1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 #include <asm/runtime-const.h>
39 
40 /*
41  * Usage:
42  * dcache->d_inode->i_lock protects:
43  *   - i_dentry, d_u.d_alias, d_inode of aliases
44  * dcache_hash_bucket lock protects:
45  *   - the dcache hash table
46  * s_roots bl list spinlock protects:
47  *   - the s_roots list (see __d_drop)
48  * dentry->d_sb->s_dentry_lru_lock protects:
49  *   - the dcache lru lists and counters
50  * d_lock protects:
51  *   - d_flags
52  *   - d_name
53  *   - d_lru
54  *   - d_count
55  *   - d_unhashed()
56  *   - d_parent and d_chilren
57  *   - childrens' d_sib and d_parent
58  *   - d_u.d_alias, d_inode
59  *
60  * Ordering:
61  * dentry->d_inode->i_lock
62  *   dentry->d_lock
63  *     dentry->d_sb->s_dentry_lru_lock
64  *     dcache_hash_bucket lock
65  *     s_roots lock
66  *
67  * If there is an ancestor relationship:
68  * dentry->d_parent->...->d_parent->d_lock
69  *   ...
70  *     dentry->d_parent->d_lock
71  *       dentry->d_lock
72  *
73  * If no ancestor relationship:
74  * arbitrary, since it's serialized on rename_lock
75  */
76 int sysctl_vfs_cache_pressure __read_mostly = 100;
77 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
78 
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
80 
81 EXPORT_SYMBOL(rename_lock);
82 
83 static struct kmem_cache *dentry_cache __ro_after_init;
84 
85 const struct qstr empty_name = QSTR_INIT("", 0);
86 EXPORT_SYMBOL(empty_name);
87 const struct qstr slash_name = QSTR_INIT("/", 1);
88 EXPORT_SYMBOL(slash_name);
89 const struct qstr dotdot_name = QSTR_INIT("..", 2);
90 EXPORT_SYMBOL(dotdot_name);
91 
92 /*
93  * This is the single most critical data structure when it comes
94  * to the dcache: the hashtable for lookups. Somebody should try
95  * to make this good - I've just made it work.
96  *
97  * This hash-function tries to avoid losing too many bits of hash
98  * information, yet avoid using a prime hash-size or similar.
99  *
100  * Marking the variables "used" ensures that the compiler doesn't
101  * optimize them away completely on architectures with runtime
102  * constant infrastructure, this allows debuggers to see their
103  * values. But updating these values has no effect on those arches.
104  */
105 
106 static unsigned int d_hash_shift __ro_after_init __used;
107 
108 static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
109 
d_hash(unsigned long hashlen)110 static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
111 {
112 	return runtime_const_ptr(dentry_hashtable) +
113 		runtime_const_shift_right_32(hashlen, d_hash_shift);
114 }
115 
116 #define IN_LOOKUP_SHIFT 10
117 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
118 
in_lookup_hash(const struct dentry * parent,unsigned int hash)119 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
120 					unsigned int hash)
121 {
122 	hash += (unsigned long) parent / L1_CACHE_BYTES;
123 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
124 }
125 
126 struct dentry_stat_t {
127 	long nr_dentry;
128 	long nr_unused;
129 	long age_limit;		/* age in seconds */
130 	long want_pages;	/* pages requested by system */
131 	long nr_negative;	/* # of unused negative dentries */
132 	long dummy;		/* Reserved for future use */
133 };
134 
135 static DEFINE_PER_CPU(long, nr_dentry);
136 static DEFINE_PER_CPU(long, nr_dentry_unused);
137 static DEFINE_PER_CPU(long, nr_dentry_negative);
138 
139 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
140 /* Statistics gathering. */
141 static struct dentry_stat_t dentry_stat = {
142 	.age_limit = 45,
143 };
144 
145 /*
146  * Here we resort to our own counters instead of using generic per-cpu counters
147  * for consistency with what the vfs inode code does. We are expected to harvest
148  * better code and performance by having our own specialized counters.
149  *
150  * Please note that the loop is done over all possible CPUs, not over all online
151  * CPUs. The reason for this is that we don't want to play games with CPUs going
152  * on and off. If one of them goes off, we will just keep their counters.
153  *
154  * glommer: See cffbc8a for details, and if you ever intend to change this,
155  * please update all vfs counters to match.
156  */
get_nr_dentry(void)157 static long get_nr_dentry(void)
158 {
159 	int i;
160 	long sum = 0;
161 	for_each_possible_cpu(i)
162 		sum += per_cpu(nr_dentry, i);
163 	return sum < 0 ? 0 : sum;
164 }
165 
get_nr_dentry_unused(void)166 static long get_nr_dentry_unused(void)
167 {
168 	int i;
169 	long sum = 0;
170 	for_each_possible_cpu(i)
171 		sum += per_cpu(nr_dentry_unused, i);
172 	return sum < 0 ? 0 : sum;
173 }
174 
get_nr_dentry_negative(void)175 static long get_nr_dentry_negative(void)
176 {
177 	int i;
178 	long sum = 0;
179 
180 	for_each_possible_cpu(i)
181 		sum += per_cpu(nr_dentry_negative, i);
182 	return sum < 0 ? 0 : sum;
183 }
184 
proc_nr_dentry(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)185 static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
186 			  size_t *lenp, loff_t *ppos)
187 {
188 	dentry_stat.nr_dentry = get_nr_dentry();
189 	dentry_stat.nr_unused = get_nr_dentry_unused();
190 	dentry_stat.nr_negative = get_nr_dentry_negative();
191 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
192 }
193 
194 static struct ctl_table fs_dcache_sysctls[] = {
195 	{
196 		.procname	= "dentry-state",
197 		.data		= &dentry_stat,
198 		.maxlen		= 6*sizeof(long),
199 		.mode		= 0444,
200 		.proc_handler	= proc_nr_dentry,
201 	},
202 };
203 
init_fs_dcache_sysctls(void)204 static int __init init_fs_dcache_sysctls(void)
205 {
206 	register_sysctl_init("fs", fs_dcache_sysctls);
207 	return 0;
208 }
209 fs_initcall(init_fs_dcache_sysctls);
210 #endif
211 
212 /*
213  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
214  * The strings are both count bytes long, and count is non-zero.
