1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11 
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44 
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55 
56 #include <trace/events/dlm.h>
57 #include <trace/events/sock.h>
58 
59 #include "dlm_internal.h"
60 #include "lowcomms.h"
61 #include "midcomms.h"
62 #include "memory.h"
63 #include "config.h"
64 
65 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000)
66 #define DLM_MAX_PROCESS_BUFFERS 24
67 #define NEEDED_RMEM (4*1024*1024)
68 
69 struct connection {
70 	struct socket *sock;	/* NULL if not connected */
71 	uint32_t nodeid;	/* So we know who we are in the list */
72 	/* this semaphore is used to allow parallel recv/send in read
73 	 * lock mode. When we release a sock we need to held the write lock.
74 	 *
75 	 * However this is locking code and not nice. When we remove the
76 	 * othercon handling we can look into other mechanism to synchronize
77 	 * io handling to call sock_release() at the right time.
78 	 */
79 	struct rw_semaphore sock_lock;
80 	unsigned long flags;
81 #define CF_APP_LIMITED 0
82 #define CF_RECV_PENDING 1
83 #define CF_SEND_PENDING 2
84 #define CF_RECV_INTR 3
85 #define CF_IO_STOP 4
86 #define CF_IS_OTHERCON 5
87 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
88 	spinlock_t writequeue_lock;
89 	int retries;
90 	struct hlist_node list;
91 	/* due some connect()/accept() races we currently have this cross over
92 	 * connection attempt second connection for one node.
93 	 *
94 	 * There is a solution to avoid the race by introducing a connect
95 	 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
96 	 * connect. Otherside can connect but will only be considered that
97 	 * the other side wants to have a reconnect.
98 	 *
99 	 * However changing to this behaviour will break backwards compatible.
100 	 * In a DLM protocol major version upgrade we should remove this!
101 	 */
102 	struct connection *othercon;
103 	struct work_struct rwork; /* receive worker */
104 	struct work_struct swork; /* send worker */
105 	wait_queue_head_t shutdown_wait;
106 	unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
107 	int rx_leftover;
108 	int mark;
109 	int addr_count;
110 	int curr_addr_index;
111 	struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
112 	spinlock_t addrs_lock;
113 	struct rcu_head rcu;
114 };
115 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
116 
117 struct listen_connection {
118 	struct socket *sock;
119 	struct work_struct rwork;
120 };
121 
122 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
123 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
124 
125 /* An entry waiting to be sent */
126 struct writequeue_entry {
127 	struct list_head list;
128 	struct page *page;
129 	int offset;
130 	int len;
131 	int end;
132 	int users;
133 	bool dirty;
134 	struct connection *con;
135 	struct list_head msgs;
136 	struct kref ref;
137 };
138 
139 struct dlm_msg {
140 	struct writequeue_entry *entry;
141 	struct dlm_msg *orig_msg;
142 	bool retransmit;
143 	void *ppc;
144 	int len;
145 	int idx; /* new()/commit() idx exchange */
146 
147 	struct list_head list;
148 	struct kref ref;
149 };
150 
151 struct processqueue_entry {
152 	unsigned char *buf;
153 	int nodeid;
154 	int buflen;
155 
156 	struct list_head list;
157 };
158 
159 struct dlm_proto_ops {
160 	bool try_new_addr;
161 	const char *name;
162 	int proto;
163 
164 	void (*sockopts)(struct socket *sock);
165 	int (*bind)(struct socket *sock);
166 	int (*listen_validate)(void);
167 	void (*listen_sockopts)(struct socket *sock);
168 	int (*listen_bind)(struct socket *sock);
169 };
170 
171 static struct listen_sock_callbacks {
172 	void (*sk_error_report)(struct sock *);
173 	void (*sk_data_ready)(struct sock *);
174 	void (*sk_state_change)(struct sock *);
175 	void (*sk_write_space)(struct sock *);
176 } listen_sock;
177 
178 static struct listen_connection listen_con;
179 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
180 static int dlm_local_count;
181 
182 /* Work queues */
183 static struct workqueue_struct *io_workqueue;
184 static struct workqueue_struct *process_workqueue;
185 
186 static struct hlist_head connection_hash[CONN_HASH_SIZE];
187 static DEFINE_SPINLOCK(connections_lock);
188 DEFINE_STATIC_SRCU(connections_srcu);
189 
190 static const struct dlm_proto_ops *dlm_proto_ops;
191 
192 #define DLM_IO_SUCCESS 0
193 #define DLM_IO_END 1
194 #define DLM_IO_EOF 2
195 #define DLM_IO_RESCHED 3
196 #define DLM_IO_FLUSH 4
197 
198 static void process_recv_sockets(struct work_struct *work);
199 static void process_send_sockets(struct work_struct *work);
200 static void process_dlm_messages(struct work_struct *work);
201 
202 static DECLARE_WORK(process_work, process_dlm_messages);
203 static DEFINE_SPINLOCK(processqueue_lock);
204 static bool process_dlm_messages_pending;
205 static DECLARE_WAIT_QUEUE_HEAD(processqueue_wq);
206 static atomic_t processqueue_count;
207 static LIST_HEAD(processqueue);
208 
dlm_lowcomms_is_running(void)209 bool dlm_lowcomms_is_running(void)
210 {
211 	return !!listen_con.sock;
212 }
213 
lowcomms_queue_swork(struct connection * con)214 static void lowcomms_queue_swork(struct connection *con)
215 {
216 	assert_spin_locked(&con->writequeue_lock);
217 
218 	if (!test_bit(CF_IO_STOP, &con->flags) &&
219 	    !test_bit(CF_APP_LIMITED, &con->flags) &&
220 	    !test_and_set_bit(CF_SEND_PENDING, &con->flags))
221 		queue_work(io_workqueue, &con->swork);
222 }
223 
lowcomms_queue_rwork(struct connection * con)224 static void lowcomms_queue_rwork(struct connection *con)
225 {
226 #ifdef CONFIG_LOCKDEP
227 	WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
228 #endif
229 
230 	if (!test_bit(CF_IO_STOP, &con->flags) &&
231 	    !test_and_set_bit(CF_RECV_PENDING, &con->flags))
232 		queue_work(io_workqueue, &con->rwork);
233 }
234 
writequeue_entry_ctor(void * data)235 static void writequeue_entry_ctor(void *data)
236 {
237 	struct writequeue_entry *entry = data;
238 
239 	INIT_LIST_HEAD(&entry->msgs);
240 }
241 
dlm_lowcomms_writequeue_cache_create(void)242 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
243 {
244 	return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
245 				 0, 0, writequeue_entry_ctor);
246 }
247 
dlm_lowcomms_msg_cache_create(void)248 struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
249 {
250 	return KMEM_CACHE(dlm_msg, 0);
251 }
252 
253 /* need to held writequeue_lock */
con_next_wq(struct connection * con)254 static struct writequeue_entry *con_next_wq(struct connection *con)
255 {
256 	struct writequeue_entry *e;
257 
258 	e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
259 				     list);
260 	/* if len is zero nothing is to send, if there are users filling
261 	 * buffers we wait until the users are done so we can send more.
262 	 */
263 	if (!e || e->users || e->len == 0)
264 		return NULL;
265 
266 	return e;
267 }
268 
__find_con(int nodeid,int r)269 static struct connection *__find_con(int nodeid, int r)
270 {
271 	struct connection *con;
272 
273 	hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
274 		if (con->nodeid == nodeid)
275 			return con;
276 	}
277 
278 	return NULL;
279 }
280 
dlm_con_init(struct connection * con,int nodeid)281 static void dlm_con_init(struct connection *con, int nodeid)
282 {
283 	con->nodeid = nodeid;
284 	init_rwsem(&con->sock_lock);
285 	INIT_LIST_HEAD(&con->writequeue);
286 	spin_lock_init(&con->writequeue_lock);
287 	INIT_WORK(&con->swork, process_send_sockets);
288 	INIT_WORK(&con->rwork, process_recv_sockets);
289 	spin_lock_init(&con->addrs_lock);
290 	init_waitqueue_head(&con->shutdown_wait);
291 }
292 
293 /*
294  * If 'allocation' is zero then we don't attempt to create a new
295  * connection structure for this node.
