1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef _LINUX_ENERGY_MODEL_H
3  #define _LINUX_ENERGY_MODEL_H
4  #include <linux/cpumask.h>
5  #include <linux/device.h>
6  #include <linux/jump_label.h>
7  #include <linux/kobject.h>
8  #include <linux/kref.h>
9  #include <linux/rcupdate.h>
10  #include <linux/sched/cpufreq.h>
11  #include <linux/sched/topology.h>
12  #include <linux/types.h>
13  
14  /**
15   * struct em_perf_state - Performance state of a performance domain
16   * @performance:	CPU performance (capacity) at a given frequency
17   * @frequency:	The frequency in KHz, for consistency with CPUFreq
18   * @power:	The power consumed at this level (by 1 CPU or by a registered
19   *		device). It can be a total power: static and dynamic.
20   * @cost:	The cost coefficient associated with this level, used during
21   *		energy calculation. Equal to: power * max_frequency / frequency
22   * @flags:	see "em_perf_state flags" description below.
23   */
24  struct em_perf_state {
25  	unsigned long performance;
26  	unsigned long frequency;
27  	unsigned long power;
28  	unsigned long cost;
29  	unsigned long flags;
30  };
31  
32  /*
33   * em_perf_state flags:
34   *
35   * EM_PERF_STATE_INEFFICIENT: The performance state is inefficient. There is
36   * in this em_perf_domain, another performance state with a higher frequency
37   * but a lower or equal power cost. Such inefficient states are ignored when
38   * using em_pd_get_efficient_*() functions.
39   */
40  #define EM_PERF_STATE_INEFFICIENT BIT(0)
41  
42  /**
43   * struct em_perf_table - Performance states table
44   * @rcu:	RCU used for safe access and destruction
45   * @kref:	Reference counter to track the users
46   * @state:	List of performance states, in ascending order
47   */
48  struct em_perf_table {
49  	struct rcu_head rcu;
50  	struct kref kref;
51  	struct em_perf_state state[];
52  };
53  
54  /**
55   * struct em_perf_domain - Performance domain
56   * @em_table:		Pointer to the runtime modifiable em_perf_table
57   * @nr_perf_states:	Number of performance states
58   * @flags:		See "em_perf_domain flags"
59   * @cpus:		Cpumask covering the CPUs of the domain. It's here
60   *			for performance reasons to avoid potential cache
61   *			misses during energy calculations in the scheduler
62   *			and simplifies allocating/freeing that memory region.
63   *
64   * In case of CPU device, a "performance domain" represents a group of CPUs
65   * whose performance is scaled together. All CPUs of a performance domain
66   * must have the same micro-architecture. Performance domains often have
67   * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus
68   * field is unused.
69   */
70  struct em_perf_domain {
71  	struct em_perf_table __rcu *em_table;
72  	int nr_perf_states;
73  	unsigned long flags;
74  	unsigned long cpus[];
75  };
76  
77  /*
78   *  em_perf_domain flags:
79   *
80   *  EM_PERF_DOMAIN_MICROWATTS: The power values are in micro-Watts or some
81   *  other scale.
82   *
83   *  EM_PERF_DOMAIN_SKIP_INEFFICIENCIES: Skip inefficient states when estimating
84   *  energy consumption.
85   *
86   *  EM_PERF_DOMAIN_ARTIFICIAL: The power values are artificial and might be
87   *  created by platform missing real power information
88   */
89  #define EM_PERF_DOMAIN_MICROWATTS BIT(0)
90  #define EM_PERF_DOMAIN_SKIP_INEFFICIENCIES BIT(1)
91  #define EM_PERF_DOMAIN_ARTIFICIAL BIT(2)
92  
93  #define em_span_cpus(em) (to_cpumask((em)->cpus))
94  #define em_is_artificial(em) ((em)->flags & EM_PERF_DOMAIN_ARTIFICIAL)
95  
96  #ifdef CONFIG_ENERGY_MODEL
97  /*
98   * The max power value in micro-Watts. The limit of 64 Watts is set as
99   * a safety net to not overflow multiplications on 32bit platforms. The
100   * 32bit value limit for total Perf Domain power implies a limit of
101   * maximum CPUs in such domain to 64.
