1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "kcov: " fmt
3 
4 #define DISABLE_BRANCH_PROFILING
5 #include <linux/atomic.h>
6 #include <linux/compiler.h>
7 #include <linux/errno.h>
8 #include <linux/export.h>
9 #include <linux/types.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/hashtable.h>
13 #include <linux/init.h>
14 #include <linux/jiffies.h>
15 #include <linux/kmsan-checks.h>
16 #include <linux/mm.h>
17 #include <linux/preempt.h>
18 #include <linux/printk.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 #include <linux/vmalloc.h>
23 #include <linux/debugfs.h>
24 #include <linux/uaccess.h>
25 #include <linux/kcov.h>
26 #include <linux/refcount.h>
27 #include <linux/log2.h>
28 #include <asm/setup.h>
29 
30 #define kcov_debug(fmt, ...) pr_debug("%s: " fmt, __func__, ##__VA_ARGS__)
31 
32 /* Number of 64-bit words written per one comparison: */
33 #define KCOV_WORDS_PER_CMP 4
34 
35 /*
36  * kcov descriptor (one per opened debugfs file).
37  * State transitions of the descriptor:
38  *  - initial state after open()
39  *  - then there must be a single ioctl(KCOV_INIT_TRACE) call
40  *  - then, mmap() call (several calls are allowed but not useful)
41  *  - then, ioctl(KCOV_ENABLE, arg), where arg is
42  *	KCOV_TRACE_PC - to trace only the PCs
43  *	or
44  *	KCOV_TRACE_CMP - to trace only the comparison operands
45  *  - then, ioctl(KCOV_DISABLE) to disable the task.
46  * Enabling/disabling ioctls can be repeated (only one task a time allowed).
47  */
48 struct kcov {
49 	/*
50 	 * Reference counter. We keep one for:
51 	 *  - opened file descriptor
52 	 *  - task with enabled coverage (we can't unwire it from another task)
53 	 *  - each code section for remote coverage collection
54 	 */
55 	refcount_t		refcount;
56 	/* The lock protects mode, size, area and t. */
57 	spinlock_t		lock;
58 	enum kcov_mode		mode;
59 	/* Size of arena (in long's). */
60 	unsigned int		size;
61 	/* Coverage buffer shared with user space. */
62 	void			*area;
63 	/* Task for which we collect coverage, or NULL. */
64 	struct task_struct	*t;
65 	/* Collecting coverage from remote (background) threads. */
66 	bool			remote;
67 	/* Size of remote area (in long's). */
68 	unsigned int		remote_size;
69 	/*
70 	 * Sequence is incremented each time kcov is reenabled, used by
71 	 * kcov_remote_stop(), see the comment there.
72 	 */
73 	int			sequence;
74 };
75 
76 struct kcov_remote_area {
77 	struct list_head	list;
78 	unsigned int		size;
79 };
80 
81 struct kcov_remote {
82 	u64			handle;
83 	struct kcov		*kcov;
84 	struct hlist_node	hnode;
85 };
86 
87 static DEFINE_SPINLOCK(kcov_remote_lock);
88 static DEFINE_HASHTABLE(kcov_remote_map, 4);
89 static struct list_head kcov_remote_areas = LIST_HEAD_INIT(kcov_remote_areas);
90 
91 struct kcov_percpu_data {
92 	void			*irq_area;
93 	local_lock_t		lock;
94 
95 	unsigned int		saved_mode;
96 	unsigned int		saved_size;
97 	void			*saved_area;
98 	struct kcov		*saved_kcov;
99 	int			saved_sequence;
100 };
101 
102 static DEFINE_PER_CPU(struct kcov_percpu_data, kcov_percpu_data) = {
103 	.lock = INIT_LOCAL_LOCK(lock),
104 };
105 
106 /* Must be called with kcov_remote_lock locked. */
kcov_remote_find(u64 handle)107 static struct kcov_remote *kcov_remote_find(u64 handle)
108 {
109 	struct kcov_remote *remote;
110 
111 	hash_for_each_possible(kcov_remote_map, remote, hnode, handle) {
112 		if (remote->handle == handle)
113 			return remote;
114 	}
115 	return NULL;
116 }
117 
118 /* Must be called with kcov_remote_lock locked. */
kcov_remote_add(struct kcov * kcov,u64 handle)119 static struct kcov_remote *kcov_remote_add(struct kcov *kcov, u64 handle)
120 {
121 	struct kcov_remote *remote;
122 
123 	if (kcov_remote_find(handle))
124 		return ERR_PTR(-EEXIST);
125 	remote = kmalloc(sizeof(*remote), GFP_ATOMIC);
126 	if (!remote)
127 		return ERR_PTR(-ENOMEM);
128 	remote->handle = handle;
129 	remote->kcov = kcov;
130 	hash_add(kcov_remote_map, &remote->hnode, handle);
131 	return remote;
132 }
133 
134 /* Must be called with kcov_remote_lock locked. */
kcov_remote_area_get(unsigned int size)135 static struct kcov_remote_area *kcov_remote_area_get(unsigned int size)
136 {
137 	struct kcov_remote_area *area;
138 	struct list_head *pos;
139 
140 	list_for_each(pos, &kcov_remote_areas) {
141 		area = list_entry(pos, struct kcov_remote_area, list);
142 		if (area->size == size) {
143 			list_del(&area->list);
144 			return area;
145 		}
146 	}
147 	return NULL;
148 }
149 
150 /* Must be called with kcov_remote_lock locked. */
kcov_remote_area_put(struct kcov_remote_area * area,unsigned int size)151 static void kcov_remote_area_put(struct kcov_remote_area *area,
152 					unsigned int size)
153 {
154 	INIT_LIST_HEAD(&area->list);
155 	area->size = size;
156 	list_add(&area->list, &kcov_remote_areas);
157 	/*
158 	 * KMSAN doesn't instrument this file, so it may not know area->list
159 	 * is initialized. Unpoison it explicitly to avoid reports in
160 	 * kcov_remote_area_get().
