1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp_states.h>
19 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
20 #include <net/transp_v6.h>
21 #endif
22 #include <net/mptcp.h>
23 #include <net/hotdata.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51 
52 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 	return READ_ONCE(msk->wnd_end);
56 }
57 
mptcp_fallback_tcp_ops(const struct sock * sk)58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
59 {
60 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
61 	if (sk->sk_prot == &tcpv6_prot)
62 		return &inet6_stream_ops;
63 #endif
64 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
65 	return &inet_stream_ops;
66 }
67 
__mptcp_socket_create(struct mptcp_sock * msk)68 static int __mptcp_socket_create(struct mptcp_sock *msk)
69 {
70 	struct mptcp_subflow_context *subflow;
71 	struct sock *sk = (struct sock *)msk;
72 	struct socket *ssock;
73 	int err;
74 
75 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
76 	if (err)
77 		return err;
78 
79 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
80 	WRITE_ONCE(msk->first, ssock->sk);
81 	subflow = mptcp_subflow_ctx(ssock->sk);
82 	list_add(&subflow->node, &msk->conn_list);
83 	sock_hold(ssock->sk);
84 	subflow->request_mptcp = 1;
85 	subflow->subflow_id = msk->subflow_id++;
86 
87 	/* This is the first subflow, always with id 0 */
88 	WRITE_ONCE(subflow->local_id, 0);
89 	mptcp_sock_graft(msk->first, sk->sk_socket);
90 	iput(SOCK_INODE(ssock));
91 
92 	return 0;
93 }
94 
95 /* If the MPC handshake is not started, returns the first subflow,
96  * eventually allocating it.
97  */
__mptcp_nmpc_sk(struct mptcp_sock * msk)98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
99 {
100 	struct sock *sk = (struct sock *)msk;
101 	int ret;
102 
103 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
104 		return ERR_PTR(-EINVAL);
105 
106 	if (!msk->first) {
107 		ret = __mptcp_socket_create(msk);
108 		if (ret)
109 			return ERR_PTR(ret);
110 	}
111 
112 	return msk->first;
113 }
114 
mptcp_drop(struct sock * sk,struct sk_buff * skb)115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
116 {
117 	sk_drops_add(sk, skb);
118 	__kfree_skb(skb);
119 }
120 
mptcp_rmem_fwd_alloc_add(struct sock * sk,int size)121 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
122 {
123 	WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
124 		   mptcp_sk(sk)->rmem_fwd_alloc + size);
125 }
126 
mptcp_rmem_charge(struct sock * sk,int size)127 static void mptcp_rmem_charge(struct sock *sk, int size)
128 {
129 	mptcp_rmem_fwd_alloc_add(sk, -size);
130 }
131 
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)132 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
133 			       struct sk_buff *from)
134 {
135 	bool fragstolen;
136 	int delta;
137 
138 	if (MPTCP_SKB_CB(from)->offset ||
139 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
140 		return false;
141 
142 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
143 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
144 		 to->len, MPTCP_SKB_CB(from)->end_seq);
145 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
146 
147 	/* note the fwd memory can reach a negative value after accounting
148 	 * for the delta, but the later skb free will restore a non
149 	 * negative one
150 	 */
151 	atomic_add(delta, &sk->sk_rmem_alloc);
152 	mptcp_rmem_charge(sk, delta);
153 	kfree_skb_partial(from, fragstolen);
154 
155 	return true;
156 }
157 
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)158 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
159 				   struct sk_buff *from)
160 {
161 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
162 		return false;
163 
164 	return mptcp_try_coalesce((struct sock *)msk, to, from);
165 }
166 
__mptcp_rmem_reclaim(struct sock * sk,int amount)167 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
168 {
169 	amount >>= PAGE_SHIFT;
170 	mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
171 	__sk_mem_reduce_allocated(sk, amount);
172 }
173 
mptcp_rmem_uncharge(struct sock * sk,int size)174 static void mptcp_rmem_uncharge(struct sock *sk, int size)
175 {
176 	struct mptcp_sock *msk = mptcp_sk(sk);
177 	int reclaimable;
178 
179 	mptcp_rmem_fwd_alloc_add(sk, size);
180 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
181 
182 	/* see sk_mem_uncharge() for the rationale behind the following schema */
183 	if (unlikely(reclaimable >= PAGE_SIZE))
184 		__mptcp_rmem_reclaim(sk, reclaimable);
185 }
186 
mptcp_rfree(struct sk_buff * skb)187 static void mptcp_rfree(struct sk_buff *skb)
188 {
189 	unsigned int len = skb->truesize;
190 	struct sock *sk = skb->sk;
191 
192 	atomic_sub(len, &sk->sk_rmem_alloc);
193 	mptcp_rmem_uncharge(sk, len);
194 }
195 
mptcp_set_owner_r(struct sk_buff * skb,struct sock * sk)196 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
197 {
198 	skb_orphan(skb);
199 	skb->sk = sk;
200 	skb->destructor = mptcp_rfree;
201 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
202 	mptcp_rmem_charge(sk, skb->truesize);
203 }
204 
205 /* "inspired" by tcp_data_queue_ofo(), main differences:
206  * - use mptcp seqs
207  * - don't cope with sacks
208  */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)209 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
210 {
211 	struct sock *sk = (struct sock *)msk;
212 	struct rb_node **p, *parent;
213 	u64 seq, end_seq, max_seq;
214 	struct sk_buff *skb1;
215 
216 	seq = MPTCP_SKB_CB(skb)->map_seq;
217 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
218 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
219 
220 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
221 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
222 	if (after64(end_seq, max_seq)) {
223 		/* out of window */
224 		mptcp_drop(sk, skb);
225 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
226 			 (unsigned long long)end_seq - (unsigned long)max_seq,
227 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
228 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
229 		return;
230 	}
231 
232 	p = &msk->out_of_order_queue.rb_node;
233 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
234 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
235 		rb_link_node(&skb->rbnode, NULL, p);
236 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
237 		msk->ooo_last_skb = skb;
238 		goto end;
239 	}
240 
241 	/* with 2 subflows, adding at end of ooo queue is quite likely
242 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
243 	 */
244 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
245 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
246 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
247 		return;
248 	}
249 
250 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
251 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
252 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
253 		parent = &msk->ooo_last_skb->rbnode;
254 		p = &parent->rb_right;
255 		goto insert;
256 	}
257 
258 	/* Find place to insert this segment. Handle overlaps on the way. */
259 	parent = NULL;
260 	while (*p) {
261 		parent = *p;
262 		skb1 = rb_to_skb(parent);
263 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
264 			p = &parent->rb_left;
265 			continue;
266 		}
267 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
268 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
269 				/* All the bits are present. Drop. */
270 				mptcp_drop(sk, skb);
271 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
272 				return;
273 			}
274 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
275 				/* partial overlap:
276 				 *     |     skb      |
277 				 *  |     skb1    |
278 				 * continue traversing
279 				 */
280 			} else {
281 				/* skb's seq == skb1's seq and skb covers skb1.
282 				 * Replace skb1 with skb.
283 				 */
284 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
285 						&msk->out_of_order_queue);
286 				mptcp_drop(sk, skb1);
287 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
288 				goto merge_right;
289 			}
290 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
291 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
292 			return;
293 		}
294 		p = &parent->rb_right;
295 	}
296 
297 insert:
298 	/* Insert segment into RB tree. */
299 	rb_link_node(&skb->rbnode, parent, p);
300 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
301 
302 merge_right:
303 	/* Remove other segments covered by skb. */
304 	while ((skb1 = skb_rb_next(skb)) != NULL) {
305 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
306 			break;
307 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
308 		mptcp_drop(sk, skb1);
309 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
310 	}
311 	/* If there is no skb after us, we are the last_skb ! */
312 	if (!skb1)
313 		msk->ooo_last_skb = skb;
314 
315 end:
316 	skb_condense(skb);
317 	mptcp_set_owner_r(skb, sk);
318 }
319 
mptcp_rmem_schedule(struct sock * sk,struct sock * ssk,int size)320 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
321 {
322 	struct mptcp_sock *msk = mptcp_sk(sk);
323 	int amt, amount;
324 
325 	if (size <= msk->rmem_fwd_alloc)
326 		return true;
327 
328 	size -= msk->rmem_fwd_alloc;
329 	amt = sk_mem_pages(size);
330 	amount = amt << PAGE_SHIFT;
331 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
332 		return false;
333 
334 	mptcp_rmem_fwd_alloc_add(sk, amount);
335 	return true;
336 }
337 
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)338 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
339 			     struct sk_buff *skb, unsigned int offset,
340 			     size_t copy_len)
341 {
342 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
343 	struct sock *sk = (struct sock *)msk;
344 	struct sk_buff *tail;
345 	bool has_rxtstamp;
346 
347 	__skb_unlink(skb, &ssk->sk_receive_queue);
348 
349 	skb_ext_reset(skb);
350 	skb_orphan(skb);
351 
352 	/* try to fetch required memory from subflow */
353 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) {
354 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
355 		goto drop;
356 	}
357 
358 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
359 
360 	/* the skb map_seq accounts for the skb offset:
361 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
362 	 * value
363 	 */
364 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
365 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
366 	MPTCP_SKB_CB(skb)->offset = offset;
367 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
368 
369 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
370 		/* in sequence */
371 		msk->bytes_received += copy_len;
372 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
373 		tail = skb_peek_tail(&sk->sk_receive_queue);
374 		if (tail && mptcp_try_coalesce(sk, tail, skb))
375 			return true;
376 
377 		mptcp_set_owner_r(skb, sk);
378 		__skb_queue_tail(&sk->sk_receive_queue, skb);
379 		return true;
380 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
381 		mptcp_data_queue_ofo(msk, skb);
382 		return false;
383 	}
384 
385 	/* old data, keep it simple and drop the whole pkt, sender
386 	 * will retransmit as needed, if needed.
387 	 */
388 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
389 drop:
390 	mptcp_drop(sk, skb);
391 	return false;
392 }
393 
mptcp_stop_rtx_timer(struct sock * sk)394 static void mptcp_stop_rtx_timer(struct sock *sk)
395 {
396 	struct inet_connection_sock *icsk = inet_csk(sk);
397 
398 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
399 	mptcp_sk(sk)->timer_ival = 0;
400 }
401 
mptcp_close_wake_up(struct sock * sk)402 static void mptcp_close_wake_up(struct sock *sk)
403 {
404 	if (sock_flag(sk, SOCK_DEAD))
405 		return;
406 
407 	sk->sk_state_change(sk);
408 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
409 	    sk->sk_state == TCP_CLOSE)
410 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
411 	else
412 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
413 }
414 
415 /* called under the msk socket lock */
mptcp_pending_data_fin_ack(struct sock * sk)416 static bool mptcp_pending_data_fin_ack(struct sock *sk)
417 {
418 	struct mptcp_sock *msk = mptcp_sk(sk);
419 
420 	return ((1 << sk->sk_state) &
421 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
422 	       msk->write_seq == READ_ONCE(msk->snd_una);
423 }
424 
mptcp_check_data_fin_ack(struct sock * sk)425 static void mptcp_check_data_fin_ack(struct sock *sk)
426 {
427 	struct mptcp_sock *msk = mptcp_sk(sk);
428 
429 	/* Look for an acknowledged DATA_FIN */
430 	if (mptcp_pending_data_fin_ack(sk)) {
431 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
432 
433 		switch (sk->sk_state) {
434 		case TCP_FIN_WAIT1:
435 			mptcp_set_state(sk, TCP_FIN_WAIT2);
436 			break;
437 		case TCP_CLOSING:
438 		case TCP_LAST_ACK:
439 			mptcp_set_state(sk, TCP_CLOSE);
440 			break;
441 		}
442 
443 		mptcp_close_wake_up(sk);
444 	}
445 }
446 
447 /* can be called with no lock acquired */
mptcp_pending_data_fin(struct sock * sk,u64 * seq)448 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
449 {
450 	struct mptcp_sock *msk = mptcp_sk(sk);
451 
452 	if (READ_ONCE(msk->rcv_data_fin) &&
453 	    ((1 << inet_sk_state_load(sk)) &
454 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
455 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
456 
457 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
458 			if (seq)
459 				*seq = rcv_data_fin_seq;
460 
461 			return true;
462 		}
463 	}
464 
465 	return false;
466 }
467 
mptcp_set_datafin_timeout(struct sock * sk)468 static void mptcp_set_datafin_timeout(struct sock *sk)
469 {
470 	struct inet_connection_sock *icsk = inet_csk(sk);
471 	u32 retransmits;
472 
473 	retransmits = min_t(u32, icsk->icsk_retransmits,
474 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
475 
476 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
477 }
478 
__mptcp_set_timeout(struct sock * sk,long tout)479 static void __mptcp_set_timeout(struct sock *sk, long tout)
480 {
481 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
482 }
483 
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)484 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
485 {
486 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
487 
488 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
489 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
490 }
491 
mptcp_set_timeout(struct sock * sk)492 static void mptcp_set_timeout(struct sock *sk)
493 {
494 	struct mptcp_subflow_context *subflow;
495 	long tout = 0;
496 
497 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
498 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
499 	__mptcp_set_timeout(sk, tout);
500 }
501 
tcp_can_send_ack(const struct sock * ssk)502 static inline bool tcp_can_send_ack(const struct sock *ssk)
503 {
504 	return !((1 << inet_sk_state_load(ssk)) &
505 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
506 }
507 
__mptcp_subflow_send_ack(struct sock * ssk)508 void __mptcp_subflow_send_ack(struct sock *ssk)
509 {
510 	if (tcp_can_send_ack(ssk))
511 		tcp_send_ack(ssk);
512 }
513 
mptcp_subflow_send_ack(struct sock * ssk)514 static void mptcp_subflow_send_ack(struct sock *ssk)
515 {
516 	bool slow;
517 
518 	slow = lock_sock_fast(ssk);
519 	__mptcp_subflow_send_ack(ssk);
520 	unlock_sock_fast(ssk, slow);
521 }
522 
mptcp_send_ack(struct mptcp_sock * msk)523 static void mptcp_send_ack(struct mptcp_sock *msk)
524 {
525 	struct mptcp_subflow_context *subflow;
526 
527 	mptcp_for_each_subflow(msk, subflow)
528 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
529 }
530 
mptcp_subflow_cleanup_rbuf(struct sock * ssk)531 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
532 {
533 	bool slow;
534 
535 	slow = lock_sock_fast(ssk);
536 	if (tcp_can_send_ack(ssk))
537 		tcp_cleanup_rbuf(ssk, 1);
538 	unlock_sock_fast(ssk, slow);
539 }
540 
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)541 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
542 {
543 	const struct inet_connection_sock *icsk = inet_csk(ssk);
544 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
545 	const struct tcp_sock *tp = tcp_sk(ssk);
546 
547 	return (ack_pending & ICSK_ACK_SCHED) &&
548 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
549 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
550 		 (rx_empty && ack_pending &
551 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
552 }
553 
mptcp_cleanup_rbuf(struct mptcp_sock * msk)554 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
555 {
556 	int old_space = READ_ONCE(msk->old_wspace);
557 	struct mptcp_subflow_context *subflow;
558 	struct sock *sk = (struct sock *)msk;
559 	int space =  __mptcp_space(sk);
560 	bool cleanup, rx_empty;
561 
562 	cleanup = (space > 0) && (space >= (old_space << 1));
563 	rx_empty = !__mptcp_rmem(sk);
564 
565 	mptcp_for_each_subflow(msk, subflow) {
566 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
567 
568 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
569 			mptcp_subflow_cleanup_rbuf(ssk);
570 	}
571 }
572 
mptcp_check_data_fin(struct sock * sk)573 static bool mptcp_check_data_fin(struct sock *sk)
574 {
575 	struct mptcp_sock *msk = mptcp_sk(sk);
576 	u64 rcv_data_fin_seq;
577 	bool ret = false;
578 
579 	/* Need to ack a DATA_FIN received from a peer while this side
580 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
581 	 * msk->rcv_data_fin was set when parsing the incoming options
582 	 * at the subflow level and the msk lock was not held, so this
583 	 * is the first opportunity to act on the DATA_FIN and change
584 	 * the msk state.
585 	 *
586 	 * If we are caught up to the sequence number of the incoming
587 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
588 	 * not caught up, do nothing and let the recv code send DATA_ACK
589 	 * when catching up.
