1 /*
2  * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/gfp.h>
35 #include <linux/in.h>
36 #include <net/tcp.h>
37 #include <trace/events/sock.h>
38 
39 #include "rds.h"
40 #include "tcp.h"
41 
rds_tcp_keepalive(struct socket * sock)42 void rds_tcp_keepalive(struct socket *sock)
43 {
44 	/* values below based on xs_udp_default_timeout */
45 	int keepidle = 5; /* send a probe 'keepidle' secs after last data */
46 	int keepcnt = 5; /* number of unack'ed probes before declaring dead */
47 
48 	sock_set_keepalive(sock->sk);
49 	tcp_sock_set_keepcnt(sock->sk, keepcnt);
50 	tcp_sock_set_keepidle(sock->sk, keepidle);
51 	/* KEEPINTVL is the interval between successive probes. We follow
52 	 * the model in xs_tcp_finish_connecting() and re-use keepidle.
53 	 */
54 	tcp_sock_set_keepintvl(sock->sk, keepidle);
55 }
56 
57 /* rds_tcp_accept_one_path(): if accepting on cp_index > 0, make sure the
58  * client's ipaddr < server's ipaddr. Otherwise, close the accepted
59  * socket and force a reconneect from smaller -> larger ip addr. The reason
60  * we special case cp_index 0 is to allow the rds probe ping itself to itself
61  * get through efficiently.
62  * Since reconnects are only initiated from the node with the numerically
63  * smaller ip address, we recycle conns in RDS_CONN_ERROR on the passive side
64  * by moving them to CONNECTING in this function.
65  */
66 static
rds_tcp_accept_one_path(struct rds_connection * conn)67 struct rds_tcp_connection *rds_tcp_accept_one_path(struct rds_connection *conn)
68 {
69 	int i;
70 	int npaths = max_t(int, 1, conn->c_npaths);
71 
72 	/* for mprds, all paths MUST be initiated by the peer
73 	 * with the smaller address.
74 	 */
75 	if (rds_addr_cmp(&conn->c_faddr, &conn->c_laddr) >= 0) {
76 		/* Make sure we initiate at least one path if this
77 		 * has not already been done; rds_start_mprds() will
78 		 * take care of additional paths, if necessary.
79 		 */
80 		if (npaths == 1)
81 			rds_conn_path_connect_if_down(&conn->c_path[0]);
82 		return NULL;
83 	}
84 
85 	for (i = 0; i < npaths; i++) {
86 		struct rds_conn_path *cp = &conn->c_path[i];
87 
88 		if (rds_conn_path_transition(cp, RDS_CONN_DOWN,
89 					     RDS_CONN_CONNECTING) ||
90 		    rds_conn_path_transition(cp, RDS_CONN_ERROR,
91 					     RDS_CONN_CONNECTING)) {
92 			return cp->cp_transport_data;
93 		}
94 	}
95 	return NULL;
96 }
97 
rds_tcp_accept_one(struct socket * sock)98 int rds_tcp_accept_one(struct socket *sock)
99 {
100 	struct socket *new_sock = NULL;
101 	struct rds_connection *conn;
102 	int ret;
103 	struct inet_sock *inet;
104 	struct rds_tcp_connection *rs_tcp = NULL;
105 	int conn_state;
106 	struct rds_conn_path *cp;
107 	struct in6_addr *my_addr, *peer_addr;
108 	struct proto_accept_arg arg = {
109 		.flags = O_NONBLOCK,
110 		.kern = true,
111 	};
112 #if !IS_ENABLED(CONFIG_IPV6)
113 	struct in6_addr saddr, daddr;
114 #endif
115 	int dev_if = 0;
116 
117 	if (!sock) /* module unload or netns delete in progress */
118 		return -ENETUNREACH;
119 
120 	ret = sock_create_lite(sock->sk->sk_family,
121 			       sock->sk->sk_type, sock->sk->sk_protocol,
122 			       &new_sock);
123 	if (ret)
124 		goto out;
125 
126 	ret = sock->ops->accept(sock, new_sock, &arg);
127 	if (ret < 0)
128 		goto out;
129 
130 	/* sock_create_lite() does not get a hold on the owner module so we
131 	 * need to do it here.  Note that sock_release() uses sock->ops to
132 	 * determine if it needs to decrement the reference count.  So set
133 	 * sock->ops after calling accept() in case that fails.  And there's
134 	 * no need to do try_module_get() as the listener should have a hold
135 	 * already.