161 	 */
162 	kmsan_unpoison_memory(&area->list, sizeof(area->list));
163 }
164 
165 /*
166  * Unlike in_serving_softirq(), this function returns false when called during
167  * a hardirq or an NMI that happened in the softirq context.
168  */
in_softirq_really(void)169 static inline bool in_softirq_really(void)
170 {
171 	return in_serving_softirq() && !in_hardirq() && !in_nmi();
172 }
173 
check_kcov_mode(enum kcov_mode needed_mode,struct task_struct * t)174 static notrace bool check_kcov_mode(enum kcov_mode needed_mode, struct task_struct *t)
175 {
176 	unsigned int mode;
177 
178 	/*
179 	 * We are interested in code coverage as a function of a syscall inputs,
180 	 * so we ignore code executed in interrupts, unless we are in a remote
181 	 * coverage collection section in a softirq.
182 	 */
183 	if (!in_task() && !(in_softirq_really() && t->kcov_softirq))
184 		return false;
185 	mode = READ_ONCE(t->kcov_mode);
186 	/*
187 	 * There is some code that runs in interrupts but for which
188 	 * in_interrupt() returns false (e.g. preempt_schedule_irq()).
189 	 * READ_ONCE()/barrier() effectively provides load-acquire wrt
190 	 * interrupts, there are paired barrier()/WRITE_ONCE() in
191 	 * kcov_start().
192 	 */
193 	barrier();
194 	return mode == needed_mode;
195 }
196 
canonicalize_ip(unsigned long ip)197 static notrace unsigned long canonicalize_ip(unsigned long ip)
198 {
199 #ifdef CONFIG_RANDOMIZE_BASE
200 	ip -= kaslr_offset();
201 #endif
202 	return ip;
203 }
204 
205 /*
206  * Entry point from instrumented code.
207  * This is called once per basic-block/edge.
208  */
__sanitizer_cov_trace_pc(void)209 void notrace __sanitizer_cov_trace_pc(void)
210 {
211 	struct task_struct *t;
212 	unsigned long *area;
213 	unsigned long ip = canonicalize_ip(_RET_IP_);
214 	unsigned long pos;
215 
216 	t = current;
217 	if (!check_kcov_mode(KCOV_MODE_TRACE_PC, t))
218 		return;
219 
220 	area = t->kcov_area;
221 	/* The first 64-bit word is the number of subsequent PCs. */
222 	pos = READ_ONCE(area[0]) + 1;
223 	if (likely(pos < t->kcov_size)) {
224 		/* Previously we write pc before updating pos. However, some
225 		 * early interrupt code could bypass check_kcov_mode() check
226 		 * and invoke __sanitizer_cov_trace_pc(). If such interrupt is
227 		 * raised between writing pc and updating pos, the pc could be
228 		 * overitten by the recursive __sanitizer_cov_trace_pc().
229 		 * Update pos before writing pc to avoid such interleaving.
230 		 */
231 		WRITE_ONCE(area[0], pos);
232 		barrier();
233 		area[pos] = ip;
234 	}
235 }
236 EXPORT_SYMBOL(__sanitizer_cov_trace_pc);
237 
238 #ifdef CONFIG_KCOV_ENABLE_COMPARISONS
write_comp_data(u64 type,u64 arg1,u64 arg2,u64 ip)239 static void notrace write_comp_data(u64 type, u64 arg1, u64 arg2, u64 ip)
240 {
241 	struct task_struct *t;
242 	u64 *area;
243 	u64 count, start_index, end_pos, max_pos;
244 
245 	t = current;
246 	if (!check_kcov_mode(KCOV_MODE_TRACE_CMP, t))
247 		return;
248 
249 	ip = canonicalize_ip(ip);
250 
251 	/*
252 	 * We write all comparison arguments and types as u64.
253 	 * The buffer was allocated for t->kcov_size unsigned longs.
254 	 */
255 	area = (u64 *)t->kcov_area;
256 	max_pos = t->kcov_size * sizeof(unsigned long);
257 
258 	count = READ_ONCE(area[0]);
259 
260 	/* Every record is KCOV_WORDS_PER_CMP 64-bit words. */
261 	start_index = 1 + count * KCOV_WORDS_PER_CMP;
262 	end_pos = (start_index + KCOV_WORDS_PER_CMP) * sizeof(u64);
263 	if (likely(end_pos <= max_pos)) {
264 		/* See comment in __sanitizer_cov_trace_pc(). */
265 		WRITE_ONCE(area[0], count + 1);
266 		barrier();
267 		area[start_index] = type;
268 		area[start_index + 1] = arg1;
269 		area[start_index + 2] = arg2;
270 		area[start_index + 3] = ip;
271 	}
272 }
273 
__sanitizer_cov_trace_cmp1(u8 arg1,u8 arg2)274 void notrace __sanitizer_cov_trace_cmp1(u8 arg1, u8 arg2)
275 {
276 	write_comp_data(KCOV_CMP_SIZE(0), arg1, arg2, _RET_IP_);
277 }
278 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp1);
279 
__sanitizer_cov_trace_cmp2(u16 arg1,u16 arg2)280 void notrace __sanitizer_cov_trace_cmp2(u16 arg1, u16 arg2)
281 {
282 	write_comp_data(KCOV_CMP_SIZE(1), arg1, arg2, _RET_IP_);
283 }
284 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp2);
285 
__sanitizer_cov_trace_cmp4(u32 arg1,u32 arg2)286 void notrace __sanitizer_cov_trace_cmp4(u32 arg1, u32 arg2)
287 {
288 	write_comp_data(KCOV_CMP_SIZE(2), arg1, arg2, _RET_IP_);
289 }
290 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp4);
291 
__sanitizer_cov_trace_cmp8(kcov_u64 arg1,kcov_u64 arg2)292 void notrace __sanitizer_cov_trace_cmp8(kcov_u64 arg1, kcov_u64 arg2)
293 {
294 	write_comp_data(KCOV_CMP_SIZE(3), arg1, arg2, _RET_IP_);
295 }
296 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp8);
297 
__sanitizer_cov_trace_const_cmp1(u8 arg1,u8 arg2)298 void notrace __sanitizer_cov_trace_const_cmp1(u8 arg1, u8 arg2)
299 {
300 	write_comp_data(KCOV_CMP_SIZE(0) | KCOV_CMP_CONST, arg1, arg2,