590 	 */
591 
592 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
593 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
594 		WRITE_ONCE(msk->rcv_data_fin, 0);
595 
596 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
597 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
598 
599 		switch (sk->sk_state) {
600 		case TCP_ESTABLISHED:
601 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
602 			break;
603 		case TCP_FIN_WAIT1:
604 			mptcp_set_state(sk, TCP_CLOSING);
605 			break;
606 		case TCP_FIN_WAIT2:
607 			mptcp_set_state(sk, TCP_CLOSE);
608 			break;
609 		default:
610 			/* Other states not expected */
611 			WARN_ON_ONCE(1);
612 			break;
613 		}
614 
615 		ret = true;
616 		if (!__mptcp_check_fallback(msk))
617 			mptcp_send_ack(msk);
618 		mptcp_close_wake_up(sk);
619 	}
620 	return ret;
621 }
622 
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)623 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
624 {
625 	if (READ_ONCE(msk->allow_infinite_fallback)) {
626 		MPTCP_INC_STATS(sock_net(ssk),
627 				MPTCP_MIB_DSSCORRUPTIONFALLBACK);
628 		mptcp_do_fallback(ssk);
629 	} else {
630 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
631 		mptcp_subflow_reset(ssk);
632 	}
633 }
634 
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk,unsigned int * bytes)635 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
636 					   struct sock *ssk,
637 					   unsigned int *bytes)
638 {
639 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
640 	struct sock *sk = (struct sock *)msk;
641 	unsigned int moved = 0;
642 	bool more_data_avail;
643 	struct tcp_sock *tp;
644 	bool done = false;
645 	int sk_rbuf;
646 
647 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
648 
649 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
650 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
651 
652 		if (unlikely(ssk_rbuf > sk_rbuf)) {
653 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
654 			sk_rbuf = ssk_rbuf;
655 		}
656 	}
657 
658 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
659 	tp = tcp_sk(ssk);
660 	do {
661 		u32 map_remaining, offset;
662 		u32 seq = tp->copied_seq;
663 		struct sk_buff *skb;
664 		bool fin;
665 
666 		/* try to move as much data as available */
667 		map_remaining = subflow->map_data_len -
668 				mptcp_subflow_get_map_offset(subflow);
669 
670 		skb = skb_peek(&ssk->sk_receive_queue);
671 		if (!skb) {
672 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
673 			 * a different CPU can have already processed the pending
674 			 * data, stop here or we can enter an infinite loop
675 			 */
676 			if (!moved)
677 				done = true;
678 			break;
679 		}
680 
681 		if (__mptcp_check_fallback(msk)) {
682 			/* Under fallback skbs have no MPTCP extension and TCP could
683 			 * collapse them between the dummy map creation and the
684 			 * current dequeue. Be sure to adjust the map size.
685 			 */
686 			map_remaining = skb->len;
687 			subflow->map_data_len = skb->len;
688 		}
689 
690 		offset = seq - TCP_SKB_CB(skb)->seq;
691 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
692 		if (fin) {
693 			done = true;
694 			seq++;
695 		}
696 
697 		if (offset < skb->len) {
698 			size_t len = skb->len - offset;
699 
700 			if (tp->urg_data)
701 				done = true;
702 
703 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
704 				moved += len;
705 			seq += len;
706 
707 			if (unlikely(map_remaining < len)) {
708 				DEBUG_NET_WARN_ON_ONCE(1);
709 				mptcp_dss_corruption(msk, ssk);
710 			}
711 		} else {
712 			if (unlikely(!fin)) {
713 				DEBUG_NET_WARN_ON_ONCE(1);
714 				mptcp_dss_corruption(msk, ssk);
715 			}
716 
717 			sk_eat_skb(ssk, skb);
718 			done = true;
719 		}
720 
721 		WRITE_ONCE(tp->copied_seq, seq);
722 		more_data_avail = mptcp_subflow_data_available(ssk);
723 
724 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
725 			done = true;
726 			break;
727 		}
728 	} while (more_data_avail);
729 
730 	if (moved > 0)
731 		msk->last_data_recv = tcp_jiffies32;
732 	*bytes += moved;
733 	return done;
734 }
735 
__mptcp_ofo_queue(struct mptcp_sock * msk)736 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
737 {
738 	struct sock *sk = (struct sock *)msk;
739 	struct sk_buff *skb, *tail;
740 	bool moved = false;
741 	struct rb_node *p;
742 	u64 end_seq;
743 
744 	p = rb_first(&msk->out_of_order_queue);
745 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
746 	while (p) {
747 		skb = rb_to_skb(p);
748 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
749 			break;
750 
751 		p = rb_next(p);
752 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
753 
754 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
755 				      msk->ack_seq))) {
756 			mptcp_drop(sk, skb);
757 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
758 			continue;
759 		}
760 
761 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
762 		tail = skb_peek_tail(&sk->sk_receive_queue);
763 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
764 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
765 
766 			/* skip overlapping data, if any */
767 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
768 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
769 				 delta);
770 			MPTCP_SKB_CB(skb)->offset += delta;
771 			MPTCP_SKB_CB(skb)->map_seq += delta;
772 			__skb_queue_tail(&sk->sk_receive_queue, skb);
773 		}
774 		msk->bytes_received += end_seq - msk->ack_seq;
775 		WRITE_ONCE(msk->ack_seq, end_seq);
776 		moved = true;
777 	}
778 	return moved;
779 }
780 
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)781 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
782 {
783 	int err = sock_error(ssk);
784 	int ssk_state;
785 
786 	if (!err)
787 		return false;
788 
789 	/* only propagate errors on fallen-back sockets or
790 	 * on MPC connect
791 	 */
792 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
793 		return false;
794 
795 	/* We need to propagate only transition to CLOSE state.
796 	 * Orphaned socket will see such state change via
797 	 * subflow_sched_work_if_closed() and that path will properly
798 	 * destroy the msk as needed.
799 	 */
800 	ssk_state = inet_sk_state_load(ssk);
801 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
802 		mptcp_set_state(sk, ssk_state);
803 	WRITE_ONCE(sk->sk_err, -err);
804 
805 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
806 	smp_wmb();
807 	sk_error_report(sk);
808 	return true;
809 }
810 
__mptcp_error_report(struct sock * sk)811 void __mptcp_error_report(struct sock *sk)
812 {
813 	struct mptcp_subflow_context *subflow;
814 	struct mptcp_sock *msk = mptcp_sk(sk);
815 
816 	mptcp_for_each_subflow(msk, subflow)
817 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
818 			break;
819 }
820 
821 /* In most cases we will be able to lock the mptcp socket.  If its already
822  * owned, we need to defer to the work queue to avoid ABBA deadlock.
823  */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)824 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
825 {
826 	struct sock *sk = (struct sock *)msk;
827 	unsigned int moved = 0;
828 
829 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
830 	__mptcp_ofo_queue(msk);
831 	if (unlikely(ssk->sk_err)) {
832 		if (!sock_owned_by_user(sk))
833 			__mptcp_error_report(sk);
834 		else
835 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
836 	}
837 
838 	/* If the moves have caught up with the DATA_FIN sequence number
839 	 * it's time to ack the DATA_FIN and change socket state, but
840 	 * this is not a good place to change state. Let the workqueue
841 	 * do it.
842 	 */
843 	if (mptcp_pending_data_fin(sk, NULL))
844 		mptcp_schedule_work(sk);
845 	return moved > 0;
846 }
847 
mptcp_data_ready(struct sock * sk,struct sock * ssk)848 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
849 {
850 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
851 	struct mptcp_sock *msk = mptcp_sk(sk);
852 	int sk_rbuf, ssk_rbuf;
853 
854 	/* The peer can send data while we are shutting down this
855 	 * subflow at msk destruction time, but we must avoid enqueuing
856 	 * more data to the msk receive queue
857 	 */
858 	if (unlikely(subflow->disposable))
859 		return;
860 
861 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
862 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
863 	if (unlikely(ssk_rbuf > sk_rbuf))
864 		sk_rbuf = ssk_rbuf;
865 
866 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
867 	if (__mptcp_rmem(sk) > sk_rbuf)
868 		return;
869 
870 	/* Wake-up the reader only for in-sequence data */
871 	mptcp_data_lock(sk);
872 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
873 		sk->sk_data_ready(sk);
874 	mptcp_data_unlock(sk);
875 }
876 
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)877 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
878 {
879 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
880 	WRITE_ONCE(msk->allow_infinite_fallback, false);
881 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
882 }
883 
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)884 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
885 {
886 	struct sock *sk = (struct sock *)msk;
887 
888 	if (sk->sk_state != TCP_ESTABLISHED)
889 		return false;
890 
891 	/* attach to msk socket only after we are sure we will deal with it
892 	 * at close time
893 	 */
894 	if (sk->sk_socket && !ssk->sk_socket)
895 		mptcp_sock_graft(ssk, sk->sk_socket);
896 
897 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
898 	mptcp_sockopt_sync_locked(msk, ssk);
899 	mptcp_subflow_joined(msk, ssk);
900 	mptcp_stop_tout_timer(sk);
901 	__mptcp_propagate_sndbuf(sk, ssk);
902 	return true;
903 }
904 
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)905 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
906 {
907 	struct mptcp_subflow_context *tmp, *subflow;
908 	struct mptcp_sock *msk = mptcp_sk(sk);
909 
910 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
911 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
912 		bool slow = lock_sock_fast(ssk);
913 
914 		list_move_tail(&subflow->node, &msk->conn_list);
915 		if (!__mptcp_finish_join(msk, ssk))
916 			mptcp_subflow_reset(ssk);
917 		unlock_sock_fast(ssk, slow);
918 	}
919 }
920 
mptcp_rtx_timer_pending(struct sock * sk)921 static bool mptcp_rtx_timer_pending(struct sock *sk)
922 {
923 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
924 }
925 
mptcp_reset_rtx_timer(struct sock * sk)926 static void mptcp_reset_rtx_timer(struct sock *sk)
927 {
928 	struct inet_connection_sock *icsk = inet_csk(sk);
929 	unsigned long tout;
930 
931 	/* prevent rescheduling on close */
932 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
933 		return;
934 
935 	tout = mptcp_sk(sk)->timer_ival;
936 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
937 }
938 
mptcp_schedule_work(struct sock * sk)939 bool mptcp_schedule_work(struct sock *sk)
940 {
941 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
942 	    schedule_work(&mptcp_sk(sk)->work)) {
943 		/* each subflow already holds a reference to the sk, and the
944 		 * workqueue is invoked by a subflow, so sk can't go away here.
945 		 */
946 		sock_hold(sk);
947 		return true;
948 	}
949 	return false;
950 }
951 
mptcp_subflow_recv_lookup(const struct mptcp_sock * msk)952 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
953 {
954 	struct mptcp_subflow_context *subflow;
955 
956 	msk_owned_by_me(msk);
957 
958 	mptcp_for_each_subflow(msk, subflow) {
959 		if (READ_ONCE(subflow->data_avail))
960 			return mptcp_subflow_tcp_sock(subflow);
961 	}
962 
963 	return NULL;
964 }
965 
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)966 static bool mptcp_skb_can_collapse_to(u64 write_seq,
967 				      const struct sk_buff *skb,
968 				      const struct mptcp_ext *mpext)
969 {
970 	if (!tcp_skb_can_collapse_to(skb))
971 		return false;
972 
973 	/* can collapse only if MPTCP level sequence is in order and this
974 	 * mapping has not been xmitted yet
975 	 */
976 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
977 	       !mpext->frozen;
978 }
979 
980 /* we can append data to the given data frag if:
981  * - there is space available in the backing page_frag
982  * - the data frag tail matches the current page_frag free offset
983  * - the data frag end sequence number matches the current write seq
984  */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)985 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
986 				       const struct page_frag *pfrag,
987 				       const struct mptcp_data_frag *df)
988 {
989 	return df && pfrag->page == df->page &&
990 		pfrag->size - pfrag->offset > 0 &&
991 		pfrag->offset == (df->offset + df->data_len) &&
992 		df->data_seq + df->data_len == msk->write_seq;
993 }
994 
dfrag_uncharge(struct sock * sk,int len)995 static void dfrag_uncharge(struct sock *sk, int len)
996 {
997 	sk_mem_uncharge(sk, len);
998 	sk_wmem_queued_add(sk, -len);
999 }
1000 
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)1001 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1002 {
1003 	int len = dfrag->data_len + dfrag->overhead;
1004 
1005 	list_del(&dfrag->list);
1006 	dfrag_uncharge(sk, len);
1007 	put_page(dfrag->page);
1008 }
1009 
1010 /* called under both the msk socket lock and the data lock */
__mptcp_clean_una(struct sock * sk)1011 static void __mptcp_clean_una(struct sock *sk)
1012 {
1013 	struct mptcp_sock *msk = mptcp_sk(sk);
1014 	struct mptcp_data_frag *dtmp, *dfrag;
1015 	u64 snd_una;
1016 
1017 	snd_una = msk->snd_una;
1018 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1019 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1020 			break;
1021 
1022 		if (unlikely(dfrag == msk->first_pending)) {
1023 			/* in recovery mode can see ack after the current snd head */
1024 			if (WARN_ON_ONCE(!msk->recovery))
1025 				break;
1026 
1027 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1028 		}
1029 
1030 		dfrag_clear(sk, dfrag);
1031 	}
1032 
1033 	dfrag = mptcp_rtx_head(sk);
1034 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1035 		u64 delta = snd_una - dfrag->data_seq;
1036 
1037 		/* prevent wrap around in recovery mode */
1038 		if (unlikely(delta > dfrag->already_sent)) {
1039 			if (WARN_ON_ONCE(!msk->recovery))
1040 				goto out;
1041 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1042 				goto out;
1043 			dfrag->already_sent += delta - dfrag->already_sent;
1044 		}
1045 
1046 		dfrag->data_seq += delta;
1047 		dfrag->offset += delta;
1048 		dfrag->data_len -= delta;
1049 		dfrag->already_sent -= delta;
1050 
1051 		dfrag_uncharge(sk, delta);
1052 	}
1053 
1054 	/* all retransmitted data acked, recovery completed */
1055 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1056 		msk->recovery = false;
1057 
1058 out:
1059 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1060 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1061 			mptcp_stop_rtx_timer(sk);
1062 	} else {
1063 		mptcp_reset_rtx_timer(sk);
1064 	}
1065 
1066 	if (mptcp_pending_data_fin_ack(sk))
1067 		mptcp_schedule_work(sk);
1068 }
1069 
__mptcp_clean_una_wakeup(struct sock * sk)1070 static void __mptcp_clean_una_wakeup(struct sock *sk)
1071 {
1072 	lockdep_assert_held_once(&sk->sk_lock.slock);
1073 
1074 	__mptcp_clean_una(sk);
1075 	mptcp_write_space(sk);
1076 }
1077 
mptcp_clean_una_wakeup(struct sock * sk)1078 static void mptcp_clean_una_wakeup(struct sock *sk)
1079 {
1080 	mptcp_data_lock(sk);
1081 	__mptcp_clean_una_wakeup(sk);
1082 	mptcp_data_unlock(sk);
1083 }
1084 
mptcp_enter_memory_pressure(struct sock * sk)1085 static void mptcp_enter_memory_pressure(struct sock *sk)
1086 {
1087 	struct mptcp_subflow_context *subflow;
1088 	struct mptcp_sock *msk = mptcp_sk(sk);
1089 	bool first = true;
1090 
1091 	mptcp_for_each_subflow(msk, subflow) {
1092 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1093 
1094 		if (first)
1095 			tcp_enter_memory_pressure(ssk);
1096 		sk_stream_moderate_sndbuf(ssk);
1097 
1098 		first = false;
1099 	}
1100 	__mptcp_sync_sndbuf(sk);
1101 }
1102 
1103 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1104  * data
1105  */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1106 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1107 {
1108 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1109 					pfrag, sk->sk_allocation)))
1110 		return true;
1111 
1112 	mptcp_enter_memory_pressure(sk);
1113 	return false;
1114 }
1115 
1116 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1117 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1118 		      int orig_offset)
1119 {
1120 	int offset = ALIGN(orig_offset, sizeof(long));
1121 	struct mptcp_data_frag *dfrag;
1122 
1123 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1124 	dfrag->data_len = 0;
1125 	dfrag->data_seq = msk->write_seq;
1126 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1127 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1128 	dfrag->already_sent = 0;
1129 	dfrag->page = pfrag->page;
1130 
1131 	return dfrag;
1132 }
1133 
1134 struct mptcp_sendmsg_info {
1135 	int mss_now;
1136 	int size_goal;
1137 	u16 limit;
1138 	u16 sent;
1139 	unsigned int flags;
1140 	bool data_lock_held;
1141 };
1142 
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1143 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1144 				    u64 data_seq, int avail_size)
1145 {
1146 	u64 window_end = mptcp_wnd_end(msk);
1147 	u64 mptcp_snd_wnd;
1148 
1149 	if (__mptcp_check_fallback(msk))
1150 		return avail_size;
1151 
1152 	mptcp_snd_wnd = window_end - data_seq;
1153 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1154 
1155 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1156 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1157 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1158 	}
1159 
1160 	return avail_size;
1161 }
1162 
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1163 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1164 {
1165 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1166 
1167 	if (!mpext)
1168 		return false;
1169 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1170 	return true;
1171 }
1172 
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1173 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1174 {
1175 	struct sk_buff *skb;
1176 
1177 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1178 	if (likely(skb)) {
1179 		if (likely(__mptcp_add_ext(skb, gfp))) {
1180 			skb_reserve(skb, MAX_TCP_HEADER);
1181 			skb->ip_summed = CHECKSUM_PARTIAL;
1182 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1183 			return skb;
1184 		}
1185 		__kfree_skb(skb);
1186 	} else {
1187 		mptcp_enter_memory_pressure(sk);
1188 	}
1189 	return NULL;
1190 }
1191 
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1192 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1193 {
1194 	struct sk_buff *skb;
1195 
1196 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1197 	if (!skb)
1198 		return NULL;
1199 
1200 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1201 		tcp_skb_entail(ssk, skb);
1202 		return skb;
1203 	}
1204 	tcp_skb_tsorted_anchor_cleanup(skb);
1205 	kfree_skb(skb);
1206 	return NULL;
1207 }
1208 
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1209 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1210 {
1211 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1212 
1213 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1214 }
1215 
1216 /* note: this always recompute the csum on the whole skb, even
1217  * if we just appended a single frag. More status info needed
1218  */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1219 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1220 {
1221 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1222 	__wsum csum = ~csum_unfold(mpext->csum);
1223 	int offset = skb->len - added;
1224 
1225 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1226 }
1227 
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1228 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1229 				      struct sock *ssk,
1230 				      struct mptcp_ext *mpext)
1231 {
1232 	if (!mpext)
1233 		return;
1234 
1235 	mpext->infinite_map = 1;
1236 	mpext->data_len = 0;
1237 
1238 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1239 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1240 	pr_fallback(msk);
1241 	mptcp_do_fallback(ssk);
1242 }
1243 
1244 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1245 
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1246 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1247 			      struct mptcp_data_frag *dfrag,
1248 			      struct mptcp_sendmsg_info *info)
1249 {
1250 	u64 data_seq = dfrag->data_seq + info->sent;
1251 	int offset = dfrag->offset + info->sent;
1252 	struct mptcp_sock *msk = mptcp_sk(sk);
1253 	bool zero_window_probe = false;
1254 	struct mptcp_ext *mpext = NULL;
1255 	bool can_coalesce = false;
1256 	bool reuse_skb = true;
1257 	struct sk_buff *skb;
1258 	size_t copy;
1259 	int i;
1260 
1261 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1262 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1263 
1264 	if (WARN_ON_ONCE(info->sent > info->limit ||
1265 			 info->limit > dfrag->data_len))
1266 		return 0;
1267 
1268 	if (unlikely(!__tcp_can_send(ssk)))
1269 		return -EAGAIN;
1270 
1271 	/* compute send limit */
1272 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1273 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1274 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1275 	copy = info->size_goal;
1276 
1277 	skb = tcp_write_queue_tail(ssk);
1278 	if (skb && copy > skb->len) {
1279 		/* Limit the write to the size available in the
1280 		 * current skb, if any, so that we create at most a new skb.
