1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef _LINUX_SWAPOPS_H
3  #define _LINUX_SWAPOPS_H
4  
5  #include <linux/radix-tree.h>
6  #include <linux/bug.h>
7  #include <linux/mm_types.h>
8  
9  #ifdef CONFIG_MMU
10  
11  #ifdef CONFIG_SWAP
12  #include <linux/swapfile.h>
13  #endif	/* CONFIG_SWAP */
14  
15  /*
16   * swapcache pages are stored in the swapper_space radix tree.  We want to
17   * get good packing density in that tree, so the index should be dense in
18   * the low-order bits.
19   *
20   * We arrange the `type' and `offset' fields so that `type' is at the six
21   * high-order bits of the swp_entry_t and `offset' is right-aligned in the
22   * remaining bits.  Although `type' itself needs only five bits, we allow for
23   * shmem/tmpfs to shift it all up a further one bit: see swp_to_radix_entry().
24   *
25   * swp_entry_t's are *never* stored anywhere in their arch-dependent format.
26   */
27  #define SWP_TYPE_SHIFT	(BITS_PER_XA_VALUE - MAX_SWAPFILES_SHIFT)
28  #define SWP_OFFSET_MASK	((1UL << SWP_TYPE_SHIFT) - 1)
29  
30  /*
31   * Definitions only for PFN swap entries (see is_pfn_swap_entry()).  To
32   * store PFN, we only need SWP_PFN_BITS bits.  Each of the pfn swap entries
33   * can use the extra bits to store other information besides PFN.
34   */
35  #ifdef MAX_PHYSMEM_BITS
36  #define SWP_PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
37  #else  /* MAX_PHYSMEM_BITS */
38  #define SWP_PFN_BITS		min_t(int, \
39  				      sizeof(phys_addr_t) * 8 - PAGE_SHIFT, \
40  				      SWP_TYPE_SHIFT)
41  #endif	/* MAX_PHYSMEM_BITS */
42  #define SWP_PFN_MASK		(BIT(SWP_PFN_BITS) - 1)
43  
44  /**
45   * Migration swap entry specific bitfield definitions.  Layout:
46   *
47   *   |----------+--------------------|
48   *   | swp_type | swp_offset         |
49   *   |----------+--------+-+-+-------|
50   *   |          | resv   |D|A|  PFN  |
51   *   |----------+--------+-+-+-------|
52   *
53   * @SWP_MIG_YOUNG_BIT: Whether the page used to have young bit set (bit A)
54   * @SWP_MIG_DIRTY_BIT: Whether the page used to have dirty bit set (bit D)
55   *
56   * Note: A/D bits will be stored in migration entries iff there're enough
57   * free bits in arch specific swp offset.  By default we'll ignore A/D bits
58   * when migrating a page.  Please refer to migration_entry_supports_ad()
59   * for more information.  If there're more bits besides PFN and A/D bits,
60   * they should be reserved and always be zeros.