215  */
216 #ifdef CONFIG_DCACHE_WORD_ACCESS
217 
218 #include <asm/word-at-a-time.h>
219 /*
220  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
221  * aligned allocation for this particular component. We don't
222  * strictly need the load_unaligned_zeropad() safety, but it
223  * doesn't hurt either.
224  *
225  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
226  * need the careful unaligned handling.
227  */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)228 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
229 {
230 	unsigned long a,b,mask;
231 
232 	for (;;) {
233 		a = read_word_at_a_time(cs);
234 		b = load_unaligned_zeropad(ct);
235 		if (tcount < sizeof(unsigned long))
236 			break;
237 		if (unlikely(a != b))
238 			return 1;
239 		cs += sizeof(unsigned long);
240 		ct += sizeof(unsigned long);
241 		tcount -= sizeof(unsigned long);
242 		if (!tcount)
243 			return 0;
244 	}
245 	mask = bytemask_from_count(tcount);
246 	return unlikely(!!((a ^ b) & mask));
247 }
248 
249 #else
250 
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)251 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
252 {
253 	do {
254 		if (*cs != *ct)
255 			return 1;
256 		cs++;
257 		ct++;
258 		tcount--;
259 	} while (tcount);
260 	return 0;
261 }
262 
263 #endif
264 
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)265 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
266 {
267 	/*
268 	 * Be careful about RCU walk racing with rename:
269 	 * use 'READ_ONCE' to fetch the name pointer.
270 	 *
271 	 * NOTE! Even if a rename will mean that the length
272 	 * was not loaded atomically, we don't care. The
273 	 * RCU walk will check the sequence count eventually,
274 	 * and catch it. And we won't overrun the buffer,
275 	 * because we're reading the name pointer atomically,
276 	 * and a dentry name is guaranteed to be properly
277 	 * terminated with a NUL byte.
278 	 *
279 	 * End result: even if 'len' is wrong, we'll exit
280 	 * early because the data cannot match (there can
281 	 * be no NUL in the ct/tcount data)
282 	 */
283 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
284 
285 	return dentry_string_cmp(cs, ct, tcount);
286 }
287 
288 struct external_name {
289 	union {
290 		atomic_t count;
291 		struct rcu_head head;
292 	} u;
293 	unsigned char name[];
294 };
295 
external_name(struct dentry * dentry)296 static inline struct external_name *external_name(struct dentry *dentry)
297 {
298 	return container_of(dentry->d_name.name, struct external_name, name[0]);
299 }
300 
__d_free(struct rcu_head * head)301 static void __d_free(struct rcu_head *head)
302 {
303 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
304 
305 	kmem_cache_free(dentry_cache, dentry);
306 }
307 
__d_free_external(struct rcu_head * head)308 static void __d_free_external(struct rcu_head *head)
309 {
310 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
311 	kfree(external_name(dentry));
312 	kmem_cache_free(dentry_cache, dentry);
313 }
314 
dname_external(const struct dentry * dentry)315 static inline int dname_external(const struct dentry *dentry)
316 {
317 	return dentry->d_name.name != dentry->d_iname;
318 }
319 
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)320 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
321 {
322 	spin_lock(&dentry->d_lock);
323 	name->name = dentry->d_name;
324 	if (unlikely(dname_external(dentry))) {
325 		atomic_inc(&external_name(dentry)->u.count);
326 	} else {
327 		memcpy(name->inline_name, dentry->d_iname,
328 		       dentry->d_name.len + 1);
329 		name->name.name = name->inline_name;
330 	}
331 	spin_unlock(&dentry->d_lock);
332 }
333 EXPORT_SYMBOL(take_dentry_name_snapshot);
334 
release_dentry_name_snapshot(struct name_snapshot * name)335 void release_dentry_name_snapshot(struct name_snapshot *name)
336 {
337 	if (unlikely(name->name.name != name->inline_name)) {
338 		struct external_name *p;
339 		p = container_of(name->name.name, struct external_name, name[0]);
340 		if (unlikely(atomic_dec_and_test(&p->u.count)))
341 			kfree_rcu(p, u.head);
342 	}
343 }
344 EXPORT_SYMBOL(release_dentry_name_snapshot);
345 
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)346 static inline void __d_set_inode_and_type(struct dentry *dentry,
347 					  struct inode *inode,
348 					  unsigned type_flags)
349 {
350 	unsigned flags;
351 
352 	dentry->d_inode = inode;
353 	flags = READ_ONCE(dentry->d_flags);
354 	flags &= ~DCACHE_ENTRY_TYPE;
355 	flags |= type_flags;
356 	smp_store_release(&dentry->d_flags, flags);
357 }
358 
__d_clear_type_and_inode(struct dentry * dentry)359 static inline void __d_clear_type_and_inode(struct dentry *dentry)
360 {
361 	unsigned flags = READ_ONCE(dentry->d_flags);
362 
363 	flags &= ~DCACHE_ENTRY_TYPE;
364 	WRITE_ONCE(dentry->d_flags, flags);
365 	dentry->d_inode = NULL;
366 	/*
367 	 * The negative counter only tracks dentries on the LRU. Don't inc if
368 	 * d_lru is on another list.