1281 		 * Explicitly tells TCP internals to avoid collapsing on later
1282 		 * queue management operation, to avoid breaking the ext <->
1283 		 * SSN association set here
1284 		 */
1285 		mpext = mptcp_get_ext(skb);
1286 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1287 			TCP_SKB_CB(skb)->eor = 1;
1288 			tcp_mark_push(tcp_sk(ssk), skb);
1289 			goto alloc_skb;
1290 		}
1291 
1292 		i = skb_shinfo(skb)->nr_frags;
1293 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1294 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1295 			tcp_mark_push(tcp_sk(ssk), skb);
1296 			goto alloc_skb;
1297 		}
1298 
1299 		copy -= skb->len;
1300 	} else {
1301 alloc_skb:
1302 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1303 		if (!skb)
1304 			return -ENOMEM;
1305 
1306 		i = skb_shinfo(skb)->nr_frags;
1307 		reuse_skb = false;
1308 		mpext = mptcp_get_ext(skb);
1309 	}
1310 
1311 	/* Zero window and all data acked? Probe. */
1312 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1313 	if (copy == 0) {
1314 		u64 snd_una = READ_ONCE(msk->snd_una);
1315 
1316 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1317 			tcp_remove_empty_skb(ssk);
1318 			return 0;
1319 		}
1320 
1321 		zero_window_probe = true;
1322 		data_seq = snd_una - 1;
1323 		copy = 1;
1324 	}
1325 
1326 	copy = min_t(size_t, copy, info->limit - info->sent);
1327 	if (!sk_wmem_schedule(ssk, copy)) {
1328 		tcp_remove_empty_skb(ssk);
1329 		return -ENOMEM;
1330 	}
1331 
1332 	if (can_coalesce) {
1333 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1334 	} else {
1335 		get_page(dfrag->page);
1336 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1337 	}
1338 
1339 	skb->len += copy;
1340 	skb->data_len += copy;
1341 	skb->truesize += copy;
1342 	sk_wmem_queued_add(ssk, copy);
1343 	sk_mem_charge(ssk, copy);
1344 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1345 	TCP_SKB_CB(skb)->end_seq += copy;
1346 	tcp_skb_pcount_set(skb, 0);
1347 
1348 	/* on skb reuse we just need to update the DSS len */
1349 	if (reuse_skb) {
1350 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1351 		mpext->data_len += copy;
1352 		goto out;
1353 	}
1354 
1355 	memset(mpext, 0, sizeof(*mpext));
1356 	mpext->data_seq = data_seq;
1357 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1358 	mpext->data_len = copy;
1359 	mpext->use_map = 1;
1360 	mpext->dsn64 = 1;
1361 
1362 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1363 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1364 		 mpext->dsn64);
1365 
1366 	if (zero_window_probe) {
1367 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1368 		mpext->frozen = 1;
1369 		if (READ_ONCE(msk->csum_enabled))
1370 			mptcp_update_data_checksum(skb, copy);
1371 		tcp_push_pending_frames(ssk);
1372 		return 0;
1373 	}
1374 out:
1375 	if (READ_ONCE(msk->csum_enabled))
1376 		mptcp_update_data_checksum(skb, copy);
1377 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1378 		mptcp_update_infinite_map(msk, ssk, mpext);
1379 	trace_mptcp_sendmsg_frag(mpext);
1380 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1381 	return copy;
1382 }
1383 
1384 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1385 					 sizeof(struct tcphdr) - \
1386 					 MAX_TCP_OPTION_SPACE - \
1387 					 sizeof(struct ipv6hdr) - \
1388 					 sizeof(struct frag_hdr))
1389 
1390 struct subflow_send_info {
1391 	struct sock *ssk;
1392 	u64 linger_time;
1393 };
1394 
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1395 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1396 {
1397 	if (!subflow->stale)
1398 		return;
1399 
1400 	subflow->stale = 0;
1401 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1402 }
1403 
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1404 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1405 {
1406 	if (unlikely(subflow->stale)) {
1407 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1408 
1409 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1410 			return false;
1411 
1412 		mptcp_subflow_set_active(subflow);
1413 	}
1414 	return __mptcp_subflow_active(subflow);
1415 }
1416 
1417 #define SSK_MODE_ACTIVE	0
1418 #define SSK_MODE_BACKUP	1
1419 #define SSK_MODE_MAX	2
1420 
1421 /* implement the mptcp packet scheduler;
1422  * returns the subflow that will transmit the next DSS
1423  * additionally updates the rtx timeout
1424  */
mptcp_subflow_get_send(struct mptcp_sock * msk)1425 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1426 {
1427 	struct subflow_send_info send_info[SSK_MODE_MAX];
1428 	struct mptcp_subflow_context *subflow;
1429 	struct sock *sk = (struct sock *)msk;
1430 	u32 pace, burst, wmem;
1431 	int i, nr_active = 0;
1432 	struct sock *ssk;
1433 	u64 linger_time;
1434 	long tout = 0;
1435 
1436 	/* pick the subflow with the lower wmem/wspace ratio */
1437 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1438 		send_info[i].ssk = NULL;
1439 		send_info[i].linger_time = -1;
1440 	}
1441 
1442 	mptcp_for_each_subflow(msk, subflow) {
1443 		bool backup = subflow->backup || subflow->request_bkup;
1444 
1445 		trace_mptcp_subflow_get_send(subflow);
1446 		ssk =  mptcp_subflow_tcp_sock(subflow);
1447 		if (!mptcp_subflow_active(subflow))
1448 			continue;
1449 
1450 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1451 		nr_active += !backup;
1452 		pace = subflow->avg_pacing_rate;
1453 		if (unlikely(!pace)) {
1454 			/* init pacing rate from socket */
1455 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1456 			pace = subflow->avg_pacing_rate;
1457 			if (!pace)
1458 				continue;
1459 		}
1460 
1461 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1462 		if (linger_time < send_info[backup].linger_time) {
1463 			send_info[backup].ssk = ssk;
1464 			send_info[backup].linger_time = linger_time;
1465 		}
1466 	}
1467 	__mptcp_set_timeout(sk, tout);
1468 
1469 	/* pick the best backup if no other subflow is active */
1470 	if (!nr_active)
1471 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1472 
1473 	/* According to the blest algorithm, to avoid HoL blocking for the
1474 	 * faster flow, we need to:
1475 	 * - estimate the faster flow linger time
1476 	 * - use the above to estimate the amount of byte transferred
1477 	 *   by the faster flow
1478 	 * - check that the amount of queued data is greter than the above,
1479 	 *   otherwise do not use the picked, slower, subflow
1480 	 * We select the subflow with the shorter estimated time to flush
1481 	 * the queued mem, which basically ensure the above. We just need
1482 	 * to check that subflow has a non empty cwin.
1483 	 */
1484 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1485 	if (!ssk || !sk_stream_memory_free(ssk))
1486 		return NULL;
1487 
1488 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1489 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1490 	if (!burst)
1491 		return ssk;
1492 
1493 	subflow = mptcp_subflow_ctx(ssk);
1494 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1495 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1496 					   burst + wmem);
1497 	msk->snd_burst = burst;
1498 	return ssk;
1499 }
1500 
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1501 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1502 {
1503 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1504 	release_sock(ssk);
1505 }
1506 
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1507 static void mptcp_update_post_push(struct mptcp_sock *msk,
1508 				   struct mptcp_data_frag *dfrag,
1509 				   u32 sent)
1510 {
1511 	u64 snd_nxt_new = dfrag->data_seq;
1512 
1513 	dfrag->already_sent += sent;
1514 
1515 	msk->snd_burst -= sent;
1516 
1517 	snd_nxt_new += dfrag->already_sent;
1518 
1519 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1520 	 * is recovering after a failover. In that event, this re-sends
1521 	 * old segments.
1522 	 *
1523 	 * Thus compute snd_nxt_new candidate based on
1524 	 * the dfrag->data_seq that was sent and the data
1525 	 * that has been handed to the subflow for transmission
1526 	 * and skip update in case it was old dfrag.
1527 	 */
1528 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1529 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1530 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1531 	}
1532 }
1533 
mptcp_check_and_set_pending(struct sock * sk)1534 void mptcp_check_and_set_pending(struct sock *sk)
1535 {
1536 	if (mptcp_send_head(sk)) {
1537 		mptcp_data_lock(sk);
1538 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1539 		mptcp_data_unlock(sk);
1540 	}
1541 }
1542 
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1543 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1544 				  struct mptcp_sendmsg_info *info)
1545 {
1546 	struct mptcp_sock *msk = mptcp_sk(sk);
1547 	struct mptcp_data_frag *dfrag;
1548 	int len, copied = 0, err = 0;
1549 
1550 	while ((dfrag = mptcp_send_head(sk))) {
1551 		info->sent = dfrag->already_sent;
1552 		info->limit = dfrag->data_len;
1553 		len = dfrag->data_len - dfrag->already_sent;
1554 		while (len > 0) {
1555 			int ret = 0;
1556 
1557 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1558 			if (ret <= 0) {
1559 				err = copied ? : ret;
1560 				goto out;
1561 			}
1562 
1563 			info->sent += ret;
1564 			copied += ret;
1565 			len -= ret;
1566 
1567 			mptcp_update_post_push(msk, dfrag, ret);
1568 		}
1569 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1570 
1571 		if (msk->snd_burst <= 0 ||
1572 		    !sk_stream_memory_free(ssk) ||
1573 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1574 			err = copied;
1575 			goto out;
1576 		}
1577 		mptcp_set_timeout(sk);
1578 	}
1579 	err = copied;
1580 
1581 out:
1582 	if (err > 0)
1583 		msk->last_data_sent = tcp_jiffies32;
1584 	return err;
1585 }
1586 
__mptcp_push_pending(struct sock * sk,unsigned int flags)1587 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1588 {
1589 	struct sock *prev_ssk = NULL, *ssk = NULL;
1590 	struct mptcp_sock *msk = mptcp_sk(sk);
1591 	struct mptcp_sendmsg_info info = {
1592 				.flags = flags,
1593 	};
1594 	bool do_check_data_fin = false;
1595 	int push_count = 1;
1596 
1597 	while (mptcp_send_head(sk) && (push_count > 0)) {
1598 		struct mptcp_subflow_context *subflow;
1599 		int ret = 0;
1600 
1601 		if (mptcp_sched_get_send(msk))
1602 			break;
1603 
1604 		push_count = 0;
1605 
1606 		mptcp_for_each_subflow(msk, subflow) {
1607 			if (READ_ONCE(subflow->scheduled)) {
1608 				mptcp_subflow_set_scheduled(subflow, false);
1609 
1610 				prev_ssk = ssk;
1611 				ssk = mptcp_subflow_tcp_sock(subflow);
1612 				if (ssk != prev_ssk) {
1613 					/* First check. If the ssk has changed since
1614 					 * the last round, release prev_ssk
1615 					 */
1616 					if (prev_ssk)
1617 						mptcp_push_release(prev_ssk, &info);
1618 
1619 					/* Need to lock the new subflow only if different
1620 					 * from the previous one, otherwise we are still
1621 					 * helding the relevant lock
1622 					 */
1623 					lock_sock(ssk);
1624 				}
1625 
1626 				push_count++;
1627 
1628 				ret = __subflow_push_pending(sk, ssk, &info);
1629 				if (ret <= 0) {
1630 					if (ret != -EAGAIN ||
1631 					    (1 << ssk->sk_state) &
1632 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1633 						push_count--;
1634 					continue;
1635 				}
1636 				do_check_data_fin = true;
1637 			}
1638 		}
1639 	}
1640 
1641 	/* at this point we held the socket lock for the last subflow we used */
1642 	if (ssk)
1643 		mptcp_push_release(ssk, &info);
1644 
1645 	/* ensure the rtx timer is running */
1646 	if (!mptcp_rtx_timer_pending(sk))
1647 		mptcp_reset_rtx_timer(sk);
1648 	if (do_check_data_fin)
1649 		mptcp_check_send_data_fin(sk);
1650 }
1651 
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1652 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1653 {
1654 	struct mptcp_sock *msk = mptcp_sk(sk);
1655 	struct mptcp_sendmsg_info info = {
1656 		.data_lock_held = true,
1657 	};
1658 	bool keep_pushing = true;
1659 	struct sock *xmit_ssk;
1660 	int copied = 0;
1661 
1662 	info.flags = 0;
1663 	while (mptcp_send_head(sk) && keep_pushing) {
1664 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1665 		int ret = 0;
1666 
1667 		/* check for a different subflow usage only after
1668 		 * spooling the first chunk of data
1669 		 */
1670 		if (first) {
1671 			mptcp_subflow_set_scheduled(subflow, false);
1672 			ret = __subflow_push_pending(sk, ssk, &info);
1673 			first = false;
1674 			if (ret <= 0)
1675 				break;
1676 			copied += ret;
1677 			continue;
1678 		}
1679 
1680 		if (mptcp_sched_get_send(msk))
1681 			goto out;
1682 
1683 		if (READ_ONCE(subflow->scheduled)) {
1684 			mptcp_subflow_set_scheduled(subflow, false);
1685 			ret = __subflow_push_pending(sk, ssk, &info);
1686 			if (ret <= 0)
1687 				keep_pushing = false;
1688 			copied += ret;
1689 		}
1690 
1691 		mptcp_for_each_subflow(msk, subflow) {
1692 			if (READ_ONCE(subflow->scheduled)) {
1693 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1694 				if (xmit_ssk != ssk) {
1695 					mptcp_subflow_delegate(subflow,
1696 							       MPTCP_DELEGATE_SEND);
1697 					keep_pushing = false;
1698 				}
1699 			}
1700 		}
1701 	}
1702 
1703 out:
1704 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1705 	 * not going to flush it via release_sock()
1706 	 */
1707 	if (copied) {
1708 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1709 			 info.size_goal);
1710 		if (!mptcp_rtx_timer_pending(sk))
1711 			mptcp_reset_rtx_timer(sk);
1712 
1713 		if (msk->snd_data_fin_enable &&
1714 		    msk->snd_nxt + 1 == msk->write_seq)
1715 			mptcp_schedule_work(sk);
1716 	}
1717 }
1718 
1719 static int mptcp_disconnect(struct sock *sk, int flags);
1720 
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1721 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1722 				  size_t len, int *copied_syn)
1723 {
1724 	unsigned int saved_flags = msg->msg_flags;
1725 	struct mptcp_sock *msk = mptcp_sk(sk);
1726 	struct sock *ssk;
1727 	int ret;
1728 
1729 	/* on flags based fastopen the mptcp is supposed to create the
1730 	 * first subflow right now. Otherwise we are in the defer_connect
1731 	 * path, and the first subflow must be already present.
