.o.map 101# later. 102# 103 104# Both GNU ld and LLVM lld linker map format are supported by converting LLVM 105# lld linker map records into equivalent GNU ld linker map records. 106# 107# The first record of the vmlinux.map file provides enough information to know 108# which format we are dealing with. 109# 110ARGIND == 2 && FNR == 1 && NF == 7 && $1 == "VMA" && $7 == "Symbol" { 111 map_is_lld = 1; 112 if (dbg) 113 printf "NOTE: %s uses LLVM lld linker map format\n", FILENAME >"/dev/stderr"; 114 next; 115} 116 117# (LLD) Convert a section record fronm lld format to ld format. 118# 119# lld: ffffffff82c00000 2c00000 2493c0 8192 .data 120# -> 121# ld: .data 0xffffffff82c00000 0x2493c0 load address 0x0000000002c00000 122# 123ARGIND == 2 && map_is_lld && NF == 5 && /[0-9] [^ ]+$/ { 124 $0 = $5 " 0x"$1 " 0x"$3 " load address 0x"$2; 125} 126 127# (LLD) Convert an anchor record from lld format to ld format. 128# 129# lld: ffffffff81000000 1000000 0 1 _text = . 130# -> 131# ld: 0xffffffff81000000 _text = . 132# 133ARGIND == 2 && map_is_lld && !anchor && NF == 7 && raw_addr == "0x"$1 && $6 == "=" && $7 == "." { 134 $0 = " 0x"$1 " " $5 " = ."; 135} 136 137# (LLD) Convert an object record from lld format to ld format. 138# 139# lld: 11480 11480 1f07 16 vmlinux.a(arch/x86/events/amd/uncore.o):(.text) 140# -> 141# ld: .text 0x0000000000011480 0x1f07 arch/x86/events/amd/uncore.o 142# 143ARGIND == 2 && map_is_lld && NF == 5 && $5 ~ /:\(/ { 144 gsub(/\)/, ""); 145 sub(/ vmlinux\.a\(/, " "); 146 sub(/:\(/, " "); 147 $0 = " "$6 " 0x"$1 " 0x"$3 " " $5; 148} 149 150# (LLD) Convert a symbol record from lld format to ld format. 151# 152# We only care about these while processing a section for which no anchor has 153# been determined yet. 154# 155# lld: ffffffff82a859a4 2a859a4 0 1 btf_ksym_iter_id 156# -> 157# ld: 0xffffffff82a859a4 btf_ksym_iter_id 158# 159ARGIND == 2 && map_is_lld && sect && !anchor && NF == 5 && $5 ~ /^[_A-Za-z][_A-Za-z0-9]*$/ { 160 $0 = " 0x"$1 " " $5; 161} 162 163# (LLD) We do not need any other ldd linker map records. 164# 165ARGIND == 2 && map_is_lld && /^[0-9a-f]{16} / { 166 next; 167} 168 169# (LD) Section records with just the section name at the start of the line 170# need to have the next line pulled in to determine whether it is a 171# loadable section. If it is, the next line will contains a hex value 172# as first and second items. 173# 174ARGIND == 2 && !map_is_lld && NF == 1 && /^[^ ]/ { 175 s = $0; 176 getline; 177 if ($1 !~ /^0x/ || $2 !~ /^0x/) 178 next; 179 180 $0 = s " " $0; 181} 182 183# (LD) Object records with just the section name denote records with a long 184# section name for which the remainder of the record can be found on the 185# next line. 186# 187# (This is also needed for vmlinux.o.map, when used.) 188# 189ARGIND >= 2 && !map_is_lld && NF == 1 && /^ [^ \*]/ { 190 s = $0; 191 getline; 192 $0 = s " " $0; 193} 194 195# Beginning a new section - done with the previous one (if any). 196# 197ARGIND == 2 && /^[^ ]/ { 198 sect = 0; 199} 200 201# Process a loadable section (we only care about .-sections). 202# 203# Record the section name and its base address. 204# We also record the raw (non-stripped) address of the section because it can 205# be used to identify an anchor record. 206# 207# Note: 208# Since some AWK implementations cannot handle large integers, we strip off the 209# first 4 hex digits from the address. This is safe because the kernel space 210# is not large enough for addresses to extend into those digits. The portion 211# to strip off is stored in addr_prefix as a regexp, so further clauses can 212# perform a simple substitution to do the address stripping. 213# 214ARGIND == 2 && /^\./ { 215 # Explicitly ignore a few sections that are not relevant here. 216 if ($1 ~ /^\.orc_/ || $1 ~ /_sites$/ || $1 ~ /\.percpu/) 217 next; 218 219 # Sections with a 0-address can be ignored as well. 220 if ($2 ~ /^0x0+$/) 221 next; 222 223 raw_addr = $2; 224 addr_prefix = "^" substr($2, 1, 6); 225 base = $2; 226 sub(addr_prefix, "0x", base); 227 base = strtonum(base); 228 sect = $1; 229 anchor = 0; 230 sect_base[sect] = base; 231 sect_size[sect] = strtonum($3); 232 233 if (dbg) 234 printf "[%s] BASE %016x\n", sect, base >"/dev/stderr"; 235 236 next; 237} 238 239# If we are not in a section we care about, we ignore the record. 