369 	 */
370 	if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
371 		this_cpu_inc(nr_dentry_negative);
372 }
373 
dentry_free(struct dentry * dentry)374 static void dentry_free(struct dentry *dentry)
375 {
376 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
377 	if (unlikely(dname_external(dentry))) {
378 		struct external_name *p = external_name(dentry);
379 		if (likely(atomic_dec_and_test(&p->u.count))) {
380 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
381 			return;
382 		}
383 	}
384 	/* if dentry was never visible to RCU, immediate free is OK */
385 	if (dentry->d_flags & DCACHE_NORCU)
386 		__d_free(&dentry->d_u.d_rcu);
387 	else
388 		call_rcu(&dentry->d_u.d_rcu, __d_free);
389 }
390 
391 /*
392  * Release the dentry's inode, using the filesystem
393  * d_iput() operation if defined.
394  */
dentry_unlink_inode(struct dentry * dentry)395 static void dentry_unlink_inode(struct dentry * dentry)
396 	__releases(dentry->d_lock)
397 	__releases(dentry->d_inode->i_lock)
398 {
399 	struct inode *inode = dentry->d_inode;
400 
401 	raw_write_seqcount_begin(&dentry->d_seq);
402 	__d_clear_type_and_inode(dentry);
403 	hlist_del_init(&dentry->d_u.d_alias);
404 	raw_write_seqcount_end(&dentry->d_seq);
405 	spin_unlock(&dentry->d_lock);
406 	spin_unlock(&inode->i_lock);
407 	if (!inode->i_nlink)
408 		fsnotify_inoderemove(inode);
409 	if (dentry->d_op && dentry->d_op->d_iput)
410 		dentry->d_op->d_iput(dentry, inode);
411 	else
412 		iput(inode);
413 }
414 
415 /*
416  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
417  * is in use - which includes both the "real" per-superblock
418  * LRU list _and_ the DCACHE_SHRINK_LIST use.
419  *
420  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
421  * on the shrink list (ie not on the superblock LRU list).
422  *
423  * The per-cpu "nr_dentry_unused" counters are updated with
424  * the DCACHE_LRU_LIST bit.
425  *
426  * The per-cpu "nr_dentry_negative" counters are only updated
427  * when deleted from or added to the per-superblock LRU list, not
428  * from/to the shrink list. That is to avoid an unneeded dec/inc
429  * pair when moving from LRU to shrink list in select_collect().
430  *
431  * These helper functions make sure we always follow the
432  * rules. d_lock must be held by the caller.
433  */
434 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)435 static void d_lru_add(struct dentry *dentry)
436 {
437 	D_FLAG_VERIFY(dentry, 0);
438 	dentry->d_flags |= DCACHE_LRU_LIST;
439 	this_cpu_inc(nr_dentry_unused);
440 	if (d_is_negative(dentry))
441 		this_cpu_inc(nr_dentry_negative);
442 	WARN_ON_ONCE(!list_lru_add_obj(
443 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
444 }
445 
d_lru_del(struct dentry * dentry)446 static void d_lru_del(struct dentry *dentry)
447 {
448 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
449 	dentry->d_flags &= ~DCACHE_LRU_LIST;
450 	this_cpu_dec(nr_dentry_unused);
451 	if (d_is_negative(dentry))
452 		this_cpu_dec(nr_dentry_negative);
453 	WARN_ON_ONCE(!list_lru_del_obj(
454 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
455 }
456 
d_shrink_del(struct dentry * dentry)457 static void d_shrink_del(struct dentry *dentry)
458 {
459 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
460 	list_del_init(&dentry->d_lru);
461 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
462 	this_cpu_dec(nr_dentry_unused);
463 }
464 
d_shrink_add(struct dentry * dentry,struct list_head * list)465 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
466 {
467 	D_FLAG_VERIFY(dentry, 0);
468 	list_add(&dentry->d_lru, list);
469 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
470 	this_cpu_inc(nr_dentry_unused);
471 }
472 
473 /*
474  * These can only be called under the global LRU lock, ie during the
475  * callback for freeing the LRU list. "isolate" removes it from the
476  * LRU lists entirely, while shrink_move moves it to the indicated
477  * private list.
478  */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)479 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
480 {
481 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
482 	dentry->d_flags &= ~DCACHE_LRU_LIST;
483 	this_cpu_dec(nr_dentry_unused);
484 	if (d_is_negative(dentry))
485 		this_cpu_dec(nr_dentry_negative);
486 	list_lru_isolate(lru, &dentry->d_lru);
487 }
488 
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)489 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
490 			      struct list_head *list)
491 {
492 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
493 	dentry->d_flags |= DCACHE_SHRINK_LIST;
494 	if (d_is_negative(dentry))
495 		this_cpu_dec(nr_dentry_negative);
496 	list_lru_isolate_move(lru, &dentry->d_lru, list);
497 }
498 
___d_drop(struct dentry * dentry)499 static void ___d_drop(struct dentry *dentry)
500 {
501 	struct hlist_bl_head *b;
502 	/*
503 	 * Hashed dentries are normally on the dentry hashtable,
504 	 * with the exception of those newly allocated by
505 	 * d_obtain_root, which are always IS_ROOT:
506 	 */
507 	if (unlikely(IS_ROOT(dentry)))
508 		b = &dentry->d_sb->s_roots;
509 	else
510 		b = d_hash(dentry->d_name.hash);
511 
512 	hlist_bl_lock(b);
513 	__hlist_bl_del(&dentry->d_hash);
514 	hlist_bl_unlock(b);
515 }
516 
__d_drop(struct dentry * dentry)517 void __d_drop(struct dentry *dentry)
518 {
519 	if (!d_unhashed(dentry)) {
520 		___d_drop(dentry);
521 		dentry->d_hash.pprev = NULL;
522 		write_seqcount_invalidate(&dentry->d_seq);
523 	}
524 }
525 EXPORT_SYMBOL(__d_drop);
526 
527 /**
528  * d_drop - drop a dentry
529  * @dentry: dentry to drop
530  *
531  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
532  * be found through a VFS lookup any more. Note that this is different from
533  * deleting the dentry - d_delete will try to mark the dentry negative if
534  * possible, giving a successful _negative_ lookup, while d_drop will
535  * just make the cache lookup fail.