296  */
nodeid2con(int nodeid,gfp_t alloc)297 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
298 {
299 	struct connection *con, *tmp;
300 	int r;
301 
302 	r = nodeid_hash(nodeid);
303 	con = __find_con(nodeid, r);
304 	if (con || !alloc)
305 		return con;
306 
307 	con = kzalloc(sizeof(*con), alloc);
308 	if (!con)
309 		return NULL;
310 
311 	dlm_con_init(con, nodeid);
312 
313 	spin_lock(&connections_lock);
314 	/* Because multiple workqueues/threads calls this function it can
315 	 * race on multiple cpu's. Instead of locking hot path __find_con()
316 	 * we just check in rare cases of recently added nodes again
317 	 * under protection of connections_lock. If this is the case we
318 	 * abort our connection creation and return the existing connection.
319 	 */
320 	tmp = __find_con(nodeid, r);
321 	if (tmp) {
322 		spin_unlock(&connections_lock);
323 		kfree(con);
324 		return tmp;
325 	}
326 
327 	hlist_add_head_rcu(&con->list, &connection_hash[r]);
328 	spin_unlock(&connections_lock);
329 
330 	return con;
331 }
332 
addr_compare(const struct sockaddr_storage * x,const struct sockaddr_storage * y)333 static int addr_compare(const struct sockaddr_storage *x,
334 			const struct sockaddr_storage *y)
335 {
336 	switch (x->ss_family) {
337 	case AF_INET: {
338 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
339 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
340 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
341 			return 0;
342 		if (sinx->sin_port != siny->sin_port)
343 			return 0;
344 		break;
345 	}
346 	case AF_INET6: {
347 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
348 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
349 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
350 			return 0;
351 		if (sinx->sin6_port != siny->sin6_port)
352 			return 0;
353 		break;
354 	}
355 	default:
356 		return 0;
357 	}
358 	return 1;
359 }
360 
nodeid_to_addr(int nodeid,struct sockaddr_storage * sas_out,struct sockaddr * sa_out,bool try_new_addr,unsigned int * mark)361 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
362 			  struct sockaddr *sa_out, bool try_new_addr,
363 			  unsigned int *mark)
364 {
365 	struct sockaddr_storage sas;
366 	struct connection *con;
367 	int idx;
368 
369 	if (!dlm_local_count)
370 		return -1;
371 
372 	idx = srcu_read_lock(&connections_srcu);
373 	con = nodeid2con(nodeid, 0);
374 	if (!con) {
375 		srcu_read_unlock(&connections_srcu, idx);
376 		return -ENOENT;
377 	}
378 
379 	spin_lock(&con->addrs_lock);
380 	if (!con->addr_count) {
381 		spin_unlock(&con->addrs_lock);
382 		srcu_read_unlock(&connections_srcu, idx);
383 		return -ENOENT;
384 	}
385 
386 	memcpy(&sas, &con->addr[con->curr_addr_index],
387 	       sizeof(struct sockaddr_storage));
388 
389 	if (try_new_addr) {
390 		con->curr_addr_index++;
391 		if (con->curr_addr_index == con->addr_count)
392 			con->curr_addr_index = 0;
393 	}
394 
395 	*mark = con->mark;
396 	spin_unlock(&con->addrs_lock);
397 
398 	if (sas_out)
399 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
400 
401 	if (!sa_out) {
402 		srcu_read_unlock(&connections_srcu, idx);
403 		return 0;
404 	}
405 
406 	if (dlm_local_addr[0].ss_family == AF_INET) {
407 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
408 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
409 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
410 	} else {
411 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
412 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
413 		ret6->sin6_addr = in6->sin6_addr;
414 	}
415 
416 	srcu_read_unlock(&connections_srcu, idx);
417 	return 0;
418 }
419 
addr_to_nodeid(struct sockaddr_storage * addr,int * nodeid,unsigned int * mark)420 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
421 			  unsigned int *mark)
422 {
423 	struct connection *con;
424 	int i, idx, addr_i;
425 
426 	idx = srcu_read_lock(&connections_srcu);
427 	for (i = 0; i < CONN_HASH_SIZE; i++) {
428 		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
429 			WARN_ON_ONCE(!con->addr_count);
430 
431 			spin_lock(&con->addrs_lock);
432 			for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
433 				if (addr_compare(&con->addr[addr_i], addr)) {
434 					*nodeid = con->nodeid;
435 					*mark = con->mark;
436 					spin_unlock(&con->addrs_lock);
437 					srcu_read_unlock(&connections_srcu, idx);
438 					return 0;
439 				}
440 			}
441 			spin_unlock(&con->addrs_lock);
442 		}
443 	}
444 	srcu_read_unlock(&connections_srcu, idx);
445 
446 	return -ENOENT;
447 }
448 
dlm_lowcomms_con_has_addr(const struct connection * con,const struct sockaddr_storage * addr)449 static bool dlm_lowcomms_con_has_addr(const struct connection *con,
450 				      const struct sockaddr_storage *addr)
451 {
452 	int i;
453 
454 	for (i = 0; i < con->addr_count; i++) {
455 		if (addr_compare(&con->addr[i], addr))
456 			return true;
457 	}
458 
459 	return false;
460 }
461 
dlm_lowcomms_addr(int nodeid,struct sockaddr_storage * addr)462 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr)
463 {
464 	struct connection *con;
465 	bool ret, idx;
466 
467 	idx = srcu_read_lock(&connections_srcu);
468 	con = nodeid2con(nodeid, GFP_NOFS);
469 	if (!con) {
470 		srcu_read_unlock(&connections_srcu, idx);
471 		return -ENOMEM;
472 	}
473 
474 	spin_lock(&con->addrs_lock);
475 	if (!con->addr_count) {
476 		memcpy(&con->addr[0], addr, sizeof(*addr));
477 		con->addr_count = 1;
478 		con->mark = dlm_config.ci_mark;
479 		spin_unlock(&con->addrs_lock);
480 		srcu_read_unlock(&connections_srcu, idx);
481 		return 0;
482 	}
483 
484 	ret = dlm_lowcomms_con_has_addr(con, addr);
485 	if (ret) {
486 		spin_unlock(&con->addrs_lock);
487 		srcu_read_unlock(&connections_srcu, idx);
488 		return -EEXIST;
489 	}
490 
491 	if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
492 		spin_unlock(&con->addrs_lock);
493 		srcu_read_unlock(&connections_srcu, idx);
494 		return -ENOSPC;
495 	}
496 
497 	memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
498 	srcu_read_unlock(&connections_srcu, idx);
499 	spin_unlock(&con->addrs_lock);
500 	return 0;
501 }
502 
503 /* Data available on socket or listen socket received a connect */
lowcomms_data_ready(struct sock * sk)504 static void lowcomms_data_ready(struct sock *sk)
505 {
506 	struct connection *con = sock2con(sk);
507 
508 	trace_sk_data_ready(sk);
509 
510 	set_bit(CF_RECV_INTR, &con->flags);
511 	lowcomms_queue_rwork(con);
512 }
513 
lowcomms_write_space(struct sock * sk)514 static void lowcomms_write_space(struct sock *sk)
515 {
516 	struct connection *con = sock2con(sk);
517 
518 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
519 
520 	spin_lock_bh(&con->writequeue_lock);
521 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
522 		con->sock->sk->sk_write_pending--;
523 		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
524 	}
525 
526 	lowcomms_queue_swork(con);
527 	spin_unlock_bh(&con->writequeue_lock);
528 }
529 
lowcomms_state_change(struct sock * sk)530 static void lowcomms_state_change(struct sock *sk)
531 {
532 	/* SCTP layer is not calling sk_data_ready when the connection
533 	 * is done, so we catch the signal through here.