61   */
62  #define SWP_MIG_YOUNG_BIT		(SWP_PFN_BITS)
63  #define SWP_MIG_DIRTY_BIT		(SWP_PFN_BITS + 1)
64  #define SWP_MIG_TOTAL_BITS		(SWP_PFN_BITS + 2)
65  
66  #define SWP_MIG_YOUNG			BIT(SWP_MIG_YOUNG_BIT)
67  #define SWP_MIG_DIRTY			BIT(SWP_MIG_DIRTY_BIT)
68  
69  static inline bool is_pfn_swap_entry(swp_entry_t entry);
70  
71  /* Clear all flags but only keep swp_entry_t related information */
pte_swp_clear_flags(pte_t pte)72  static inline pte_t pte_swp_clear_flags(pte_t pte)
73  {
74  	if (pte_swp_exclusive(pte))
75  		pte = pte_swp_clear_exclusive(pte);
76  	if (pte_swp_soft_dirty(pte))
77  		pte = pte_swp_clear_soft_dirty(pte);
78  	if (pte_swp_uffd_wp(pte))
79  		pte = pte_swp_clear_uffd_wp(pte);
80  	return pte;
81  }
82  
83  /*
84   * Store a type+offset into a swp_entry_t in an arch-independent format
85   */
swp_entry(unsigned long type,pgoff_t offset)86  static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset)
87  {
88  	swp_entry_t ret;
89  
90  	ret.val = (type << SWP_TYPE_SHIFT) | (offset & SWP_OFFSET_MASK);
91  	return ret;
92  }
93  
94  /*
95   * Extract the `type' field from a swp_entry_t.  The swp_entry_t is in
96   * arch-independent format
97   */
swp_type(swp_entry_t entry)98  static inline unsigned swp_type(swp_entry_t entry)
99  {
100  	return (entry.val >> SWP_TYPE_SHIFT);
101  }
102  
103  /*
104   * Extract the `offset' field from a swp_entry_t.  The swp_entry_t is in
105   * arch-independent format
106   */
swp_offset(swp_entry_t entry)107  static inline pgoff_t swp_offset(swp_entry_t entry)
108  {
109  	return entry.val & SWP_OFFSET_MASK;
110  }
111  
112  /*
113   * This should only be called upon a pfn swap entry to get the PFN stored
114   * in the swap entry.  Please refers to is_pfn_swap_entry() for definition
115   * of pfn swap entry.
116   */
swp_offset_pfn(swp_entry_t entry)117  static inline unsigned long swp_offset_pfn(swp_entry_t entry)
118  {
119  	VM_BUG_ON(!is_pfn_swap_entry(entry));
120  	return swp_offset(entry) & SWP_PFN_MASK;
121  }
122  
123  /* check whether a pte points to a swap entry */
is_swap_pte(pte_t pte)124  static inline int is_swap_pte(pte_t pte)
125  {
126  	return !pte_none(pte) && !pte_present(pte);
127  }
128  
129  /*
130   * Convert the arch-dependent pte representation of a swp_entry_t into an
131   * arch-independent swp_entry_t.
132   */
pte_to_swp_entry(pte_t pte)133  static inline swp_entry_t pte_to_swp_entry(pte_t pte)
134  {
135  	swp_entry_t arch_entry;
136  
137  	pte = pte_swp_clear_flags(pte);
138  	arch_entry = __pte_to_swp_entry(pte);
139  	return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
140  }
141  
142  /*
143   * Convert the arch-independent representation of a swp_entry_t into the
144   * arch-dependent pte representation.
145   */
swp_entry_to_pte(swp_entry_t entry)146  static inline pte_t swp_entry_to_pte(swp_entry_t entry)
147  {
148  	swp_entry_t arch_entry;
149  
150  	arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
151  	return __swp_entry_to_pte(arch_entry);
152  }
153  
radix_to_swp_entry(void * arg)154  static inline swp_entry_t radix_to_swp_entry(void *arg)
155  {
156  	swp_entry_t entry;
157  
158  	entry.val = xa_to_value(arg);
159  	return entry;
160  }
161  
swp_to_radix_entry(swp_entry_t entry)162  static inline void *swp_to_radix_entry(swp_entry_t entry)
163  {
164  	return xa_mk_value(entry.val);
165  }
166  
167  #if IS_ENABLED(CONFIG_DEVICE_PRIVATE)
make_readable_device_private_entry(pgoff_t offset)168  static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
169  {
170  	return swp_entry(SWP_DEVICE_READ, offset);
171  }
172  
make_writable_device_private_entry(pgoff_t offset)173  static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
174  {
175  	return swp_entry(SWP_DEVICE_WRITE, offset);
176  }
177  
is_device_private_entry(swp_entry_t entry)178  static inline bool is_device_private_entry(swp_entry_t entry)
179  {
180  	int type = swp_type(entry);
181  	return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE;
182  }
183  
is_writable_device_private_entry(swp_entry_t entry)184  static inline bool is_writable_device_private_entry(swp_entry_t entry)