536  *
537  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
538  * reason (NFS timeouts or autofs deletes).
539  *
540  * __d_drop requires dentry->d_lock
541  *
542  * ___d_drop doesn't mark dentry as "unhashed"
543  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
544  */
d_drop(struct dentry * dentry)545 void d_drop(struct dentry *dentry)
546 {
547 	spin_lock(&dentry->d_lock);
548 	__d_drop(dentry);
549 	spin_unlock(&dentry->d_lock);
550 }
551 EXPORT_SYMBOL(d_drop);
552 
dentry_unlist(struct dentry * dentry)553 static inline void dentry_unlist(struct dentry *dentry)
554 {
555 	struct dentry *next;
556 	/*
557 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
558 	 * attached to the dentry tree
559 	 */
560 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
561 	if (unlikely(hlist_unhashed(&dentry->d_sib)))
562 		return;
563 	__hlist_del(&dentry->d_sib);
564 	/*
565 	 * Cursors can move around the list of children.  While we'd been
566 	 * a normal list member, it didn't matter - ->d_sib.next would've
567 	 * been updated.  However, from now on it won't be and for the
568 	 * things like d_walk() it might end up with a nasty surprise.
569 	 * Normally d_walk() doesn't care about cursors moving around -
570 	 * ->d_lock on parent prevents that and since a cursor has no children
571 	 * of its own, we get through it without ever unlocking the parent.
572 	 * There is one exception, though - if we ascend from a child that
573 	 * gets killed as soon as we unlock it, the next sibling is found
574 	 * using the value left in its ->d_sib.next.  And if _that_
575 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
576 	 * before d_walk() regains parent->d_lock, we'll end up skipping
577 	 * everything the cursor had been moved past.
578 	 *
579 	 * Solution: make sure that the pointer left behind in ->d_sib.next
580 	 * points to something that won't be moving around.  I.e. skip the
581 	 * cursors.
582 	 */
583 	while (dentry->d_sib.next) {
584 		next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
585 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
586 			break;
587 		dentry->d_sib.next = next->d_sib.next;
588 	}
589 }
590 
__dentry_kill(struct dentry * dentry)591 static struct dentry *__dentry_kill(struct dentry *dentry)
592 {
593 	struct dentry *parent = NULL;
594 	bool can_free = true;
595 
596 	/*
597 	 * The dentry is now unrecoverably dead to the world.
598 	 */
599 	lockref_mark_dead(&dentry->d_lockref);
600 
601 	/*
602 	 * inform the fs via d_prune that this dentry is about to be
603 	 * unhashed and destroyed.
604 	 */
605 	if (dentry->d_flags & DCACHE_OP_PRUNE)
606 		dentry->d_op->d_prune(dentry);
607 
608 	if (dentry->d_flags & DCACHE_LRU_LIST) {
609 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
610 			d_lru_del(dentry);
611 	}
612 	/* if it was on the hash then remove it */
613 	__d_drop(dentry);
614 	if (dentry->d_inode)
615 		dentry_unlink_inode(dentry);
616 	else
617 		spin_unlock(&dentry->d_lock);
618 	this_cpu_dec(nr_dentry);
619 	if (dentry->d_op && dentry->d_op->d_release)
620 		dentry->d_op->d_release(dentry);
621 
622 	cond_resched();
623 	/* now that it's negative, ->d_parent is stable */
624 	if (!IS_ROOT(dentry)) {
625 		parent = dentry->d_parent;
626 		spin_lock(&parent->d_lock);
627 	}
628 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
629 	dentry_unlist(dentry);
630 	if (dentry->d_flags & DCACHE_SHRINK_LIST)
631 		can_free = false;
632 	spin_unlock(&dentry->d_lock);
633 	if (likely(can_free))
634 		dentry_free(dentry);
635 	if (parent && --parent->d_lockref.count) {
636 		spin_unlock(&parent->d_lock);
637 		return NULL;
638 	}
639 	return parent;
640 }
641 
642 /*
643  * Lock a dentry for feeding it to __dentry_kill().
644  * Called under rcu_read_lock() and dentry->d_lock; the former
645  * guarantees that nothing we access will be freed under us.
646  * Note that dentry is *not* protected from concurrent dentry_kill(),
647  * d_delete(), etc.
648  *
649  * Return false if dentry is busy.  Otherwise, return true and have
650  * that dentry's inode locked.
651  */
652 
lock_for_kill(struct dentry * dentry)653 static bool lock_for_kill(struct dentry *dentry)
654 {
655 	struct inode *inode = dentry->d_inode;
656 
657 	if (unlikely(dentry->d_lockref.count))
658 		return false;
659 
660 	if (!inode || likely(spin_trylock(&inode->i_lock)))
661 		return true;
662 
663 	do {
664 		spin_unlock(&dentry->d_lock);
665 		spin_lock(&inode->i_lock);
666 		spin_lock(&dentry->d_lock);
667 		if (likely(inode == dentry->d_inode))
668 			break;
669 		spin_unlock(&inode->i_lock);
670 		inode = dentry->d_inode;
671 	} while (inode);
672 	if (likely(!dentry->d_lockref.count))
673 		return true;
674 	if (inode)
675 		spin_unlock(&inode->i_lock);
676 	return false;
677 }
678 
679 /*
680  * Decide if dentry is worth retaining.  Usually this is called with dentry
681  * locked; if not locked, we are more limited and might not be able to tell
682  * without a lock.  False in this case means "punt to locked path and recheck".
683  *
684  * In case we aren't locked, these predicates are not "stable". However, it is
685  * sufficient that at some point after we dropped the reference the dentry was
686  * hashed and the flags had the proper value. Other dentry users may have
687  * re-gotten a reference to the dentry and change that, but our work is done -
688  * we can leave the dentry around with a zero refcount.
