1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (c) 2016-2021 Christoph Hellwig.
5 */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/fscrypt.h>
10 #include <linux/pagemap.h>
11 #include <linux/iomap.h>
12 #include <linux/backing-dev.h>
13 #include <linux/uio.h>
14 #include <linux/task_io_accounting_ops.h>
15 #include "trace.h"
16
17 #include "../internal.h"
18
19 /*
20 * Private flags for iomap_dio, must not overlap with the public ones in
21 * iomap.h:
22 */
23 #define IOMAP_DIO_CALLER_COMP (1U << 26)
24 #define IOMAP_DIO_INLINE_COMP (1U << 27)
25 #define IOMAP_DIO_WRITE_THROUGH (1U << 28)
26 #define IOMAP_DIO_NEED_SYNC (1U << 29)
27 #define IOMAP_DIO_WRITE (1U << 30)
28 #define IOMAP_DIO_DIRTY (1U << 31)
29
30 /*
31 * Used for sub block zeroing in iomap_dio_zero()
32 */
33 #define IOMAP_ZERO_PAGE_SIZE (SZ_64K)
34 #define IOMAP_ZERO_PAGE_ORDER (get_order(IOMAP_ZERO_PAGE_SIZE))
35 static struct page *zero_page;
36
37 struct iomap_dio {
38 struct kiocb *iocb;
39 const struct iomap_dio_ops *dops;
40 loff_t i_size;
41 loff_t size;
42 atomic_t ref;
43 unsigned flags;
44 int error;
45 size_t done_before;
46 bool wait_for_completion;
47
48 union {
49 /* used during submission and for synchronous completion: */
50 struct {
51 struct iov_iter *iter;
52 struct task_struct *waiter;
53 } submit;
54
55 /* used for aio completion: */
56 struct {
57 struct work_struct work;
58 } aio;
59 };
60 };
61
iomap_dio_alloc_bio(const struct iomap_iter * iter,struct iomap_dio * dio,unsigned short nr_vecs,blk_opf_t opf)62 static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter,
63 struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf)
64 {
65 if (dio->dops && dio->dops->bio_set)
66 return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf,
67 GFP_KERNEL, dio->dops->bio_set);
68 return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL);
69 }
70
iomap_dio_submit_bio(const struct iomap_iter * iter,struct iomap_dio * dio,struct bio * bio,loff_t pos)71 static void iomap_dio_submit_bio(const struct iomap_iter *iter,
72 struct iomap_dio *dio, struct bio *bio, loff_t pos)
73 {
74 struct kiocb *iocb = dio->iocb;
75
76 atomic_inc(&dio->ref);
77
78 /* Sync dio can't be polled reliably */
79 if ((iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(iocb)) {
80 bio_set_polled(bio, iocb);
81 WRITE_ONCE(iocb->private, bio);
82 }
83
84 if (dio->dops && dio->dops->submit_io)
85 dio->dops->submit_io(iter, bio, pos);
86 else
87 submit_bio(bio);
88 }
89
iomap_dio_complete(struct iomap_dio * dio)90 ssize_t iomap_dio_complete(struct iomap_dio *dio)
91 {
92 const struct iomap_dio_ops *dops = dio->dops;
93 struct kiocb *iocb = dio->iocb;
94 loff_t offset = iocb->ki_pos;
95 ssize_t ret = dio->error;
96
97 if (dops && dops->end_io)
98 ret = dops->end_io(iocb, dio->size, ret, dio->flags);
99
100 if (likely(!ret)) {
101 ret = dio->size;
102 /* check for short read */
103 if (offset + ret > dio->i_size &&
104 !(dio->flags & IOMAP_DIO_WRITE))
105 ret = dio->i_size - offset;
106 }
107
108 /*
109 * Try again to invalidate clean pages which might have been cached by
110 * non-direct readahead, or faulted in by get_user_pages() if the source
111 * of the write was an mmap'ed region of the file we're writing. Either
112 * one is a pretty crazy thing to do, so we don't support it 100%. If
113 * this invalidation fails, tough, the write still worked...