534 	 */
535 	if (sk->sk_shutdown == RCV_SHUTDOWN)
536 		lowcomms_data_ready(sk);
537 }
538 
lowcomms_listen_data_ready(struct sock * sk)539 static void lowcomms_listen_data_ready(struct sock *sk)
540 {
541 	trace_sk_data_ready(sk);
542 
543 	queue_work(io_workqueue, &listen_con.rwork);
544 }
545 
dlm_lowcomms_connect_node(int nodeid)546 int dlm_lowcomms_connect_node(int nodeid)
547 {
548 	struct connection *con;
549 	int idx;
550 
551 	idx = srcu_read_lock(&connections_srcu);
552 	con = nodeid2con(nodeid, 0);
553 	if (WARN_ON_ONCE(!con)) {
554 		srcu_read_unlock(&connections_srcu, idx);
555 		return -ENOENT;
556 	}
557 
558 	down_read(&con->sock_lock);
559 	if (!con->sock) {
560 		spin_lock_bh(&con->writequeue_lock);
561 		lowcomms_queue_swork(con);
562 		spin_unlock_bh(&con->writequeue_lock);
563 	}
564 	up_read(&con->sock_lock);
565 	srcu_read_unlock(&connections_srcu, idx);
566 
567 	cond_resched();
568 	return 0;
569 }
570 
dlm_lowcomms_nodes_set_mark(int nodeid,unsigned int mark)571 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
572 {
573 	struct connection *con;
574 	int idx;
575 
576 	idx = srcu_read_lock(&connections_srcu);
577 	con = nodeid2con(nodeid, 0);
578 	if (!con) {
579 		srcu_read_unlock(&connections_srcu, idx);
580 		return -ENOENT;
581 	}
582 
583 	spin_lock(&con->addrs_lock);
584 	con->mark = mark;
585 	spin_unlock(&con->addrs_lock);
586 	srcu_read_unlock(&connections_srcu, idx);
587 	return 0;
588 }
589 
lowcomms_error_report(struct sock * sk)590 static void lowcomms_error_report(struct sock *sk)
591 {
592 	struct connection *con = sock2con(sk);
593 	struct inet_sock *inet;
594 
595 	inet = inet_sk(sk);
596 	switch (sk->sk_family) {
597 	case AF_INET:
598 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
599 				   "sending to node %d at %pI4, dport %d, "
600 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
601 				   con->nodeid, &inet->inet_daddr,
602 				   ntohs(inet->inet_dport), sk->sk_err,
603 				   READ_ONCE(sk->sk_err_soft));
604 		break;
605 #if IS_ENABLED(CONFIG_IPV6)
606 	case AF_INET6:
607 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
608 				   "sending to node %d at %pI6c, "
609 				   "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
610 				   con->nodeid, &sk->sk_v6_daddr,
611 				   ntohs(inet->inet_dport), sk->sk_err,
612 				   READ_ONCE(sk->sk_err_soft));
613 		break;
614 #endif
615 	default:
616 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
617 				   "invalid socket family %d set, "
618 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
619 				   sk->sk_family, sk->sk_err,
620 				   READ_ONCE(sk->sk_err_soft));
621 		break;
622 	}
623 
624 	dlm_midcomms_unack_msg_resend(con->nodeid);
625 
626 	listen_sock.sk_error_report(sk);
627 }
628 
restore_callbacks(struct sock * sk)629 static void restore_callbacks(struct sock *sk)
630 {
631 #ifdef CONFIG_LOCKDEP
632 	WARN_ON_ONCE(!lockdep_sock_is_held(sk));
633 #endif
634 
635 	sk->sk_user_data = NULL;
636 	sk->sk_data_ready = listen_sock.sk_data_ready;
637 	sk->sk_state_change = listen_sock.sk_state_change;
638 	sk->sk_write_space = listen_sock.sk_write_space;
639 	sk->sk_error_report = listen_sock.sk_error_report;
640 }
641 
642 /* Make a socket active */
add_sock(struct socket * sock,struct connection * con)643 static void add_sock(struct socket *sock, struct connection *con)
644 {
645 	struct sock *sk = sock->sk;
646 
647 	lock_sock(sk);
648 	con->sock = sock;
649 
650 	sk->sk_user_data = con;
651 	sk->sk_data_ready = lowcomms_data_ready;
652 	sk->sk_write_space = lowcomms_write_space;
653 	if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
654 		sk->sk_state_change = lowcomms_state_change;
655 	sk->sk_allocation = GFP_NOFS;
656 	sk->sk_use_task_frag = false;
657 	sk->sk_error_report = lowcomms_error_report;
658 	release_sock(sk);
659 }
660 
661 /* Add the port number to an IPv6 or 4 sockaddr and return the address
662    length */
make_sockaddr(struct sockaddr_storage * saddr,uint16_t port,int * addr_len)663 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
664 			  int *addr_len)
665 {
666 	saddr->ss_family =  dlm_local_addr[0].ss_family;
667 	if (saddr->ss_family == AF_INET) {
668 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
669 		in4_addr->sin_port = cpu_to_be16(port);
670 		*addr_len = sizeof(struct sockaddr_in);
671 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
672 	} else {
673 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
674 		in6_addr->sin6_port = cpu_to_be16(port);
675 		*addr_len = sizeof(struct sockaddr_in6);
676 	}
677 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
678 }
679 
dlm_page_release(struct kref * kref)680 static void dlm_page_release(struct kref *kref)
681 {
682 	struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
683 						  ref);
684 
685 	__free_page(e->page);
686 	dlm_free_writequeue(e);
687 }
688 
dlm_msg_release(struct kref * kref)689 static void dlm_msg_release(struct kref *kref)
690 {
691 	struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
692 
693 	kref_put(&msg->entry->ref, dlm_page_release);
694 	dlm_free_msg(msg);
695 }
696 
free_entry(struct writequeue_entry * e)697 static void free_entry(struct writequeue_entry *e)
698 {
699 	struct dlm_msg *msg, *tmp;
700 
701 	list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
702 		if (msg->orig_msg) {
703 			msg->orig_msg->retransmit = false;
704 			kref_put(&msg->orig_msg->ref, dlm_msg_release);
705 		}
706 
707 		list_del(&msg->list);
708 		kref_put(&msg->ref, dlm_msg_release);
709 	}
710 
711 	list_del(&e->list);
712 	kref_put(&e->ref, dlm_page_release);
713 }
714 
dlm_close_sock(struct socket ** sock)715 static void dlm_close_sock(struct socket **sock)
716 {
717 	lock_sock((*sock)->sk);
718 	restore_callbacks((*sock)->sk);
719 	release_sock((*sock)->sk);
720 
721 	sock_release(*sock);
722 	*sock = NULL;
723 }
724 
allow_connection_io(struct connection * con)725 static void allow_connection_io(struct connection *con)
726 {
727 	if (con->othercon)
728 		clear_bit(CF_IO_STOP, &con->othercon->flags);
729 	clear_bit(CF_IO_STOP, &con->flags);
730 }
731 
stop_connection_io(struct connection * con)732 static void stop_connection_io(struct connection *con)
733 {
734 	if (con->othercon)
735 		stop_connection_io(con->othercon);
736 
737 	spin_lock_bh(&con->writequeue_lock);
738 	set_bit(CF_IO_STOP, &con->flags);
739 	spin_unlock_bh(&con->writequeue_lock);
740 
741 	down_write(&con->sock_lock);
742 	if (con->sock) {
743 		lock_sock(con->sock->sk);
744 		restore_callbacks(con->sock->sk);
745 		release_sock(con->sock->sk);
746 	}
747 	up_write(&con->sock_lock);
748 
749 	cancel_work_sync(&con->swork);
750 	cancel_work_sync(&con->rwork);
751 }
752 
753 /* Close a remote connection and tidy up */
close_connection(struct connection * con,bool and_other)754 static void close_connection(struct connection *con, bool and_other)
755 {
756 	struct writequeue_entry *e;
757 
758 	if (con->othercon && and_other)
759 		close_connection(con->othercon, false);
760 
761 	down_write(&con->sock_lock);
762 	if (!con->sock) {
763 		up_write(&con->sock_lock);
764 		return;
765 	}
766 
767 	dlm_close_sock(&con->sock);
768 
769 	/* if we send a writequeue entry only a half way, we drop the
770 	 * whole entry because reconnection and that we not start of the
771 	 * middle of a msg which will confuse the other end.
772 	 *
773 	 * we can always drop messages because retransmits, but what we
774 	 * cannot allow is to transmit half messages which may be processed
775 	 * at the other side.
776 	 *
777 	 * our policy is to start on a clean state when disconnects, we don't
778 	 * know what's send/received on transport layer in this case.