689  */
retain_dentry(struct dentry * dentry,bool locked)690 static inline bool retain_dentry(struct dentry *dentry, bool locked)
691 {
692 	unsigned int d_flags;
693 
694 	smp_rmb();
695 	d_flags = READ_ONCE(dentry->d_flags);
696 
697 	// Unreachable? Nobody would be able to look it up, no point retaining
698 	if (unlikely(d_unhashed(dentry)))
699 		return false;
700 
701 	// Same if it's disconnected
702 	if (unlikely(d_flags & DCACHE_DISCONNECTED))
703 		return false;
704 
705 	// ->d_delete() might tell us not to bother, but that requires
706 	// ->d_lock; can't decide without it
707 	if (unlikely(d_flags & DCACHE_OP_DELETE)) {
708 		if (!locked || dentry->d_op->d_delete(dentry))
709 			return false;
710 	}
711 
712 	// Explicitly told not to bother
713 	if (unlikely(d_flags & DCACHE_DONTCACHE))
714 		return false;
715 
716 	// At this point it looks like we ought to keep it.  We also might
717 	// need to do something - put it on LRU if it wasn't there already
718 	// and mark it referenced if it was on LRU, but not marked yet.
719 	// Unfortunately, both actions require ->d_lock, so in lockless
720 	// case we'd have to punt rather than doing those.
721 	if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
722 		if (!locked)
723 			return false;
724 		d_lru_add(dentry);
725 	} else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
726 		if (!locked)
727 			return false;
728 		dentry->d_flags |= DCACHE_REFERENCED;
729 	}
730 	return true;
731 }
732 
d_mark_dontcache(struct inode * inode)733 void d_mark_dontcache(struct inode *inode)
734 {
735 	struct dentry *de;
736 
737 	spin_lock(&inode->i_lock);
738 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
739 		spin_lock(&de->d_lock);
740 		de->d_flags |= DCACHE_DONTCACHE;
741 		spin_unlock(&de->d_lock);
742 	}
743 	inode->i_state |= I_DONTCACHE;
744 	spin_unlock(&inode->i_lock);
745 }
746 EXPORT_SYMBOL(d_mark_dontcache);
747 
748 /*
749  * Try to do a lockless dput(), and return whether that was successful.
750  *
751  * If unsuccessful, we return false, having already taken the dentry lock.
752  * In that case refcount is guaranteed to be zero and we have already
753  * decided that it's not worth keeping around.
754  *
755  * The caller needs to hold the RCU read lock, so that the dentry is
756  * guaranteed to stay around even if the refcount goes down to zero!
757  */
fast_dput(struct dentry * dentry)758 static inline bool fast_dput(struct dentry *dentry)
759 {
760 	int ret;
761 
762 	/*
763 	 * try to decrement the lockref optimistically.
764 	 */
765 	ret = lockref_put_return(&dentry->d_lockref);
766 
767 	/*
768 	 * If the lockref_put_return() failed due to the lock being held
769 	 * by somebody else, the fast path has failed. We will need to
770 	 * get the lock, and then check the count again.
771 	 */
772 	if (unlikely(ret < 0)) {
773 		spin_lock(&dentry->d_lock);
774 		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
775 			spin_unlock(&dentry->d_lock);
776 			return true;
777 		}
778 		dentry->d_lockref.count--;
779 		goto locked;
780 	}
781 
782 	/*
783 	 * If we weren't the last ref, we're done.
784 	 */
785 	if (ret)
786 		return true;
787 
788 	/*
789 	 * Can we decide that decrement of refcount is all we needed without
790 	 * taking the lock?  There's a very common case when it's all we need -
791 	 * dentry looks like it ought to be retained and there's nothing else
792 	 * to do.
793 	 */
794 	if (retain_dentry(dentry, false))
795 		return true;
796 
797 	/*
798 	 * Either not worth retaining or we can't tell without the lock.
799 	 * Get the lock, then.  We've already decremented the refcount to 0,
800 	 * but we'll need to re-check the situation after getting the lock.
801 	 */
802 	spin_lock(&dentry->d_lock);
803 
804 	/*
805 	 * Did somebody else grab a reference to it in the meantime, and
806 	 * we're no longer the last user after all? Alternatively, somebody
807 	 * else could have killed it and marked it dead. Either way, we
808 	 * don't need to do anything else.
809 	 */
810 locked:
811 	if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
812 		spin_unlock(&dentry->d_lock);
813 		return true;
814 	}
815 	return false;
816 }
817 
818 
819 /*
820  * This is dput
821  *
822  * This is complicated by the fact that we do not want to put
823  * dentries that are no longer on any hash chain on the unused
824  * list: we'd much rather just get rid of them immediately.
825  *
826  * However, that implies that we have to traverse the dentry
827  * tree upwards to the parents which might _also_ now be
828  * scheduled for deletion (it may have been only waiting for
829  * its last child to go away).
830  *
831  * This tail recursion is done by hand as we don't want to depend
832  * on the compiler to always get this right (gcc generally doesn't).
833  * Real recursion would eat up our stack space.
834  */
835 
836 /*
837  * dput - release a dentry
838  * @dentry: dentry to release
839  *
840  * Release a dentry. This will drop the usage count and if appropriate
841  * call the dentry unlink method as well as removing it from the queues and
842  * releasing its resources. If the parent dentries were scheduled for release
843  * they too may now get deleted.