114 *
115 * And this page cache invalidation has to be after ->end_io(), as some
116 * filesystems convert unwritten extents to real allocations in
117 * ->end_io() when necessary, otherwise a racing buffer read would cache
118 * zeros from unwritten extents.
119 */
120 if (!dio->error && dio->size && (dio->flags & IOMAP_DIO_WRITE))
121 kiocb_invalidate_post_direct_write(iocb, dio->size);
122
123 inode_dio_end(file_inode(iocb->ki_filp));
124
125 if (ret > 0) {
126 iocb->ki_pos += ret;
127
128 /*
129 * If this is a DSYNC write, make sure we push it to stable
130 * storage now that we've written data.
131 */
132 if (dio->flags & IOMAP_DIO_NEED_SYNC)
133 ret = generic_write_sync(iocb, ret);
134 if (ret > 0)
135 ret += dio->done_before;
136 }
137 trace_iomap_dio_complete(iocb, dio->error, ret);
138 kfree(dio);
139 return ret;
140 }
141 EXPORT_SYMBOL_GPL(iomap_dio_complete);
142
iomap_dio_deferred_complete(void * data)143 static ssize_t iomap_dio_deferred_complete(void *data)
144 {
145 return iomap_dio_complete(data);
146 }
147
iomap_dio_complete_work(struct work_struct * work)148 static void iomap_dio_complete_work(struct work_struct *work)
149 {
150 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
151 struct kiocb *iocb = dio->iocb;
152
153 iocb->ki_complete(iocb, iomap_dio_complete(dio));
154 }
155
156 /*
157 * Set an error in the dio if none is set yet. We have to use cmpxchg
158 * as the submission context and the completion context(s) can race to
159 * update the error.
160 */
iomap_dio_set_error(struct iomap_dio * dio,int ret)161 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
162 {
163 cmpxchg(&dio->error, 0, ret);
164 }
165
iomap_dio_bio_end_io(struct bio * bio)166 void iomap_dio_bio_end_io(struct bio *bio)
167 {
168 struct iomap_dio *dio = bio->bi_private;
169 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
170 struct kiocb *iocb = dio->iocb;
171
172 if (bio->bi_status)
173 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
174 if (!atomic_dec_and_test(&dio->ref))
175 goto release_bio;
176
177 /*
178 * Synchronous dio, task itself will handle any completion work
179 * that needs after IO. All we need to do is wake the task.
180 */
181 if (dio->wait_for_completion) {
182 struct task_struct *waiter = dio->submit.waiter;
183
184 WRITE_ONCE(dio->submit.waiter, NULL);
185 blk_wake_io_task(waiter);
186 goto release_bio;
187 }
188
189 /*
190 * Flagged with IOMAP_DIO_INLINE_COMP, we can complete it inline
191 */
192 if (dio->flags & IOMAP_DIO_INLINE_COMP) {
193 WRITE_ONCE(iocb->private, NULL);
194 iomap_dio_complete_work(&dio->aio.work);
195 goto release_bio;
196 }
197
198 /*
199 * If this dio is flagged with IOMAP_DIO_CALLER_COMP, then schedule
200 * our completion that way to avoid an async punt to a workqueue.
201 */
202 if (dio->flags & IOMAP_DIO_CALLER_COMP) {
203 /* only polled IO cares about private cleared */
204 iocb->private = dio;
205 iocb->dio_complete = iomap_dio_deferred_complete;
206
207 /*
208 * Invoke ->ki_complete() directly. We've assigned our
209 * dio_complete callback handler, and since the issuer set
210 * IOCB_DIO_CALLER_COMP, we know their ki_complete handler will
211 * notice ->dio_complete being set and will defer calling that
212 * handler until it can be done from a safe task context.
213 *
214 * Note that the 'res' being passed in here is not important
215 * for this case. The actual completion value of the request
216 * will be gotten from dio_complete when that is run by the
217 * issuer.
