1  // SPDX-License-Identifier: GPL-2.0
2  
3  //! Kernel types.
4  
5  use crate::init::{self, PinInit};
6  use alloc::boxed::Box;
7  use core::{
8      cell::UnsafeCell,
9      marker::{PhantomData, PhantomPinned},
10      mem::{ManuallyDrop, MaybeUninit},
11      ops::{Deref, DerefMut},
12      pin::Pin,
13      ptr::NonNull,
14  };
15  
16  /// Used to transfer ownership to and from foreign (non-Rust) languages.
17  ///
18  /// Ownership is transferred from Rust to a foreign language by calling [`Self::into_foreign`] and
19  /// later may be transferred back to Rust by calling [`Self::from_foreign`].
20  ///
21  /// This trait is meant to be used in cases when Rust objects are stored in C objects and
22  /// eventually "freed" back to Rust.
23  pub trait ForeignOwnable: Sized {
24      /// Type of values borrowed between calls to [`ForeignOwnable::into_foreign`] and
25      /// [`ForeignOwnable::from_foreign`].
26      type Borrowed<'a>;
27  
28      /// Converts a Rust-owned object to a foreign-owned one.
29      ///
30      /// The foreign representation is a pointer to void. There are no guarantees for this pointer.
31      /// For example, it might be invalid, dangling or pointing to uninitialized memory. Using it in
32      /// any way except for [`ForeignOwnable::from_foreign`], [`ForeignOwnable::borrow`],
33      /// [`ForeignOwnable::try_from_foreign`] can result in undefined behavior.
into_foreign(self) -> *const core::ffi::c_void34      fn into_foreign(self) -> *const core::ffi::c_void;
35  
36      /// Borrows a foreign-owned object.
37      ///
38      /// # Safety
39      ///
40      /// `ptr` must have been returned by a previous call to [`ForeignOwnable::into_foreign`] for
41      /// which a previous matching [`ForeignOwnable::from_foreign`] hasn't been called yet.
borrow<'a>(ptr: *const core::ffi::c_void) -> Self::Borrowed<'a>42      unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> Self::Borrowed<'a>;
43  
44      /// Converts a foreign-owned object back to a Rust-owned one.
45      ///
46      /// # Safety
47      ///
48      /// `ptr` must have been returned by a previous call to [`ForeignOwnable::into_foreign`] for
49      /// which a previous matching [`ForeignOwnable::from_foreign`] hasn't been called yet.
50      /// Additionally, all instances (if any) of values returned by [`ForeignOwnable::borrow`] for
51      /// this object must have been dropped.
from_foreign(ptr: *const core::ffi::c_void) -> Self52      unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self;
53  
54      /// Tries to convert a foreign-owned object back to a Rust-owned one.
55      ///
56      /// A convenience wrapper over [`ForeignOwnable::from_foreign`] that returns [`None`] if `ptr`
57      /// is null.
58      ///
59      /// # Safety
60      ///
61      /// `ptr` must either be null or satisfy the safety requirements for
62      /// [`ForeignOwnable::from_foreign`].
try_from_foreign(ptr: *const core::ffi::c_void) -> Option<Self>63      unsafe fn try_from_foreign(ptr: *const core::ffi::c_void) -> Option<Self> {
64          if ptr.is_null() {
65              None
66          } else {
67              // SAFETY: Since `ptr` is not null here, then `ptr` satisfies the safety requirements
68              // of `from_foreign` given the safety requirements of this function.
69              unsafe { Some(Self::from_foreign(ptr)) }
70          }
71      }
72  }
73  
74  impl<T: 'static> ForeignOwnable for Box<T> {
75      type Borrowed<'a> = &'a T;
76  
into_foreign(self) -> *const core::ffi::c_void77      fn into_foreign(self) -> *const core::ffi::c_void {
78          Box::into_raw(self) as _
79      }
80  
borrow<'a>(ptr: *const core::ffi::c_void) -> &'a T81      unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> &'a T {
82          // SAFETY: The safety requirements for this function ensure that the object is still alive,
83          // so it is safe to dereference the raw pointer.