844  */
dput(struct dentry * dentry)845 void dput(struct dentry *dentry)
846 {
847 	if (!dentry)
848 		return;
849 	might_sleep();
850 	rcu_read_lock();
851 	if (likely(fast_dput(dentry))) {
852 		rcu_read_unlock();
853 		return;
854 	}
855 	while (lock_for_kill(dentry)) {
856 		rcu_read_unlock();
857 		dentry = __dentry_kill(dentry);
858 		if (!dentry)
859 			return;
860 		if (retain_dentry(dentry, true)) {
861 			spin_unlock(&dentry->d_lock);
862 			return;
863 		}
864 		rcu_read_lock();
865 	}
866 	rcu_read_unlock();
867 	spin_unlock(&dentry->d_lock);
868 }
869 EXPORT_SYMBOL(dput);
870 
to_shrink_list(struct dentry * dentry,struct list_head * list)871 static void to_shrink_list(struct dentry *dentry, struct list_head *list)
872 __must_hold(&dentry->d_lock)
873 {
874 	if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
875 		if (dentry->d_flags & DCACHE_LRU_LIST)
876 			d_lru_del(dentry);
877 		d_shrink_add(dentry, list);
878 	}
879 }
880 
dput_to_list(struct dentry * dentry,struct list_head * list)881 void dput_to_list(struct dentry *dentry, struct list_head *list)
882 {
883 	rcu_read_lock();
884 	if (likely(fast_dput(dentry))) {
885 		rcu_read_unlock();
886 		return;
887 	}
888 	rcu_read_unlock();
889 	to_shrink_list(dentry, list);
890 	spin_unlock(&dentry->d_lock);
891 }
892 
dget_parent(struct dentry * dentry)893 struct dentry *dget_parent(struct dentry *dentry)
894 {
895 	int gotref;
896 	struct dentry *ret;
897 	unsigned seq;
898 
899 	/*
900 	 * Do optimistic parent lookup without any
901 	 * locking.
902 	 */
903 	rcu_read_lock();
904 	seq = raw_seqcount_begin(&dentry->d_seq);
905 	ret = READ_ONCE(dentry->d_parent);
906 	gotref = lockref_get_not_zero(&ret->d_lockref);
907 	rcu_read_unlock();
908 	if (likely(gotref)) {
909 		if (!read_seqcount_retry(&dentry->d_seq, seq))
910 			return ret;
911 		dput(ret);
912 	}
913 
914 repeat:
915 	/*
916 	 * Don't need rcu_dereference because we re-check it was correct under
917 	 * the lock.
918 	 */
919 	rcu_read_lock();
920 	ret = dentry->d_parent;
921 	spin_lock(&ret->d_lock);
922 	if (unlikely(ret != dentry->d_parent)) {
923 		spin_unlock(&ret->d_lock);
924 		rcu_read_unlock();
925 		goto repeat;
926 	}
927 	rcu_read_unlock();
928 	BUG_ON(!ret->d_lockref.count);
929 	ret->d_lockref.count++;
930 	spin_unlock(&ret->d_lock);
931 	return ret;
932 }
933 EXPORT_SYMBOL(dget_parent);
934 
__d_find_any_alias(struct inode * inode)935 static struct dentry * __d_find_any_alias(struct inode *inode)
936 {
937 	struct dentry *alias;
938 
939 	if (hlist_empty(&inode->i_dentry))
940 		return NULL;
941 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
942 	lockref_get(&alias->d_lockref);
943 	return alias;
944 }
945 
946 /**
947  * d_find_any_alias - find any alias for a given inode
948  * @inode: inode to find an alias for
949  *
950  * If any aliases exist for the given inode, take and return a
951  * reference for one of them.  If no aliases exist, return %NULL.
952  */
d_find_any_alias(struct inode * inode)953 struct dentry *d_find_any_alias(struct inode *inode)
954 {
955 	struct dentry *de;
956 
957 	spin_lock(&inode->i_lock);
958 	de = __d_find_any_alias(inode);
959 	spin_unlock(&inode->i_lock);
960 	return de;
961 }
962 EXPORT_SYMBOL(d_find_any_alias);
963 
__d_find_alias(struct inode * inode)964 static struct dentry *__d_find_alias(struct inode *inode)
965 {
966 	struct dentry *alias;
967 
968 	if (S_ISDIR(inode->i_mode))
969 		return __d_find_any_alias(inode);
970 
971 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
972 		spin_lock(&alias->d_lock);
973  		if (!d_unhashed(alias)) {
974 			dget_dlock(alias);
975 			spin_unlock(&alias->d_lock);
976 			return alias;
977 		}
978 		spin_unlock(&alias->d_lock);
979 	}
980 	return NULL;
981 }
982 
983 /**
984  * d_find_alias - grab a hashed alias of inode
985  * @inode: inode in question
986  *
987  * If inode has a hashed alias, or is a directory and has any alias,
988  * acquire the reference to alias and return it. Otherwise return NULL.
989  * Notice that if inode is a directory there can be only one alias and
990  * it can be unhashed only if it has no children, or if it is the root
991  * of a filesystem, or if the directory was renamed and d_revalidate
992  * was the first vfs operation to notice.
993  *
994  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
995  * any other hashed alias over that one.
996  */
d_find_alias(struct inode * inode)997 struct dentry *d_find_alias(struct inode *inode)
998 {
999 	struct dentry *de = NULL;
1000 
1001 	if (!hlist_empty(&inode->i_dentry)) {
1002 		spin_lock(&inode->i_lock);
1003 		de = __d_find_alias(inode);
1004 		spin_unlock(&inode->i_lock);
1005 	}
1006 	return de;
1007 }
1008 EXPORT_SYMBOL(d_find_alias);
1009 
1010 /*
1011  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1012  *  that inode won't get freed until rcu_read_unlock().
1013  */
d_find_alias_rcu(struct inode * inode)1014 struct dentry *d_find_alias_rcu(struct inode *inode)
1015 {
1016 	struct hlist_head *l = &inode->i_dentry;
1017 	struct dentry *de = NULL;
1018 
1019 	spin_lock(&inode->i_lock);
1020 	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1021 	// used without having I_FREEING set, which means no aliases left
1022 	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1023 		if (S_ISDIR(inode->i_mode)) {
1024 			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1025 		} else {
1026 			hlist_for_each_entry(de, l, d_u.d_alias)
1027 				if (!d_unhashed(de))
1028 					break;
1029 		}
1030 	}
1031 	spin_unlock(&inode->i_lock);
1032 	return de;
1033 }
1034 
1035 /*
1036  *	Try to kill dentries associated with this inode.