102   */
103  #define EM_MAX_POWER (64000000) /* 64 Watts */
104  
105  /*
106   * To avoid possible energy estimation overflow on 32bit machines add
107   * limits to number of CPUs in the Perf. Domain.
108   * We are safe on 64bit machine, thus some big number.
109   */
110  #ifdef CONFIG_64BIT
111  #define EM_MAX_NUM_CPUS 4096
112  #else
113  #define EM_MAX_NUM_CPUS 16
114  #endif
115  
116  struct em_data_callback {
117  	/**
118  	 * active_power() - Provide power at the next performance state of
119  	 *		a device
120  	 * @dev		: Device for which we do this operation (can be a CPU)
121  	 * @power	: Active power at the performance state
122  	 *		(modified)
123  	 * @freq	: Frequency at the performance state in kHz
124  	 *		(modified)
125  	 *
126  	 * active_power() must find the lowest performance state of 'dev' above
127  	 * 'freq' and update 'power' and 'freq' to the matching active power
128  	 * and frequency.
129  	 *
130  	 * In case of CPUs, the power is the one of a single CPU in the domain,
131  	 * expressed in micro-Watts or an abstract scale. It is expected to
132  	 * fit in the [0, EM_MAX_POWER] range.
133  	 *
134  	 * Return 0 on success.
135  	 */
136  	int (*active_power)(struct device *dev, unsigned long *power,
137  			    unsigned long *freq);
138  
139  	/**
140  	 * get_cost() - Provide the cost at the given performance state of
141  	 *		a device
142  	 * @dev		: Device for which we do this operation (can be a CPU)
143  	 * @freq	: Frequency at the performance state in kHz
144  	 * @cost	: The cost value for the performance state
145  	 *		(modified)
146  	 *
147  	 * In case of CPUs, the cost is the one of a single CPU in the domain.
148  	 * It is expected to fit in the [0, EM_MAX_POWER] range due to internal
149  	 * usage in EAS calculation.
150  	 *
151  	 * Return 0 on success, or appropriate error value in case of failure.
152  	 */
153  	int (*get_cost)(struct device *dev, unsigned long freq,
154  			unsigned long *cost);
155  };
156  #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) ((em_cb).active_power = cb)
157  #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb)	\
158  	{ .active_power = _active_power_cb,		\
159  	  .get_cost = _cost_cb }
160  #define EM_DATA_CB(_active_power_cb)			\
161  		EM_ADV_DATA_CB(_active_power_cb, NULL)
162  
163  struct em_perf_domain *em_cpu_get(int cpu);
164  struct em_perf_domain *em_pd_get(struct device *dev);
165  int em_dev_update_perf_domain(struct device *dev,
166  			      struct em_perf_table __rcu *new_table);
167  int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
168  				struct em_data_callback *cb, cpumask_t *span,
169  				bool microwatts);
170  void em_dev_unregister_perf_domain(struct device *dev);
171  struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd);
172  void em_table_free(struct em_perf_table __rcu *table);
173  int em_dev_compute_costs(struct device *dev, struct em_perf_state *table,
174  			 int nr_states);
175  int em_dev_update_chip_binning(struct device *dev);
176  
177  /**
178   * em_pd_get_efficient_state() - Get an efficient performance state from the EM
179   * @table:		List of performance states, in ascending order
180   * @nr_perf_states:	Number of performance states
181   * @max_util:		Max utilization to map with the EM
182   * @pd_flags:		Performance Domain flags
183   *
184   * It is called from the scheduler code quite frequently and as a consequence
185   * doesn't implement any check.
186   *
187   * Return: An efficient performance state id, high enough to meet @max_util
188   * requirement.