779 	 */
780 	spin_lock_bh(&con->writequeue_lock);
781 	if (!list_empty(&con->writequeue)) {
782 		e = list_first_entry(&con->writequeue, struct writequeue_entry,
783 				     list);
784 		if (e->dirty)
785 			free_entry(e);
786 	}
787 	spin_unlock_bh(&con->writequeue_lock);
788 
789 	con->rx_leftover = 0;
790 	con->retries = 0;
791 	clear_bit(CF_APP_LIMITED, &con->flags);
792 	clear_bit(CF_RECV_PENDING, &con->flags);
793 	clear_bit(CF_SEND_PENDING, &con->flags);
794 	up_write(&con->sock_lock);
795 }
796 
shutdown_connection(struct connection * con,bool and_other)797 static void shutdown_connection(struct connection *con, bool and_other)
798 {
799 	int ret;
800 
801 	if (con->othercon && and_other)
802 		shutdown_connection(con->othercon, false);
803 
804 	flush_workqueue(io_workqueue);
805 	down_read(&con->sock_lock);
806 	/* nothing to shutdown */
807 	if (!con->sock) {
808 		up_read(&con->sock_lock);
809 		return;
810 	}
811 
812 	ret = kernel_sock_shutdown(con->sock, SHUT_WR);
813 	up_read(&con->sock_lock);
814 	if (ret) {
815 		log_print("Connection %p failed to shutdown: %d will force close",
816 			  con, ret);
817 		goto force_close;
818 	} else {
819 		ret = wait_event_timeout(con->shutdown_wait, !con->sock,
820 					 DLM_SHUTDOWN_WAIT_TIMEOUT);
821 		if (ret == 0) {
822 			log_print("Connection %p shutdown timed out, will force close",
823 				  con);
824 			goto force_close;
825 		}
826 	}
827 
828 	return;
829 
830 force_close:
831 	close_connection(con, false);
832 }
833 
new_processqueue_entry(int nodeid,int buflen)834 static struct processqueue_entry *new_processqueue_entry(int nodeid,
835 							 int buflen)
836 {
837 	struct processqueue_entry *pentry;
838 
839 	pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
840 	if (!pentry)
841 		return NULL;
842 
843 	pentry->buf = kmalloc(buflen, GFP_NOFS);
844 	if (!pentry->buf) {
845 		kfree(pentry);
846 		return NULL;
847 	}
848 
849 	pentry->nodeid = nodeid;
850 	return pentry;
851 }
852 
free_processqueue_entry(struct processqueue_entry * pentry)853 static void free_processqueue_entry(struct processqueue_entry *pentry)
854 {
855 	kfree(pentry->buf);
856 	kfree(pentry);
857 }
858 
process_dlm_messages(struct work_struct * work)859 static void process_dlm_messages(struct work_struct *work)
860 {
861 	struct processqueue_entry *pentry;
862 
863 	spin_lock_bh(&processqueue_lock);
864 	pentry = list_first_entry_or_null(&processqueue,
865 					  struct processqueue_entry, list);
866 	if (WARN_ON_ONCE(!pentry)) {
867 		process_dlm_messages_pending = false;
868 		spin_unlock_bh(&processqueue_lock);
869 		return;
870 	}
871 
872 	list_del(&pentry->list);
873 	if (atomic_dec_and_test(&processqueue_count))
874 		wake_up(&processqueue_wq);
875 	spin_unlock_bh(&processqueue_lock);
876 
877 	for (;;) {
878 		dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
879 					    pentry->buflen);
880 		free_processqueue_entry(pentry);
881 
882 		spin_lock_bh(&processqueue_lock);
883 		pentry = list_first_entry_or_null(&processqueue,
884 						  struct processqueue_entry, list);
885 		if (!pentry) {
886 			process_dlm_messages_pending = false;
887 			spin_unlock_bh(&processqueue_lock);
888 			break;
889 		}
890 
891 		list_del(&pentry->list);
892 		if (atomic_dec_and_test(&processqueue_count))
893 			wake_up(&processqueue_wq);
894 		spin_unlock_bh(&processqueue_lock);
895 	}
896 }
897 
898 /* Data received from remote end */
receive_from_sock(struct connection * con,int buflen)899 static int receive_from_sock(struct connection *con, int buflen)
900 {
901 	struct processqueue_entry *pentry;
902 	int ret, buflen_real;
903 	struct msghdr msg;
904 	struct kvec iov;
905 
906 	pentry = new_processqueue_entry(con->nodeid, buflen);
907 	if (!pentry)
908 		return DLM_IO_RESCHED;
909 
910 	memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
911 
912 	/* calculate new buffer parameter regarding last receive and
913 	 * possible leftover bytes
914 	 */
915 	iov.iov_base = pentry->buf + con->rx_leftover;
916 	iov.iov_len = buflen - con->rx_leftover;
917 
918 	memset(&msg, 0, sizeof(msg));
919 	msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
920 	clear_bit(CF_RECV_INTR, &con->flags);
921 again:
922 	ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
923 			     msg.msg_flags);
924 	trace_dlm_recv(con->nodeid, ret);
925 	if (ret == -EAGAIN) {
926 		lock_sock(con->sock->sk);
927 		if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
928 			release_sock(con->sock->sk);
929 			goto again;
930 		}
931 
932 		clear_bit(CF_RECV_PENDING, &con->flags);
933 		release_sock(con->sock->sk);
934 		free_processqueue_entry(pentry);
935 		return DLM_IO_END;
936 	} else if (ret == 0) {
937 		/* close will clear CF_RECV_PENDING */
938 		free_processqueue_entry(pentry);
939 		return DLM_IO_EOF;
940 	} else if (ret < 0) {
941 		free_processqueue_entry(pentry);
942 		return ret;
943 	}
944 
945 	/* new buflen according readed bytes and leftover from last receive */
946 	buflen_real = ret + con->rx_leftover;
947 	ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
948 					   buflen_real);
949 	if (ret < 0) {
950 		free_processqueue_entry(pentry);
951 		return ret;
952 	}
953 
954 	pentry->buflen = ret;
955 
956 	/* calculate leftover bytes from process and put it into begin of
957 	 * the receive buffer, so next receive we have the full message
958 	 * at the start address of the receive buffer.
959 	 */
960 	con->rx_leftover = buflen_real - ret;
961 	memmove(con->rx_leftover_buf, pentry->buf + ret,
962 		con->rx_leftover);
963 
964 	spin_lock_bh(&processqueue_lock);
965 	ret = atomic_inc_return(&processqueue_count);
966 	list_add_tail(&pentry->list, &processqueue);
967 	if (!process_dlm_messages_pending) {
968 		process_dlm_messages_pending = true;
969 		queue_work(process_workqueue, &process_work);
970 	}
971 	spin_unlock_bh(&processqueue_lock);
972 
973 	if (ret > DLM_MAX_PROCESS_BUFFERS)
974 		return DLM_IO_FLUSH;
975 
976 	return DLM_IO_SUCCESS;
977 }
978 
979 /* Listening socket is busy, accept a connection */
accept_from_sock(void)980 static int accept_from_sock(void)
981 {
982 	struct sockaddr_storage peeraddr;
983 	int len, idx, result, nodeid;
984 	struct connection *newcon;
985 	struct socket *newsock;
986 	unsigned int mark;
987 
988 	result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
989 	if (result == -EAGAIN)
990 		return DLM_IO_END;
991 	else if (result < 0)
992 		goto accept_err;
993 
994 	/* Get the connected socket's peer */
995 	memset(&peeraddr, 0, sizeof(peeraddr));
996 	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
997 	if (len < 0) {
998 		result = -ECONNABORTED;
999 		goto accept_err;
1000 	}
1001 
1002 	/* Get the new node's NODEID */
1003 	make_sockaddr(&peeraddr, 0, &len);
1004 	if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1005 		switch (peeraddr.ss_family) {
1006 		case AF_INET: {
1007 			struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1008 
1009 			log_print("connect from non cluster IPv4 node %pI4",
1010 				  &sin->sin_addr);
1011 			break;
1012 		}
1013 #if IS_ENABLED(CONFIG_IPV6)
1014 		case AF_INET6: {
1015 			struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1016 
1017 			log_print("connect from non cluster IPv6 node %pI6c",
1018 				  &sin6->sin6_addr);
1019 			break;
1020 		}
1021 #endif
1022 		default:
1023 			log_print("invalid family from non cluster node");
1024 			break;
1025 		}
1026 
1027 		sock_release(newsock);
1028 		return -1;
1029 	}
1030 
1031 	log_print("got connection from %d", nodeid);
1032 
1033 	/*  Check to see if we already have a connection to this node. This
1034 	 *  could happen if the two nodes initiate a connection at roughly
1035 	 *  the same time and the connections cross on the wire.