84          // The safety requirements of `from_foreign` also ensure that the object remains alive for
85          // the lifetime of the returned value.
86          unsafe { &*ptr.cast() }
87      }
88  
from_foreign(ptr: *const core::ffi::c_void) -> Self89      unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
90          // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
91          // call to `Self::into_foreign`.
92          unsafe { Box::from_raw(ptr as _) }
93      }
94  }
95  
96  impl<T: 'static> ForeignOwnable for Pin<Box<T>> {
97      type Borrowed<'a> = Pin<&'a T>;
98  
into_foreign(self) -> *const core::ffi::c_void99      fn into_foreign(self) -> *const core::ffi::c_void {
100          // SAFETY: We are still treating the box as pinned.
101          Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }) as _
102      }
103  
borrow<'a>(ptr: *const core::ffi::c_void) -> Pin<&'a T>104      unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> Pin<&'a T> {
105          // SAFETY: The safety requirements for this function ensure that the object is still alive,
106          // so it is safe to dereference the raw pointer.
107          // The safety requirements of `from_foreign` also ensure that the object remains alive for
108          // the lifetime of the returned value.
109          let r = unsafe { &*ptr.cast() };
110  
111          // SAFETY: This pointer originates from a `Pin<Box<T>>`.
112          unsafe { Pin::new_unchecked(r) }
113      }
114  
from_foreign(ptr: *const core::ffi::c_void) -> Self115      unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
116          // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
117          // call to `Self::into_foreign`.
118          unsafe { Pin::new_unchecked(Box::from_raw(ptr as _)) }
119      }
120  }
121  
122  impl ForeignOwnable for () {
123      type Borrowed<'a> = ();
124  
into_foreign(self) -> *const core::ffi::c_void125      fn into_foreign(self) -> *const core::ffi::c_void {
126          core::ptr::NonNull::dangling().as_ptr()
127      }
128  
borrow<'a>(_: *const core::ffi::c_void) -> Self::Borrowed<'a>129      unsafe fn borrow<'a>(_: *const core::ffi::c_void) -> Self::Borrowed<'a> {}
130  
from_foreign(_: *const core::ffi::c_void) -> Self131      unsafe fn from_foreign(_: *const core::ffi::c_void) -> Self {}
132  }
133  
134  /// Runs a cleanup function/closure when dropped.
135  ///
136  /// The [`ScopeGuard::dismiss`] function prevents the cleanup function from running.
137  ///
138  /// # Examples
139  ///
140  /// In the example below, we have multiple exit paths and we want to log regardless of which one is
141  /// taken:
142  ///
143  /// ```
144  /// # use kernel::types::ScopeGuard;
145  /// fn example1(arg: bool) {
146  ///     let _log = ScopeGuard::new(|| pr_info!("example1 completed\n"));
147  ///
148  ///     if arg {
149  ///         return;
150  ///     }
151  ///
152  ///     pr_info!("Do something...\n");
153  /// }
154  ///
155  /// # example1(false);
156  /// # example1(true);
157  /// ```
158  ///
159  /// In the example below, we want to log the same message on all early exits but a different one on
160  /// the main exit path:
161  ///
162  /// ```
163  /// # use kernel::types::ScopeGuard;
164  /// fn example2(arg: bool) {
165  ///     let log = ScopeGuard::new(|| pr_info!("example2 returned early\n"));
166  ///
167  ///     if arg {
168  ///         return;
169  ///     }
170  ///
171  ///     // (Other early returns...)