301 			_RET_IP_);
302 }
303 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp1);
304 
__sanitizer_cov_trace_const_cmp2(u16 arg1,u16 arg2)305 void notrace __sanitizer_cov_trace_const_cmp2(u16 arg1, u16 arg2)
306 {
307 	write_comp_data(KCOV_CMP_SIZE(1) | KCOV_CMP_CONST, arg1, arg2,
308 			_RET_IP_);
309 }
310 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp2);
311 
__sanitizer_cov_trace_const_cmp4(u32 arg1,u32 arg2)312 void notrace __sanitizer_cov_trace_const_cmp4(u32 arg1, u32 arg2)
313 {
314 	write_comp_data(KCOV_CMP_SIZE(2) | KCOV_CMP_CONST, arg1, arg2,
315 			_RET_IP_);
316 }
317 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp4);
318 
__sanitizer_cov_trace_const_cmp8(kcov_u64 arg1,kcov_u64 arg2)319 void notrace __sanitizer_cov_trace_const_cmp8(kcov_u64 arg1, kcov_u64 arg2)
320 {
321 	write_comp_data(KCOV_CMP_SIZE(3) | KCOV_CMP_CONST, arg1, arg2,
322 			_RET_IP_);
323 }
324 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp8);
325 
__sanitizer_cov_trace_switch(kcov_u64 val,void * arg)326 void notrace __sanitizer_cov_trace_switch(kcov_u64 val, void *arg)
327 {
328 	u64 i;
329 	u64 *cases = arg;
330 	u64 count = cases[0];
331 	u64 size = cases[1];
332 	u64 type = KCOV_CMP_CONST;
333 
334 	switch (size) {
335 	case 8:
336 		type |= KCOV_CMP_SIZE(0);
337 		break;
338 	case 16:
339 		type |= KCOV_CMP_SIZE(1);
340 		break;
341 	case 32:
342 		type |= KCOV_CMP_SIZE(2);
343 		break;
344 	case 64:
345 		type |= KCOV_CMP_SIZE(3);
346 		break;
347 	default:
348 		return;
349 	}
350 	for (i = 0; i < count; i++)
351 		write_comp_data(type, cases[i + 2], val, _RET_IP_);
352 }
353 EXPORT_SYMBOL(__sanitizer_cov_trace_switch);
354 #endif /* ifdef CONFIG_KCOV_ENABLE_COMPARISONS */
355 
kcov_start(struct task_struct * t,struct kcov * kcov,unsigned int size,void * area,enum kcov_mode mode,int sequence)356 static void kcov_start(struct task_struct *t, struct kcov *kcov,
357 			unsigned int size, void *area, enum kcov_mode mode,
358 			int sequence)
359 {
360 	kcov_debug("t = %px, size = %u, area = %px\n", t, size, area);
361 	t->kcov = kcov;
362 	/* Cache in task struct for performance. */
363 	t->kcov_size = size;
364 	t->kcov_area = area;
365 	t->kcov_sequence = sequence;
366 	/* See comment in check_kcov_mode(). */
367 	barrier();
368 	WRITE_ONCE(t->kcov_mode, mode);
369 }
370 
kcov_stop(struct task_struct * t)371 static void kcov_stop(struct task_struct *t)
372 {
373 	WRITE_ONCE(t->kcov_mode, KCOV_MODE_DISABLED);
374 	barrier();
375 	t->kcov = NULL;
376 	t->kcov_size = 0;
377 	t->kcov_area = NULL;
378 }
379 
kcov_task_reset(struct task_struct * t)380 static void kcov_task_reset(struct task_struct *t)
381 {
382 	kcov_stop(t);
383 	t->kcov_sequence = 0;
384 	t->kcov_handle = 0;
385 }
386 
kcov_task_init(struct task_struct * t)387 void kcov_task_init(struct task_struct *t)
388 {
389 	kcov_task_reset(t);
390 	t->kcov_handle = current->kcov_handle;
391 }
392 
kcov_reset(struct kcov * kcov)393 static void kcov_reset(struct kcov *kcov)
394 {
395 	kcov->t = NULL;
396 	kcov->mode = KCOV_MODE_INIT;
397 	kcov->remote = false;
398 	kcov->remote_size = 0;
399 	kcov->sequence++;
400 }
401 
kcov_remote_reset(struct kcov * kcov)402 static void kcov_remote_reset(struct kcov *kcov)
403 {
404 	int bkt;
405 	struct kcov_remote *remote;
406 	struct hlist_node *tmp;
407 	unsigned long flags;
408 
409 	spin_lock_irqsave(&kcov_remote_lock, flags);
410 	hash_for_each_safe(kcov_remote_map, bkt, tmp, remote, hnode) {
411 		if (remote->kcov != kcov)
412 			continue;
413 		hash_del(&remote->hnode);
414 		kfree(remote);
415 	}
416 	/* Do reset before unlock to prevent races with kcov_remote_start(). */
417 	kcov_reset(kcov);
418 	spin_unlock_irqrestore(&kcov_remote_lock, flags);
419 }
420 
kcov_disable(struct task_struct * t,struct kcov * kcov)421 static void kcov_disable(struct task_struct *t, struct kcov *kcov)
422 {
423 	kcov_task_reset(t);
424 	if (kcov->remote)
425 		kcov_remote_reset(kcov);
426 	else
427 		kcov_reset(kcov);
428 }
429 
kcov_get(struct kcov * kcov)430 static void kcov_get(struct kcov *kcov)
431 {
432 	refcount_inc(&kcov->refcount);
433 }
434 
kcov_put(struct kcov * kcov)435 static void kcov_put(struct kcov *kcov)
436 {
437 	if (refcount_dec_and_test(&kcov->refcount)) {
438 		kcov_remote_reset(kcov);
439 		vfree(kcov->area);
440 		kfree(kcov);
441 	}
442 }
443 
kcov_task_exit(struct task_struct * t)444 void kcov_task_exit(struct task_struct *t)
445 {
446 	struct kcov *kcov;
447 	unsigned long flags;
448 
449 	kcov = t->kcov;
450 	if (kcov == NULL)
451 		return;
452 
453 	spin_lock_irqsave(&kcov->lock, flags);
454 	kcov_debug("t = %px, kcov->t = %px\n", t, kcov->t);
455 	/*
456 	 * For KCOV_ENABLE devices we want to make sure that t->kcov->t == t,
457 	 * which comes down to:
458 	 *        WARN_ON(!kcov->remote && kcov->t != t);
459 	 *
460 	 * For KCOV_REMOTE_ENABLE devices, the exiting task is either:
461 	 *
462 	 * 1. A remote task between kcov_remote_start() and kcov_remote_stop().