1036 	 *  In this case we store the incoming one in "othercon"
1037 	 */
1038 	idx = srcu_read_lock(&connections_srcu);
1039 	newcon = nodeid2con(nodeid, 0);
1040 	if (WARN_ON_ONCE(!newcon)) {
1041 		srcu_read_unlock(&connections_srcu, idx);
1042 		result = -ENOENT;
1043 		goto accept_err;
1044 	}
1045 
1046 	sock_set_mark(newsock->sk, mark);
1047 
1048 	down_write(&newcon->sock_lock);
1049 	if (newcon->sock) {
1050 		struct connection *othercon = newcon->othercon;
1051 
1052 		if (!othercon) {
1053 			othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1054 			if (!othercon) {
1055 				log_print("failed to allocate incoming socket");
1056 				up_write(&newcon->sock_lock);
1057 				srcu_read_unlock(&connections_srcu, idx);
1058 				result = -ENOMEM;
1059 				goto accept_err;
1060 			}
1061 
1062 			dlm_con_init(othercon, nodeid);
1063 			lockdep_set_subclass(&othercon->sock_lock, 1);
1064 			newcon->othercon = othercon;
1065 			set_bit(CF_IS_OTHERCON, &othercon->flags);
1066 		} else {
1067 			/* close other sock con if we have something new */
1068 			close_connection(othercon, false);
1069 		}
1070 
1071 		down_write(&othercon->sock_lock);
1072 		add_sock(newsock, othercon);
1073 
1074 		/* check if we receved something while adding */
1075 		lock_sock(othercon->sock->sk);
1076 		lowcomms_queue_rwork(othercon);
1077 		release_sock(othercon->sock->sk);
1078 		up_write(&othercon->sock_lock);
1079 	}
1080 	else {
1081 		/* accept copies the sk after we've saved the callbacks, so we
1082 		   don't want to save them a second time or comm errors will
1083 		   result in calling sk_error_report recursively. */
1084 		add_sock(newsock, newcon);
1085 
1086 		/* check if we receved something while adding */
1087 		lock_sock(newcon->sock->sk);
1088 		lowcomms_queue_rwork(newcon);
1089 		release_sock(newcon->sock->sk);
1090 	}
1091 	up_write(&newcon->sock_lock);
1092 	srcu_read_unlock(&connections_srcu, idx);
1093 
1094 	return DLM_IO_SUCCESS;
1095 
1096 accept_err:
1097 	if (newsock)
1098 		sock_release(newsock);
1099 
1100 	return result;
1101 }
1102 
1103 /*
1104  * writequeue_entry_complete - try to delete and free write queue entry
1105  * @e: write queue entry to try to delete
1106  * @completed: bytes completed
1107  *
1108  * writequeue_lock must be held.
1109  */
writequeue_entry_complete(struct writequeue_entry * e,int completed)1110 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1111 {
1112 	e->offset += completed;
1113 	e->len -= completed;
1114 	/* signal that page was half way transmitted */
1115 	e->dirty = true;
1116 
1117 	if (e->len == 0 && e->users == 0)
1118 		free_entry(e);
1119 }
1120 
1121 /*
1122  * sctp_bind_addrs - bind a SCTP socket to all our addresses
1123  */
sctp_bind_addrs(struct socket * sock,uint16_t port)1124 static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1125 {
1126 	struct sockaddr_storage localaddr;
1127 	struct sockaddr *addr = (struct sockaddr *)&localaddr;
1128 	int i, addr_len, result = 0;
1129 
1130 	for (i = 0; i < dlm_local_count; i++) {
1131 		memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1132 		make_sockaddr(&localaddr, port, &addr_len);
1133 
1134 		if (!i)
1135 			result = kernel_bind(sock, addr, addr_len);
1136 		else
1137 			result = sock_bind_add(sock->sk, addr, addr_len);
1138 
1139 		if (result < 0) {
1140 			log_print("Can't bind to %d addr number %d, %d.\n",
1141 				  port, i + 1, result);
1142 			break;
1143 		}
1144 	}
1145 	return result;
1146 }
1147 
1148 /* Get local addresses */
init_local(void)1149 static void init_local(void)
1150 {
1151 	struct sockaddr_storage sas;
1152 	int i;
1153 
1154 	dlm_local_count = 0;
1155 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1156 		if (dlm_our_addr(&sas, i))
1157 			break;
1158 
1159 		memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1160 	}
1161 }
1162 
new_writequeue_entry(struct connection * con)1163 static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1164 {
1165 	struct writequeue_entry *entry;
1166 
1167 	entry = dlm_allocate_writequeue();
1168 	if (!entry)
1169 		return NULL;
1170 
1171 	entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1172 	if (!entry->page) {
1173 		dlm_free_writequeue(entry);
1174 		return NULL;
1175 	}
1176 
1177 	entry->offset = 0;
1178 	entry->len = 0;
1179 	entry->end = 0;
1180 	entry->dirty = false;
1181 	entry->con = con;
1182 	entry->users = 1;
1183 	kref_init(&entry->ref);
1184 	return entry;
1185 }
1186 
new_wq_entry(struct connection * con,int len,char ** ppc,void (* cb)(void * data),void * data)1187 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1188 					     char **ppc, void (*cb)(void *data),
1189 					     void *data)
1190 {
1191 	struct writequeue_entry *e;
1192 
1193 	spin_lock_bh(&con->writequeue_lock);
1194 	if (!list_empty(&con->writequeue)) {
1195 		e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1196 		if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1197 			kref_get(&e->ref);
1198 
1199 			*ppc = page_address(e->page) + e->end;
1200 			if (cb)
1201 				cb(data);
1202 
1203 			e->end += len;
1204 			e->users++;
1205 			goto out;
1206 		}
1207 	}
1208 
1209 	e = new_writequeue_entry(con);
1210 	if (!e)
1211 		goto out;
1212 
1213 	kref_get(&e->ref);
1214 	*ppc = page_address(e->page);
1215 	e->end += len;
1216 	if (cb)
1217 		cb(data);
1218 
1219 	list_add_tail(&e->list, &con->writequeue);
1220 
1221 out:
1222 	spin_unlock_bh(&con->writequeue_lock);
1223 	return e;
1224 };
1225 
dlm_lowcomms_new_msg_con(struct connection * con,int len,char ** ppc,void (* cb)(void * data),void * data)1226 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1227 						char **ppc, void (*cb)(void *data),
1228 						void *data)
1229 {
1230 	struct writequeue_entry *e;
1231 	struct dlm_msg *msg;
1232 
1233 	msg = dlm_allocate_msg();
1234 	if (!msg)
1235 		return NULL;
1236 
1237 	kref_init(&msg->ref);
1238 
1239 	e = new_wq_entry(con, len, ppc, cb, data);
1240 	if (!e) {
1241 		dlm_free_msg(msg);
1242 		return NULL;
1243 	}
1244 
1245 	msg->retransmit = false;
1246 	msg->orig_msg = NULL;
1247 	msg->ppc = *ppc;
1248 	msg->len = len;
1249 	msg->entry = e;
1250 
1251 	return msg;
1252 }
1253 
1254 /* avoid false positive for nodes_srcu, unlock happens in
1255  * dlm_lowcomms_commit_msg which is a must call if success
1256  */
1257 #ifndef __CHECKER__
dlm_lowcomms_new_msg(int nodeid,int len,char ** ppc,void (* cb)(void * data),void * data)1258 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, char **ppc,
1259 				     void (*cb)(void *data), void *data)
1260 {
1261 	struct connection *con;
1262 	struct dlm_msg *msg;
1263 	int idx;
1264 
1265 	if (len > DLM_MAX_SOCKET_BUFSIZE ||
1266 	    len < sizeof(struct dlm_header)) {
1267 		BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1268 		log_print("failed to allocate a buffer of size %d", len);
1269 		WARN_ON_ONCE(1);
1270 		return NULL;
1271 	}
1272 
1273 	idx = srcu_read_lock(&connections_srcu);
1274 	con = nodeid2con(nodeid, 0);
1275 	if (WARN_ON_ONCE(!con)) {
1276 		srcu_read_unlock(&connections_srcu, idx);
1277 		return NULL;
1278 	}
1279 
1280 	msg = dlm_lowcomms_new_msg_con(con, len, ppc, cb, data);