218 */
219 iocb->ki_complete(iocb, 0);
220 goto release_bio;
221 }
222
223 /*
224 * Async DIO completion that requires filesystem level completion work
225 * gets punted to a work queue to complete as the operation may require
226 * more IO to be issued to finalise filesystem metadata changes or
227 * guarantee data integrity.
228 */
229 INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
230 queue_work(file_inode(iocb->ki_filp)->i_sb->s_dio_done_wq,
231 &dio->aio.work);
232 release_bio:
233 if (should_dirty) {
234 bio_check_pages_dirty(bio);
235 } else {
236 bio_release_pages(bio, false);
237 bio_put(bio);
238 }
239 }
240 EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io);
241
iomap_dio_zero(const struct iomap_iter * iter,struct iomap_dio * dio,loff_t pos,unsigned len)242 static int iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio,
243 loff_t pos, unsigned len)
244 {
245 struct inode *inode = file_inode(dio->iocb->ki_filp);
246 struct bio *bio;
247
248 if (!len)
249 return 0;
250 /*
251 * Max block size supported is 64k
252 */
253 if (WARN_ON_ONCE(len > IOMAP_ZERO_PAGE_SIZE))
254 return -EINVAL;
255
256 bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE);
257 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
258 GFP_KERNEL);
259 bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos);
260 bio->bi_private = dio;
261 bio->bi_end_io = iomap_dio_bio_end_io;
262
263 __bio_add_page(bio, zero_page, len, 0);
264 iomap_dio_submit_bio(iter, dio, bio, pos);
265 return 0;
266 }
267
268 /*
269 * Figure out the bio's operation flags from the dio request, the
270 * mapping, and whether or not we want FUA. Note that we can end up
271 * clearing the WRITE_THROUGH flag in the dio request.
272 */
iomap_dio_bio_opflags(struct iomap_dio * dio,const struct iomap * iomap,bool use_fua)273 static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio,
274 const struct iomap *iomap, bool use_fua)
275 {
276 blk_opf_t opflags = REQ_SYNC | REQ_IDLE;
277
278 if (!(dio->flags & IOMAP_DIO_WRITE))
279 return REQ_OP_READ;
280
281 opflags |= REQ_OP_WRITE;
282 if (use_fua)
283 opflags |= REQ_FUA;
284 else
285 dio->flags &= ~IOMAP_DIO_WRITE_THROUGH;
286
287 return opflags;
288 }
289
iomap_dio_bio_iter(const struct iomap_iter * iter,struct iomap_dio * dio)290 static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter,
291 struct iomap_dio *dio)
292 {
293 const struct iomap *iomap = &iter->iomap;
294 struct inode *inode = iter->inode;
295 unsigned int fs_block_size = i_blocksize(inode), pad;
296 loff_t length = iomap_length(iter);
297 loff_t pos = iter->pos;
298 blk_opf_t bio_opf;
299 struct bio *bio;
300 bool need_zeroout = false;
301 bool use_fua = false;
302 int nr_pages, ret = 0;
303 size_t copied = 0;
304 size_t orig_count;
305
306 if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) ||
307 !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter))
308 return -EINVAL;
309
310 if (iomap->type == IOMAP_UNWRITTEN) {
311 dio->flags |= IOMAP_DIO_UNWRITTEN;
312 need_zeroout = true;
313 }
314
315 if (iomap->flags & IOMAP_F_SHARED)
316 dio->flags |= IOMAP_DIO_COW;
317
318 if (iomap->flags & IOMAP_F_NEW) {
319 need_zeroout = true;
320 } else if (iomap->type == IOMAP_MAPPED) {
321 /*
322 * Use a FUA write if we need datasync semantics, this is a pure
323 * data IO that doesn't require any metadata updates (including
324 * after IO completion such as unwritten extent conversion) and
325 * the underlying device either supports FUA or doesn't have
326 * a volatile write cache. This allows us to avoid cache flushes
327 * on IO completion. If we can't use writethrough and need to
328 * sync, disable in-task completions as dio completion will
329 * need to call generic_write_sync() which will do a blocking
330 * fsync / cache flush call.