1732 	 * Since the defer_connect flag is cleared after the first succsful
1733 	 * fastopen attempt, no need to check for additional subflow status.
1734 	 */
1735 	if (msg->msg_flags & MSG_FASTOPEN) {
1736 		ssk = __mptcp_nmpc_sk(msk);
1737 		if (IS_ERR(ssk))
1738 			return PTR_ERR(ssk);
1739 	}
1740 	if (!msk->first)
1741 		return -EINVAL;
1742 
1743 	ssk = msk->first;
1744 
1745 	lock_sock(ssk);
1746 	msg->msg_flags |= MSG_DONTWAIT;
1747 	msk->fastopening = 1;
1748 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1749 	msk->fastopening = 0;
1750 	msg->msg_flags = saved_flags;
1751 	release_sock(ssk);
1752 
1753 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1754 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1755 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1756 					    msg->msg_namelen, msg->msg_flags, 1);
1757 
1758 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1759 		 * case of any error, except timeout or signal
1760 		 */
1761 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1762 			*copied_syn = 0;
1763 	} else if (ret && ret != -EINPROGRESS) {
1764 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1765 		 * __inet_stream_connect() can fail, due to looking check,
1766 		 * see mptcp_disconnect().
1767 		 * Attempt it again outside the problematic scope.
1768 		 */
1769 		if (!mptcp_disconnect(sk, 0))
1770 			sk->sk_socket->state = SS_UNCONNECTED;
1771 	}
1772 	inet_clear_bit(DEFER_CONNECT, sk);
1773 
1774 	return ret;
1775 }
1776 
do_copy_data_nocache(struct sock * sk,int copy,struct iov_iter * from,char * to)1777 static int do_copy_data_nocache(struct sock *sk, int copy,
1778 				struct iov_iter *from, char *to)
1779 {
1780 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1781 		if (!copy_from_iter_full_nocache(to, copy, from))
1782 			return -EFAULT;
1783 	} else if (!copy_from_iter_full(to, copy, from)) {
1784 		return -EFAULT;
1785 	}
1786 	return 0;
1787 }
1788 
1789 /* open-code sk_stream_memory_free() plus sent limit computation to
1790  * avoid indirect calls in fast-path.
1791  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1792  * annotations.
1793  */
mptcp_send_limit(const struct sock * sk)1794 static u32 mptcp_send_limit(const struct sock *sk)
1795 {
1796 	const struct mptcp_sock *msk = mptcp_sk(sk);
1797 	u32 limit, not_sent;
1798 
1799 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1800 		return 0;
1801 
1802 	limit = mptcp_notsent_lowat(sk);
1803 	if (limit == UINT_MAX)
1804 		return UINT_MAX;
1805 
1806 	not_sent = msk->write_seq - msk->snd_nxt;
1807 	if (not_sent >= limit)
1808 		return 0;
1809 
1810 	return limit - not_sent;
1811 }
1812 
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1813 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1814 {
1815 	struct mptcp_sock *msk = mptcp_sk(sk);
1816 	struct page_frag *pfrag;
1817 	size_t copied = 0;
1818 	int ret = 0;
1819 	long timeo;
1820 
1821 	/* silently ignore everything else */
1822 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1823 
1824 	lock_sock(sk);
1825 
1826 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1827 		     msg->msg_flags & MSG_FASTOPEN)) {
1828 		int copied_syn = 0;
1829 
1830 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1831 		copied += copied_syn;
1832 		if (ret == -EINPROGRESS && copied_syn > 0)
1833 			goto out;
1834 		else if (ret)
1835 			goto do_error;
1836 	}
1837 
1838 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1839 
1840 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1841 		ret = sk_stream_wait_connect(sk, &timeo);
1842 		if (ret)
1843 			goto do_error;
1844 	}
1845 
1846 	ret = -EPIPE;
1847 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1848 		goto do_error;
1849 
1850 	pfrag = sk_page_frag(sk);
1851 
1852 	while (msg_data_left(msg)) {
1853 		int total_ts, frag_truesize = 0;
1854 		struct mptcp_data_frag *dfrag;
1855 		bool dfrag_collapsed;
1856 		size_t psize, offset;
1857 		u32 copy_limit;
1858 
1859 		/* ensure fitting the notsent_lowat() constraint */
1860 		copy_limit = mptcp_send_limit(sk);
1861 		if (!copy_limit)
1862 			goto wait_for_memory;
1863 
1864 		/* reuse tail pfrag, if possible, or carve a new one from the
1865 		 * page allocator
1866 		 */
1867 		dfrag = mptcp_pending_tail(sk);
1868 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1869 		if (!dfrag_collapsed) {
1870 			if (!mptcp_page_frag_refill(sk, pfrag))
1871 				goto wait_for_memory;
1872 
1873 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1874 			frag_truesize = dfrag->overhead;
1875 		}
1876 
1877 		/* we do not bound vs wspace, to allow a single packet.
1878 		 * memory accounting will prevent execessive memory usage
1879 		 * anyway
1880 		 */
1881 		offset = dfrag->offset + dfrag->data_len;
1882 		psize = pfrag->size - offset;
1883 		psize = min_t(size_t, psize, msg_data_left(msg));
1884 		psize = min_t(size_t, psize, copy_limit);
1885 		total_ts = psize + frag_truesize;
1886 
1887 		if (!sk_wmem_schedule(sk, total_ts))
1888 			goto wait_for_memory;
1889 
1890 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1891 					   page_address(dfrag->page) + offset);
1892 		if (ret)
1893 			goto do_error;
1894 
1895 		/* data successfully copied into the write queue */
1896 		sk_forward_alloc_add(sk, -total_ts);
1897 		copied += psize;
1898 		dfrag->data_len += psize;
1899 		frag_truesize += psize;
1900 		pfrag->offset += frag_truesize;
1901 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1902 
1903 		/* charge data on mptcp pending queue to the msk socket
1904 		 * Note: we charge such data both to sk and ssk
1905 		 */
1906 		sk_wmem_queued_add(sk, frag_truesize);
1907 		if (!dfrag_collapsed) {
1908 			get_page(dfrag->page);
1909 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1910 			if (!msk->first_pending)
1911 				WRITE_ONCE(msk->first_pending, dfrag);
1912 		}
1913 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1914 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1915 			 !dfrag_collapsed);
1916 
1917 		continue;
1918 
1919 wait_for_memory:
1920 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1921 		__mptcp_push_pending(sk, msg->msg_flags);
1922 		ret = sk_stream_wait_memory(sk, &timeo);
1923 		if (ret)
1924 			goto do_error;
1925 	}
1926 
1927 	if (copied)
1928 		__mptcp_push_pending(sk, msg->msg_flags);
1929 
1930 out:
1931 	release_sock(sk);
1932 	return copied;
1933 
1934 do_error:
1935 	if (copied)
1936 		goto out;
1937 
1938 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1939 	goto out;
1940 }
1941 
__mptcp_recvmsg_mskq(struct mptcp_sock * msk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1942 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1943 				struct msghdr *msg,
1944 				size_t len, int flags,
1945 				struct scm_timestamping_internal *tss,
1946 				int *cmsg_flags)
1947 {
1948 	struct sk_buff *skb, *tmp;
1949 	int copied = 0;
1950 
1951 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1952 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1953 		u32 data_len = skb->len - offset;
1954 		u32 count = min_t(size_t, len - copied, data_len);
1955 		int err;
1956 
1957 		if (!(flags & MSG_TRUNC)) {
1958 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1959 			if (unlikely(err < 0)) {
1960 				if (!copied)
1961 					return err;
1962 				break;
1963 			}
1964 		}
1965 
1966 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1967 			tcp_update_recv_tstamps(skb, tss);
1968 			*cmsg_flags |= MPTCP_CMSG_TS;
1969 		}
1970 
1971 		copied += count;
1972 
1973 		if (count < data_len) {
1974 			if (!(flags & MSG_PEEK)) {
1975 				MPTCP_SKB_CB(skb)->offset += count;
1976 				MPTCP_SKB_CB(skb)->map_seq += count;
1977 				msk->bytes_consumed += count;
1978 			}
1979 			break;
1980 		}
1981 
1982 		if (!(flags & MSG_PEEK)) {
1983 			/* we will bulk release the skb memory later */
1984 			skb->destructor = NULL;
1985 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1986 			__skb_unlink(skb, &msk->receive_queue);
1987 			__kfree_skb(skb);
1988 			msk->bytes_consumed += count;
1989 		}
1990 
1991 		if (copied >= len)
1992 			break;
1993 	}
1994 
1995 	return copied;
1996 }
1997 
1998 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1999  *
2000  * Only difference: Use highest rtt estimate of the subflows in use.
2001  */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)2002 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
2003 {
2004 	struct mptcp_subflow_context *subflow;
2005 	struct sock *sk = (struct sock *)msk;
2006 	u8 scaling_ratio = U8_MAX;
2007 	u32 time, advmss = 1;
2008 	u64 rtt_us, mstamp;
2009 
2010 	msk_owned_by_me(msk);
2011 
2012 	if (copied <= 0)
2013 		return;
2014 
2015 	if (!msk->rcvspace_init)
2016 		mptcp_rcv_space_init(msk, msk->first);
2017 
2018 	msk->rcvq_space.copied += copied;
2019 
2020 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2021 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2022 
2023 	rtt_us = msk->rcvq_space.rtt_us;
2024 	if (rtt_us && time < (rtt_us >> 3))
2025 		return;
2026 
2027 	rtt_us = 0;
2028 	mptcp_for_each_subflow(msk, subflow) {
2029 		const struct tcp_sock *tp;
2030 		u64 sf_rtt_us;
2031 		u32 sf_advmss;
2032 
2033 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2034 
2035 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2036 		sf_advmss = READ_ONCE(tp->advmss);
2037 
2038 		rtt_us = max(sf_rtt_us, rtt_us);
2039 		advmss = max(sf_advmss, advmss);
2040 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2041 	}
2042 
2043 	msk->rcvq_space.rtt_us = rtt_us;
2044 	msk->scaling_ratio = scaling_ratio;
2045 	if (time < (rtt_us >> 3) || rtt_us == 0)
2046 		return;
2047 
2048 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2049 		goto new_measure;
2050 
2051 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2052 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2053 		u64 rcvwin, grow;
2054 		int rcvbuf;
2055 
2056 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2057 
2058 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2059 
2060 		do_div(grow, msk->rcvq_space.space);
2061 		rcvwin += (grow << 1);
2062 
2063 		rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin),
2064 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2065 
2066 		if (rcvbuf > sk->sk_rcvbuf) {
2067 			u32 window_clamp;
2068 
2069 			window_clamp = mptcp_win_from_space(sk, rcvbuf);
2070 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2071 
2072 			/* Make subflows follow along.  If we do not do this, we
2073 			 * get drops at subflow level if skbs can't be moved to
2074 			 * the mptcp rx queue fast enough (announced rcv_win can
2075 			 * exceed ssk->sk_rcvbuf).
2076 			 */
2077 			mptcp_for_each_subflow(msk, subflow) {
2078 				struct sock *ssk;
2079 				bool slow;
2080 
2081 				ssk = mptcp_subflow_tcp_sock(subflow);
2082 				slow = lock_sock_fast(ssk);
2083 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2084 				WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2085 				if (tcp_can_send_ack(ssk))
2086 					tcp_cleanup_rbuf(ssk, 1);
2087 				unlock_sock_fast(ssk, slow);
2088 			}
2089 		}
2090 	}
2091 
2092 	msk->rcvq_space.space = msk->rcvq_space.copied;
2093 new_measure:
2094 	msk->rcvq_space.copied = 0;
2095 	msk->rcvq_space.time = mstamp;
2096 }
2097 
__mptcp_update_rmem(struct sock * sk)2098 static void __mptcp_update_rmem(struct sock *sk)
2099 {
2100 	struct mptcp_sock *msk = mptcp_sk(sk);
2101 
2102 	if (!msk->rmem_released)
2103 		return;
2104 
2105 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2106 	mptcp_rmem_uncharge(sk, msk->rmem_released);
2107 	WRITE_ONCE(msk->rmem_released, 0);
2108 }
2109 
__mptcp_splice_receive_queue(struct sock * sk)2110 static void __mptcp_splice_receive_queue(struct sock *sk)
2111 {
2112 	struct mptcp_sock *msk = mptcp_sk(sk);
2113 
2114 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2115 }
2116 
__mptcp_move_skbs(struct mptcp_sock * msk)2117 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2118 {
2119 	struct sock *sk = (struct sock *)msk;
2120 	unsigned int moved = 0;
2121 	bool ret, done;
2122 
2123 	do {
2124 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2125 		bool slowpath;
2126 
2127 		/* we can have data pending in the subflows only if the msk
2128 		 * receive buffer was full at subflow_data_ready() time,
2129 		 * that is an unlikely slow path.