185  {
186  	return unlikely(swp_type(entry) == SWP_DEVICE_WRITE);
187  }
188  
make_readable_device_exclusive_entry(pgoff_t offset)189  static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset)
190  {
191  	return swp_entry(SWP_DEVICE_EXCLUSIVE_READ, offset);
192  }
193  
make_writable_device_exclusive_entry(pgoff_t offset)194  static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset)
195  {
196  	return swp_entry(SWP_DEVICE_EXCLUSIVE_WRITE, offset);
197  }
198  
is_device_exclusive_entry(swp_entry_t entry)199  static inline bool is_device_exclusive_entry(swp_entry_t entry)
200  {
201  	return swp_type(entry) == SWP_DEVICE_EXCLUSIVE_READ ||
202  		swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE;
203  }
204  
is_writable_device_exclusive_entry(swp_entry_t entry)205  static inline bool is_writable_device_exclusive_entry(swp_entry_t entry)
206  {
207  	return unlikely(swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE);
208  }
209  #else /* CONFIG_DEVICE_PRIVATE */
make_readable_device_private_entry(pgoff_t offset)210  static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
211  {
212  	return swp_entry(0, 0);
213  }
214  
make_writable_device_private_entry(pgoff_t offset)215  static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
216  {
217  	return swp_entry(0, 0);
218  }
219  
is_device_private_entry(swp_entry_t entry)220  static inline bool is_device_private_entry(swp_entry_t entry)
221  {
222  	return false;
223  }
224  
is_writable_device_private_entry(swp_entry_t entry)225  static inline bool is_writable_device_private_entry(swp_entry_t entry)
226  {
227  	return false;
228  }
229  
make_readable_device_exclusive_entry(pgoff_t offset)230  static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset)
231  {
232  	return swp_entry(0, 0);
233  }
234  
make_writable_device_exclusive_entry(pgoff_t offset)235  static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset)
236  {
237  	return swp_entry(0, 0);
238  }
239  
is_device_exclusive_entry(swp_entry_t entry)240  static inline bool is_device_exclusive_entry(swp_entry_t entry)
241  {
242  	return false;
243  }
244  
is_writable_device_exclusive_entry(swp_entry_t entry)245  static inline bool is_writable_device_exclusive_entry(swp_entry_t entry)
246  {
247  	return false;
248  }
249  #endif /* CONFIG_DEVICE_PRIVATE */
250  
251  #ifdef CONFIG_MIGRATION
is_migration_entry(swp_entry_t entry)252  static inline int is_migration_entry(swp_entry_t entry)
253  {
254  	return unlikely(swp_type(entry) == SWP_MIGRATION_READ ||
255  			swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE ||
256  			swp_type(entry) == SWP_MIGRATION_WRITE);
257  }
258  
is_writable_migration_entry(swp_entry_t entry)259  static inline int is_writable_migration_entry(swp_entry_t entry)
260  {
261  	return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE);
262  }
263  
is_readable_migration_entry(swp_entry_t entry)264  static inline int is_readable_migration_entry(swp_entry_t entry)
265  {
266  	return unlikely(swp_type(entry) == SWP_MIGRATION_READ);
267  }
268  
is_readable_exclusive_migration_entry(swp_entry_t entry)269  static inline int is_readable_exclusive_migration_entry(swp_entry_t entry)
270  {
271  	return unlikely(swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE);
272  }
273  
make_readable_migration_entry(pgoff_t offset)274  static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
275  {
276  	return swp_entry(SWP_MIGRATION_READ, offset);
277  }
278  
make_readable_exclusive_migration_entry(pgoff_t offset)279  static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset)
280  {
281  	return swp_entry(SWP_MIGRATION_READ_EXCLUSIVE, offset);
282  }
283  
make_writable_migration_entry(pgoff_t offset)284  static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
285  {
286  	return swp_entry(SWP_MIGRATION_WRITE, offset);
287  }
288  
289  /*
290   * Returns whether the host has large enough swap offset field to support
291   * carrying over pgtable A/D bits for page migrations.  The result is
292   * pretty much arch specific.