463 	 *    In this case we should print a warning right away, since a task
464 	 *    shouldn't be exiting when it's in a kcov coverage collection
465 	 *    section. Here t points to the task that is collecting remote
466 	 *    coverage, and t->kcov->t points to the thread that created the
467 	 *    kcov device. Which means that to detect this case we need to
468 	 *    check that t != t->kcov->t, and this gives us the following:
469 	 *        WARN_ON(kcov->remote && kcov->t != t);
470 	 *
471 	 * 2. The task that created kcov exiting without calling KCOV_DISABLE,
472 	 *    and then again we make sure that t->kcov->t == t:
473 	 *        WARN_ON(kcov->remote && kcov->t != t);
474 	 *
475 	 * By combining all three checks into one we get:
476 	 */
477 	if (WARN_ON(kcov->t != t)) {
478 		spin_unlock_irqrestore(&kcov->lock, flags);
479 		return;
480 	}
481 	/* Just to not leave dangling references behind. */
482 	kcov_disable(t, kcov);
483 	spin_unlock_irqrestore(&kcov->lock, flags);
484 	kcov_put(kcov);
485 }
486 
kcov_mmap(struct file * filep,struct vm_area_struct * vma)487 static int kcov_mmap(struct file *filep, struct vm_area_struct *vma)
488 {
489 	int res = 0;
490 	struct kcov *kcov = vma->vm_file->private_data;
491 	unsigned long size, off;
492 	struct page *page;
493 	unsigned long flags;
494 
495 	spin_lock_irqsave(&kcov->lock, flags);
496 	size = kcov->size * sizeof(unsigned long);
497 	if (kcov->area == NULL || vma->vm_pgoff != 0 ||
498 	    vma->vm_end - vma->vm_start != size) {
499 		res = -EINVAL;
500 		goto exit;
501 	}
502 	spin_unlock_irqrestore(&kcov->lock, flags);
503 	vm_flags_set(vma, VM_DONTEXPAND);
504 	for (off = 0; off < size; off += PAGE_SIZE) {
505 		page = vmalloc_to_page(kcov->area + off);
506 		res = vm_insert_page(vma, vma->vm_start + off, page);
507 		if (res) {
508 			pr_warn_once("kcov: vm_insert_page() failed\n");
509 			return res;
510 		}
511 	}
512 	return 0;
513 exit:
514 	spin_unlock_irqrestore(&kcov->lock, flags);
515 	return res;
516 }
517 
kcov_open(struct inode * inode,struct file * filep)518 static int kcov_open(struct inode *inode, struct file *filep)
519 {
520 	struct kcov *kcov;
521 
522 	kcov = kzalloc(sizeof(*kcov), GFP_KERNEL);
523 	if (!kcov)
524 		return -ENOMEM;
525 	kcov->mode = KCOV_MODE_DISABLED;
526 	kcov->sequence = 1;
527 	refcount_set(&kcov->refcount, 1);
528 	spin_lock_init(&kcov->lock);
529 	filep->private_data = kcov;
530 	return nonseekable_open(inode, filep);
531 }
532 
kcov_close(struct inode * inode,struct file * filep)533 static int kcov_close(struct inode *inode, struct file *filep)
534 {
535 	kcov_put(filep->private_data);
536 	return 0;
537 }
538 
kcov_get_mode(unsigned long arg)539 static int kcov_get_mode(unsigned long arg)
540 {
541 	if (arg == KCOV_TRACE_PC)
542 		return KCOV_MODE_TRACE_PC;
543 	else if (arg == KCOV_TRACE_CMP)
544 #ifdef CONFIG_KCOV_ENABLE_COMPARISONS
545 		return KCOV_MODE_TRACE_CMP;
546 #else
547 		return -ENOTSUPP;
548 #endif
549 	else
550 		return -EINVAL;
551 }
552 
553 /*
554  * Fault in a lazily-faulted vmalloc area before it can be used by
555  * __santizer_cov_trace_pc(), to avoid recursion issues if any code on the
556  * vmalloc fault handling path is instrumented.