172  ///
173  ///     log.dismiss();
174  ///     pr_info!("example2 no early return\n");
175  /// }
176  ///
177  /// # example2(false);
178  /// # example2(true);
179  /// ```
180  ///
181  /// In the example below, we need a mutable object (the vector) to be accessible within the log
182  /// function, so we wrap it in the [`ScopeGuard`]:
183  ///
184  /// ```
185  /// # use kernel::types::ScopeGuard;
186  /// fn example3(arg: bool) -> Result {
187  ///     let mut vec =
188  ///         ScopeGuard::new_with_data(Vec::new(), |v| pr_info!("vec had {} elements\n", v.len()));
189  ///
190  ///     vec.push(10u8, GFP_KERNEL)?;
191  ///     if arg {
192  ///         return Ok(());
193  ///     }
194  ///     vec.push(20u8, GFP_KERNEL)?;
195  ///     Ok(())
196  /// }
197  ///
198  /// # assert_eq!(example3(false), Ok(()));
199  /// # assert_eq!(example3(true), Ok(()));
200  /// ```
201  ///
202  /// # Invariants
203  ///
204  /// The value stored in the struct is nearly always `Some(_)`, except between
205  /// [`ScopeGuard::dismiss`] and [`ScopeGuard::drop`]: in this case, it will be `None` as the value
206  /// will have been returned to the caller. Since  [`ScopeGuard::dismiss`] consumes the guard,
207  /// callers won't be able to use it anymore.
208  pub struct ScopeGuard<T, F: FnOnce(T)>(Option<(T, F)>);
209  
210  impl<T, F: FnOnce(T)> ScopeGuard<T, F> {
211      /// Creates a new guarded object wrapping the given data and with the given cleanup function.
new_with_data(data: T, cleanup_func: F) -> Self212      pub fn new_with_data(data: T, cleanup_func: F) -> Self {
213          // INVARIANT: The struct is being initialised with `Some(_)`.
214          Self(Some((data, cleanup_func)))
215      }
216  
217      /// Prevents the cleanup function from running and returns the guarded data.
dismiss(mut self) -> T218      pub fn dismiss(mut self) -> T {
219          // INVARIANT: This is the exception case in the invariant; it is not visible to callers
220          // because this function consumes `self`.
221          self.0.take().unwrap().0
222      }
223  }
224  
225  impl ScopeGuard<(), fn(())> {
226      /// Creates a new guarded object with the given cleanup function.
new(cleanup: impl FnOnce()) -> ScopeGuard<(), impl FnOnce(())>227      pub fn new(cleanup: impl FnOnce()) -> ScopeGuard<(), impl FnOnce(())> {
228          ScopeGuard::new_with_data((), move |_| cleanup())
229      }
230  }
231  
232  impl<T, F: FnOnce(T)> Deref for ScopeGuard<T, F> {
233      type Target = T;
234  
deref(&self) -> &T235      fn deref(&self) -> &T {
236          // The type invariants guarantee that `unwrap` will succeed.
237          &self.0.as_ref().unwrap().0
238      }
239  }
240  
241  impl<T, F: FnOnce(T)> DerefMut for ScopeGuard<T, F> {
deref_mut(&mut self) -> &mut T242      fn deref_mut(&mut self) -> &mut T {
243          // The type invariants guarantee that `unwrap` will succeed.
244          &mut self.0.as_mut().unwrap().0
245      }
246  }
247  
248  impl<T, F: FnOnce(T)> Drop for ScopeGuard<T, F> {
drop(&mut self)249      fn drop(&mut self) {
250          // Run the cleanup function if one is still present.
251          if let Some((data, cleanup)) = self.0.take() {
252              cleanup(data)
253          }
254      }
255  }
256  
257  /// Stores an opaque value.
258  ///
259  /// This is meant to be used with FFI objects that are never interpreted by Rust code.
260  #[repr(transparent)]
261  pub struct Opaque<T> {
262      value: UnsafeCell<MaybeUninit<T>>,
263      _pin: PhantomPinned,
264  }
265  
266  impl<T> Opaque<T> {
267      /// Creates a new opaque value.
new(value: T) -> Self268      pub const fn new(value: T) -> Self {
269          Self {
270              value: UnsafeCell::new(MaybeUninit::new(value)),
271              _pin: PhantomPinned,
272          }
273      }
274  
275      /// Creates an uninitialised value.
uninit() -> Self276      pub const fn uninit() -> Self {
277          Self {
278              value: UnsafeCell::new(MaybeUninit::uninit()),
279              _pin: PhantomPinned,
280          }
281      }
282  
283      /// Creates a pin-initializer from the given initializer closure.