293   */
migration_entry_supports_ad(void)294  static inline bool migration_entry_supports_ad(void)
295  {
296  #ifdef CONFIG_SWAP
297  	return swap_migration_ad_supported;
298  #else  /* CONFIG_SWAP */
299  	return false;
300  #endif	/* CONFIG_SWAP */
301  }
302  
make_migration_entry_young(swp_entry_t entry)303  static inline swp_entry_t make_migration_entry_young(swp_entry_t entry)
304  {
305  	if (migration_entry_supports_ad())
306  		return swp_entry(swp_type(entry),
307  				 swp_offset(entry) | SWP_MIG_YOUNG);
308  	return entry;
309  }
310  
is_migration_entry_young(swp_entry_t entry)311  static inline bool is_migration_entry_young(swp_entry_t entry)
312  {
313  	if (migration_entry_supports_ad())
314  		return swp_offset(entry) & SWP_MIG_YOUNG;
315  	/* Keep the old behavior of aging page after migration */
316  	return false;
317  }
318  
make_migration_entry_dirty(swp_entry_t entry)319  static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry)
320  {
321  	if (migration_entry_supports_ad())
322  		return swp_entry(swp_type(entry),
323  				 swp_offset(entry) | SWP_MIG_DIRTY);
324  	return entry;
325  }
326  
is_migration_entry_dirty(swp_entry_t entry)327  static inline bool is_migration_entry_dirty(swp_entry_t entry)
328  {
329  	if (migration_entry_supports_ad())
330  		return swp_offset(entry) & SWP_MIG_DIRTY;
331  	/* Keep the old behavior of clean page after migration */
332  	return false;
333  }
334  
335  extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
336  					unsigned long address);
337  extern void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *pte);
338  #else  /* CONFIG_MIGRATION */
make_readable_migration_entry(pgoff_t offset)339  static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
340  {
341  	return swp_entry(0, 0);
342  }
343  
make_readable_exclusive_migration_entry(pgoff_t offset)344  static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset)
345  {
346  	return swp_entry(0, 0);
347  }
348  
make_writable_migration_entry(pgoff_t offset)349  static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
350  {
351  	return swp_entry(0, 0);
352  }
353  
is_migration_entry(swp_entry_t swp)354  static inline int is_migration_entry(swp_entry_t swp)
355  {
356  	return 0;
357  }
358  
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)359  static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
360  					unsigned long address) { }
migration_entry_wait_huge(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)361  static inline void migration_entry_wait_huge(struct vm_area_struct *vma,
362  					     unsigned long addr, pte_t *pte) { }
is_writable_migration_entry(swp_entry_t entry)363  static inline int is_writable_migration_entry(swp_entry_t entry)
364  {
365  	return 0;
366  }
is_readable_migration_entry(swp_entry_t entry)367  static inline int is_readable_migration_entry(swp_entry_t entry)
368  {
369  	return 0;
370  }
371  
make_migration_entry_young(swp_entry_t entry)372  static inline swp_entry_t make_migration_entry_young(swp_entry_t entry)
373  {
374  	return entry;
375  }
376  
is_migration_entry_young(swp_entry_t entry)377  static inline bool is_migration_entry_young(swp_entry_t entry)
378  {
379  	return false;
380  }
381  
make_migration_entry_dirty(swp_entry_t entry)382  static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry)
383  {
384  	return entry;
385  }
386  
is_migration_entry_dirty(swp_entry_t entry)387  static inline bool is_migration_entry_dirty(swp_entry_t entry)
388  {
389  	return false;
390  }
391  #endif	/* CONFIG_MIGRATION */
392  
393  #ifdef CONFIG_MEMORY_FAILURE
394  
395  /*
396   * Support for hardware poisoned pages
397   */
make_hwpoison_entry(struct page * page)398  static inline swp_entry_t make_hwpoison_entry(struct page *page)
399  {
400  	BUG_ON(!PageLocked(page));
401  	return swp_entry(SWP_HWPOISON, page_to_pfn(page));
402  }
403  
is_hwpoison_entry(swp_entry_t entry)404  static inline int is_hwpoison_entry(swp_entry_t entry)
405  {
406  	return swp_type(entry) == SWP_HWPOISON;
407  }
408  
409  #else
410  
make_hwpoison_entry(struct page * page)411  static inline swp_entry_t make_hwpoison_entry(struct page *page)
412  {
413  	return swp_entry(0, 0);
414  }
415  
is_hwpoison_entry(swp_entry_t swp)416  static inline int is_hwpoison_entry(swp_entry_t swp)
417  {
418  	return 0;
419  }
420  #endif
421  
422  typedef unsigned long pte_marker;
423  
424  #define  PTE_MARKER_UFFD_WP			BIT(0)
425  /*
426   * "Poisoned" here is meant in the very general sense of "future accesses are
427   * invalid", instead of referring very specifically to hardware memory errors.