1037  * WARNING: you must own a reference to inode.
1038  */
d_prune_aliases(struct inode * inode)1039 void d_prune_aliases(struct inode *inode)
1040 {
1041 	LIST_HEAD(dispose);
1042 	struct dentry *dentry;
1043 
1044 	spin_lock(&inode->i_lock);
1045 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1046 		spin_lock(&dentry->d_lock);
1047 		if (!dentry->d_lockref.count)
1048 			to_shrink_list(dentry, &dispose);
1049 		spin_unlock(&dentry->d_lock);
1050 	}
1051 	spin_unlock(&inode->i_lock);
1052 	shrink_dentry_list(&dispose);
1053 }
1054 EXPORT_SYMBOL(d_prune_aliases);
1055 
shrink_kill(struct dentry * victim)1056 static inline void shrink_kill(struct dentry *victim)
1057 {
1058 	do {
1059 		rcu_read_unlock();
1060 		victim = __dentry_kill(victim);
1061 		rcu_read_lock();
1062 	} while (victim && lock_for_kill(victim));
1063 	rcu_read_unlock();
1064 	if (victim)
1065 		spin_unlock(&victim->d_lock);
1066 }
1067 
shrink_dentry_list(struct list_head * list)1068 void shrink_dentry_list(struct list_head *list)
1069 {
1070 	while (!list_empty(list)) {
1071 		struct dentry *dentry;
1072 
1073 		dentry = list_entry(list->prev, struct dentry, d_lru);
1074 		spin_lock(&dentry->d_lock);
1075 		rcu_read_lock();
1076 		if (!lock_for_kill(dentry)) {
1077 			bool can_free;
1078 			rcu_read_unlock();
1079 			d_shrink_del(dentry);
1080 			can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1081 			spin_unlock(&dentry->d_lock);
1082 			if (can_free)
1083 				dentry_free(dentry);
1084 			continue;
1085 		}
1086 		d_shrink_del(dentry);
1087 		shrink_kill(dentry);
1088 	}
1089 }
1090 
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1091 static enum lru_status dentry_lru_isolate(struct list_head *item,
1092 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1093 {
1094 	struct list_head *freeable = arg;
1095 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1096 
1097 
1098 	/*
1099 	 * we are inverting the lru lock/dentry->d_lock here,
1100 	 * so use a trylock. If we fail to get the lock, just skip
1101 	 * it
1102 	 */
1103 	if (!spin_trylock(&dentry->d_lock))
1104 		return LRU_SKIP;
1105 
1106 	/*
1107 	 * Referenced dentries are still in use. If they have active
1108 	 * counts, just remove them from the LRU. Otherwise give them
1109 	 * another pass through the LRU.
1110 	 */
1111 	if (dentry->d_lockref.count) {
1112 		d_lru_isolate(lru, dentry);
1113 		spin_unlock(&dentry->d_lock);
1114 		return LRU_REMOVED;
1115 	}
1116 
1117 	if (dentry->d_flags & DCACHE_REFERENCED) {
1118 		dentry->d_flags &= ~DCACHE_REFERENCED;
1119 		spin_unlock(&dentry->d_lock);
1120 
1121 		/*
1122 		 * The list move itself will be made by the common LRU code. At
1123 		 * this point, we've dropped the dentry->d_lock but keep the
1124 		 * lru lock. This is safe to do, since every list movement is
1125 		 * protected by the lru lock even if both locks are held.
1126 		 *
1127 		 * This is guaranteed by the fact that all LRU management
1128 		 * functions are intermediated by the LRU API calls like
1129 		 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1130 		 * only ever occur through this functions or through callbacks
1131 		 * like this one, that are called from the LRU API.
1132 		 *
1133 		 * The only exceptions to this are functions like
1134 		 * shrink_dentry_list, and code that first checks for the
1135 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1136 		 * operating only with stack provided lists after they are
1137 		 * properly isolated from the main list.  It is thus, always a
1138 		 * local access.
1139 		 */
1140 		return LRU_ROTATE;
1141 	}
1142 
1143 	d_lru_shrink_move(lru, dentry, freeable);
1144 	spin_unlock(&dentry->d_lock);
1145 
1146 	return LRU_REMOVED;
1147 }
1148 
1149 /**
1150  * prune_dcache_sb - shrink the dcache
1151  * @sb: superblock
1152  * @sc: shrink control, passed to list_lru_shrink_walk()
1153  *
1154  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1155  * is done when we need more memory and called from the superblock shrinker
1156  * function.
1157  *
1158  * This function may fail to free any resources if all the dentries are in
1159  * use.
1160  */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1161 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1162 {
1163 	LIST_HEAD(dispose);
1164 	long freed;
1165 
1166 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1167 				     dentry_lru_isolate, &dispose);
1168 	shrink_dentry_list(&dispose);
1169 	return freed;
1170 }
1171 
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1172 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1173 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1174 {
1175 	struct list_head *freeable = arg;
1176 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1177 
1178 	/*
1179 	 * we are inverting the lru lock/dentry->d_lock here,
1180 	 * so use a trylock. If we fail to get the lock, just skip
1181 	 * it
1182 	 */
1183 	if (!spin_trylock(&dentry->d_lock))
1184 		return LRU_SKIP;
1185 
1186 	d_lru_shrink_move(lru, dentry, freeable);
1187 	spin_unlock(&dentry->d_lock);
1188 
1189 	return LRU_REMOVED;
1190 }
1191 
1192 
1193 /**
1194  * shrink_dcache_sb - shrink dcache for a superblock
1195  * @sb: superblock
1196  *
1197  * Shrink the dcache for the specified super block. This is used to free
1198  * the dcache before unmounting a file system.