1281 	if (!msg) {
1282 		srcu_read_unlock(&connections_srcu, idx);
1283 		return NULL;
1284 	}
1285 
1286 	/* for dlm_lowcomms_commit_msg() */
1287 	kref_get(&msg->ref);
1288 	/* we assume if successful commit must called */
1289 	msg->idx = idx;
1290 	return msg;
1291 }
1292 #endif
1293 
_dlm_lowcomms_commit_msg(struct dlm_msg * msg)1294 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1295 {
1296 	struct writequeue_entry *e = msg->entry;
1297 	struct connection *con = e->con;
1298 	int users;
1299 
1300 	spin_lock_bh(&con->writequeue_lock);
1301 	kref_get(&msg->ref);
1302 	list_add(&msg->list, &e->msgs);
1303 
1304 	users = --e->users;
1305 	if (users)
1306 		goto out;
1307 
1308 	e->len = DLM_WQ_LENGTH_BYTES(e);
1309 
1310 	lowcomms_queue_swork(con);
1311 
1312 out:
1313 	spin_unlock_bh(&con->writequeue_lock);
1314 	return;
1315 }
1316 
1317 /* avoid false positive for nodes_srcu, lock was happen in
1318  * dlm_lowcomms_new_msg
1319  */
1320 #ifndef __CHECKER__
dlm_lowcomms_commit_msg(struct dlm_msg * msg)1321 void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1322 {
1323 	_dlm_lowcomms_commit_msg(msg);
1324 	srcu_read_unlock(&connections_srcu, msg->idx);
1325 	/* because dlm_lowcomms_new_msg() */
1326 	kref_put(&msg->ref, dlm_msg_release);
1327 }
1328 #endif
1329 
dlm_lowcomms_put_msg(struct dlm_msg * msg)1330 void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1331 {
1332 	kref_put(&msg->ref, dlm_msg_release);
1333 }
1334 
1335 /* does not held connections_srcu, usage lowcomms_error_report only */
dlm_lowcomms_resend_msg(struct dlm_msg * msg)1336 int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1337 {
1338 	struct dlm_msg *msg_resend;
1339 	char *ppc;
1340 
1341 	if (msg->retransmit)
1342 		return 1;
1343 
1344 	msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len, &ppc,
1345 					      NULL, NULL);
1346 	if (!msg_resend)
1347 		return -ENOMEM;
1348 
1349 	msg->retransmit = true;
1350 	kref_get(&msg->ref);
1351 	msg_resend->orig_msg = msg;
1352 
1353 	memcpy(ppc, msg->ppc, msg->len);
1354 	_dlm_lowcomms_commit_msg(msg_resend);
1355 	dlm_lowcomms_put_msg(msg_resend);
1356 
1357 	return 0;
1358 }
1359 
1360 /* Send a message */
send_to_sock(struct connection * con)1361 static int send_to_sock(struct connection *con)
1362 {
1363 	struct writequeue_entry *e;
1364 	struct bio_vec bvec;
1365 	struct msghdr msg = {
1366 		.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL,
1367 	};
1368 	int len, offset, ret;
1369 
1370 	spin_lock_bh(&con->writequeue_lock);
1371 	e = con_next_wq(con);
1372 	if (!e) {
1373 		clear_bit(CF_SEND_PENDING, &con->flags);
1374 		spin_unlock_bh(&con->writequeue_lock);
1375 		return DLM_IO_END;
1376 	}
1377 
1378 	len = e->len;
1379 	offset = e->offset;
1380 	WARN_ON_ONCE(len == 0 && e->users == 0);
1381 	spin_unlock_bh(&con->writequeue_lock);
1382 
1383 	bvec_set_page(&bvec, e->page, len, offset);
1384 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1385 	ret = sock_sendmsg(con->sock, &msg);
1386 	trace_dlm_send(con->nodeid, ret);
1387 	if (ret == -EAGAIN || ret == 0) {
1388 		lock_sock(con->sock->sk);
1389 		spin_lock_bh(&con->writequeue_lock);
1390 		if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1391 		    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1392 			/* Notify TCP that we're limited by the
1393 			 * application window size.
1394 			 */
1395 			set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1396 			con->sock->sk->sk_write_pending++;
1397 
1398 			clear_bit(CF_SEND_PENDING, &con->flags);
1399 			spin_unlock_bh(&con->writequeue_lock);
1400 			release_sock(con->sock->sk);
1401 
1402 			/* wait for write_space() event */
1403 			return DLM_IO_END;
1404 		}
1405 		spin_unlock_bh(&con->writequeue_lock);
1406 		release_sock(con->sock->sk);
1407 
1408 		return DLM_IO_RESCHED;
1409 	} else if (ret < 0) {
1410 		return ret;
1411 	}
1412 
1413 	spin_lock_bh(&con->writequeue_lock);
1414 	writequeue_entry_complete(e, ret);
1415 	spin_unlock_bh(&con->writequeue_lock);
1416 
1417 	return DLM_IO_SUCCESS;
1418 }
1419 
clean_one_writequeue(struct connection * con)1420 static void clean_one_writequeue(struct connection *con)
1421 {
1422 	struct writequeue_entry *e, *safe;
1423 
1424 	spin_lock_bh(&con->writequeue_lock);
1425 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1426 		free_entry(e);
1427 	}
1428 	spin_unlock_bh(&con->writequeue_lock);
1429 }
1430 
connection_release(struct rcu_head * rcu)1431 static void connection_release(struct rcu_head *rcu)
1432 {
1433 	struct connection *con = container_of(rcu, struct connection, rcu);
1434 
1435 	WARN_ON_ONCE(!list_empty(&con->writequeue));
1436 	WARN_ON_ONCE(con->sock);
1437 	kfree(con);
1438 }
1439 
1440 /* Called from recovery when it knows that a node has
1441    left the cluster */
dlm_lowcomms_close(int nodeid)1442 int dlm_lowcomms_close(int nodeid)
1443 {
1444 	struct connection *con;
1445 	int idx;
1446 
1447 	log_print("closing connection to node %d", nodeid);
1448 
1449 	idx = srcu_read_lock(&connections_srcu);
1450 	con = nodeid2con(nodeid, 0);
1451 	if (WARN_ON_ONCE(!con)) {
1452 		srcu_read_unlock(&connections_srcu, idx);
1453 		return -ENOENT;
1454 	}
1455 
1456 	stop_connection_io(con);
1457 	log_print("io handling for node: %d stopped", nodeid);
1458 	close_connection(con, true);
1459 
1460 	spin_lock(&connections_lock);
1461 	hlist_del_rcu(&con->list);
1462 	spin_unlock(&connections_lock);
1463 
1464 	clean_one_writequeue(con);
1465 	call_srcu(&connections_srcu, &con->rcu, connection_release);
1466 	if (con->othercon) {
1467 		clean_one_writequeue(con->othercon);
1468 		call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1469 	}
1470 	srcu_read_unlock(&connections_srcu, idx);
1471 
1472 	/* for debugging we print when we are done to compare with other
1473 	 * messages in between. This function need to be correctly synchronized
1474 	 * with io handling
1475 	 */
1476 	log_print("closing connection to node %d done", nodeid);
1477 
1478 	return 0;
1479 }
1480 
1481 /* Receive worker function */
process_recv_sockets(struct work_struct * work)1482 static void process_recv_sockets(struct work_struct *work)
1483 {
1484 	struct connection *con = container_of(work, struct connection, rwork);
1485 	int ret, buflen;
1486 
1487 	down_read(&con->sock_lock);
1488 	if (!con->sock) {
1489 		up_read(&con->sock_lock);
1490 		return;
1491 	}
1492 
1493 	buflen = READ_ONCE(dlm_config.ci_buffer_size);
1494 	do {
1495 		ret = receive_from_sock(con, buflen);
1496 	} while (ret == DLM_IO_SUCCESS);
1497 	up_read(&con->sock_lock);
1498 
1499 	switch (ret) {
1500 	case DLM_IO_END:
1501 		/* CF_RECV_PENDING cleared */
1502 		break;
1503 	case DLM_IO_EOF:
1504 		close_connection(con, false);
1505 		wake_up(&con->shutdown_wait);
1506 		/* CF_RECV_PENDING cleared */
1507 		break;
1508 	case DLM_IO_FLUSH:
1509 		/* we can't flush the process_workqueue here because a
1510 		 * WQ_MEM_RECLAIM workequeue can occurr a deadlock for a non
1511 		 * WQ_MEM_RECLAIM workqueue such as process_workqueue. Instead
1512 		 * we have a waitqueue to wait until all messages are
1513 		 * processed.