331 */
332 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
333 (dio->flags & IOMAP_DIO_WRITE_THROUGH) &&
334 (bdev_fua(iomap->bdev) || !bdev_write_cache(iomap->bdev)))
335 use_fua = true;
336 else if (dio->flags & IOMAP_DIO_NEED_SYNC)
337 dio->flags &= ~IOMAP_DIO_CALLER_COMP;
338 }
339
340 /*
341 * Save the original count and trim the iter to just the extent we
342 * are operating on right now. The iter will be re-expanded once
343 * we are done.
344 */
345 orig_count = iov_iter_count(dio->submit.iter);
346 iov_iter_truncate(dio->submit.iter, length);
347
348 if (!iov_iter_count(dio->submit.iter))
349 goto out;
350
351 /*
352 * We can only do deferred completion for pure overwrites that
353 * don't require additional IO at completion. This rules out
354 * writes that need zeroing or extent conversion, extend
355 * the file size, or issue journal IO or cache flushes
356 * during completion processing.
357 */
358 if (need_zeroout ||
359 ((dio->flags & IOMAP_DIO_NEED_SYNC) && !use_fua) ||
360 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode)))
361 dio->flags &= ~IOMAP_DIO_CALLER_COMP;
362
363 /*
364 * The rules for polled IO completions follow the guidelines as the
365 * ones we set for inline and deferred completions. If none of those
366 * are available for this IO, clear the polled flag.
367 */
368 if (!(dio->flags & (IOMAP_DIO_INLINE_COMP|IOMAP_DIO_CALLER_COMP)))
369 dio->iocb->ki_flags &= ~IOCB_HIPRI;
370
371 if (need_zeroout) {
372 /* zero out from the start of the block to the write offset */
373 pad = pos & (fs_block_size - 1);
374
375 ret = iomap_dio_zero(iter, dio, pos - pad, pad);
376 if (ret)
377 goto out;
378 }
379
380 /*
381 * Set the operation flags early so that bio_iov_iter_get_pages
382 * can set up the page vector appropriately for a ZONE_APPEND
383 * operation.
384 */
385 bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua);
386
387 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS);
388 do {
389 size_t n;
390 if (dio->error) {
391 iov_iter_revert(dio->submit.iter, copied);
392 copied = ret = 0;
393 goto out;
394 }
395
396 bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf);
397 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits,
398 GFP_KERNEL);
399 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
400 bio->bi_write_hint = inode->i_write_hint;
401 bio->bi_ioprio = dio->iocb->ki_ioprio;
402 bio->bi_private = dio;
403 bio->bi_end_io = iomap_dio_bio_end_io;
404
405 ret = bio_iov_iter_get_pages(bio, dio->submit.iter);
406 if (unlikely(ret)) {
407 /*
408 * We have to stop part way through an IO. We must fall
409 * through to the sub-block tail zeroing here, otherwise
410 * this short IO may expose stale data in the tail of
411 * the block we haven't written data to.
412 */
413 bio_put(bio);
414 goto zero_tail;
415 }
416
417 n = bio->bi_iter.bi_size;
418 if (dio->flags & IOMAP_DIO_WRITE) {
419 task_io_account_write(n);
420 } else {
421 if (dio->flags & IOMAP_DIO_DIRTY)
422 bio_set_pages_dirty(bio);
423 }
424
425 dio->size += n;
426 copied += n;
427
428 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter,
429 BIO_MAX_VECS);
430 /*
431 * We can only poll for single bio I/Os.
432 */
433 if (nr_pages)
434 dio->iocb->ki_flags &= ~IOCB_HIPRI;
435 iomap_dio_submit_bio(iter, dio, bio, pos);
436 pos += n;
437 } while (nr_pages);
438
439 /*
440 * We need to zeroout the tail of a sub-block write if the extent type
441 * requires zeroing or the write extends beyond EOF. If we don't zero
442 * the block tail in the latter case, we can expose stale data via mmap
443 * reads of the EOF block.