284      ///
285      /// The returned initializer calls the given closure with the pointer to the inner `T` of this
286      /// `Opaque`. Since this memory is uninitialized, the closure is not allowed to read from it.
287      ///
288      /// This function is safe, because the `T` inside of an `Opaque` is allowed to be
289      /// uninitialized. Additionally, access to the inner `T` requires `unsafe`, so the caller needs
290      /// to verify at that point that the inner value is valid.
ffi_init(init_func: impl FnOnce(*mut T)) -> impl PinInit<Self>291      pub fn ffi_init(init_func: impl FnOnce(*mut T)) -> impl PinInit<Self> {
292          // SAFETY: We contain a `MaybeUninit`, so it is OK for the `init_func` to not fully
293          // initialize the `T`.
294          unsafe {
295              init::pin_init_from_closure::<_, ::core::convert::Infallible>(move |slot| {
296                  init_func(Self::raw_get(slot));
297                  Ok(())
298              })
299          }
300      }
301  
302      /// Returns a raw pointer to the opaque data.
get(&self) -> *mut T303      pub const fn get(&self) -> *mut T {
304          UnsafeCell::get(&self.value).cast::<T>()
305      }
306  
307      /// Gets the value behind `this`.
308      ///
309      /// This function is useful to get access to the value without creating intermediate
310      /// references.
raw_get(this: *const Self) -> *mut T311      pub const fn raw_get(this: *const Self) -> *mut T {
312          UnsafeCell::raw_get(this.cast::<UnsafeCell<MaybeUninit<T>>>()).cast::<T>()
313      }
314  }
315  
316  /// Types that are _always_ reference counted.
317  ///
318  /// It allows such types to define their own custom ref increment and decrement functions.
319  /// Additionally, it allows users to convert from a shared reference `&T` to an owned reference
320  /// [`ARef<T>`].
321  ///
322  /// This is usually implemented by wrappers to existing structures on the C side of the code. For
323  /// Rust code, the recommendation is to use [`Arc`](crate::sync::Arc) to create reference-counted
324  /// instances of a type.
325  ///
326  /// # Safety
327  ///
328  /// Implementers must ensure that increments to the reference count keep the object alive in memory
329  /// at least until matching decrements are performed.
330  ///
331  /// Implementers must also ensure that all instances are reference-counted. (Otherwise they
332  /// won't be able to honour the requirement that [`AlwaysRefCounted::inc_ref`] keep the object
333  /// alive.)
334  pub unsafe trait AlwaysRefCounted {
335      /// Increments the reference count on the object.
inc_ref(&self)336      fn inc_ref(&self);
337  
338      /// Decrements the reference count on the object.
339      ///
340      /// Frees the object when the count reaches zero.
341      ///
342      /// # Safety
343      ///
344      /// Callers must ensure that there was a previous matching increment to the reference count,
345      /// and that the object is no longer used after its reference count is decremented (as it may
346      /// result in the object being freed), unless the caller owns another increment on the refcount
347      /// (e.g., it calls [`AlwaysRefCounted::inc_ref`] twice, then calls
348      /// [`AlwaysRefCounted::dec_ref`] once).
dec_ref(obj: NonNull<Self>)349      unsafe fn dec_ref(obj: NonNull<Self>);
350  }
351  
352  /// An owned reference to an always-reference-counted object.
353  ///
354  /// The object's reference count is automatically decremented when an instance of [`ARef`] is
355  /// dropped. It is also automatically incremented when a new instance is created via
356  /// [`ARef::clone`].
357  ///
358  /// # Invariants
359  ///
360  /// The pointer stored in `ptr` is non-null and valid for the lifetime of the [`ARef`] instance. In
361  /// particular, the [`ARef`] instance owns an increment on the underlying object's reference count.