1514 		 *
1515 		 * This handling is only necessary to backoff the sender and
1516 		 * not queue all messages from the socket layer into DLM
1517 		 * processqueue. When DLM is capable to parse multiple messages
1518 		 * on an e.g. per socket basis this handling can might be
1519 		 * removed. Especially in a message burst we are too slow to
1520 		 * process messages and the queue will fill up memory.
1521 		 */
1522 		wait_event(processqueue_wq, !atomic_read(&processqueue_count));
1523 		fallthrough;
1524 	case DLM_IO_RESCHED:
1525 		cond_resched();
1526 		queue_work(io_workqueue, &con->rwork);
1527 		/* CF_RECV_PENDING not cleared */
1528 		break;
1529 	default:
1530 		if (ret < 0) {
1531 			if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1532 				close_connection(con, false);
1533 			} else {
1534 				spin_lock_bh(&con->writequeue_lock);
1535 				lowcomms_queue_swork(con);
1536 				spin_unlock_bh(&con->writequeue_lock);
1537 			}
1538 
1539 			/* CF_RECV_PENDING cleared for othercon
1540 			 * we trigger send queue if not already done
1541 			 * and process_send_sockets will handle it
1542 			 */
1543 			break;
1544 		}
1545 
1546 		WARN_ON_ONCE(1);
1547 		break;
1548 	}
1549 }
1550 
process_listen_recv_socket(struct work_struct * work)1551 static void process_listen_recv_socket(struct work_struct *work)
1552 {
1553 	int ret;
1554 
1555 	if (WARN_ON_ONCE(!listen_con.sock))
1556 		return;
1557 
1558 	do {
1559 		ret = accept_from_sock();
1560 	} while (ret == DLM_IO_SUCCESS);
1561 
1562 	if (ret < 0)
1563 		log_print("critical error accepting connection: %d", ret);
1564 }
1565 
dlm_connect(struct connection * con)1566 static int dlm_connect(struct connection *con)
1567 {
1568 	struct sockaddr_storage addr;
1569 	int result, addr_len;
1570 	struct socket *sock;
1571 	unsigned int mark;
1572 
1573 	memset(&addr, 0, sizeof(addr));
1574 	result = nodeid_to_addr(con->nodeid, &addr, NULL,
1575 				dlm_proto_ops->try_new_addr, &mark);
1576 	if (result < 0) {
1577 		log_print("no address for nodeid %d", con->nodeid);
1578 		return result;
1579 	}
1580 
1581 	/* Create a socket to communicate with */
1582 	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1583 				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1584 	if (result < 0)
1585 		return result;
1586 
1587 	sock_set_mark(sock->sk, mark);
1588 	dlm_proto_ops->sockopts(sock);
1589 
1590 	result = dlm_proto_ops->bind(sock);
1591 	if (result < 0) {
1592 		sock_release(sock);
1593 		return result;
1594 	}
1595 
1596 	add_sock(sock, con);
1597 
1598 	log_print_ratelimited("connecting to %d", con->nodeid);
1599 	make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1600 	result = kernel_connect(sock, (struct sockaddr *)&addr, addr_len, 0);
1601 	switch (result) {
1602 	case -EINPROGRESS:
1603 		/* not an error */
1604 		fallthrough;
1605 	case 0:
1606 		break;
1607 	default:
1608 		if (result < 0)
1609 			dlm_close_sock(&con->sock);
1610 
1611 		break;
1612 	}
1613 
1614 	return result;
1615 }
1616 
1617 /* Send worker function */
process_send_sockets(struct work_struct * work)1618 static void process_send_sockets(struct work_struct *work)
1619 {
1620 	struct connection *con = container_of(work, struct connection, swork);
1621 	int ret;
1622 
1623 	WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1624 
1625 	down_read(&con->sock_lock);
1626 	if (!con->sock) {
1627 		up_read(&con->sock_lock);
1628 		down_write(&con->sock_lock);
1629 		if (!con->sock) {
1630 			ret = dlm_connect(con);
1631 			switch (ret) {
1632 			case 0:
1633 				break;
1634 			default:
1635 				/* CF_SEND_PENDING not cleared */
1636 				up_write(&con->sock_lock);
1637 				log_print("connect to node %d try %d error %d",
1638 					  con->nodeid, con->retries++, ret);
1639 				msleep(1000);
1640 				/* For now we try forever to reconnect. In
1641 				 * future we should send a event to cluster
1642 				 * manager to fence itself after certain amount
1643 				 * of retries.
1644 				 */
1645 				queue_work(io_workqueue, &con->swork);
1646 				return;
1647 			}
1648 		}
1649 		downgrade_write(&con->sock_lock);
1650 	}
1651 
1652 	do {
1653 		ret = send_to_sock(con);
1654 	} while (ret == DLM_IO_SUCCESS);
1655 	up_read(&con->sock_lock);
1656 
1657 	switch (ret) {
1658 	case DLM_IO_END:
1659 		/* CF_SEND_PENDING cleared */
1660 		break;
1661 	case DLM_IO_RESCHED:
1662 		/* CF_SEND_PENDING not cleared */
1663 		cond_resched();
1664 		queue_work(io_workqueue, &con->swork);
1665 		break;
1666 	default:
1667 		if (ret < 0) {
1668 			close_connection(con, false);
1669 
1670 			/* CF_SEND_PENDING cleared */
1671 			spin_lock_bh(&con->writequeue_lock);
1672 			lowcomms_queue_swork(con);
1673 			spin_unlock_bh(&con->writequeue_lock);
1674 			break;
1675 		}
1676 
1677 		WARN_ON_ONCE(1);
1678 		break;
1679 	}
1680 }
1681 
work_stop(void)1682 static void work_stop(void)
1683 {
1684 	if (io_workqueue) {
1685 		destroy_workqueue(io_workqueue);
1686 		io_workqueue = NULL;
1687 	}
1688 
1689 	if (process_workqueue) {
1690 		destroy_workqueue(process_workqueue);
1691 		process_workqueue = NULL;
1692 	}
1693 }
1694 
work_start(void)1695 static int work_start(void)
1696 {
1697 	io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM |
1698 				       WQ_UNBOUND, 0);
1699 	if (!io_workqueue) {
1700 		log_print("can't start dlm_io");
1701 		return -ENOMEM;
1702 	}
1703 
1704 	process_workqueue = alloc_workqueue("dlm_process", WQ_HIGHPRI | WQ_BH, 0);
1705 	if (!process_workqueue) {
1706 		log_print("can't start dlm_process");
1707 		destroy_workqueue(io_workqueue);
1708 		io_workqueue = NULL;
1709 		return -ENOMEM;
1710 	}
1711 
1712 	return 0;
1713 }
1714 
dlm_lowcomms_shutdown(void)1715 void dlm_lowcomms_shutdown(void)
1716 {
1717 	struct connection *con;
1718 	int i, idx;
1719 
1720 	/* stop lowcomms_listen_data_ready calls */
1721 	lock_sock(listen_con.sock->sk);
1722 	listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1723 	release_sock(listen_con.sock->sk);
1724 
1725 	cancel_work_sync(&listen_con.rwork);
1726 	dlm_close_sock(&listen_con.sock);
1727 
1728 	idx = srcu_read_lock(&connections_srcu);
1729 	for (i = 0; i < CONN_HASH_SIZE; i++) {
1730 		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1731 			shutdown_connection(con, true);
1732 			stop_connection_io(con);
1733 			flush_workqueue(process_workqueue);
1734 			close_connection(con, true);
1735 
1736 			clean_one_writequeue(con);
1737 			if (con->othercon)
1738 				clean_one_writequeue(con->othercon);
1739 			allow_connection_io(con);
1740 		}
1741 	}
1742 	srcu_read_unlock(&connections_srcu, idx);
1743 }
1744 
dlm_lowcomms_stop(void)1745 void dlm_lowcomms_stop(void)
1746 {
1747 	work_stop();
1748 	dlm_proto_ops = NULL;
1749 }
1750 
dlm_listen_for_all(void)1751 static int dlm_listen_for_all(void)
1752 {
1753 	struct socket *sock;
1754 	int result;
1755 
1756 	log_print("Using %s for communications",
1757 		  dlm_proto_ops->name);
1758 
1759 	result = dlm_proto_ops->listen_validate();
1760 	if (result < 0)
1761 		return result;
1762 
1763 	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1764 				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1765 	if (result < 0) {
1766 		log_print("Can't create comms socket: %d", result);
1767 		return result;
1768 	}
1769 
1770 	sock_set_mark(sock->sk, dlm_config.ci_mark);
1771 	dlm_proto_ops->listen_sockopts(sock);
1772 
1773 	result = dlm_proto_ops->listen_bind(sock);
1774 	if (result < 0)
1775 		goto out;
1776 
1777 	lock_sock(sock->sk);
1778 	listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1779 	listen_sock.sk_write_space = sock->sk->sk_write_space;
1780 	listen_sock.sk_error_report = sock->sk->sk_error_report;
1781 	listen_sock.sk_state_change = sock->sk->sk_state_change;
1782 
1783 	listen_con.sock = sock;
1784 
1785 	sock->sk->sk_allocation = GFP_NOFS;
1786 	sock->sk->sk_use_task_frag = false;
1787 	sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1788 	release_sock(sock->sk);
1789 
1790 	result = sock->ops->listen(sock, 128);
1791 	if (result < 0) {
1792 		dlm_close_sock(&listen_con.sock);
1793 		return result;
1794 	}
1795 
1796 	return 0;
1797 
1798 out:
1799 	sock_release(sock);
1800 	return result;
1801 }
1802 
dlm_tcp_bind(struct socket * sock)1803 static int dlm_tcp_bind(struct socket *sock)
1804 {
1805 	struct sockaddr_storage src_addr;
1806 	int result, addr_len;
1807 
1808 	/* Bind to our cluster-known address connecting to avoid
1809 	 * routing problems.