444 */
445 zero_tail:
446 if (need_zeroout ||
447 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
448 /* zero out from the end of the write to the end of the block */
449 pad = pos & (fs_block_size - 1);
450 if (pad)
451 ret = iomap_dio_zero(iter, dio, pos,
452 fs_block_size - pad);
453 }
454 out:
455 /* Undo iter limitation to current extent */
456 iov_iter_reexpand(dio->submit.iter, orig_count - copied);
457 if (copied)
458 return copied;
459 return ret;
460 }
461
iomap_dio_hole_iter(const struct iomap_iter * iter,struct iomap_dio * dio)462 static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter,
463 struct iomap_dio *dio)
464 {
465 loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter);
466
467 dio->size += length;
468 if (!length)
469 return -EFAULT;
470 return length;
471 }
472
iomap_dio_inline_iter(const struct iomap_iter * iomi,struct iomap_dio * dio)473 static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi,
474 struct iomap_dio *dio)
475 {
476 const struct iomap *iomap = &iomi->iomap;
477 struct iov_iter *iter = dio->submit.iter;
478 void *inline_data = iomap_inline_data(iomap, iomi->pos);
479 loff_t length = iomap_length(iomi);
480 loff_t pos = iomi->pos;
481 size_t copied;
482
483 if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap)))
484 return -EIO;
485
486 if (dio->flags & IOMAP_DIO_WRITE) {
487 loff_t size = iomi->inode->i_size;
488
489 if (pos > size)
490 memset(iomap_inline_data(iomap, size), 0, pos - size);
491 copied = copy_from_iter(inline_data, length, iter);
492 if (copied) {
493 if (pos + copied > size)
494 i_size_write(iomi->inode, pos + copied);
495 mark_inode_dirty(iomi->inode);
496 }
497 } else {
498 copied = copy_to_iter(inline_data, length, iter);
499 }
500 dio->size += copied;
501 if (!copied)
502 return -EFAULT;
503 return copied;
504 }
505
iomap_dio_iter(const struct iomap_iter * iter,struct iomap_dio * dio)506 static loff_t iomap_dio_iter(const struct iomap_iter *iter,
507 struct iomap_dio *dio)
508 {
509 switch (iter->iomap.type) {
510 case IOMAP_HOLE:
511 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
512 return -EIO;
513 return iomap_dio_hole_iter(iter, dio);
514 case IOMAP_UNWRITTEN:
515 if (!(dio->flags & IOMAP_DIO_WRITE))
516 return iomap_dio_hole_iter(iter, dio);
517 return iomap_dio_bio_iter(iter, dio);
518 case IOMAP_MAPPED:
519 return iomap_dio_bio_iter(iter, dio);
520 case IOMAP_INLINE:
521 return iomap_dio_inline_iter(iter, dio);
522 case IOMAP_DELALLOC:
523 /*
524 * DIO is not serialised against mmap() access at all, and so
525 * if the page_mkwrite occurs between the writeback and the
526 * iomap_iter() call in the DIO path, then it will see the
527 * DELALLOC block that the page-mkwrite allocated.
528 */
529 pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n",
530 dio->iocb->ki_filp, current->comm);
531 return -EIO;
532 default:
533 WARN_ON_ONCE(1);
534 return -EIO;
535 }
536 }
537
538 /*
539 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
540 * is being issued as AIO or not. This allows us to optimise pure data writes
541 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
542 * REQ_FLUSH post write. This is slightly tricky because a single request here
543 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
544 * may be pure data writes. In that case, we still need to do a full data sync
545 * completion.
546 *
547 * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL,
548 * __iomap_dio_rw can return a partial result if it encounters a non-resident
549 * page in @iter after preparing a transfer. In that case, the non-resident
550 * pages can be faulted in and the request resumed with @done_before set to the
551 * number of bytes previously transferred. The request will then complete with
552 * the correct total number of bytes transferred; this is essential for
553 * completing partial requests asynchronously.