240# 241ARGIND == 2 && !sect { 242 next; 243} 244 245# Record the first anchor symbol for the current section. 246# 247# An anchor record for the section bears the same raw address as the section 248# record. 249# 250ARGIND == 2 && !anchor && NF == 4 && raw_addr == $1 && $3 == "=" && $4 == "." { 251 anchor = sprintf("%s %08x-%08x = %s", sect, 0, 0, $2); 252 sect_anchor[sect] = anchor; 253 254 if (dbg) 255 printf "[%s] ANCHOR %016x = %s (.)\n", sect, 0, $2 >"/dev/stderr"; 256 257 next; 258} 259 260# If no anchor record was found for the current section, use the first symbol 261# in the section as anchor. 262# 263ARGIND == 2 && !anchor && NF == 2 && $1 ~ /^0x/ && $2 !~ /^0x/ { 264 addr = $1; 265 sub(addr_prefix, "0x", addr); 266 addr = strtonum(addr) - base; 267 anchor = sprintf("%s %08x-%08x = %s", sect, addr, addr, $2); 268 sect_anchor[sect] = anchor; 269 270 if (dbg) 271 printf "[%s] ANCHOR %016x = %s\n", sect, addr, $2 >"/dev/stderr"; 272 273 next; 274} 275 276# The first occurrence of a section name in an object record establishes the 277# addend (often 0) for that section. This information is needed to handle 278# sections that get combined in the final linking of vmlinux (e.g. .head.text 279# getting included at the start of .text). 280# 281# If the section does not have a base yet, use the base of the encapsulating 282# section. 283# 284ARGIND == 2 && sect && NF == 4 && /^ [^ \*]/ && !($1 in sect_addend) { 285 if (!($1 in sect_base)) { 286 sect_base[$1] = base; 287 288 if (dbg) 289 printf "[%s] BASE %016x\n", $1, base >"/dev/stderr"; 290 } 291 292 addr = $2; 293 sub(addr_prefix, "0x", addr); 294 addr = strtonum(addr); 295 sect_addend[$1] = addr - sect_base[$1]; 296 sect_in[$1] = sect; 297 298 if (dbg) 299 printf "[%s] ADDEND %016x - %016x = %016x\n", $1, addr, base, sect_addend[$1] >"/dev/stderr"; 300 301 # If the object is vmlinux.o then we will need vmlinux.o.map to get the 302 # actual offsets of objects. 303 if ($4 == "vmlinux.o") 304 need_o_map = 1; 305} 306 307# (3) Collect offset ranges (relative to the section base address) for built-in 308# modules. 309# 310# If the final link was done using the actual objects, vmlinux.map contains all 311# the information we need (see section (3a)). 312# If linking was done using vmlinux.a as intermediary, we will need to process 313# vmlinux.o.map (see section (3b)). 314 315# (3a) Determine offset range info using vmlinux.map. 316# 317# Since we are already processing vmlinux.map, the top level section that is 318# being processed is already known. If we do not have a base address for it, 319# we do not need to process records for it. 320# 321# Given the object name, we determine the module(s) (if any) that the current 322# object is associated with. 323# 324# If we were already processing objects for a (list of) module(s): 325# - If the current object belongs to the same module(s), update the range data 326# to include the current object. 327# - Otherwise, ensure that the end offset of the range is valid. 328# 329# If the current object does not belong to a built-in module, ignore it. 330# 331# If it does, we add a new built-in module offset range record. 332# 333ARGIND == 2 && !need_o_map && /^ [^ ]/ && NF == 4 && $3 != "0x0" { 334 if (!(sect in sect_base)) 335 next; 336 337 # Turn the address into an offset from the section base. 338 soff = $2; 339 sub(addr_prefix, "0x", soff); 340 soff = strtonum(soff) - sect_base[sect]; 341 eoff = soff + strtonum($3); 342 343 # Determine which (if any) built-in modules the object belongs to. 344 mod = get_module_info($4); 345 346 # If we are processing a built-in module: 347 # - If the current object is within the same module, we update its 348 # entry by extending the range and move on 349 # - Otherwise: 350 # + If we are still processing within the same main section, we 351 # validate the end offset against the start offset of the 352 # current object (e.g. .rodata.str1.