557  */
kcov_fault_in_area(struct kcov * kcov)558 static void kcov_fault_in_area(struct kcov *kcov)
559 {
560 	unsigned long stride = PAGE_SIZE / sizeof(unsigned long);
561 	unsigned long *area = kcov->area;
562 	unsigned long offset;
563 
564 	for (offset = 0; offset < kcov->size; offset += stride)
565 		READ_ONCE(area[offset]);
566 }
567 
kcov_check_handle(u64 handle,bool common_valid,bool uncommon_valid,bool zero_valid)568 static inline bool kcov_check_handle(u64 handle, bool common_valid,
569 				bool uncommon_valid, bool zero_valid)
570 {
571 	if (handle & ~(KCOV_SUBSYSTEM_MASK | KCOV_INSTANCE_MASK))
572 		return false;
573 	switch (handle & KCOV_SUBSYSTEM_MASK) {
574 	case KCOV_SUBSYSTEM_COMMON:
575 		return (handle & KCOV_INSTANCE_MASK) ?
576 			common_valid : zero_valid;
577 	case KCOV_SUBSYSTEM_USB:
578 		return uncommon_valid;
579 	default:
580 		return false;
581 	}
582 	return false;
583 }
584 
kcov_ioctl_locked(struct kcov * kcov,unsigned int cmd,unsigned long arg)585 static int kcov_ioctl_locked(struct kcov *kcov, unsigned int cmd,
586 			     unsigned long arg)
587 {
588 	struct task_struct *t;
589 	unsigned long flags, unused;
590 	int mode, i;
591 	struct kcov_remote_arg *remote_arg;
592 	struct kcov_remote *remote;
593 
594 	switch (cmd) {
595 	case KCOV_ENABLE:
596 		/*
597 		 * Enable coverage for the current task.
598 		 * At this point user must have been enabled trace mode,
599 		 * and mmapped the file. Coverage collection is disabled only
600 		 * at task exit or voluntary by KCOV_DISABLE. After that it can
601 		 * be enabled for another task.
602 		 */
603 		if (kcov->mode != KCOV_MODE_INIT || !kcov->area)
604 			return -EINVAL;
605 		t = current;
606 		if (kcov->t != NULL || t->kcov != NULL)
607 			return -EBUSY;
608 		mode = kcov_get_mode(arg);
609 		if (mode < 0)
610 			return mode;
611 		kcov_fault_in_area(kcov);
612 		kcov->mode = mode;
613 		kcov_start(t, kcov, kcov->size, kcov->area, kcov->mode,
614 				kcov->sequence);
615 		kcov->t = t;
616 		/* Put either in kcov_task_exit() or in KCOV_DISABLE. */
617 		kcov_get(kcov);
618 		return 0;
619 	case KCOV_DISABLE:
620 		/* Disable coverage for the current task. */
621 		unused = arg;
622 		if (unused != 0 || current->kcov != kcov)
623 			return -EINVAL;
624 		t = current;
625 		if (WARN_ON(kcov->t != t))
626 			return -EINVAL;
627 		kcov_disable(t, kcov);
628 		kcov_put(kcov);
629 		return 0;
630 	case KCOV_REMOTE_ENABLE:
631 		if (kcov->mode != KCOV_MODE_INIT || !kcov->area)
632 			return -EINVAL;
633 		t = current;
634 		if (kcov->t != NULL || t->kcov != NULL)
635 			return -EBUSY;
636 		remote_arg = (struct kcov_remote_arg *)arg;
637 		mode = kcov_get_mode(remote_arg->trace_mode);
638 		if (mode < 0)
639 			return mode;
640 		if ((unsigned long)remote_arg->area_size >
641 		    LONG_MAX / sizeof(unsigned long))
642 			return -EINVAL;
643 		kcov->mode = mode;
644 		t->kcov = kcov;
645 	        t->kcov_mode = KCOV_MODE_REMOTE;
646 		kcov->t = t;
647 		kcov->remote = true;
648 		kcov->remote_size = remote_arg->area_size;
649 		spin_lock_irqsave(&kcov_remote_lock, flags);
650 		for (i = 0; i < remote_arg->num_handles; i++) {
651 			if (!kcov_check_handle(remote_arg->handles[i],
652 						false, true, false)) {
653 				spin_unlock_irqrestore(&kcov_remote_lock,
654 							flags);
655 				kcov_disable(t, kcov);
656 				return -EINVAL;
657 			}
658 			remote = kcov_remote_add(kcov, remote_arg->handles[i]);
659 			if (IS_ERR(remote)) {
660 				spin_unlock_irqrestore(&kcov_remote_lock,
661 							flags);
662 				kcov_disable(t, kcov);
663 				return PTR_ERR(remote);
664 			}
665 		}
666 		if (remote_arg->common_handle) {
667 			if (!kcov_check_handle(remote_arg->common_handle,
668 						true, false, false)) {
669 				spin_unlock_irqrestore(&kcov_remote_lock,
670 							flags);
671 				kcov_disable(t, kcov);
672 				return -EINVAL;
673 			}
674 			remote = kcov_remote_add(kcov,
675 					remote_arg->common_handle);
676 			if (IS_ERR(remote)) {
677 				spin_unlock_irqrestore(&kcov_remote_lock,
678 							flags);
679 				kcov_disable(t, kcov);
680 				return PTR_ERR(remote);
681 			}
682 			t->kcov_handle = remote_arg->common_handle;
683 		}
684 		spin_unlock_irqrestore(&kcov_remote_lock, flags);
685 		/* Put either in kcov_task_exit() or in KCOV_DISABLE. */
686 		kcov_get(kcov);
687 		return 0;
688 	default:
689 		return -ENOTTY;
690 	}
691 }
692 
kcov_ioctl(struct file * filep,unsigned int cmd,unsigned long arg)693 static long kcov_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
694 {
695 	struct kcov *kcov;
696 	int res;
697 	struct kcov_remote_arg *remote_arg = NULL;
698 	unsigned int remote_num_handles;
699 	unsigned long remote_arg_size;
700 	unsigned long size, flags;
701 	void *area;
702 
703 	kcov = filep->private_data;
704 	switch (cmd) {
705 	case KCOV_INIT_TRACE:
706 		/*
707 		 * Enable kcov in trace mode and setup buffer size.