554 *
555 * Returns -ENOTBLK In case of a page invalidation invalidation failure for
556 * writes. The callers needs to fall back to buffered I/O in this case.
557 */
558 struct iomap_dio *
__iomap_dio_rw(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops,const struct iomap_dio_ops * dops,unsigned int dio_flags,void * private,size_t done_before)559 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
560 const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
561 unsigned int dio_flags, void *private, size_t done_before)
562 {
563 struct inode *inode = file_inode(iocb->ki_filp);
564 struct iomap_iter iomi = {
565 .inode = inode,
566 .pos = iocb->ki_pos,
567 .len = iov_iter_count(iter),
568 .flags = IOMAP_DIRECT,
569 .private = private,
570 };
571 bool wait_for_completion =
572 is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT);
573 struct blk_plug plug;
574 struct iomap_dio *dio;
575 loff_t ret = 0;
576
577 trace_iomap_dio_rw_begin(iocb, iter, dio_flags, done_before);
578
579 if (!iomi.len)
580 return NULL;
581
582 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
583 if (!dio)
584 return ERR_PTR(-ENOMEM);
585
586 dio->iocb = iocb;
587 atomic_set(&dio->ref, 1);
588 dio->size = 0;
589 dio->i_size = i_size_read(inode);
590 dio->dops = dops;
591 dio->error = 0;
592 dio->flags = 0;
593 dio->done_before = done_before;
594
595 dio->submit.iter = iter;
596 dio->submit.waiter = current;
597
598 if (iocb->ki_flags & IOCB_NOWAIT)
599 iomi.flags |= IOMAP_NOWAIT;
600
601 if (iov_iter_rw(iter) == READ) {
602 /* reads can always complete inline */
603 dio->flags |= IOMAP_DIO_INLINE_COMP;
604
605 if (iomi.pos >= dio->i_size)
606 goto out_free_dio;
607
608 if (user_backed_iter(iter))
609 dio->flags |= IOMAP_DIO_DIRTY;
610
611 ret = kiocb_write_and_wait(iocb, iomi.len);
612 if (ret)
613 goto out_free_dio;
614 } else {
615 iomi.flags |= IOMAP_WRITE;
616 dio->flags |= IOMAP_DIO_WRITE;
617
618 /*
619 * Flag as supporting deferred completions, if the issuer
620 * groks it. This can avoid a workqueue punt for writes.
621 * We may later clear this flag if we need to do other IO
622 * as part of this IO completion.
623 */
624 if (iocb->ki_flags & IOCB_DIO_CALLER_COMP)
625 dio->flags |= IOMAP_DIO_CALLER_COMP;
626
627 if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) {
628 ret = -EAGAIN;
629 if (iomi.pos >= dio->i_size ||
630 iomi.pos + iomi.len > dio->i_size)
631 goto out_free_dio;
632 iomi.flags |= IOMAP_OVERWRITE_ONLY;
633 }
634
635 /* for data sync or sync, we need sync completion processing */
636 if (iocb_is_dsync(iocb)) {
637 dio->flags |= IOMAP_DIO_NEED_SYNC;
638
639 /*
640 * For datasync only writes, we optimistically try using
641 * WRITE_THROUGH for this IO. This flag requires either
642 * FUA writes through the device's write cache, or a
643 * normal write to a device without a volatile write
644 * cache. For the former, Any non-FUA write that occurs
645 * will clear this flag, hence we know before completion
646 * whether a cache flush is necessary.
647 */
648 if (!(iocb->ki_flags & IOCB_SYNC))
649 dio->flags |= IOMAP_DIO_WRITE_THROUGH;
650 }
651
652 /*
653 * Try to invalidate cache pages for the range we are writing.
654 * If this invalidation fails, let the caller fall back to
655 * buffered I/O.