2130 		 */
2131 		if (likely(!ssk))
2132 			break;
2133 
2134 		slowpath = lock_sock_fast(ssk);
2135 		mptcp_data_lock(sk);
2136 		__mptcp_update_rmem(sk);
2137 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2138 		mptcp_data_unlock(sk);
2139 
2140 		if (unlikely(ssk->sk_err))
2141 			__mptcp_error_report(sk);
2142 		unlock_sock_fast(ssk, slowpath);
2143 	} while (!done);
2144 
2145 	/* acquire the data lock only if some input data is pending */
2146 	ret = moved > 0;
2147 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2148 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2149 		mptcp_data_lock(sk);
2150 		__mptcp_update_rmem(sk);
2151 		ret |= __mptcp_ofo_queue(msk);
2152 		__mptcp_splice_receive_queue(sk);
2153 		mptcp_data_unlock(sk);
2154 	}
2155 	if (ret)
2156 		mptcp_check_data_fin((struct sock *)msk);
2157 	return !skb_queue_empty(&msk->receive_queue);
2158 }
2159 
mptcp_inq_hint(const struct sock * sk)2160 static unsigned int mptcp_inq_hint(const struct sock *sk)
2161 {
2162 	const struct mptcp_sock *msk = mptcp_sk(sk);
2163 	const struct sk_buff *skb;
2164 
2165 	skb = skb_peek(&msk->receive_queue);
2166 	if (skb) {
2167 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2168 
2169 		if (hint_val >= INT_MAX)
2170 			return INT_MAX;
2171 
2172 		return (unsigned int)hint_val;
2173 	}
2174 
2175 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2176 		return 1;
2177 
2178 	return 0;
2179 }
2180 
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2181 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2182 			 int flags, int *addr_len)
2183 {
2184 	struct mptcp_sock *msk = mptcp_sk(sk);
2185 	struct scm_timestamping_internal tss;
2186 	int copied = 0, cmsg_flags = 0;
2187 	int target;
2188 	long timeo;
2189 
2190 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2191 	if (unlikely(flags & MSG_ERRQUEUE))
2192 		return inet_recv_error(sk, msg, len, addr_len);
2193 
2194 	lock_sock(sk);
2195 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2196 		copied = -ENOTCONN;
2197 		goto out_err;
2198 	}
2199 
2200 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2201 
2202 	len = min_t(size_t, len, INT_MAX);
2203 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2204 
2205 	if (unlikely(msk->recvmsg_inq))
2206 		cmsg_flags = MPTCP_CMSG_INQ;
2207 
2208 	while (copied < len) {
2209 		int err, bytes_read;
2210 
2211 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2212 		if (unlikely(bytes_read < 0)) {
2213 			if (!copied)
2214 				copied = bytes_read;
2215 			goto out_err;
2216 		}
2217 
2218 		copied += bytes_read;
2219 
2220 		/* be sure to advertise window change */
2221 		mptcp_cleanup_rbuf(msk);
2222 
2223 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2224 			continue;
2225 
2226 		/* only the MPTCP socket status is relevant here. The exit
2227 		 * conditions mirror closely tcp_recvmsg()
2228 		 */
2229 		if (copied >= target)
2230 			break;
2231 
2232 		if (copied) {
2233 			if (sk->sk_err ||
2234 			    sk->sk_state == TCP_CLOSE ||
2235 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2236 			    !timeo ||
2237 			    signal_pending(current))
2238 				break;
2239 		} else {
2240 			if (sk->sk_err) {
2241 				copied = sock_error(sk);
2242 				break;
2243 			}
2244 
2245 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2246 				/* race breaker: the shutdown could be after the
2247 				 * previous receive queue check
2248 				 */
2249 				if (__mptcp_move_skbs(msk))
2250 					continue;
2251 				break;
2252 			}
2253 
2254 			if (sk->sk_state == TCP_CLOSE) {
2255 				copied = -ENOTCONN;
2256 				break;
2257 			}
2258 
2259 			if (!timeo) {
2260 				copied = -EAGAIN;
2261 				break;
2262 			}
2263 
2264 			if (signal_pending(current)) {
2265 				copied = sock_intr_errno(timeo);
2266 				break;
2267 			}
2268 		}
2269 
2270 		pr_debug("block timeout %ld\n", timeo);
2271 		mptcp_rcv_space_adjust(msk, copied);
2272 		err = sk_wait_data(sk, &timeo, NULL);
2273 		if (err < 0) {
2274 			err = copied ? : err;
2275 			goto out_err;
2276 		}
2277 	}
2278 
2279 	mptcp_rcv_space_adjust(msk, copied);
2280 
2281 out_err:
2282 	if (cmsg_flags && copied >= 0) {
2283 		if (cmsg_flags & MPTCP_CMSG_TS)
2284 			tcp_recv_timestamp(msg, sk, &tss);
2285 
2286 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2287 			unsigned int inq = mptcp_inq_hint(sk);
2288 
2289 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2290 		}
2291 	}
2292 
2293 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d\n",
2294 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2295 		 skb_queue_empty(&msk->receive_queue), copied);
2296 
2297 	release_sock(sk);
2298 	return copied;
2299 }
2300 
mptcp_retransmit_timer(struct timer_list * t)2301 static void mptcp_retransmit_timer(struct timer_list *t)
2302 {
2303 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2304 						       icsk_retransmit_timer);
2305 	struct sock *sk = &icsk->icsk_inet.sk;
2306 	struct mptcp_sock *msk = mptcp_sk(sk);
2307 
2308 	bh_lock_sock(sk);
2309 	if (!sock_owned_by_user(sk)) {
2310 		/* we need a process context to retransmit */
2311 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2312 			mptcp_schedule_work(sk);
2313 	} else {
2314 		/* delegate our work to tcp_release_cb() */
2315 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2316 	}
2317 	bh_unlock_sock(sk);
2318 	sock_put(sk);
2319 }
2320 
mptcp_tout_timer(struct timer_list * t)2321 static void mptcp_tout_timer(struct timer_list *t)
2322 {
2323 	struct sock *sk = from_timer(sk, t, sk_timer);
2324 
2325 	mptcp_schedule_work(sk);
2326 	sock_put(sk);
2327 }
2328 
2329 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2330  * level.
2331  *
2332  * A backup subflow is returned only if that is the only kind available.
2333  */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2334 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2335 {
2336 	struct sock *backup = NULL, *pick = NULL;
2337 	struct mptcp_subflow_context *subflow;
2338 	int min_stale_count = INT_MAX;
2339 
2340 	mptcp_for_each_subflow(msk, subflow) {
2341 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2342 
2343 		if (!__mptcp_subflow_active(subflow))
2344 			continue;
2345 
2346 		/* still data outstanding at TCP level? skip this */
2347 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2348 			mptcp_pm_subflow_chk_stale(msk, ssk);
2349 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2350 			continue;
2351 		}
2352 
2353 		if (subflow->backup || subflow->request_bkup) {
2354 			if (!backup)
2355 				backup = ssk;
2356 			continue;
2357 		}
2358 
2359 		if (!pick)
2360 			pick = ssk;
2361 	}
2362 
2363 	if (pick)
2364 		return pick;
2365 
2366 	/* use backup only if there are no progresses anywhere */
2367 	return min_stale_count > 1 ? backup : NULL;
2368 }
2369 
__mptcp_retransmit_pending_data(struct sock * sk)2370 bool __mptcp_retransmit_pending_data(struct sock *sk)
2371 {
2372 	struct mptcp_data_frag *cur, *rtx_head;
2373 	struct mptcp_sock *msk = mptcp_sk(sk);
2374 
2375 	if (__mptcp_check_fallback(msk))
2376 		return false;
2377 
2378 	/* the closing socket has some data untransmitted and/or unacked:
2379 	 * some data in the mptcp rtx queue has not really xmitted yet.
2380 	 * keep it simple and re-inject the whole mptcp level rtx queue
2381 	 */
2382 	mptcp_data_lock(sk);
2383 	__mptcp_clean_una_wakeup(sk);
2384 	rtx_head = mptcp_rtx_head(sk);
2385 	if (!rtx_head) {
2386 		mptcp_data_unlock(sk);
2387 		return false;
2388 	}
2389 
2390 	msk->recovery_snd_nxt = msk->snd_nxt;
2391 	msk->recovery = true;
2392 	mptcp_data_unlock(sk);
2393 
2394 	msk->first_pending = rtx_head;
2395 	msk->snd_burst = 0;
2396 
2397 	/* be sure to clear the "sent status" on all re-injected fragments */
2398 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2399 		if (!cur->already_sent)
2400 			break;
2401 		cur->already_sent = 0;
2402 	}
2403 
2404 	return true;
2405 }
2406 
2407 /* flags for __mptcp_close_ssk() */
2408 #define MPTCP_CF_PUSH		BIT(1)
2409 #define MPTCP_CF_FASTCLOSE	BIT(2)
2410 
2411 /* be sure to send a reset only if the caller asked for it, also
2412  * clean completely the subflow status when the subflow reaches
2413  * TCP_CLOSE state
2414  */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2415 static void __mptcp_subflow_disconnect(struct sock *ssk,
2416 				       struct mptcp_subflow_context *subflow,
2417 				       unsigned int flags)
2418 {
2419 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2420 	    (flags & MPTCP_CF_FASTCLOSE)) {
2421 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2422 		 * disconnect should never fail
2423 		 */
2424 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2425 		mptcp_subflow_ctx_reset(subflow);
2426 	} else {
2427 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2428 	}
2429 }
2430 
2431 /* subflow sockets can be either outgoing (connect) or incoming
2432  * (accept).
2433  *
2434  * Outgoing subflows use in-kernel sockets.
2435  * Incoming subflows do not have their own 'struct socket' allocated,
2436  * so we need to use tcp_close() after detaching them from the mptcp
2437  * parent socket.
2438  */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2439 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2440 			      struct mptcp_subflow_context *subflow,
2441 			      unsigned int flags)
2442 {
2443 	struct mptcp_sock *msk = mptcp_sk(sk);
2444 	bool dispose_it, need_push = false;
2445 
2446 	/* If the first subflow moved to a close state before accept, e.g. due
2447 	 * to an incoming reset or listener shutdown, the subflow socket is
2448 	 * already deleted by inet_child_forget() and the mptcp socket can't
2449 	 * survive too.
2450 	 */
2451 	if (msk->in_accept_queue && msk->first == ssk &&
2452 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2453 		/* ensure later check in mptcp_worker() will dispose the msk */
2454 		sock_set_flag(sk, SOCK_DEAD);
2455 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2456 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2457 		mptcp_subflow_drop_ctx(ssk);
2458 		goto out_release;
2459 	}
2460 
2461 	dispose_it = msk->free_first || ssk != msk->first;
2462 	if (dispose_it)
2463 		list_del(&subflow->node);
2464 
2465 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2466 
2467 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2468 		/* be sure to force the tcp_close path
2469 		 * to generate the egress reset
2470 		 */
2471 		ssk->sk_lingertime = 0;
2472 		sock_set_flag(ssk, SOCK_LINGER);
2473 		subflow->send_fastclose = 1;
2474 	}
2475 
2476 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2477 	if (!dispose_it) {
2478 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2479 		release_sock(ssk);
2480 
2481 		goto out;
2482 	}
2483 
2484 	subflow->disposable = 1;
2485 
2486 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2487 	 * the ssk has been already destroyed, we just need to release the
2488 	 * reference owned by msk;
2489 	 */
2490 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2491 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2492 		kfree_rcu(subflow, rcu);
2493 	} else {
2494 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2495 		__tcp_close(ssk, 0);
2496 
2497 		/* close acquired an extra ref */
2498 		__sock_put(ssk);
2499 	}
2500 
2501 out_release:
2502 	__mptcp_subflow_error_report(sk, ssk);
2503 	release_sock(ssk);
2504 
2505 	sock_put(ssk);
2506 
2507 	if (ssk == msk->first)
2508 		WRITE_ONCE(msk->first, NULL);
2509 
2510 out:
2511 	__mptcp_sync_sndbuf(sk);
2512 	if (need_push)
2513 		__mptcp_push_pending(sk, 0);
2514 
2515 	/* Catch every 'all subflows closed' scenario, including peers silently
2516 	 * closing them, e.g. due to timeout.
2517 	 * For established sockets, allow an additional timeout before closing,
2518 	 * as the protocol can still create more subflows.
2519 	 */
2520 	if (list_is_singular(&msk->conn_list) && msk->first &&
2521 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2522 		if (sk->sk_state != TCP_ESTABLISHED ||
2523 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2524 			mptcp_set_state(sk, TCP_CLOSE);
2525 			mptcp_close_wake_up(sk);
2526 		} else {
2527 			mptcp_start_tout_timer(sk);
2528 		}
2529 	}
2530 }
2531 
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2532 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2533 		     struct mptcp_subflow_context *subflow)
2534 {
2535 	/* The first subflow can already be closed and still in the list */
2536 	if (subflow->close_event_done)
2537 		return;
2538 
2539 	subflow->close_event_done = true;
2540 
2541 	if (sk->sk_state == TCP_ESTABLISHED)
2542 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2543 
2544 	/* subflow aborted before reaching the fully_established status
2545 	 * attempt the creation of the next subflow
2546 	 */
2547 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2548 
2549 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2550 }
2551 
mptcp_sync_mss(struct sock * sk,u32 pmtu)2552 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2553 {
2554 	return 0;
2555 }
2556 
__mptcp_close_subflow(struct sock * sk)2557 static void __mptcp_close_subflow(struct sock *sk)
2558 {
2559 	struct mptcp_subflow_context *subflow, *tmp;
2560 	struct mptcp_sock *msk = mptcp_sk(sk);
2561 
2562 	might_sleep();
2563 
2564 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2565 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2566 		int ssk_state = inet_sk_state_load(ssk);
2567 
2568 		if (ssk_state != TCP_CLOSE &&
2569 		    (ssk_state != TCP_CLOSE_WAIT ||
2570 		     inet_sk_state_load(sk) != TCP_ESTABLISHED))
2571 			continue;
2572 
2573 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2574 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2575 			continue;
2576 
2577 		mptcp_close_ssk(sk, ssk, subflow);
2578 	}
2579 
2580 }
2581 
mptcp_close_tout_expired(const struct sock * sk)2582 static bool mptcp_close_tout_expired(const struct sock *sk)
2583 {
2584 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2585 	    sk->sk_state == TCP_CLOSE)
2586 		return false;
2587 
2588 	return time_after32(tcp_jiffies32,
2589 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2590 }
2591 
mptcp_check_fastclose(struct mptcp_sock * msk)2592 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2593 {
2594 	struct mptcp_subflow_context *subflow, *tmp;
2595 	struct sock *sk = (struct sock *)msk;
2596 
2597 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2598 		return;
2599 
2600 	mptcp_token_destroy(msk);
2601 
2602 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2603 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2604 		bool slow;
2605 
2606 		slow = lock_sock_fast(tcp_sk);
2607 		if (tcp_sk->sk_state != TCP_CLOSE) {
2608 			mptcp_send_active_reset_reason(tcp_sk);
2609 			tcp_set_state(tcp_sk, TCP_CLOSE);
2610 		}
2611 		unlock_sock_fast(tcp_sk, slow);
2612 	}
2613 
2614 	/* Mirror the tcp_reset() error propagation */
2615 	switch (sk->sk_state) {
2616 	case TCP_SYN_SENT:
2617 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2618 		break;
2619 	case TCP_CLOSE_WAIT:
2620 		WRITE_ONCE(sk->sk_err, EPIPE);
2621 		break;
2622 	case TCP_CLOSE:
2623 		return;
2624 	default:
2625 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2626 	}
2627 
2628 	mptcp_set_state(sk, TCP_CLOSE);
2629 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2630 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2631 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2632 
2633 	/* the calling mptcp_worker will properly destroy the socket */
2634 	if (sock_flag(sk, SOCK_DEAD))
2635 		return;
2636 
2637 	sk->sk_state_change(sk);
2638 	sk_error_report(sk);
2639 }
2640 
__mptcp_retrans(struct sock * sk)2641 static void __mptcp_retrans(struct sock *sk)
2642 {
2643 	struct mptcp_sock *msk = mptcp_sk(sk);
2644 	struct mptcp_subflow_context *subflow;
2645 	struct mptcp_sendmsg_info info = {};
2646 	struct mptcp_data_frag *dfrag;
2647 	struct sock *ssk;
2648 	int ret, err;
2649 	u16 len = 0;
2650 
2651 	mptcp_clean_una_wakeup(sk);
2652 
2653 	/* first check ssk: need to kick "stale" logic */
2654 	err = mptcp_sched_get_retrans(msk);
2655 	dfrag = mptcp_rtx_head(sk);
2656 	if (!dfrag) {
2657 		if (mptcp_data_fin_enabled(msk)) {
2658 			struct inet_connection_sock *icsk = inet_csk(sk);
2659 
2660 			icsk->icsk_retransmits++;
2661 			mptcp_set_datafin_timeout(sk);
2662 			mptcp_send_ack(msk);
2663 
2664 			goto reset_timer;
2665 		}
2666 
2667 		if (!mptcp_send_head(sk))
2668 			return;
2669 
2670 		goto reset_timer;
2671 	}
2672 
2673 	if (err)
2674 		goto reset_timer;
2675 
2676 	mptcp_for_each_subflow(msk, subflow) {
2677 		if (READ_ONCE(subflow->scheduled)) {