708 		 * Must happen before anything else.
709 		 *
710 		 * First check the size argument - it must be at least 2
711 		 * to hold the current position and one PC.
712 		 */
713 		size = arg;
714 		if (size < 2 || size > INT_MAX / sizeof(unsigned long))
715 			return -EINVAL;
716 		area = vmalloc_user(size * sizeof(unsigned long));
717 		if (area == NULL)
718 			return -ENOMEM;
719 		spin_lock_irqsave(&kcov->lock, flags);
720 		if (kcov->mode != KCOV_MODE_DISABLED) {
721 			spin_unlock_irqrestore(&kcov->lock, flags);
722 			vfree(area);
723 			return -EBUSY;
724 		}
725 		kcov->area = area;
726 		kcov->size = size;
727 		kcov->mode = KCOV_MODE_INIT;
728 		spin_unlock_irqrestore(&kcov->lock, flags);
729 		return 0;
730 	case KCOV_REMOTE_ENABLE:
731 		if (get_user(remote_num_handles, (unsigned __user *)(arg +
732 				offsetof(struct kcov_remote_arg, num_handles))))
733 			return -EFAULT;
734 		if (remote_num_handles > KCOV_REMOTE_MAX_HANDLES)
735 			return -EINVAL;
736 		remote_arg_size = struct_size(remote_arg, handles,
737 					remote_num_handles);
738 		remote_arg = memdup_user((void __user *)arg, remote_arg_size);
739 		if (IS_ERR(remote_arg))
740 			return PTR_ERR(remote_arg);
741 		if (remote_arg->num_handles != remote_num_handles) {
742 			kfree(remote_arg);
743 			return -EINVAL;
744 		}
745 		arg = (unsigned long)remote_arg;
746 		fallthrough;
747 	default:
748 		/*
749 		 * All other commands can be normally executed under a spin lock, so we
750 		 * obtain and release it here in order to simplify kcov_ioctl_locked().
751 		 */
752 		spin_lock_irqsave(&kcov->lock, flags);
753 		res = kcov_ioctl_locked(kcov, cmd, arg);
754 		spin_unlock_irqrestore(&kcov->lock, flags);
755 		kfree(remote_arg);
756 		return res;
757 	}
758 }
759 
760 static const struct file_operations kcov_fops = {
761 	.open		= kcov_open,
762 	.unlocked_ioctl	= kcov_ioctl,
763 	.compat_ioctl	= kcov_ioctl,
764 	.mmap		= kcov_mmap,
765 	.release        = kcov_close,
766 };
767 
768 /*
769  * kcov_remote_start() and kcov_remote_stop() can be used to annotate a section
770  * of code in a kernel background thread or in a softirq to allow kcov to be
771  * used to collect coverage from that part of code.
772  *
773  * The handle argument of kcov_remote_start() identifies a code section that is
774  * used for coverage collection. A userspace process passes this handle to
775  * KCOV_REMOTE_ENABLE ioctl to make the used kcov device start collecting
776  * coverage for the code section identified by this handle.
777  *
778  * The usage of these annotations in the kernel code is different depending on
779  * the type of the kernel thread whose code is being annotated.
780  *
781  * For global kernel threads that are spawned in a limited number of instances
782  * (e.g. one USB hub_event() worker thread is spawned per USB HCD) and for
783  * softirqs, each instance must be assigned a unique 4-byte instance id. The
784  * instance id is then combined with a 1-byte subsystem id to get a handle via
785  * kcov_remote_handle(subsystem_id, instance_id).
786  *
787  * For local kernel threads that are spawned from system calls handler when a
788  * user interacts with some kernel interface (e.g. vhost workers), a handle is
789  * passed from a userspace process as the common_handle field of the
790  * kcov_remote_arg struct (note, that the user must generate a handle by using
791  * kcov_remote_handle() with KCOV_SUBSYSTEM_COMMON as the subsystem id and an
792  * arbitrary 4-byte non-zero number as the instance id). This common handle
793  * then gets saved into the task_struct of the process that issued the
794  * KCOV_REMOTE_ENABLE ioctl. When this process issues system calls that spawn
795  * kernel threads, the common handle must be retrieved via kcov_common_handle()
796  * and passed to the spawned threads via custom annotations. Those kernel
797  * threads must in turn be annotated with kcov_remote_start(common_handle) and
798  * kcov_remote_stop(). All of the threads that are spawned by the same process
799  * obtain the same handle, hence the name "common".
800  *
801  * See Documentation/dev-tools/kcov.rst for more details.
802  *
803  * Internally, kcov_remote_start() looks up the kcov device associated with the
804  * provided handle, allocates an area for coverage collection, and saves the
805  * pointers to kcov and area into the current task_struct to allow coverage to
806  * be collected via __sanitizer_cov_trace_pc().
807  * In turns kcov_remote_stop() clears those pointers from task_struct to stop
808  * collecting coverage and copies all collected coverage into the kcov area.