656 */
657 ret = kiocb_invalidate_pages(iocb, iomi.len);
658 if (ret) {
659 if (ret != -EAGAIN) {
660 trace_iomap_dio_invalidate_fail(inode, iomi.pos,
661 iomi.len);
662 ret = -ENOTBLK;
663 }
664 goto out_free_dio;
665 }
666
667 if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) {
668 ret = sb_init_dio_done_wq(inode->i_sb);
669 if (ret < 0)
670 goto out_free_dio;
671 }
672 }
673
674 inode_dio_begin(inode);
675
676 blk_start_plug(&plug);
677 while ((ret = iomap_iter(&iomi, ops)) > 0) {
678 iomi.processed = iomap_dio_iter(&iomi, dio);
679
680 /*
681 * We can only poll for single bio I/Os.
682 */
683 iocb->ki_flags &= ~IOCB_HIPRI;
684 }
685
686 blk_finish_plug(&plug);
687
688 /*
689 * We only report that we've read data up to i_size.
690 * Revert iter to a state corresponding to that as some callers (such
691 * as the splice code) rely on it.
692 */
693 if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size)
694 iov_iter_revert(iter, iomi.pos - dio->i_size);
695
696 if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) {
697 if (!(iocb->ki_flags & IOCB_NOWAIT))
698 wait_for_completion = true;
699 ret = 0;
700 }
701
702 /* magic error code to fall back to buffered I/O */
703 if (ret == -ENOTBLK) {
704 wait_for_completion = true;
705 ret = 0;
706 }
707 if (ret < 0)
708 iomap_dio_set_error(dio, ret);
709
710 /*
711 * If all the writes we issued were already written through to the
712 * media, we don't need to flush the cache on IO completion. Clear the
713 * sync flag for this case.
714 */
715 if (dio->flags & IOMAP_DIO_WRITE_THROUGH)
716 dio->flags &= ~IOMAP_DIO_NEED_SYNC;
717
718 /*
719 * We are about to drop our additional submission reference, which
720 * might be the last reference to the dio. There are three different
721 * ways we can progress here:
722 *
723 * (a) If this is the last reference we will always complete and free
724 * the dio ourselves.
725 * (b) If this is not the last reference, and we serve an asynchronous
726 * iocb, we must never touch the dio after the decrement, the
727 * I/O completion handler will complete and free it.
728 * (c) If this is not the last reference, but we serve a synchronous
729 * iocb, the I/O completion handler will wake us up on the drop
730 * of the final reference, and we will complete and free it here
731 * after we got woken by the I/O completion handler.
732 */
733 dio->wait_for_completion = wait_for_completion;
734 if (!atomic_dec_and_test(&dio->ref)) {
735 if (!wait_for_completion) {
736 trace_iomap_dio_rw_queued(inode, iomi.pos, iomi.len);
737 return ERR_PTR(-EIOCBQUEUED);
738 }
739
740 for (;;) {
741 set_current_state(TASK_UNINTERRUPTIBLE);
742 if (!READ_ONCE(dio->submit.waiter))
743 break;
744
745 blk_io_schedule();
746 }
747 __set_current_state(TASK_RUNNING);
748 }
749
750 return dio;
751
752 out_free_dio:
753 kfree(dio);
754 if (ret)
755 return ERR_PTR(ret);
756 return NULL;
757 }
758 EXPORT_SYMBOL_GPL(__iomap_dio_rw);
759
760 ssize_t
iomap_dio_rw(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops,const struct iomap_dio_ops * dops,unsigned int dio_flags,void * private,size_t done_before)761 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
762 const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
763 unsigned int dio_flags, void *private, size_t done_before)
764 {
765 struct iomap_dio *dio;
766
767 dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private,
768 done_before);
769 if (IS_ERR_OR_NULL(dio))
770 return PTR_ERR_OR_ZERO(dio);
771 return iomap_dio_complete(dio);
772 }
773 EXPORT_SYMBOL_GPL(iomap_dio_rw);
774
iomap_dio_init(void)775 static int __init iomap_dio_init(void)
776 {
777 zero_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
778 IOMAP_ZERO_PAGE_ORDER);
779
780 if (!zero_page)
781 return -ENOMEM;
782
783 return 0;
784 }
785 fs_initcall(iomap_dio_init);
786