2678 			u16 copied = 0;
2679 
2680 			mptcp_subflow_set_scheduled(subflow, false);
2681 
2682 			ssk = mptcp_subflow_tcp_sock(subflow);
2683 
2684 			lock_sock(ssk);
2685 
2686 			/* limit retransmission to the bytes already sent on some subflows */
2687 			info.sent = 0;
2688 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2689 								    dfrag->already_sent;
2690 			while (info.sent < info.limit) {
2691 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2692 				if (ret <= 0)
2693 					break;
2694 
2695 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2696 				copied += ret;
2697 				info.sent += ret;
2698 			}
2699 			if (copied) {
2700 				len = max(copied, len);
2701 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2702 					 info.size_goal);
2703 				WRITE_ONCE(msk->allow_infinite_fallback, false);
2704 			}
2705 
2706 			release_sock(ssk);
2707 		}
2708 	}
2709 
2710 	msk->bytes_retrans += len;
2711 	dfrag->already_sent = max(dfrag->already_sent, len);
2712 
2713 reset_timer:
2714 	mptcp_check_and_set_pending(sk);
2715 
2716 	if (!mptcp_rtx_timer_pending(sk))
2717 		mptcp_reset_rtx_timer(sk);
2718 }
2719 
2720 /* schedule the timeout timer for the relevant event: either close timeout
2721  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2722  */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2723 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2724 {
2725 	struct sock *sk = (struct sock *)msk;
2726 	unsigned long timeout, close_timeout;
2727 
2728 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2729 		return;
2730 
2731 	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies +
2732 			mptcp_close_timeout(sk);
2733 
2734 	/* the close timeout takes precedence on the fail one, and here at least one of
2735 	 * them is active
2736 	 */
2737 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2738 
2739 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2740 }
2741 
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2742 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2743 {
2744 	struct sock *ssk = msk->first;
2745 	bool slow;
2746 
2747 	if (!ssk)
2748 		return;
2749 
2750 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2751 
2752 	slow = lock_sock_fast(ssk);
2753 	mptcp_subflow_reset(ssk);
2754 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2755 	unlock_sock_fast(ssk, slow);
2756 }
2757 
mptcp_do_fastclose(struct sock * sk)2758 static void mptcp_do_fastclose(struct sock *sk)
2759 {
2760 	struct mptcp_subflow_context *subflow, *tmp;
2761 	struct mptcp_sock *msk = mptcp_sk(sk);
2762 
2763 	mptcp_set_state(sk, TCP_CLOSE);
2764 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2765 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2766 				  subflow, MPTCP_CF_FASTCLOSE);
2767 }
2768 
mptcp_worker(struct work_struct * work)2769 static void mptcp_worker(struct work_struct *work)
2770 {
2771 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2772 	struct sock *sk = (struct sock *)msk;
2773 	unsigned long fail_tout;
2774 	int state;
2775 
2776 	lock_sock(sk);
2777 	state = sk->sk_state;
2778 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2779 		goto unlock;
2780 
2781 	mptcp_check_fastclose(msk);
2782 
2783 	mptcp_pm_nl_work(msk);
2784 
2785 	mptcp_check_send_data_fin(sk);
2786 	mptcp_check_data_fin_ack(sk);
2787 	mptcp_check_data_fin(sk);
2788 
2789 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2790 		__mptcp_close_subflow(sk);
2791 
2792 	if (mptcp_close_tout_expired(sk)) {
2793 		mptcp_do_fastclose(sk);
2794 		mptcp_close_wake_up(sk);
2795 	}
2796 
2797 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2798 		__mptcp_destroy_sock(sk);
2799 		goto unlock;
2800 	}
2801 
2802 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2803 		__mptcp_retrans(sk);
2804 
2805 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2806 	if (fail_tout && time_after(jiffies, fail_tout))
2807 		mptcp_mp_fail_no_response(msk);
2808 
2809 unlock:
2810 	release_sock(sk);
2811 	sock_put(sk);
2812 }
2813 
__mptcp_init_sock(struct sock * sk)2814 static void __mptcp_init_sock(struct sock *sk)
2815 {
2816 	struct mptcp_sock *msk = mptcp_sk(sk);
2817 
2818 	INIT_LIST_HEAD(&msk->conn_list);
2819 	INIT_LIST_HEAD(&msk->join_list);
2820 	INIT_LIST_HEAD(&msk->rtx_queue);
2821 	INIT_WORK(&msk->work, mptcp_worker);
2822 	__skb_queue_head_init(&msk->receive_queue);
2823 	msk->out_of_order_queue = RB_ROOT;
2824 	msk->first_pending = NULL;
2825 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
2826 	WRITE_ONCE(msk->rmem_released, 0);
2827 	msk->timer_ival = TCP_RTO_MIN;
2828 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2829 
2830 	WRITE_ONCE(msk->first, NULL);
2831 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2832 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2833 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2834 	msk->recovery = false;
2835 	msk->subflow_id = 1;
2836 	msk->last_data_sent = tcp_jiffies32;
2837 	msk->last_data_recv = tcp_jiffies32;
2838 	msk->last_ack_recv = tcp_jiffies32;
2839 
2840 	mptcp_pm_data_init(msk);
2841 
2842 	/* re-use the csk retrans timer for MPTCP-level retrans */
2843 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2844 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2845 }
2846 
mptcp_ca_reset(struct sock * sk)2847 static void mptcp_ca_reset(struct sock *sk)
2848 {
2849 	struct inet_connection_sock *icsk = inet_csk(sk);
2850 
2851 	tcp_assign_congestion_control(sk);
2852 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2853 		sizeof(mptcp_sk(sk)->ca_name));
2854 
2855 	/* no need to keep a reference to the ops, the name will suffice */
2856 	tcp_cleanup_congestion_control(sk);
2857 	icsk->icsk_ca_ops = NULL;
2858 }
2859 
mptcp_init_sock(struct sock * sk)2860 static int mptcp_init_sock(struct sock *sk)
2861 {
2862 	struct net *net = sock_net(sk);
2863 	int ret;
2864 
2865 	__mptcp_init_sock(sk);
2866 
2867 	if (!mptcp_is_enabled(net))
2868 		return -ENOPROTOOPT;
2869 
2870 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2871 		return -ENOMEM;
2872 
2873 	rcu_read_lock();
2874 	ret = mptcp_init_sched(mptcp_sk(sk),
2875 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2876 	rcu_read_unlock();
2877 	if (ret)
2878 		return ret;
2879 
2880 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2881 
2882 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2883 	 * propagate the correct value
2884 	 */
2885 	mptcp_ca_reset(sk);
2886 
2887 	sk_sockets_allocated_inc(sk);
2888 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2889 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2890 
2891 	return 0;
2892 }
2893 
__mptcp_clear_xmit(struct sock * sk)2894 static void __mptcp_clear_xmit(struct sock *sk)
2895 {
2896 	struct mptcp_sock *msk = mptcp_sk(sk);
2897 	struct mptcp_data_frag *dtmp, *dfrag;
2898 
2899 	WRITE_ONCE(msk->first_pending, NULL);
2900 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2901 		dfrag_clear(sk, dfrag);
2902 }
2903 
mptcp_cancel_work(struct sock * sk)2904 void mptcp_cancel_work(struct sock *sk)
2905 {
2906 	struct mptcp_sock *msk = mptcp_sk(sk);
2907 
2908 	if (cancel_work_sync(&msk->work))
2909 		__sock_put(sk);
2910 }
2911 
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2912 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2913 {
2914 	lock_sock(ssk);
2915 
2916 	switch (ssk->sk_state) {
2917 	case TCP_LISTEN:
2918 		if (!(how & RCV_SHUTDOWN))
2919 			break;
2920 		fallthrough;
2921 	case TCP_SYN_SENT:
2922 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2923 		break;
2924 	default:
2925 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2926 			pr_debug("Fallback\n");
2927 			ssk->sk_shutdown |= how;
2928 			tcp_shutdown(ssk, how);
2929 
2930 			/* simulate the data_fin ack reception to let the state
2931 			 * machine move forward
2932 			 */
2933 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2934 			mptcp_schedule_work(sk);
2935 		} else {
2936 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2937 			tcp_send_ack(ssk);
2938 			if (!mptcp_rtx_timer_pending(sk))
2939 				mptcp_reset_rtx_timer(sk);
2940 		}
2941 		break;
2942 	}
2943 
2944 	release_sock(ssk);
2945 }
2946 
mptcp_set_state(struct sock * sk,int state)2947 void mptcp_set_state(struct sock *sk, int state)
2948 {
2949 	int oldstate = sk->sk_state;
2950 
2951 	switch (state) {
2952 	case TCP_ESTABLISHED:
2953 		if (oldstate != TCP_ESTABLISHED)
2954 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2955 		break;
2956 	case TCP_CLOSE_WAIT:
2957 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2958 		 * MPTCP "accepted" sockets will be created later on. So no
2959 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2960 		 */
2961 		break;
2962 	default:
2963 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2964 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2965 	}
2966 
2967 	inet_sk_state_store(sk, state);
2968 }
2969 
2970 static const unsigned char new_state[16] = {
2971 	/* current state:     new state:      action:	*/
2972 	[0 /* (Invalid) */] = TCP_CLOSE,
2973 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2974 	[TCP_SYN_SENT]      = TCP_CLOSE,
2975 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2976 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2977 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2978 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2979 	[TCP_CLOSE]         = TCP_CLOSE,
2980 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2981 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2982 	[TCP_LISTEN]        = TCP_CLOSE,
2983 	[TCP_CLOSING]       = TCP_CLOSING,
2984 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2985 };
2986 
mptcp_close_state(struct sock * sk)2987 static int mptcp_close_state(struct sock *sk)
2988 {
2989 	int next = (int)new_state[sk->sk_state];
2990 	int ns = next & TCP_STATE_MASK;
2991 
2992 	mptcp_set_state(sk, ns);
2993 
2994 	return next & TCP_ACTION_FIN;
2995 }
2996 
mptcp_check_send_data_fin(struct sock * sk)2997 static void mptcp_check_send_data_fin(struct sock *sk)
2998 {
2999 	struct mptcp_subflow_context *subflow;
3000 	struct mptcp_sock *msk = mptcp_sk(sk);
3001 
3002 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
3003 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
3004 		 msk->snd_nxt, msk->write_seq);
3005 
3006 	/* we still need to enqueue subflows or not really shutting down,
3007 	 * skip this
3008 	 */
3009 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
3010 	    mptcp_send_head(sk))
3011 		return;
3012 
3013 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3014 
3015 	mptcp_for_each_subflow(msk, subflow) {
3016 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
3017 
3018 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
3019 	}
3020 }
3021 
__mptcp_wr_shutdown(struct sock * sk)3022 static void __mptcp_wr_shutdown(struct sock *sk)
3023 {
3024 	struct mptcp_sock *msk = mptcp_sk(sk);
3025 
3026 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3027 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3028 		 !!mptcp_send_head(sk));
3029 
3030 	/* will be ignored by fallback sockets */
3031 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3032 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
3033 
3034 	mptcp_check_send_data_fin(sk);
3035 }
3036 
__mptcp_destroy_sock(struct sock * sk)3037 static void __mptcp_destroy_sock(struct sock *sk)
3038 {
3039 	struct mptcp_sock *msk = mptcp_sk(sk);
3040 
3041 	pr_debug("msk=%p\n", msk);
3042 
3043 	might_sleep();
3044 
3045 	mptcp_stop_rtx_timer(sk);
3046 	sk_stop_timer(sk, &sk->sk_timer);
3047 	msk->pm.status = 0;
3048 	mptcp_release_sched(msk);
3049 
3050 	sk->sk_prot->destroy(sk);
3051 
3052 	WARN_ON_ONCE(READ_ONCE(msk->rmem_fwd_alloc));
3053 	WARN_ON_ONCE(msk->rmem_released);
3054 	sk_stream_kill_queues(sk);
3055 	xfrm_sk_free_policy(sk);
3056 
3057 	sock_put(sk);
3058 }
3059 
__mptcp_unaccepted_force_close(struct sock * sk)3060 void __mptcp_unaccepted_force_close(struct sock *sk)
3061 {
3062 	sock_set_flag(sk, SOCK_DEAD);
3063 	mptcp_do_fastclose(sk);
3064 	__mptcp_destroy_sock(sk);
3065 }
3066 
mptcp_check_readable(struct sock * sk)3067 static __poll_t mptcp_check_readable(struct sock *sk)
3068 {
3069 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3070 }
3071 
mptcp_check_listen_stop(struct sock * sk)3072 static void mptcp_check_listen_stop(struct sock *sk)
3073 {
3074 	struct sock *ssk;
3075 
3076 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3077 		return;
3078 
3079 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3080 	ssk = mptcp_sk(sk)->first;
3081 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3082 		return;
3083 
3084 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3085 	tcp_set_state(ssk, TCP_CLOSE);
3086 	mptcp_subflow_queue_clean(sk, ssk);
3087 	inet_csk_listen_stop(ssk);
3088 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3089 	release_sock(ssk);
3090 }
3091 
__mptcp_close(struct sock * sk,long timeout)3092 bool __mptcp_close(struct sock *sk, long timeout)
3093 {
3094 	struct mptcp_subflow_context *subflow;
3095 	struct mptcp_sock *msk = mptcp_sk(sk);
3096 	bool do_cancel_work = false;
3097 	int subflows_alive = 0;
3098 
3099 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3100 
3101 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3102 		mptcp_check_listen_stop(sk);
3103 		mptcp_set_state(sk, TCP_CLOSE);
3104 		goto cleanup;
3105 	}
3106 
3107 	if (mptcp_data_avail(msk) || timeout < 0) {
3108 		/* If the msk has read data, or the caller explicitly ask it,
3109 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3110 		 */
3111 		mptcp_do_fastclose(sk);
3112 		timeout = 0;
3113 	} else if (mptcp_close_state(sk)) {
3114 		__mptcp_wr_shutdown(sk);
3115 	}
3116 
3117 	sk_stream_wait_close(sk, timeout);
3118 
3119 cleanup:
3120 	/* orphan all the subflows */
3121 	mptcp_for_each_subflow(msk, subflow) {
3122 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3123 		bool slow = lock_sock_fast_nested(ssk);
3124 
3125 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3126 
3127 		/* since the close timeout takes precedence on the fail one,
3128 		 * cancel the latter
3129 		 */
3130 		if (ssk == msk->first)
3131 			subflow->fail_tout = 0;
3132 
3133 		/* detach from the parent socket, but allow data_ready to
3134 		 * push incoming data into the mptcp stack, to properly ack it
3135 		 */
3136 		ssk->sk_socket = NULL;
3137 		ssk->sk_wq = NULL;
3138 		unlock_sock_fast(ssk, slow);
3139 	}
3140 	sock_orphan(sk);
3141 
3142 	/* all the subflows are closed, only timeout can change the msk
3143 	 * state, let's not keep resources busy for no reasons
3144 	 */
3145 	if (subflows_alive == 0)
3146 		mptcp_set_state(sk, TCP_CLOSE);
3147 
3148 	sock_hold(sk);
3149 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3150 	if (msk->token)
3151 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3152 
3153 	if (sk->sk_state == TCP_CLOSE) {
3154 		__mptcp_destroy_sock(sk);
3155 		do_cancel_work = true;
3156 	} else {
3157 		mptcp_start_tout_timer(sk);
3158 	}
3159 
3160 	return do_cancel_work;
3161 }
3162 
mptcp_close(struct sock * sk,long timeout)3163 static void mptcp_close(struct sock *sk, long timeout)
3164 {
3165 	bool do_cancel_work;
3166 
3167 	lock_sock(sk);
3168 
3169 	do_cancel_work = __mptcp_close(sk, timeout);
3170 	release_sock(sk);
3171 	if (do_cancel_work)
3172 		mptcp_cancel_work(sk);
3173 
3174 	sock_put(sk);
3175 }
3176 
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3177 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3178 {
3179 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3180 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3181 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3182 
3183 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3184 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3185 
3186 	if (msk6 && ssk6) {
3187 		msk6->saddr = ssk6->saddr;
3188 		msk6->flow_label = ssk6->flow_label;
3189 	}
3190 #endif
3191 
3192 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3193 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3194 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3195 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3196 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3197 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3198 }
3199 
mptcp_disconnect(struct sock * sk,int flags)3200 static int mptcp_disconnect(struct sock *sk, int flags)
3201 {
3202 	struct mptcp_sock *msk = mptcp_sk(sk);
3203 
3204 	/* We are on the fastopen error path. We can't call straight into the
3205 	 * subflows cleanup code due to lock nesting (we are already under
3206 	 * msk->firstsocket lock).