189   */
190  static inline int
em_pd_get_efficient_state(struct em_perf_state * table,int nr_perf_states,unsigned long max_util,unsigned long pd_flags)191  em_pd_get_efficient_state(struct em_perf_state *table, int nr_perf_states,
192  			  unsigned long max_util, unsigned long pd_flags)
193  {
194  	struct em_perf_state *ps;
195  	int i;
196  
197  	for (i = 0; i < nr_perf_states; i++) {
198  		ps = &table[i];
199  		if (ps->performance >= max_util) {
200  			if (pd_flags & EM_PERF_DOMAIN_SKIP_INEFFICIENCIES &&
201  			    ps->flags & EM_PERF_STATE_INEFFICIENT)
202  				continue;
203  			return i;
204  		}
205  	}
206  
207  	return nr_perf_states - 1;
208  }
209  
210  /**
211   * em_cpu_energy() - Estimates the energy consumed by the CPUs of a
212   *		performance domain
213   * @pd		: performance domain for which energy has to be estimated
214   * @max_util	: highest utilization among CPUs of the domain
215   * @sum_util	: sum of the utilization of all CPUs in the domain
216   * @allowed_cpu_cap	: maximum allowed CPU capacity for the @pd, which
217   *			  might reflect reduced frequency (due to thermal)
218   *
219   * This function must be used only for CPU devices. There is no validation,
220   * i.e. if the EM is a CPU type and has cpumask allocated. It is called from
221   * the scheduler code quite frequently and that is why there is not checks.
222   *
223   * Return: the sum of the energy consumed by the CPUs of the domain assuming
224   * a capacity state satisfying the max utilization of the domain.
225   */
em_cpu_energy(struct em_perf_domain * pd,unsigned long max_util,unsigned long sum_util,unsigned long allowed_cpu_cap)226  static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
227  				unsigned long max_util, unsigned long sum_util,
228  				unsigned long allowed_cpu_cap)
229  {
230  	struct em_perf_table *em_table;
231  	struct em_perf_state *ps;
232  	int i;
233  
234  #ifdef CONFIG_SCHED_DEBUG
235  	WARN_ONCE(!rcu_read_lock_held(), "EM: rcu read lock needed\n");
236  #endif
237  
238  	if (!sum_util)
239  		return 0;
240  
241  	/*
242  	 * In order to predict the performance state, map the utilization of
243  	 * the most utilized CPU of the performance domain to a requested
244  	 * performance, like schedutil. Take also into account that the real
245  	 * performance might be set lower (due to thermal capping). Thus, clamp
246  	 * max utilization to the allowed CPU capacity before calculating
247  	 * effective performance.
248  	 */
249  	max_util = min(max_util, allowed_cpu_cap);
250  
251  	/*
252  	 * Find the lowest performance state of the Energy Model above the
253  	 * requested performance.
254  	 */
255  	em_table = rcu_dereference(pd->em_table);
256  	i = em_pd_get_efficient_state(em_table->state, pd->nr_perf_states,
257  				      max_util, pd->flags);
258  	ps = &em_table->state[i];
259  
260  	/*
261  	 * The performance (capacity) of a CPU in the domain at the performance
262  	 * state (ps) can be computed as:
263  	 *
264  	 *                     ps->freq * scale_cpu
265  	 *   ps->performance = --------------------                  (1)
266  	 *                         cpu_max_freq
267  	 *
268  	 * So, ignoring the costs of idle states (which are not available in
269  	 * the EM), the energy consumed by this CPU at that performance state
270  	 * is estimated as:
271  	 *
272  	 *             ps->power * cpu_util
273  	 *   cpu_nrg = --------------------                          (2)
274  	 *               ps->performance
275  	 *
276  	 * since 'cpu_util / ps->performance' represents its percentage of busy
277  	 * time.
278  	 *
279  	 *   NOTE: Although the result of this computation actually is in
280  	 *         units of power, it can be manipulated as an energy value
281  	 *         over a scheduling period, since it is assumed to be
282  	 *         constant during that interval.
283  	 *
284  	 * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product
285  	 * of two terms:
286  	 *
287  	 *             ps->power * cpu_max_freq
288  	 *   cpu_nrg = ------------------------ * cpu_util           (3)
289  	 *               ps->freq * scale_cpu
290  	 *
291  	 * The first term is static, and is stored in the em_perf_state struct
292  	 * as 'ps->cost'.