428   * This marker is meant to represent any of various different causes of this.
429   */
430  #define  PTE_MARKER_POISONED			BIT(1)
431  #define  PTE_MARKER_MASK			(BIT(2) - 1)
432  
make_pte_marker_entry(pte_marker marker)433  static inline swp_entry_t make_pte_marker_entry(pte_marker marker)
434  {
435  	return swp_entry(SWP_PTE_MARKER, marker);
436  }
437  
is_pte_marker_entry(swp_entry_t entry)438  static inline bool is_pte_marker_entry(swp_entry_t entry)
439  {
440  	return swp_type(entry) == SWP_PTE_MARKER;
441  }
442  
pte_marker_get(swp_entry_t entry)443  static inline pte_marker pte_marker_get(swp_entry_t entry)
444  {
445  	return swp_offset(entry) & PTE_MARKER_MASK;
446  }
447  
is_pte_marker(pte_t pte)448  static inline bool is_pte_marker(pte_t pte)
449  {
450  	return is_swap_pte(pte) && is_pte_marker_entry(pte_to_swp_entry(pte));
451  }
452  
make_pte_marker(pte_marker marker)453  static inline pte_t make_pte_marker(pte_marker marker)
454  {
455  	return swp_entry_to_pte(make_pte_marker_entry(marker));
456  }
457  
make_poisoned_swp_entry(void)458  static inline swp_entry_t make_poisoned_swp_entry(void)
459  {
460  	return make_pte_marker_entry(PTE_MARKER_POISONED);
461  }
462  
is_poisoned_swp_entry(swp_entry_t entry)463  static inline int is_poisoned_swp_entry(swp_entry_t entry)
464  {
465  	return is_pte_marker_entry(entry) &&
466  	    (pte_marker_get(entry) & PTE_MARKER_POISONED);
467  }
468  
469  /*
470   * This is a special version to check pte_none() just to cover the case when
471   * the pte is a pte marker.  It existed because in many cases the pte marker
472   * should be seen as a none pte; it's just that we have stored some information
473   * onto the none pte so it becomes not-none any more.
474   *
475   * It should be used when the pte is file-backed, ram-based and backing
476   * userspace pages, like shmem.  It is not needed upon pgtables that do not
477   * support pte markers at all.  For example, it's not needed on anonymous
478   * memory, kernel-only memory (including when the system is during-boot),
479   * non-ram based generic file-system.  It's fine to be used even there, but the
480   * extra pte marker check will be pure overhead.