1810 	 */
1811 	memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1812 	make_sockaddr(&src_addr, 0, &addr_len);
1813 
1814 	result = kernel_bind(sock, (struct sockaddr *)&src_addr,
1815 			     addr_len);
1816 	if (result < 0) {
1817 		/* This *may* not indicate a critical error */
1818 		log_print("could not bind for connect: %d", result);
1819 	}
1820 
1821 	return 0;
1822 }
1823 
dlm_tcp_listen_validate(void)1824 static int dlm_tcp_listen_validate(void)
1825 {
1826 	/* We don't support multi-homed hosts */
1827 	if (dlm_local_count > 1) {
1828 		log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1829 		return -EINVAL;
1830 	}
1831 
1832 	return 0;
1833 }
1834 
dlm_tcp_sockopts(struct socket * sock)1835 static void dlm_tcp_sockopts(struct socket *sock)
1836 {
1837 	/* Turn off Nagle's algorithm */
1838 	tcp_sock_set_nodelay(sock->sk);
1839 }
1840 
dlm_tcp_listen_sockopts(struct socket * sock)1841 static void dlm_tcp_listen_sockopts(struct socket *sock)
1842 {
1843 	dlm_tcp_sockopts(sock);
1844 	sock_set_reuseaddr(sock->sk);
1845 }
1846 
dlm_tcp_listen_bind(struct socket * sock)1847 static int dlm_tcp_listen_bind(struct socket *sock)
1848 {
1849 	int addr_len;
1850 
1851 	/* Bind to our port */
1852 	make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1853 	return kernel_bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1854 			   addr_len);
1855 }
1856 
1857 static const struct dlm_proto_ops dlm_tcp_ops = {
1858 	.name = "TCP",
1859 	.proto = IPPROTO_TCP,
1860 	.sockopts = dlm_tcp_sockopts,
1861 	.bind = dlm_tcp_bind,
1862 	.listen_validate = dlm_tcp_listen_validate,
1863 	.listen_sockopts = dlm_tcp_listen_sockopts,
1864 	.listen_bind = dlm_tcp_listen_bind,
1865 };
1866 
dlm_sctp_bind(struct socket * sock)1867 static int dlm_sctp_bind(struct socket *sock)
1868 {
1869 	return sctp_bind_addrs(sock, 0);
1870 }
1871 
dlm_sctp_listen_validate(void)1872 static int dlm_sctp_listen_validate(void)
1873 {
1874 	if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1875 		log_print("SCTP is not enabled by this kernel");
1876 		return -EOPNOTSUPP;
1877 	}
1878 
1879 	request_module("sctp");
1880 	return 0;
1881 }
1882 
dlm_sctp_bind_listen(struct socket * sock)1883 static int dlm_sctp_bind_listen(struct socket *sock)
1884 {
1885 	return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1886 }
1887 
dlm_sctp_sockopts(struct socket * sock)1888 static void dlm_sctp_sockopts(struct socket *sock)
1889 {
1890 	/* Turn off Nagle's algorithm */
1891 	sctp_sock_set_nodelay(sock->sk);
1892 	sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1893 }
1894 
1895 static const struct dlm_proto_ops dlm_sctp_ops = {
1896 	.name = "SCTP",
1897 	.proto = IPPROTO_SCTP,
1898 	.try_new_addr = true,
1899 	.sockopts = dlm_sctp_sockopts,
1900 	.bind = dlm_sctp_bind,
1901 	.listen_validate = dlm_sctp_listen_validate,
1902 	.listen_sockopts = dlm_sctp_sockopts,
1903 	.listen_bind = dlm_sctp_bind_listen,
1904 };
1905 
dlm_lowcomms_start(void)1906 int dlm_lowcomms_start(void)
1907 {
1908 	int error;
1909 
1910 	init_local();
1911 	if (!dlm_local_count) {
1912 		error = -ENOTCONN;
1913 		log_print("no local IP address has been set");
1914 		goto fail;
1915 	}
1916 
1917 	error = work_start();
1918 	if (error)
1919 		goto fail;
1920 
1921 	/* Start listening */
1922 	switch (dlm_config.ci_protocol) {
1923 	case DLM_PROTO_TCP:
1924 		dlm_proto_ops = &dlm_tcp_ops;
1925 		break;
1926 	case DLM_PROTO_SCTP:
1927 		dlm_proto_ops = &dlm_sctp_ops;
1928 		break;
1929 	default:
1930 		log_print("Invalid protocol identifier %d set",
1931 			  dlm_config.ci_protocol);
1932 		error = -EINVAL;
1933 		goto fail_proto_ops;
1934 	}
1935 
1936 	error = dlm_listen_for_all();
1937 	if (error)
1938 		goto fail_listen;
1939 
1940 	return 0;
1941 
1942 fail_listen:
1943 	dlm_proto_ops = NULL;
1944 fail_proto_ops:
1945 	work_stop();
1946 fail:
1947 	return error;
1948 }
1949 
dlm_lowcomms_init(void)1950 void dlm_lowcomms_init(void)
1951 {
1952 	int i;
1953 
1954 	for (i = 0; i < CONN_HASH_SIZE; i++)
1955 		INIT_HLIST_HEAD(&connection_hash[i]);
1956 
1957 	INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1958 }
1959 
dlm_lowcomms_exit(void)1960 void dlm_lowcomms_exit(void)
1961 {
1962 	struct connection *con;
1963 	int i, idx;
1964 
1965 	idx = srcu_read_lock(&connections_srcu);
1966 	for (i = 0; i < CONN_HASH_SIZE; i++) {
1967 		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1968 			spin_lock(&connections_lock);
1969 			hlist_del_rcu(&con->list);
1970 			spin_unlock(&connections_lock);
1971 
1972 			if (con->othercon)
1973 				call_srcu(&connections_srcu, &con->othercon->rcu,
1974 					  connection_release);
1975 			call_srcu(&connections_srcu, &con->rcu, connection_release);
1976 		}
1977 	}
1978 	srcu_read_unlock(&connections_srcu, idx);
1979 }
1980