293  	 *
294  	 * Since all CPUs of the domain have the same micro-architecture, they
295  	 * share the same 'ps->cost', and the same CPU capacity. Hence, the
296  	 * total energy of the domain (which is the simple sum of the energy of
297  	 * all of its CPUs) can be factorized as:
298  	 *
299  	 *   pd_nrg = ps->cost * \Sum cpu_util                       (4)
300  	 */
301  	return ps->cost * sum_util;
302  }
303  
304  /**
305   * em_pd_nr_perf_states() - Get the number of performance states of a perf.
306   *				domain
307   * @pd		: performance domain for which this must be done
308   *
309   * Return: the number of performance states in the performance domain table
310   */
em_pd_nr_perf_states(struct em_perf_domain * pd)311  static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
312  {
313  	return pd->nr_perf_states;
314  }
315  
316  /**
317   * em_perf_state_from_pd() - Get the performance states table of perf.
318   *				domain
319   * @pd		: performance domain for which this must be done
320   *
321   * To use this function the rcu_read_lock() should be hold. After the usage
322   * of the performance states table is finished, the rcu_read_unlock() should
323   * be called.
324   *
325   * Return: the pointer to performance states table of the performance domain
326   */
327  static inline
em_perf_state_from_pd(struct em_perf_domain * pd)328  struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd)
329  {
330  	return rcu_dereference(pd->em_table)->state;
331  }
332  
333  #else
334  struct em_data_callback {};
335  #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb) { }
336  #define EM_DATA_CB(_active_power_cb) { }
337  #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) do { } while (0)
338  
339  static inline
em_dev_register_perf_domain(struct device * dev,unsigned int nr_states,struct em_data_callback * cb,cpumask_t * span,bool microwatts)340  int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
341  				struct em_data_callback *cb, cpumask_t *span,
342  				bool microwatts)
343  {
344  	return -EINVAL;
345  }
em_dev_unregister_perf_domain(struct device * dev)346  static inline void em_dev_unregister_perf_domain(struct device *dev)
347  {
348  }
em_cpu_get(int cpu)349  static inline struct em_perf_domain *em_cpu_get(int cpu)
350  {
351  	return NULL;
352  }
em_pd_get(struct device * dev)353  static inline struct em_perf_domain *em_pd_get(struct device *dev)
354  {
355  	return NULL;
356  }
em_cpu_energy(struct em_perf_domain * pd,unsigned long max_util,unsigned long sum_util,unsigned long allowed_cpu_cap)357  static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
358  			unsigned long max_util, unsigned long sum_util,
359  			unsigned long allowed_cpu_cap)
360  {
361  	return 0;
362  }
em_pd_nr_perf_states(struct em_perf_domain * pd)363  static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
364  {
365  	return 0;
366  }
367  static inline
em_table_alloc(struct em_perf_domain * pd)368  struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd)
369  {
370  	return NULL;
371  }
em_table_free(struct em_perf_table __rcu * table)372  static inline void em_table_free(struct em_perf_table __rcu *table) {}
373  static inline
em_dev_update_perf_domain(struct device * dev,struct em_perf_table __rcu * new_table)374  int em_dev_update_perf_domain(struct device *dev,
375  			      struct em_perf_table __rcu *new_table)
376  {
377  	return -EINVAL;
378  }
379  static inline
em_perf_state_from_pd(struct em_perf_domain * pd)380  struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd)
381  {
382  	return NULL;
383  }
384  static inline
em_dev_compute_costs(struct device * dev,struct em_perf_state * table,int nr_states)385  int em_dev_compute_costs(struct device *dev, struct em_perf_state *table,
386  			 int nr_states)
387  {
388  	return -EINVAL;
389  }
em_dev_update_chip_binning(struct device * dev)390  static inline int em_dev_update_chip_binning(struct device *dev)
391  {
392  	return -EINVAL;
393  }
394  #endif
395  
396  #endif
397