481   */
pte_none_mostly(pte_t pte)482  static inline int pte_none_mostly(pte_t pte)
483  {
484  	return pte_none(pte) || is_pte_marker(pte);
485  }
486  
pfn_swap_entry_to_page(swp_entry_t entry)487  static inline struct page *pfn_swap_entry_to_page(swp_entry_t entry)
488  {
489  	struct page *p = pfn_to_page(swp_offset_pfn(entry));
490  
491  	/*
492  	 * Any use of migration entries may only occur while the
493  	 * corresponding page is locked
494  	 */
495  	BUG_ON(is_migration_entry(entry) && !PageLocked(p));
496  
497  	return p;
498  }
499  
pfn_swap_entry_folio(swp_entry_t entry)500  static inline struct folio *pfn_swap_entry_folio(swp_entry_t entry)
501  {
502  	struct folio *folio = pfn_folio(swp_offset_pfn(entry));
503  
504  	/*
505  	 * Any use of migration entries may only occur while the
506  	 * corresponding folio is locked
507  	 */
508  	BUG_ON(is_migration_entry(entry) && !folio_test_locked(folio));
509  
510  	return folio;
511  }
512  
513  /*
514   * A pfn swap entry is a special type of swap entry that always has a pfn stored
515   * in the swap offset. They can either be used to represent unaddressable device
516   * memory, to restrict access to a page undergoing migration or to represent a
517   * pfn which has been hwpoisoned and unmapped.
518   */
is_pfn_swap_entry(swp_entry_t entry)519  static inline bool is_pfn_swap_entry(swp_entry_t entry)
520  {
521  	/* Make sure the swp offset can always store the needed fields */
522  	BUILD_BUG_ON(SWP_TYPE_SHIFT < SWP_PFN_BITS);
523  
524  	return is_migration_entry(entry) || is_device_private_entry(entry) ||
525  	       is_device_exclusive_entry(entry) || is_hwpoison_entry(entry);
526  }
527  
528  struct page_vma_mapped_walk;
529  
530  #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
531  extern int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
532  		struct page *page);
533  
534  extern void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
535  		struct page *new);
536  
537  extern void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd);
538  
pmd_to_swp_entry(pmd_t pmd)539  static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
540  {
541  	swp_entry_t arch_entry;
542  
543  	if (pmd_swp_soft_dirty(pmd))
544  		pmd = pmd_swp_clear_soft_dirty(pmd);
545  	if (pmd_swp_uffd_wp(pmd))
546  		pmd = pmd_swp_clear_uffd_wp(pmd);
547  	arch_entry = __pmd_to_swp_entry(pmd);
548  	return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
549  }
550  
swp_entry_to_pmd(swp_entry_t entry)551  static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
552  {
553  	swp_entry_t arch_entry;
554  
555  	arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
556  	return __swp_entry_to_pmd(arch_entry);
557  }
558  
is_pmd_migration_entry(pmd_t pmd)559  static inline int is_pmd_migration_entry(pmd_t pmd)
560  {
561  	return is_swap_pmd(pmd) && is_migration_entry(pmd_to_swp_entry(pmd));
562  }
563  #else  /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)564  static inline int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
565  		struct page *page)
566  {
567  	BUILD_BUG();
568  }
569  
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)570  static inline void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
571  		struct page *new)
572  {
573  	BUILD_BUG();
574  }
575  
pmd_migration_entry_wait(struct mm_struct * m,pmd_t * p)576  static inline void pmd_migration_entry_wait(struct mm_struct *m, pmd_t *p) { }
577  
pmd_to_swp_entry(pmd_t pmd)578  static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
579  {
580  	return swp_entry(0, 0);
581  }
582  
swp_entry_to_pmd(swp_entry_t entry)583  static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
584  {
585  	return __pmd(0);
586  }
587  
is_pmd_migration_entry(pmd_t pmd)588  static inline int is_pmd_migration_entry(pmd_t pmd)
589  {
590  	return 0;
591  }
592  #endif  /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
593  
non_swap_entry(swp_entry_t entry)594  static inline int non_swap_entry(swp_entry_t entry)
595  {
596  	return swp_type(entry) >= MAX_SWAPFILES;
597  }
598  
599  #endif /* CONFIG_MMU */
600  #endif /* _LINUX_SWAPOPS_H */
601