[18] objects are often 353 # listed with an incorrect size in the linker map) 354 # + Otherwise, we validate the end offset against the section 355 # size 356 if (mod_name) { 357 if (mod == mod_name) { 358 mod_eoff = eoff; 359 update_entry(mod_sect, mod_name, mod_soff, eoff); 360 361 next; 362 } else if (sect == sect_in[mod_sect]) { 363 if (mod_eoff > soff) 364 update_entry(mod_sect, mod_name, mod_soff, soff); 365 } else { 366 v = sect_size[sect_in[mod_sect]]; 367 if (mod_eoff > v) 368 update_entry(mod_sect, mod_name, mod_soff, v); 369 } 370 } 371 372 mod_name = mod; 373 374 # If we encountered an object that is not part of a built-in module, we 375 # do not need to record any data. 376 if (!mod) 377 next; 378 379 # At this point, we encountered the start of a new built-in module. 380 mod_name = mod; 381 mod_soff = soff; 382 mod_eoff = eoff; 383 mod_sect = $1; 384 update_entry($1, mod, soff, mod_eoff); 385 386 next; 387} 388 389# If we do not need to parse the vmlinux.o.map file, we are done. 390# 391ARGIND == 3 && !need_o_map { 392 if (dbg) 393 printf "Note: %s is not needed.\n", FILENAME >"/dev/stderr"; 394 exit; 395} 396 397# (3) Collect offset ranges (relative to the section base address) for built-in 398# modules. 399# 400 401# (LLD) Convert an object record from lld format to ld format. 402# 403ARGIND == 3 && map_is_lld && NF == 5 && $5 ~ /:\(/ { 404 gsub(/\)/, ""); 405 sub(/:\(/, " "); 406 407 sect = $6; 408 if (!(sect in sect_addend)) 409 next; 410 411 sub(/ vmlinux\.a\(/, " "); 412 $0 = " "sect " 0x"$1 " 0x"$3 " " $5; 413} 414 415# (3b) Determine offset range info using vmlinux.o.map. 416# 417# If we do not know an addend for the object's section, we are interested in 418# anything within that section. 419# 420# Determine the top-level section that the object's section was included in 421# during the final link. This is the section name offset range data will be 422# associated with for this object. 423# 424# The remainder of the processing of the current object record follows the 425# procedure outlined in (3a). 426# 427ARGIND == 3 && /^ [^ ]/ && NF == 4 && $3 != "0x0" { 428 osect = $1; 429 if (!(osect in sect_addend)) 430 next; 431 432 # We need to work with the main section. 433 sect = sect_in[osect]; 434 435 # Turn the address into an offset from the section base. 436 soff = $2; 437 sub(addr_prefix, "0x", soff); 438 soff = strtonum(soff) + sect_addend[osect]; 439 eoff = soff + strtonum($3); 440 441 # Determine which (if any) built-in modules the object belongs to. 442 mod = get_module_info($4); 443 444 # If we are processing a built-in module: 445 # - If the current object is within the same module, we update its 446 # entry by extending the range and move on 447 # - Otherwise: 448 # + If we are still processing within the same main section, we 449 # validate the end offset against the start offset of the 450 # current object (e.g. .rodata.str1.[18] objects are often 451 # listed with an incorrect size in the linker map) 452 # + Otherwise, we validate the end offset against the section 453 # size 454 if (mod_name) { 455 if (mod == mod_name) { 456 mod_eoff = eoff; 457 update_entry(mod_sect, mod_name, mod_soff, eoff); 458 459 next; 460 } else if (sect == sect_in[mod_sect]) { 461 if (mod_eoff > soff) 462 update_entry(mod_sect, mod_name, mod_soff, soff); 463 } else { 464 v = sect_size[sect_in[mod_sect]]; 465 if (mod_eoff > v) 466 update_entry(mod_sect, mod_name, mod_soff, v); 467 } 468 } 469 470 mod_name = mod; 471 472 # If we encountered an object that is not part of a built-in module, we 473 # do not need to record any data. 474 if (!mod) 475 next; 476 477 # At this point, we encountered the start of a new built-in module. 478 mod_name = mod; 479 mod_soff = soff; 480 mod_eoff = eoff; 481 mod_sect = osect; 482 update_entry(osect, mod, soff, mod_eoff); 483 484 next; 485} 486 487# (4) Generate the output. 488# 489# Anchor records are added for each section that contains offset range data 490# records. They are added at an adjusted section base address (base << 1) to 491# ensure they come first in the second records (see update_entry() above for 492# more information). 493# 494# All entries are sorted by (adjusted) address to ensure that the output can be 495# parsed in strict ascending address order. 496# 497END { 498 for (sect in count) { 499 if (sect in sect_anchor) { 500 idx = sprintf("%016x", sect_base[sect] * 2); 501 entries[idx] = sect_anchor[sect]; 502 } 503 } 504 505 n = asorti(entries, indices); 506 for (i = 1; i <= n; i++) 507 print entries[indices[i]]; 508} 509