809  */
810 
kcov_mode_enabled(unsigned int mode)811 static inline bool kcov_mode_enabled(unsigned int mode)
812 {
813 	return (mode & ~KCOV_IN_CTXSW) != KCOV_MODE_DISABLED;
814 }
815 
kcov_remote_softirq_start(struct task_struct * t)816 static void kcov_remote_softirq_start(struct task_struct *t)
817 {
818 	struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data);
819 	unsigned int mode;
820 
821 	mode = READ_ONCE(t->kcov_mode);
822 	barrier();
823 	if (kcov_mode_enabled(mode)) {
824 		data->saved_mode = mode;
825 		data->saved_size = t->kcov_size;
826 		data->saved_area = t->kcov_area;
827 		data->saved_sequence = t->kcov_sequence;
828 		data->saved_kcov = t->kcov;
829 		kcov_stop(t);
830 	}
831 }
832 
kcov_remote_softirq_stop(struct task_struct * t)833 static void kcov_remote_softirq_stop(struct task_struct *t)
834 {
835 	struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data);
836 
837 	if (data->saved_kcov) {
838 		kcov_start(t, data->saved_kcov, data->saved_size,
839 				data->saved_area, data->saved_mode,
840 				data->saved_sequence);
841 		data->saved_mode = 0;
842 		data->saved_size = 0;
843 		data->saved_area = NULL;
844 		data->saved_sequence = 0;
845 		data->saved_kcov = NULL;
846 	}
847 }
848 
kcov_remote_start(u64 handle)849 void kcov_remote_start(u64 handle)
850 {
851 	struct task_struct *t = current;
852 	struct kcov_remote *remote;
853 	struct kcov *kcov;
854 	unsigned int mode;
855 	void *area;
856 	unsigned int size;
857 	int sequence;
858 	unsigned long flags;
859 
860 	if (WARN_ON(!kcov_check_handle(handle, true, true, true)))
861 		return;
862 	if (!in_task() && !in_softirq_really())
863 		return;
864 
865 	local_lock_irqsave(&kcov_percpu_data.lock, flags);
866 
867 	/*
868 	 * Check that kcov_remote_start() is not called twice in background
869 	 * threads nor called by user tasks (with enabled kcov).
870 	 */
871 	mode = READ_ONCE(t->kcov_mode);
872 	if (WARN_ON(in_task() && kcov_mode_enabled(mode))) {
873 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
874 		return;
875 	}
876 	/*
877 	 * Check that kcov_remote_start() is not called twice in softirqs.
878 	 * Note, that kcov_remote_start() can be called from a softirq that
879 	 * happened while collecting coverage from a background thread.
880 	 */
881 	if (WARN_ON(in_serving_softirq() && t->kcov_softirq)) {
882 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
883 		return;
884 	}
885 
886 	spin_lock(&kcov_remote_lock);
887 	remote = kcov_remote_find(handle);
888 	if (!remote) {
889 		spin_unlock(&kcov_remote_lock);
890 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
891 		return;
892 	}
893 	kcov_debug("handle = %llx, context: %s\n", handle,
894 			in_task() ? "task" : "softirq");
895 	kcov = remote->kcov;
896 	/* Put in kcov_remote_stop(). */
897 	kcov_get(kcov);
898 	/*
899 	 * Read kcov fields before unlock to prevent races with
900 	 * KCOV_DISABLE / kcov_remote_reset().
901 	 */
902 	mode = kcov->mode;
903 	sequence = kcov->sequence;
904 	if (in_task()) {
905 		size = kcov->remote_size;
906 		area = kcov_remote_area_get(size);
907 	} else {
908 		size = CONFIG_KCOV_IRQ_AREA_SIZE;
909 		area = this_cpu_ptr(&kcov_percpu_data)->irq_area;
910 	}
911 	spin_unlock(&kcov_remote_lock);
912 
913 	/* Can only happen when in_task(). */
914 	if (!area) {
915 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
916 		area = vmalloc(size * sizeof(unsigned long));
917 		if (!area) {
918 			kcov_put(kcov);
919 			return;
920 		}
921 		local_lock_irqsave(&kcov_percpu_data.lock, flags);
922 	}
923 
924 	/* Reset coverage size. */
925 	*(u64 *)area = 0;
926 
927 	if (in_serving_softirq()) {
928 		kcov_remote_softirq_start(t);
929 		t->kcov_softirq = 1;
930 	}
931 	kcov_start(t, kcov, size, area, mode, sequence);
932 
933 	local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
934 
935 }
936 EXPORT_SYMBOL(kcov_remote_start);
937 
kcov_move_area(enum kcov_mode mode,void * dst_area,unsigned int dst_area_size,void * src_area)938 static void kcov_move_area(enum kcov_mode mode, void *dst_area,
939 				unsigned int dst_area_size, void *src_area)
940 {
941 	u64 word_size = sizeof(unsigned long);
942 	u64 count_size, entry_size_log;
943 	u64 dst_len, src_len;
944 	void *dst_entries, *src_entries;
945 	u64 dst_occupied, dst_free, bytes_to_move, entries_moved;
946 
947 	kcov_debug("%px %u <= %px %lu\n",
948 		dst_area, dst_area_size, src_area, *(unsigned long *)src_area);
949 
950 	switch (mode) {
951 	case KCOV_MODE_TRACE_PC:
952 		dst_len = READ_ONCE(*(unsigned long *)dst_area);
953 		src_len = *(unsigned long *)src_area;
954 		count_size = sizeof(unsigned long);
955 		entry_size_log = __ilog2_u64(sizeof(unsigned long));
956 		break;
957 	case KCOV_MODE_TRACE_CMP:
958 		dst_len = READ_ONCE(*(u64 *)dst_area);
959 		src_len = *(u64 *)src_area;
960 		count_size = sizeof(u64);
961 		BUILD_BUG_ON(!is_power_of_2(KCOV_WORDS_PER_CMP));
962 		entry_size_log = __ilog2_u64(sizeof(u64) * KCOV_WORDS_PER_CMP);
963 		break;
964 	default:
965 		WARN_ON(1);
966 		return;
967 	}
968 
969 	/* As arm can't divide u64 integers use log of entry size. */
970 	if (dst_len > ((dst_area_size * word_size - count_size) >>
971 				entry_size_log))
972 		return;
973 	dst_occupied = count_size + (dst_len << entry_size_log);
974 	dst_free = dst_area_size * word_size - dst_occupied;
975 	bytes_to_move = min(dst_free, src_len << entry_size_log);
976 	dst_entries = dst_area + dst_occupied;
977 	src_entries = src_area + count_size;
978 	memcpy(dst_entries, src_entries, bytes_to_move);
979 	entries_moved = bytes_to_move >> entry_size_log;
980 
981 	switch (mode) {
982 	case KCOV_MODE_TRACE_PC:
983 		WRITE_ONCE(*(unsigned long *)dst_area, dst_len + entries_moved);
984 		break;
985 	case KCOV_MODE_TRACE_CMP:
986 		WRITE_ONCE(*(u64 *)dst_area, dst_len + entries_moved);
987 		break;
988 	default:
989 		break;
990 	}
991 }
992 
993 /* See the comment before kcov_remote_start() for usage details. */
kcov_remote_stop(void)994 void kcov_remote_stop(void)
995 {
996 	struct task_struct *t = current;
997 	struct kcov *kcov;
998 	unsigned int mode;
999 	void *area;
1000 	unsigned int size;
1001 	int sequence;
1002 	unsigned long flags;
1003 
1004 	if (!in_task() && !in_softirq_really())
1005 		return;
1006 
1007 	local_lock_irqsave(&kcov_percpu_data.lock, flags);
1008 
1009 	mode = READ_ONCE(t->kcov_mode);
1010 	barrier();
1011 	if (!kcov_mode_enabled(mode)) {
1012 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
1013 		return;
1014 	}
1015 	/*
1016 	 * When in softirq, check if the corresponding kcov_remote_start()
1017 	 * actually found the remote handle and started collecting coverage.