362  pub struct ARef<T: AlwaysRefCounted> {
363      ptr: NonNull<T>,
364      _p: PhantomData<T>,
365  }
366  
367  // SAFETY: It is safe to send `ARef<T>` to another thread when the underlying `T` is `Sync` because
368  // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
369  // `T` to be `Send` because any thread that has an `ARef<T>` may ultimately access `T` using a
370  // mutable reference, for example, when the reference count reaches zero and `T` is dropped.
371  unsafe impl<T: AlwaysRefCounted + Sync + Send> Send for ARef<T> {}
372  
373  // SAFETY: It is safe to send `&ARef<T>` to another thread when the underlying `T` is `Sync`
374  // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
375  // it needs `T` to be `Send` because any thread that has a `&ARef<T>` may clone it and get an
376  // `ARef<T>` on that thread, so the thread may ultimately access `T` using a mutable reference, for
377  // example, when the reference count reaches zero and `T` is dropped.
378  unsafe impl<T: AlwaysRefCounted + Sync + Send> Sync for ARef<T> {}
379  
380  impl<T: AlwaysRefCounted> ARef<T> {
381      /// Creates a new instance of [`ARef`].
382      ///
383      /// It takes over an increment of the reference count on the underlying object.
384      ///
385      /// # Safety
386      ///
387      /// Callers must ensure that the reference count was incremented at least once, and that they
388      /// are properly relinquishing one increment. That is, if there is only one increment, callers
389      /// must not use the underlying object anymore -- it is only safe to do so via the newly
390      /// created [`ARef`].
from_raw(ptr: NonNull<T>) -> Self391      pub unsafe fn from_raw(ptr: NonNull<T>) -> Self {
392          // INVARIANT: The safety requirements guarantee that the new instance now owns the
393          // increment on the refcount.
394          Self {
395              ptr,
396              _p: PhantomData,
397          }
398      }
399  
400      /// Consumes the `ARef`, returning a raw pointer.
401      ///
402      /// This function does not change the refcount. After calling this function, the caller is
403      /// responsible for the refcount previously managed by the `ARef`.
404      ///
405      /// # Examples
406      ///
407      /// ```
408      /// use core::ptr::NonNull;
409      /// use kernel::types::{ARef, AlwaysRefCounted};
410      ///
411      /// struct Empty {}
412      ///
413      /// unsafe impl AlwaysRefCounted for Empty {
414      ///     fn inc_ref(&self) {}
415      ///     unsafe fn dec_ref(_obj: NonNull<Self>) {}
416      /// }
417      ///
418      /// let mut data = Empty {};
419      /// let ptr = NonNull::<Empty>::new(&mut data as *mut _).unwrap();
420      /// let data_ref: ARef<Empty> = unsafe { ARef::from_raw(ptr) };
421      /// let raw_ptr: NonNull<Empty> = ARef::into_raw(data_ref);
422      ///
423      /// assert_eq!(ptr, raw_ptr);
424      /// ```
into_raw(me: Self) -> NonNull<T>425      pub fn into_raw(me: Self) -> NonNull<T> {
426          ManuallyDrop::new(me).ptr
427      }
428  }
429  
430  impl<T: AlwaysRefCounted> Clone for ARef<T> {
clone(&self) -> Self431      fn clone(&self) -> Self {
432          self.inc_ref();
433          // SAFETY: We just incremented the refcount above.
434          unsafe { Self::from_raw(self.ptr) }
435      }
436  }
437  
438  impl<T: AlwaysRefCounted> Deref for ARef<T> {
439      type Target = T;
440  
deref(&self) -> &Self::Target441      fn deref(&self) -> &Self::Target {
442          // SAFETY: The type invariants guarantee that the object is valid.
443          unsafe { self.ptr.as_ref() }
444      }
445  }
446  
447  impl<T: AlwaysRefCounted> From<&T> for ARef<T> {
from(b: &T) -> Self448      fn from(b: &T) -> Self {
449          b.inc_ref();
450          // SAFETY: We just incremented the refcount above.