3207 	 */
3208 	if (msk->fastopening)
3209 		return -EBUSY;
3210 
3211 	mptcp_check_listen_stop(sk);
3212 	mptcp_set_state(sk, TCP_CLOSE);
3213 
3214 	mptcp_stop_rtx_timer(sk);
3215 	mptcp_stop_tout_timer(sk);
3216 
3217 	if (msk->token)
3218 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3219 
3220 	/* msk->subflow is still intact, the following will not free the first
3221 	 * subflow
3222 	 */
3223 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3224 	WRITE_ONCE(msk->flags, 0);
3225 	msk->cb_flags = 0;
3226 	msk->recovery = false;
3227 	WRITE_ONCE(msk->can_ack, false);
3228 	WRITE_ONCE(msk->fully_established, false);
3229 	WRITE_ONCE(msk->rcv_data_fin, false);
3230 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3231 	WRITE_ONCE(msk->rcv_fastclose, false);
3232 	WRITE_ONCE(msk->use_64bit_ack, false);
3233 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3234 	mptcp_pm_data_reset(msk);
3235 	mptcp_ca_reset(sk);
3236 	msk->bytes_consumed = 0;
3237 	msk->bytes_acked = 0;
3238 	msk->bytes_received = 0;
3239 	msk->bytes_sent = 0;
3240 	msk->bytes_retrans = 0;
3241 	msk->rcvspace_init = 0;
3242 
3243 	WRITE_ONCE(sk->sk_shutdown, 0);
3244 	sk_error_report(sk);
3245 	return 0;
3246 }
3247 
3248 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3249 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3250 {
3251 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3252 
3253 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3254 }
3255 
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3256 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3257 {
3258 	const struct ipv6_pinfo *np = inet6_sk(sk);
3259 	struct ipv6_txoptions *opt;
3260 	struct ipv6_pinfo *newnp;
3261 
3262 	newnp = inet6_sk(newsk);
3263 
3264 	rcu_read_lock();
3265 	opt = rcu_dereference(np->opt);
3266 	if (opt) {
3267 		opt = ipv6_dup_options(newsk, opt);
3268 		if (!opt)
3269 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3270 	}
3271 	RCU_INIT_POINTER(newnp->opt, opt);
3272 	rcu_read_unlock();
3273 }
3274 #endif
3275 
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3276 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3277 {
3278 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3279 	const struct inet_sock *inet = inet_sk(sk);
3280 	struct inet_sock *newinet;
3281 
3282 	newinet = inet_sk(newsk);
3283 
3284 	rcu_read_lock();
3285 	inet_opt = rcu_dereference(inet->inet_opt);
3286 	if (inet_opt) {
3287 		newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
3288 				      inet_opt->opt.optlen, GFP_ATOMIC);
3289 		if (newopt)
3290 			memcpy(newopt, inet_opt, sizeof(*inet_opt) +
3291 			       inet_opt->opt.optlen);
3292 		else
3293 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3294 	}
3295 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3296 	rcu_read_unlock();
3297 }
3298 
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3299 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3300 				 const struct mptcp_options_received *mp_opt,
3301 				 struct sock *ssk,
3302 				 struct request_sock *req)
3303 {
3304 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3305 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3306 	struct mptcp_subflow_context *subflow;
3307 	struct mptcp_sock *msk;
3308 
3309 	if (!nsk)
3310 		return NULL;
3311 
3312 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3313 	if (nsk->sk_family == AF_INET6)
3314 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3315 #endif
3316 
3317 	__mptcp_init_sock(nsk);
3318 
3319 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3320 	if (nsk->sk_family == AF_INET6)
3321 		mptcp_copy_ip6_options(nsk, sk);
3322 	else
3323 #endif
3324 		mptcp_copy_ip_options(nsk, sk);
3325 
3326 	msk = mptcp_sk(nsk);
3327 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3328 	WRITE_ONCE(msk->token, subflow_req->token);
3329 	msk->in_accept_queue = 1;
3330 	WRITE_ONCE(msk->fully_established, false);
3331 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3332 		WRITE_ONCE(msk->csum_enabled, true);
3333 
3334 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3335 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3336 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3337 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3338 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3339 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3340 
3341 	/* passive msk is created after the first/MPC subflow */
3342 	msk->subflow_id = 2;
3343 
3344 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3345 	security_inet_csk_clone(nsk, req);
3346 
3347 	/* this can't race with mptcp_close(), as the msk is
3348 	 * not yet exposted to user-space
3349 	 */
3350 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3351 
3352 	/* The msk maintain a ref to each subflow in the connections list */
3353 	WRITE_ONCE(msk->first, ssk);
3354 	subflow = mptcp_subflow_ctx(ssk);
3355 	list_add(&subflow->node, &msk->conn_list);
3356 	sock_hold(ssk);
3357 
3358 	/* new mpc subflow takes ownership of the newly
3359 	 * created mptcp socket
3360 	 */
3361 	mptcp_token_accept(subflow_req, msk);
3362 
3363 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3364 	 * uses the correct data
3365 	 */
3366 	mptcp_copy_inaddrs(nsk, ssk);
3367 	__mptcp_propagate_sndbuf(nsk, ssk);
3368 
3369 	mptcp_rcv_space_init(msk, ssk);
3370 
3371 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3372 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3373 	bh_unlock_sock(nsk);
3374 
3375 	/* note: the newly allocated socket refcount is 2 now */
3376 	return nsk;
3377 }
3378 
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3379 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3380 {
3381 	const struct tcp_sock *tp = tcp_sk(ssk);
3382 
3383 	msk->rcvspace_init = 1;
3384 	msk->rcvq_space.copied = 0;
3385 	msk->rcvq_space.rtt_us = 0;
3386 
3387 	msk->rcvq_space.time = tp->tcp_mstamp;
3388 
3389 	/* initial rcv_space offering made to peer */
3390 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3391 				      TCP_INIT_CWND * tp->advmss);
3392 	if (msk->rcvq_space.space == 0)
3393 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3394 }
3395 
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3396 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3397 {
3398 	struct mptcp_subflow_context *subflow, *tmp;
3399 	struct sock *sk = (struct sock *)msk;
3400 
3401 	__mptcp_clear_xmit(sk);
3402 
3403 	/* join list will be eventually flushed (with rst) at sock lock release time */
3404 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3405 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3406 
3407 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3408 	mptcp_data_lock(sk);
3409 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3410 	__skb_queue_purge(&sk->sk_receive_queue);
3411 	skb_rbtree_purge(&msk->out_of_order_queue);
3412 	mptcp_data_unlock(sk);
3413 
3414 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3415 	 * inet_sock_destruct() will dispose it
3416 	 */
3417 	sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3418 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3419 	mptcp_token_destroy(msk);
3420 	mptcp_pm_free_anno_list(msk);
3421 	mptcp_free_local_addr_list(msk);
3422 }
3423 
mptcp_destroy(struct sock * sk)3424 static void mptcp_destroy(struct sock *sk)
3425 {
3426 	struct mptcp_sock *msk = mptcp_sk(sk);
3427 
3428 	/* allow the following to close even the initial subflow */
3429 	msk->free_first = 1;
3430 	mptcp_destroy_common(msk, 0);
3431 	sk_sockets_allocated_dec(sk);
3432 }
3433 
__mptcp_data_acked(struct sock * sk)3434 void __mptcp_data_acked(struct sock *sk)
3435 {
3436 	if (!sock_owned_by_user(sk))
3437 		__mptcp_clean_una(sk);
3438 	else
3439 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3440 }
3441 
__mptcp_check_push(struct sock * sk,struct sock * ssk)3442 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3443 {
3444 	if (!mptcp_send_head(sk))
3445 		return;
3446 
3447 	if (!sock_owned_by_user(sk))
3448 		__mptcp_subflow_push_pending(sk, ssk, false);
3449 	else
3450 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3451 }
3452 
3453 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3454 				      BIT(MPTCP_RETRANSMIT) | \
3455 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3456 
3457 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3458 static void mptcp_release_cb(struct sock *sk)
3459 	__must_hold(&sk->sk_lock.slock)
3460 {
3461 	struct mptcp_sock *msk = mptcp_sk(sk);
3462 
3463 	for (;;) {
3464 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3465 		struct list_head join_list;
3466 
3467 		if (!flags)
3468 			break;
3469 
3470 		INIT_LIST_HEAD(&join_list);
3471 		list_splice_init(&msk->join_list, &join_list);
3472 
3473 		/* the following actions acquire the subflow socket lock
3474 		 *
3475 		 * 1) can't be invoked in atomic scope
3476 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3477 		 *    datapath acquires the msk socket spinlock while helding
3478 		 *    the subflow socket lock
3479 		 */
3480 		msk->cb_flags &= ~flags;
3481 		spin_unlock_bh(&sk->sk_lock.slock);
3482 
3483 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3484 			__mptcp_flush_join_list(sk, &join_list);
3485 		if (flags & BIT(MPTCP_PUSH_PENDING))
3486 			__mptcp_push_pending(sk, 0);
3487 		if (flags & BIT(MPTCP_RETRANSMIT))
3488 			__mptcp_retrans(sk);
3489 
3490 		cond_resched();
3491 		spin_lock_bh(&sk->sk_lock.slock);
3492 	}
3493 
3494 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3495 		__mptcp_clean_una_wakeup(sk);
3496 	if (unlikely(msk->cb_flags)) {
3497 		/* be sure to sync the msk state before taking actions
3498 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3499 		 * On sk release avoid actions depending on the first subflow
3500 		 */
3501 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3502 			__mptcp_sync_state(sk, msk->pending_state);
3503 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3504 			__mptcp_error_report(sk);
3505 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3506 			__mptcp_sync_sndbuf(sk);
3507 	}
3508 
3509 	__mptcp_update_rmem(sk);
3510 }
3511 
3512 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3513  * TCP can't schedule delack timer before the subflow is fully established.
3514  * MPTCP uses the delack timer to do 3rd ack retransmissions
3515  */
schedule_3rdack_retransmission(struct sock * ssk)3516 static void schedule_3rdack_retransmission(struct sock *ssk)
3517 {
3518 	struct inet_connection_sock *icsk = inet_csk(ssk);
3519 	struct tcp_sock *tp = tcp_sk(ssk);
3520 	unsigned long timeout;
3521 
3522 	if (mptcp_subflow_ctx(ssk)->fully_established)
3523 		return;
3524 
3525 	/* reschedule with a timeout above RTT, as we must look only for drop */
3526 	if (tp->srtt_us)
3527 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3528 	else
3529 		timeout = TCP_TIMEOUT_INIT;
3530 	timeout += jiffies;
3531 
3532 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3533 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3534 	icsk->icsk_ack.timeout = timeout;
3535 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3536 }
3537 
mptcp_subflow_process_delegated(struct sock * ssk,long status)3538 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3539 {
3540 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3541 	struct sock *sk = subflow->conn;
3542 
3543 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3544 		mptcp_data_lock(sk);
3545 		if (!sock_owned_by_user(sk))
3546 			__mptcp_subflow_push_pending(sk, ssk, true);
3547 		else
3548 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3549 		mptcp_data_unlock(sk);
3550 	}
3551 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3552 		mptcp_data_lock(sk);
3553 		if (!sock_owned_by_user(sk))
3554 			__mptcp_sync_sndbuf(sk);
3555 		else
3556 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3557 		mptcp_data_unlock(sk);
3558 	}
3559 	if (status & BIT(MPTCP_DELEGATE_ACK))
3560 		schedule_3rdack_retransmission(ssk);
3561 }
3562 
mptcp_hash(struct sock * sk)3563 static int mptcp_hash(struct sock *sk)
3564 {
3565 	/* should never be called,
3566 	 * we hash the TCP subflows not the MPTCP socket
3567 	 */
3568 	WARN_ON_ONCE(1);
3569 	return 0;
3570 }
3571 
mptcp_unhash(struct sock * sk)3572 static void mptcp_unhash(struct sock *sk)
3573 {
3574 	/* called from sk_common_release(), but nothing to do here */
3575 }
3576 
mptcp_get_port(struct sock * sk,unsigned short snum)3577 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3578 {
3579 	struct mptcp_sock *msk = mptcp_sk(sk);
3580 
3581 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3582 	if (WARN_ON_ONCE(!msk->first))
3583 		return -EINVAL;
3584 
3585 	return inet_csk_get_port(msk->first, snum);
3586 }
3587 
mptcp_finish_connect(struct sock * ssk)3588 void mptcp_finish_connect(struct sock *ssk)
3589 {
3590 	struct mptcp_subflow_context *subflow;
3591 	struct mptcp_sock *msk;
3592 	struct sock *sk;
3593 
3594 	subflow = mptcp_subflow_ctx(ssk);
3595 	sk = subflow->conn;
3596 	msk = mptcp_sk(sk);
3597 
3598 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3599 
3600 	subflow->map_seq = subflow->iasn;
3601 	subflow->map_subflow_seq = 1;
3602 
3603 	/* the socket is not connected yet, no msk/subflow ops can access/race
3604 	 * accessing the field below
3605 	 */
3606 	WRITE_ONCE(msk->local_key, subflow->local_key);
3607 
3608 	mptcp_pm_new_connection(msk, ssk, 0);
3609 }
3610 
mptcp_sock_graft(struct sock * sk,struct socket * parent)3611 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3612 {
3613 	write_lock_bh(&sk->sk_callback_lock);
3614 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3615 	sk_set_socket(sk, parent);
3616 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3617 	write_unlock_bh(&sk->sk_callback_lock);
3618 }
3619 
mptcp_finish_join(struct sock * ssk)3620 bool mptcp_finish_join(struct sock *ssk)
3621 {
3622 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3623 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3624 	struct sock *parent = (void *)msk;
3625 	bool ret = true;
3626 
3627 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3628 
3629 	/* mptcp socket already closing? */
3630 	if (!mptcp_is_fully_established(parent)) {
3631 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3632 		return false;
3633 	}
3634 
3635 	/* active subflow, already present inside the conn_list */
3636 	if (!list_empty(&subflow->node)) {
3637 		mptcp_subflow_joined(msk, ssk);
3638 		mptcp_propagate_sndbuf(parent, ssk);
3639 		return true;
3640 	}
3641 
3642 	if (!mptcp_pm_allow_new_subflow(msk))
3643 		goto err_prohibited;
3644 
3645 	/* If we can't acquire msk socket lock here, let the release callback
3646 	 * handle it
3647 	 */
3648 	mptcp_data_lock(parent);
3649 	if (!sock_owned_by_user(parent)) {
3650 		ret = __mptcp_finish_join(msk, ssk);
3651 		if (ret) {
3652 			sock_hold(ssk);
3653 			list_add_tail(&subflow->node, &msk->conn_list);
3654 		}
3655 	} else {
3656 		sock_hold(ssk);
3657 		list_add_tail(&subflow->node, &msk->join_list);
3658 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3659 	}
3660 	mptcp_data_unlock(parent);
3661 
3662 	if (!ret) {
3663 err_prohibited:
3664 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3665 		return false;
3666 	}
3667 
3668 	return true;
3669 }
3670 
mptcp_shutdown(struct sock * sk,int how)3671 static void mptcp_shutdown(struct sock *sk, int how)
3672 {
3673 	pr_debug("sk=%p, how=%d\n", sk, how);
3674 
3675 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3676 		__mptcp_wr_shutdown(sk);
3677 }
3678 
mptcp_forward_alloc_get(const struct sock * sk)3679 static int mptcp_forward_alloc_get(const struct sock *sk)
3680 {
3681 	return READ_ONCE(sk->sk_forward_alloc) +
3682 	       READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3683 }
3684 
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3685 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3686 {
3687 	const struct sock *sk = (void *)msk;
3688 	u64 delta;
3689 
3690 	if (sk->sk_state == TCP_LISTEN)
3691 		return -EINVAL;
3692 
3693 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3694 		return 0;
3695 
3696 	delta = msk->write_seq - v;
3697 	if (__mptcp_check_fallback(msk) && msk->first) {
3698 		struct tcp_sock *tp = tcp_sk(msk->first);
3699 
3700 		/* the first subflow is disconnected after close - see
3701 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3702 		 * so ignore that status, too.
3703 		 */
3704 		if (!((1 << msk->first->sk_state) &
3705 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3706 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3707 	}
3708 	if (delta > INT_MAX)
3709 		delta = INT_MAX;
3710 
3711 	return (int)delta;
3712 }
3713 
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3714 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3715 {
3716 	struct mptcp_sock *msk = mptcp_sk(sk);
3717 	bool slow;
3718 
3719 	switch (cmd) {
3720 	case SIOCINQ:
3721 		if (sk->sk_state == TCP_LISTEN)
3722 			return -EINVAL;
3723 
3724 		lock_sock(sk);
3725 		__mptcp_move_skbs(msk);
3726 		*karg = mptcp_inq_hint(sk);
3727 		release_sock(sk);
3728 		break;
3729 	case SIOCOUTQ:
3730 		slow = lock_sock_fast(sk);
3731 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3732 		unlock_sock_fast(sk, slow);
3733 		break;
3734 	case SIOCOUTQNSD:
3735 		slow = lock_sock_fast(sk);
3736 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3737 		unlock_sock_fast(sk, slow);
3738 		break;
3739 	default:
3740 		return -ENOIOCTLCMD;
3741 	}
3742 
3743 	return 0;
3744 }
3745 
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3746 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3747 {
3748 	struct mptcp_subflow_context *subflow;
3749 	struct mptcp_sock *msk = mptcp_sk(sk);
3750 	int err = -EINVAL;
3751 	struct sock *ssk;
3752 
3753 	ssk = __mptcp_nmpc_sk(msk);
3754 	if (IS_ERR(ssk))
3755 		return PTR_ERR(ssk);
3756 
3757 	mptcp_set_state(sk, TCP_SYN_SENT);
3758 	subflow = mptcp_subflow_ctx(ssk);
3759 #ifdef CONFIG_TCP_MD5SIG
3760 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3761 	 * TCP option space.