136 	 */
137 	new_sock->ops = sock->ops;
138 	__module_get(new_sock->ops->owner);
139 
140 	rds_tcp_keepalive(new_sock);
141 	if (!rds_tcp_tune(new_sock)) {
142 		ret = -EINVAL;
143 		goto out;
144 	}
145 
146 	inet = inet_sk(new_sock->sk);
147 
148 #if IS_ENABLED(CONFIG_IPV6)
149 	my_addr = &new_sock->sk->sk_v6_rcv_saddr;
150 	peer_addr = &new_sock->sk->sk_v6_daddr;
151 #else
152 	ipv6_addr_set_v4mapped(inet->inet_saddr, &saddr);
153 	ipv6_addr_set_v4mapped(inet->inet_daddr, &daddr);
154 	my_addr = &saddr;
155 	peer_addr = &daddr;
156 #endif
157 	rdsdebug("accepted family %d tcp %pI6c:%u -> %pI6c:%u\n",
158 		 sock->sk->sk_family,
159 		 my_addr, ntohs(inet->inet_sport),
160 		 peer_addr, ntohs(inet->inet_dport));
161 
162 #if IS_ENABLED(CONFIG_IPV6)
163 	/* sk_bound_dev_if is not set if the peer address is not link local
164 	 * address.  In this case, it happens that mcast_oif is set.  So
165 	 * just use it.
166 	 */
167 	if ((ipv6_addr_type(my_addr) & IPV6_ADDR_LINKLOCAL) &&
168 	    !(ipv6_addr_type(peer_addr) & IPV6_ADDR_LINKLOCAL)) {
169 		struct ipv6_pinfo *inet6;
170 
171 		inet6 = inet6_sk(new_sock->sk);
172 		dev_if = READ_ONCE(inet6->mcast_oif);
173 	} else {
174 		dev_if = new_sock->sk->sk_bound_dev_if;
175 	}
176 #endif
177 
178 	if (!rds_tcp_laddr_check(sock_net(sock->sk), peer_addr, dev_if)) {
179 		/* local address connection is only allowed via loopback */
180 		ret = -EOPNOTSUPP;
181 		goto out;
182 	}
183 
184 	conn = rds_conn_create(sock_net(sock->sk),
185 			       my_addr, peer_addr,
186 			       &rds_tcp_transport, 0, GFP_KERNEL, dev_if);
187 
188 	if (IS_ERR(conn)) {
189 		ret = PTR_ERR(conn);
190 		goto out;
191 	}
192 	/* An incoming SYN request came in, and TCP just accepted it.
193 	 *
194 	 * If the client reboots, this conn will need to be cleaned up.
195 	 * rds_tcp_state_change() will do that cleanup
196 	 */
197 	rs_tcp = rds_tcp_accept_one_path(conn);
198 	if (!rs_tcp)
199 		goto rst_nsk;
200 	mutex_lock(&rs_tcp->t_conn_path_lock);
201 	cp = rs_tcp->t_cpath;
202 	conn_state = rds_conn_path_state(cp);
203 	WARN_ON(conn_state == RDS_CONN_UP);
204 	if (conn_state != RDS_CONN_CONNECTING && conn_state != RDS_CONN_ERROR)
205 		goto rst_nsk;
206 	if (rs_tcp->t_sock) {
207 		/* Duelling SYN has been handled in rds_tcp_accept_one() */
208 		rds_tcp_reset_callbacks(new_sock, cp);
209 		/* rds_connect_path_complete() marks RDS_CONN_UP */
210 		rds_connect_path_complete(cp, RDS_CONN_RESETTING);
211 	} else {
212 		rds_tcp_set_callbacks(new_sock, cp);
213 		rds_connect_path_complete(cp, RDS_CONN_CONNECTING);
214 	}
215 	new_sock = NULL;
216 	ret = 0;
217 	if (conn->c_npaths == 0)
218 		rds_send_ping(cp->cp_conn, cp->cp_index);
219 	goto out;
220 rst_nsk:
221 	/* reset the newly returned accept sock and bail.
222 	 * It is safe to set linger on new_sock because the RDS connection
223 	 * has not been brought up on new_sock, so no RDS-level data could
224 	 * be pending on it. By setting linger, we achieve the side-effect
225 	 * of avoiding TIME_WAIT state on new_sock.