451          unsafe { Self::from_raw(NonNull::from(b)) }
452      }
453  }
454  
455  impl<T: AlwaysRefCounted> Drop for ARef<T> {
drop(&mut self)456      fn drop(&mut self) {
457          // SAFETY: The type invariants guarantee that the `ARef` owns the reference we're about to
458          // decrement.
459          unsafe { T::dec_ref(self.ptr) };
460      }
461  }
462  
463  /// A sum type that always holds either a value of type `L` or `R`.
464  pub enum Either<L, R> {
465      /// Constructs an instance of [`Either`] containing a value of type `L`.
466      Left(L),
467  
468      /// Constructs an instance of [`Either`] containing a value of type `R`.
469      Right(R),
470  }
471  
472  /// Types for which any bit pattern is valid.
473  ///
474  /// Not all types are valid for all values. For example, a `bool` must be either zero or one, so
475  /// reading arbitrary bytes into something that contains a `bool` is not okay.
476  ///
477  /// It's okay for the type to have padding, as initializing those bytes has no effect.
478  ///
479  /// # Safety
480  ///
481  /// All bit-patterns must be valid for this type. This type must not have interior mutability.
482  pub unsafe trait FromBytes {}
483  
484  // SAFETY: All bit patterns are acceptable values of the types below.
485  unsafe impl FromBytes for u8 {}
486  unsafe impl FromBytes for u16 {}
487  unsafe impl FromBytes for u32 {}
488  unsafe impl FromBytes for u64 {}
489  unsafe impl FromBytes for usize {}
490  unsafe impl FromBytes for i8 {}
491  unsafe impl FromBytes for i16 {}
492  unsafe impl FromBytes for i32 {}
493  unsafe impl FromBytes for i64 {}
494  unsafe impl FromBytes for isize {}
495  // SAFETY: If all bit patterns are acceptable for individual values in an array, then all bit
496  // patterns are also acceptable for arrays of that type.
497  unsafe impl<T: FromBytes> FromBytes for [T] {}
498  unsafe impl<T: FromBytes, const N: usize> FromBytes for [T; N] {}
499  
500  /// Types that can be viewed as an immutable slice of initialized bytes.
501  ///
502  /// If a struct implements this trait, then it is okay to copy it byte-for-byte to userspace. This
503  /// means that it should not have any padding, as padding bytes are uninitialized. Reading
504  /// uninitialized memory is not just undefined behavior, it may even lead to leaking sensitive
505  /// information on the stack to userspace.
506  ///
507  /// The struct should also not hold kernel pointers, as kernel pointer addresses are also considered
508  /// sensitive. However, leaking kernel pointers is not considered undefined behavior by Rust, so
509  /// this is a correctness requirement, but not a safety requirement.
510  ///
511  /// # Safety
512  ///
513  /// Values of this type may not contain any uninitialized bytes. This type must not have interior
514  /// mutability.
515  pub unsafe trait AsBytes {}
516  
517  // SAFETY: Instances of the following types have no uninitialized portions.
518  unsafe impl AsBytes for u8 {}
519  unsafe impl AsBytes for u16 {}
520  unsafe impl AsBytes for u32 {}
521  unsafe impl AsBytes for u64 {}
522  unsafe impl AsBytes for usize {}
523  unsafe impl AsBytes for i8 {}
524  unsafe impl AsBytes for i16 {}
525  unsafe impl AsBytes for i32 {}
526  unsafe impl AsBytes for i64 {}
527  unsafe impl AsBytes for isize {}
528  unsafe impl AsBytes for bool {}
529  unsafe impl AsBytes for char {}
530  unsafe impl AsBytes for str {}
531  // SAFETY: If individual values in an array have no uninitialized portions, then the array itself
532  // does not have any uninitialized portions either.
533  unsafe impl<T: AsBytes> AsBytes for [T] {}
534  unsafe impl<T: AsBytes, const N: usize> AsBytes for [T; N] {}
535