3762 	 */
3763 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3764 		mptcp_subflow_early_fallback(msk, subflow);
3765 #endif
3766 	if (subflow->request_mptcp) {
3767 		if (mptcp_active_should_disable(sk)) {
3768 			MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3769 			mptcp_subflow_early_fallback(msk, subflow);
3770 		} else if (mptcp_token_new_connect(ssk) < 0) {
3771 			MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3772 			mptcp_subflow_early_fallback(msk, subflow);
3773 		}
3774 	}
3775 
3776 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3777 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3778 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3779 	if (likely(!__mptcp_check_fallback(msk)))
3780 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3781 
3782 	/* if reaching here via the fastopen/sendmsg path, the caller already
3783 	 * acquired the subflow socket lock, too.
3784 	 */
3785 	if (!msk->fastopening)
3786 		lock_sock(ssk);
3787 
3788 	/* the following mirrors closely a very small chunk of code from
3789 	 * __inet_stream_connect()
3790 	 */
3791 	if (ssk->sk_state != TCP_CLOSE)
3792 		goto out;
3793 
3794 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3795 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3796 		if (err)
3797 			goto out;
3798 	}
3799 
3800 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3801 	if (err < 0)
3802 		goto out;
3803 
3804 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3805 
3806 out:
3807 	if (!msk->fastopening)
3808 		release_sock(ssk);
3809 
3810 	/* on successful connect, the msk state will be moved to established by
3811 	 * subflow_finish_connect()
3812 	 */
3813 	if (unlikely(err)) {
3814 		/* avoid leaving a dangling token in an unconnected socket */
3815 		mptcp_token_destroy(msk);
3816 		mptcp_set_state(sk, TCP_CLOSE);
3817 		return err;
3818 	}
3819 
3820 	mptcp_copy_inaddrs(sk, ssk);
3821 	return 0;
3822 }
3823 
3824 static struct proto mptcp_prot = {
3825 	.name		= "MPTCP",
3826 	.owner		= THIS_MODULE,
3827 	.init		= mptcp_init_sock,
3828 	.connect	= mptcp_connect,
3829 	.disconnect	= mptcp_disconnect,
3830 	.close		= mptcp_close,
3831 	.setsockopt	= mptcp_setsockopt,
3832 	.getsockopt	= mptcp_getsockopt,
3833 	.shutdown	= mptcp_shutdown,
3834 	.destroy	= mptcp_destroy,
3835 	.sendmsg	= mptcp_sendmsg,
3836 	.ioctl		= mptcp_ioctl,
3837 	.recvmsg	= mptcp_recvmsg,
3838 	.release_cb	= mptcp_release_cb,
3839 	.hash		= mptcp_hash,
3840 	.unhash		= mptcp_unhash,
3841 	.get_port	= mptcp_get_port,
3842 	.forward_alloc_get	= mptcp_forward_alloc_get,
3843 	.stream_memory_free	= mptcp_stream_memory_free,
3844 	.sockets_allocated	= &mptcp_sockets_allocated,
3845 
3846 	.memory_allocated	= &tcp_memory_allocated,
3847 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3848 
3849 	.memory_pressure	= &tcp_memory_pressure,
3850 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3851 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3852 	.sysctl_mem	= sysctl_tcp_mem,
3853 	.obj_size	= sizeof(struct mptcp_sock),
3854 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3855 	.no_autobind	= true,
3856 };
3857 
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3858 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3859 {
3860 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3861 	struct sock *ssk, *sk = sock->sk;
3862 	int err = -EINVAL;
3863 
3864 	lock_sock(sk);
3865 	ssk = __mptcp_nmpc_sk(msk);
3866 	if (IS_ERR(ssk)) {
3867 		err = PTR_ERR(ssk);
3868 		goto unlock;
3869 	}
3870 
3871 	if (sk->sk_family == AF_INET)
3872 		err = inet_bind_sk(ssk, uaddr, addr_len);
3873 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3874 	else if (sk->sk_family == AF_INET6)
3875 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3876 #endif
3877 	if (!err)
3878 		mptcp_copy_inaddrs(sk, ssk);
3879 
3880 unlock:
3881 	release_sock(sk);
3882 	return err;
3883 }
3884 
mptcp_listen(struct socket * sock,int backlog)3885 static int mptcp_listen(struct socket *sock, int backlog)
3886 {
3887 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3888 	struct sock *sk = sock->sk;
3889 	struct sock *ssk;
3890 	int err;
3891 
3892 	pr_debug("msk=%p\n", msk);
3893 
3894 	lock_sock(sk);
3895 
3896 	err = -EINVAL;
3897 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3898 		goto unlock;
3899 
3900 	ssk = __mptcp_nmpc_sk(msk);
3901 	if (IS_ERR(ssk)) {
3902 		err = PTR_ERR(ssk);
3903 		goto unlock;
3904 	}
3905 
3906 	mptcp_set_state(sk, TCP_LISTEN);
3907 	sock_set_flag(sk, SOCK_RCU_FREE);
3908 
3909 	lock_sock(ssk);
3910 	err = __inet_listen_sk(ssk, backlog);
3911 	release_sock(ssk);
3912 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3913 
3914 	if (!err) {
3915 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3916 		mptcp_copy_inaddrs(sk, ssk);
3917 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3918 	}
3919 
3920 unlock:
3921 	release_sock(sk);
3922 	return err;
3923 }
3924 
mptcp_stream_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)3925 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3926 			       struct proto_accept_arg *arg)
3927 {
3928 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3929 	struct sock *ssk, *newsk;
3930 
3931 	pr_debug("msk=%p\n", msk);
3932 
3933 	/* Buggy applications can call accept on socket states other then LISTEN
3934 	 * but no need to allocate the first subflow just to error out.
3935 	 */
3936 	ssk = READ_ONCE(msk->first);
3937 	if (!ssk)
3938 		return -EINVAL;
3939 
3940 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3941 	newsk = inet_csk_accept(ssk, arg);
3942 	if (!newsk)
3943 		return arg->err;
3944 
3945 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3946 	if (sk_is_mptcp(newsk)) {
3947 		struct mptcp_subflow_context *subflow;
3948 		struct sock *new_mptcp_sock;
3949 
3950 		subflow = mptcp_subflow_ctx(newsk);
3951 		new_mptcp_sock = subflow->conn;
3952 
3953 		/* is_mptcp should be false if subflow->conn is missing, see
3954 		 * subflow_syn_recv_sock()
3955 		 */
3956 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3957 			tcp_sk(newsk)->is_mptcp = 0;
3958 			goto tcpfallback;
3959 		}
3960 
3961 		newsk = new_mptcp_sock;
3962 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3963 
3964 		newsk->sk_kern_sock = arg->kern;
3965 		lock_sock(newsk);
3966 		__inet_accept(sock, newsock, newsk);
3967 
3968 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3969 		msk = mptcp_sk(newsk);
3970 		msk->in_accept_queue = 0;
3971 
3972 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3973 		 * This is needed so NOSPACE flag can be set from tcp stack.
3974 		 */
3975 		mptcp_for_each_subflow(msk, subflow) {
3976 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3977 
3978 			if (!ssk->sk_socket)
3979 				mptcp_sock_graft(ssk, newsock);
3980 		}
3981 
3982 		/* Do late cleanup for the first subflow as necessary. Also
3983 		 * deal with bad peers not doing a complete shutdown.
3984 		 */
3985 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3986 			__mptcp_close_ssk(newsk, msk->first,
3987 					  mptcp_subflow_ctx(msk->first), 0);
3988 			if (unlikely(list_is_singular(&msk->conn_list)))
3989 				mptcp_set_state(newsk, TCP_CLOSE);
3990 		}
3991 	} else {
3992 tcpfallback:
3993 		newsk->sk_kern_sock = arg->kern;
3994 		lock_sock(newsk);
3995 		__inet_accept(sock, newsock, newsk);
3996 		/* we are being invoked after accepting a non-mp-capable
3997 		 * flow: sk is a tcp_sk, not an mptcp one.
3998 		 *
3999 		 * Hand the socket over to tcp so all further socket ops
4000 		 * bypass mptcp.
4001 		 */
4002 		WRITE_ONCE(newsock->sk->sk_socket->ops,
4003 			   mptcp_fallback_tcp_ops(newsock->sk));
4004 	}
4005 	release_sock(newsk);
4006 
4007 	return 0;
4008 }
4009 
mptcp_check_writeable(struct mptcp_sock * msk)4010 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
4011 {
4012 	struct sock *sk = (struct sock *)msk;
4013 
4014 	if (__mptcp_stream_is_writeable(sk, 1))
4015 		return EPOLLOUT | EPOLLWRNORM;
4016 
4017 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
4018 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
4019 	if (__mptcp_stream_is_writeable(sk, 1))
4020 		return EPOLLOUT | EPOLLWRNORM;
4021 
4022 	return 0;
4023 }
4024 
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)4025 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4026 			   struct poll_table_struct *wait)
4027 {
4028 	struct sock *sk = sock->sk;
4029 	struct mptcp_sock *msk;
4030 	__poll_t mask = 0;
4031 	u8 shutdown;
4032 	int state;
4033 
4034 	msk = mptcp_sk(sk);
4035 	sock_poll_wait(file, sock, wait);
4036 
4037 	state = inet_sk_state_load(sk);
4038 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4039 	if (state == TCP_LISTEN) {
4040 		struct sock *ssk = READ_ONCE(msk->first);
4041 
4042 		if (WARN_ON_ONCE(!ssk))
4043 			return 0;
4044 
4045 		return inet_csk_listen_poll(ssk);
4046 	}
4047 
4048 	shutdown = READ_ONCE(sk->sk_shutdown);
4049 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4050 		mask |= EPOLLHUP;
4051 	if (shutdown & RCV_SHUTDOWN)
4052 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4053 
4054 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4055 		mask |= mptcp_check_readable(sk);
4056 		if (shutdown & SEND_SHUTDOWN)
4057 			mask |= EPOLLOUT | EPOLLWRNORM;
4058 		else
4059 			mask |= mptcp_check_writeable(msk);
4060 	} else if (state == TCP_SYN_SENT &&
4061 		   inet_test_bit(DEFER_CONNECT, sk)) {
4062 		/* cf tcp_poll() note about TFO */
4063 		mask |= EPOLLOUT | EPOLLWRNORM;
4064 	}
4065 
4066 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4067 	smp_rmb();
4068 	if (READ_ONCE(sk->sk_err))
4069 		mask |= EPOLLERR;
4070 
4071 	return mask;
4072 }
4073 
4074 static const struct proto_ops mptcp_stream_ops = {
4075 	.family		   = PF_INET,
4076 	.owner		   = THIS_MODULE,
4077 	.release	   = inet_release,
4078 	.bind		   = mptcp_bind,
4079 	.connect	   = inet_stream_connect,
4080 	.socketpair	   = sock_no_socketpair,
4081 	.accept		   = mptcp_stream_accept,
4082 	.getname	   = inet_getname,
4083 	.poll		   = mptcp_poll,
4084 	.ioctl		   = inet_ioctl,
4085 	.gettstamp	   = sock_gettstamp,
4086 	.listen		   = mptcp_listen,
4087 	.shutdown	   = inet_shutdown,
4088 	.setsockopt	   = sock_common_setsockopt,
4089 	.getsockopt	   = sock_common_getsockopt,
4090 	.sendmsg	   = inet_sendmsg,
4091 	.recvmsg	   = inet_recvmsg,
4092 	.mmap		   = sock_no_mmap,
4093 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4094 };
4095 
4096 static struct inet_protosw mptcp_protosw = {
4097 	.type		= SOCK_STREAM,
4098 	.protocol	= IPPROTO_MPTCP,
4099 	.prot		= &mptcp_prot,
4100 	.ops		= &mptcp_stream_ops,
4101 	.flags		= INET_PROTOSW_ICSK,
4102 };
4103 
mptcp_napi_poll(struct napi_struct * napi,int budget)4104 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4105 {
4106 	struct mptcp_delegated_action *delegated;
4107 	struct mptcp_subflow_context *subflow;
4108 	int work_done = 0;
4109 
4110 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4111 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4112 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4113 
4114 		bh_lock_sock_nested(ssk);
4115 		if (!sock_owned_by_user(ssk)) {
4116 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4117 		} else {
4118 			/* tcp_release_cb_override already processed
4119 			 * the action or will do at next release_sock().
4120 			 * In both case must dequeue the subflow here - on the same
4121 			 * CPU that scheduled it.
4122 			 */
4123 			smp_wmb();
4124 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4125 		}
4126 		bh_unlock_sock(ssk);
4127 		sock_put(ssk);
4128 
4129 		if (++work_done == budget)
4130 			return budget;
4131 	}
4132 
4133 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4134 	 * will not try accessing the NULL napi->dev ptr
4135 	 */
4136 	napi_complete_done(napi, 0);
4137 	return work_done;
4138 }
4139 
mptcp_proto_init(void)4140 void __init mptcp_proto_init(void)
4141 {
4142 	struct mptcp_delegated_action *delegated;
4143 	int cpu;
4144 
4145 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4146 
4147 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4148 		panic("Failed to allocate MPTCP pcpu counter\n");
4149 
4150 	init_dummy_netdev(&mptcp_napi_dev);
4151 	for_each_possible_cpu(cpu) {
4152 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4153 		INIT_LIST_HEAD(&delegated->head);
4154 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4155 				  mptcp_napi_poll);
4156 		napi_enable(&delegated->napi);
4157 	}
4158 
4159 	mptcp_subflow_init();
4160 	mptcp_pm_init();
4161 	mptcp_sched_init();
4162 	mptcp_token_init();
4163 
4164 	if (proto_register(&mptcp_prot, 1) != 0)
4165 		panic("Failed to register MPTCP proto.\n");
4166 
4167 	inet_register_protosw(&mptcp_protosw);
4168 
4169 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4170 }
4171 
4172 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4173 static const struct proto_ops mptcp_v6_stream_ops = {
4174 	.family		   = PF_INET6,
4175 	.owner		   = THIS_MODULE,
4176 	.release	   = inet6_release,
4177 	.bind		   = mptcp_bind,
4178 	.connect	   = inet_stream_connect,
4179 	.socketpair	   = sock_no_socketpair,
4180 	.accept		   = mptcp_stream_accept,
4181 	.getname	   = inet6_getname,
4182 	.poll		   = mptcp_poll,
4183 	.ioctl		   = inet6_ioctl,
4184 	.gettstamp	   = sock_gettstamp,
4185 	.listen		   = mptcp_listen,
4186 	.shutdown	   = inet_shutdown,
4187 	.setsockopt	   = sock_common_setsockopt,
4188 	.getsockopt	   = sock_common_getsockopt,
4189 	.sendmsg	   = inet6_sendmsg,
4190 	.recvmsg	   = inet6_recvmsg,
4191 	.mmap		   = sock_no_mmap,
4192 #ifdef CONFIG_COMPAT
4193 	.compat_ioctl	   = inet6_compat_ioctl,
4194 #endif
4195 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4196 };
4197 
4198 static struct proto mptcp_v6_prot;
4199 
4200 static struct inet_protosw mptcp_v6_protosw = {
4201 	.type		= SOCK_STREAM,
4202 	.protocol	= IPPROTO_MPTCP,
4203 	.prot		= &mptcp_v6_prot,
4204 	.ops		= &mptcp_v6_stream_ops,
4205 	.flags		= INET_PROTOSW_ICSK,
4206 };
4207 
mptcp_proto_v6_init(void)4208 int __init mptcp_proto_v6_init(void)
4209 {
4210 	int err;
4211 
4212 	mptcp_v6_prot = mptcp_prot;
4213 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4214 	mptcp_v6_prot.slab = NULL;
4215 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4216 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4217 
4218 	err = proto_register(&mptcp_v6_prot, 1);
4219 	if (err)
4220 		return err;
4221 
4222 	err = inet6_register_protosw(&mptcp_v6_protosw);
4223 	if (err)
4224 		proto_unregister(&mptcp_v6_prot);
4225 
4226 	return err;
4227 }
4228 #endif
4229