1018 	 */
1019 	if (in_serving_softirq() && !t->kcov_softirq) {
1020 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
1021 		return;
1022 	}
1023 	/* Make sure that kcov_softirq is only set when in softirq. */
1024 	if (WARN_ON(!in_serving_softirq() && t->kcov_softirq)) {
1025 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
1026 		return;
1027 	}
1028 
1029 	kcov = t->kcov;
1030 	area = t->kcov_area;
1031 	size = t->kcov_size;
1032 	sequence = t->kcov_sequence;
1033 
1034 	kcov_stop(t);
1035 	if (in_serving_softirq()) {
1036 		t->kcov_softirq = 0;
1037 		kcov_remote_softirq_stop(t);
1038 	}
1039 
1040 	spin_lock(&kcov->lock);
1041 	/*
1042 	 * KCOV_DISABLE could have been called between kcov_remote_start()
1043 	 * and kcov_remote_stop(), hence the sequence check.
1044 	 */
1045 	if (sequence == kcov->sequence && kcov->remote)
1046 		kcov_move_area(kcov->mode, kcov->area, kcov->size, area);
1047 	spin_unlock(&kcov->lock);
1048 
1049 	if (in_task()) {
1050 		spin_lock(&kcov_remote_lock);
1051 		kcov_remote_area_put(area, size);
1052 		spin_unlock(&kcov_remote_lock);
1053 	}
1054 
1055 	local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
1056 
1057 	/* Get in kcov_remote_start(). */
1058 	kcov_put(kcov);
1059 }
1060 EXPORT_SYMBOL(kcov_remote_stop);
1061 
1062 /* See the comment before kcov_remote_start() for usage details. */
kcov_common_handle(void)1063 u64 kcov_common_handle(void)
1064 {
1065 	if (!in_task())
1066 		return 0;
1067 	return current->kcov_handle;
1068 }
1069 EXPORT_SYMBOL(kcov_common_handle);
1070 
1071 #ifdef CONFIG_KCOV_SELFTEST
selftest(void)1072 static void __init selftest(void)
1073 {
1074 	unsigned long start;
1075 
1076 	pr_err("running self test\n");
1077 	/*
1078 	 * Test that interrupts don't produce spurious coverage.
1079 	 * The coverage callback filters out interrupt code, but only
1080 	 * after the handler updates preempt count. Some code periodically
1081 	 * leaks out of that section and leads to spurious coverage.
1082 	 * It's hard to call the actual interrupt handler directly,
1083 	 * so we just loop here for a bit waiting for a timer interrupt.
1084 	 * We set kcov_mode to enable tracing, but don't setup the area,
1085 	 * so any attempt to trace will crash. Note: we must not call any
1086 	 * potentially traced functions in this region.
1087 	 */
1088 	start = jiffies;
1089 	current->kcov_mode = KCOV_MODE_TRACE_PC;
1090 	while ((jiffies - start) * MSEC_PER_SEC / HZ < 300)
1091 		;
1092 	current->kcov_mode = 0;
1093 	pr_err("done running self test\n");
1094 }
1095 #endif
1096 
kcov_init(void)1097 static int __init kcov_init(void)
1098 {
1099 	int cpu;
1100 
1101 	for_each_possible_cpu(cpu) {
1102 		void *area = vmalloc_node(CONFIG_KCOV_IRQ_AREA_SIZE *
1103 				sizeof(unsigned long), cpu_to_node(cpu));
1104 		if (!area)
1105 			return -ENOMEM;
1106 		per_cpu_ptr(&kcov_percpu_data, cpu)->irq_area = area;
1107 	}
1108 
1109 	/*
1110 	 * The kcov debugfs file won't ever get removed and thus,
1111 	 * there is no need to protect it against removal races. The
1112 	 * use of debugfs_create_file_unsafe() is actually safe here.
1113 	 */
1114 	debugfs_create_file_unsafe("kcov", 0600, NULL, NULL, &kcov_fops);
1115 
1116 #ifdef CONFIG_KCOV_SELFTEST
1117 	selftest();
1118 #endif
1119 
1120 	return 0;
1121 }
1122 
1123 device_initcall(kcov_init);
1124