226 	 */
227 	sock_no_linger(new_sock->sk);
228 	kernel_sock_shutdown(new_sock, SHUT_RDWR);
229 	ret = 0;
230 out:
231 	if (rs_tcp)
232 		mutex_unlock(&rs_tcp->t_conn_path_lock);
233 	if (new_sock)
234 		sock_release(new_sock);
235 	return ret;
236 }
237 
rds_tcp_listen_data_ready(struct sock * sk)238 void rds_tcp_listen_data_ready(struct sock *sk)
239 {
240 	void (*ready)(struct sock *sk);
241 
242 	trace_sk_data_ready(sk);
243 	rdsdebug("listen data ready sk %p\n", sk);
244 
245 	read_lock_bh(&sk->sk_callback_lock);
246 	ready = sk->sk_user_data;
247 	if (!ready) { /* check for teardown race */
248 		ready = sk->sk_data_ready;
249 		goto out;
250 	}
251 
252 	/*
253 	 * ->sk_data_ready is also called for a newly established child socket
254 	 * before it has been accepted and the accepter has set up their
255 	 * data_ready.. we only want to queue listen work for our listening
256 	 * socket
257 	 *
258 	 * (*ready)() may be null if we are racing with netns delete, and
259 	 * the listen socket is being torn down.
260 	 */
261 	if (sk->sk_state == TCP_LISTEN)
262 		rds_tcp_accept_work(sk);
263 	else
264 		ready = rds_tcp_listen_sock_def_readable(sock_net(sk));
265 
266 out:
267 	read_unlock_bh(&sk->sk_callback_lock);
268 	if (ready)
269 		ready(sk);
270 }
271 
rds_tcp_listen_init(struct net * net,bool isv6)272 struct socket *rds_tcp_listen_init(struct net *net, bool isv6)
273 {
274 	struct socket *sock = NULL;
275 	struct sockaddr_storage ss;
276 	struct sockaddr_in6 *sin6;
277 	struct sockaddr_in *sin;
278 	int addr_len;
279 	int ret;
280 
281 	ret = sock_create_kern(net, isv6 ? PF_INET6 : PF_INET, SOCK_STREAM,
282 			       IPPROTO_TCP, &sock);
283 	if (ret < 0) {
284 		rdsdebug("could not create %s listener socket: %d\n",
285 			 isv6 ? "IPv6" : "IPv4", ret);
286 		goto out;
287 	}
288 
289 	sock->sk->sk_reuse = SK_CAN_REUSE;
290 	tcp_sock_set_nodelay(sock->sk);
291 
292 	write_lock_bh(&sock->sk->sk_callback_lock);
293 	sock->sk->sk_user_data = sock->sk->sk_data_ready;
294 	sock->sk->sk_data_ready = rds_tcp_listen_data_ready;
295 	write_unlock_bh(&sock->sk->sk_callback_lock);
296 
297 	if (isv6) {
298 		sin6 = (struct sockaddr_in6 *)&ss;
299 		sin6->sin6_family = PF_INET6;
300 		sin6->sin6_addr = in6addr_any;
301 		sin6->sin6_port = (__force u16)htons(RDS_TCP_PORT);
302 		sin6->sin6_scope_id = 0;
303 		sin6->sin6_flowinfo = 0;
304 		addr_len = sizeof(*sin6);
305 	} else {
306 		sin = (struct sockaddr_in *)&ss;
307 		sin->sin_family = PF_INET;
308 		sin->sin_addr.s_addr = INADDR_ANY;
309 		sin->sin_port = (__force u16)htons(RDS_TCP_PORT);
310 		addr_len = sizeof(*sin);
311 	}
312 
313 	ret = kernel_bind(sock, (struct sockaddr *)&ss, addr_len);
314 	if (ret < 0) {
315 		rdsdebug("could not bind %s listener socket: %d\n",
316 			 isv6 ? "IPv6" : "IPv4", ret);
317 		goto out;
318 	}
319 
320 	ret = sock->ops->listen(sock, 64);
321 	if (ret < 0)
322 		goto out;
323 
324 	return sock;
325 out:
326 	if (sock)
327 		sock_release(sock);
328 	return NULL;
329 }
330 
rds_tcp_listen_stop(struct socket * sock,struct work_struct * acceptor)331 void rds_tcp_listen_stop(struct socket *sock, struct work_struct *acceptor)
332 {
333 	struct sock *sk;
334 
335 	if (!sock)
336 		return;
337 
338 	sk = sock->sk;
339 
340 	/* serialize with and prevent further callbacks */
341 	lock_sock(sk);
342 	write_lock_bh(&sk->sk_callback_lock);
343 	if (sk->sk_user_data) {
344 		sk->sk_data_ready = sk->sk_user_data;
345 		sk->sk_user_data = NULL;
346 	}
347 	write_unlock_bh(&sk->sk_callback_lock);
348 	release_sock(sk);
349 
350 	/* wait for accepts to stop and close the socket */
351 	flush_workqueue(rds_wq);
352 	flush_work(acceptor);
353 	sock_release(sock);
354 }
355