1199  */
shrink_dcache_sb(struct super_block * sb)1200 void shrink_dcache_sb(struct super_block *sb)
1201 {
1202 	do {
1203 		LIST_HEAD(dispose);
1204 
1205 		list_lru_walk(&sb->s_dentry_lru,
1206 			dentry_lru_isolate_shrink, &dispose, 1024);
1207 		shrink_dentry_list(&dispose);
1208 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1209 }
1210 EXPORT_SYMBOL(shrink_dcache_sb);
1211 
1212 /**
1213  * enum d_walk_ret - action to talke during tree walk
1214  * @D_WALK_CONTINUE:	contrinue walk
1215  * @D_WALK_QUIT:	quit walk
1216  * @D_WALK_NORETRY:	quit when retry is needed
1217  * @D_WALK_SKIP:	skip this dentry and its children
1218  */
1219 enum d_walk_ret {
1220 	D_WALK_CONTINUE,
1221 	D_WALK_QUIT,
1222 	D_WALK_NORETRY,
1223 	D_WALK_SKIP,
1224 };
1225 
1226 /**
1227  * d_walk - walk the dentry tree
1228  * @parent:	start of walk
1229  * @data:	data passed to @enter() and @finish()
1230  * @enter:	callback when first entering the dentry
1231  *
1232  * The @enter() callbacks are called with d_lock held.
1233  */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *))1234 static void d_walk(struct dentry *parent, void *data,
1235 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1236 {
1237 	struct dentry *this_parent, *dentry;
1238 	unsigned seq = 0;
1239 	enum d_walk_ret ret;
1240 	bool retry = true;
1241 
1242 again:
1243 	read_seqbegin_or_lock(&rename_lock, &seq);
1244 	this_parent = parent;
1245 	spin_lock(&this_parent->d_lock);
1246 
1247 	ret = enter(data, this_parent);
1248 	switch (ret) {
1249 	case D_WALK_CONTINUE:
1250 		break;
1251 	case D_WALK_QUIT:
1252 	case D_WALK_SKIP:
1253 		goto out_unlock;
1254 	case D_WALK_NORETRY:
1255 		retry = false;
1256 		break;
1257 	}
1258 repeat:
1259 	dentry = d_first_child(this_parent);
1260 resume:
1261 	hlist_for_each_entry_from(dentry, d_sib) {
1262 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1263 			continue;
1264 
1265 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1266 
1267 		ret = enter(data, dentry);
1268 		switch (ret) {
1269 		case D_WALK_CONTINUE:
1270 			break;
1271 		case D_WALK_QUIT:
1272 			spin_unlock(&dentry->d_lock);
1273 			goto out_unlock;
1274 		case D_WALK_NORETRY:
1275 			retry = false;
1276 			break;
1277 		case D_WALK_SKIP:
1278 			spin_unlock(&dentry->d_lock);
1279 			continue;
1280 		}
1281 
1282 		if (!hlist_empty(&dentry->d_children)) {
1283 			spin_unlock(&this_parent->d_lock);
1284 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1285 			this_parent = dentry;
1286 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1287 			goto repeat;
1288 		}
1289 		spin_unlock(&dentry->d_lock);
1290 	}
1291 	/*
1292 	 * All done at this level ... ascend and resume the search.
1293 	 */
1294 	rcu_read_lock();
1295 ascend:
1296 	if (this_parent != parent) {
1297 		dentry = this_parent;
1298 		this_parent = dentry->d_parent;
1299 
1300 		spin_unlock(&dentry->d_lock);
1301 		spin_lock(&this_parent->d_lock);
1302 
1303 		/* might go back up the wrong parent if we have had a rename. */
1304 		if (need_seqretry(&rename_lock, seq))
1305 			goto rename_retry;
1306 		/* go into the first sibling still alive */
1307 		hlist_for_each_entry_continue(dentry, d_sib) {
1308 			if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1309 				rcu_read_unlock();
1310 				goto resume;
1311 			}
1312 		}
1313 		goto ascend;
1314 	}
1315 	if (need_seqretry(&rename_lock, seq))
1316 		goto rename_retry;
1317 	rcu_read_unlock();
1318 
1319 out_unlock:
1320 	spin_unlock(&this_parent->d_lock);
1321 	done_seqretry(&rename_lock, seq);
1322 	return;
1323 
1324 rename_retry:
1325 	spin_unlock(&this_parent->d_lock);
1326 	rcu_read_unlock();
1327 	BUG_ON(seq & 1);
1328 	if (!retry)
1329 		return;
1330 	seq = 1;
1331 	goto again;
1332 }
1333 
1334 struct check_mount {
1335 	struct vfsmount *mnt;
1336 	unsigned int mounted;
1337 };
1338 
path_check_mount(void * data,struct dentry * dentry)1339 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1340 {
1341 	struct check_mount *info = data;
1342 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1343 
1344 	if (likely(!d_mountpoint(dentry)))
1345 		return D_WALK_CONTINUE;
1346 	if (__path_is_mountpoint(&path)) {
1347 		info->mounted = 1;
1348 		return D_WALK_QUIT;
1349 	}
1350 	return D_WALK_CONTINUE;
1351 }
1352 
1353 /**
1354  * path_has_submounts - check for mounts over a dentry in the
1355  *                      current namespace.
1356  * @parent: path to check.
1357  *
1358  * Return true if the parent or its subdirectories contain
1359  * a mount point in the current namespace.
1360  */
path_has_submounts(const struct path * parent)1361 int path_has_submounts(const struct path *parent)
1362 {
1363 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1364 
1365 	read_seqlock_excl(&mount_lock);
1366 	d_walk(parent->dentry, &data, path_check_mount);
1367 	read_sequnlock_excl(&mount_lock);
1368 
1369 	return data.mounted;
1370 }
1371 EXPORT_SYMBOL(path_has_submounts);
1372 
1373 /*
1374  * Called by mount code to set a mountpoint and check if the mountpoint is
1375  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1376  * subtree can become unreachable).
1377  *
1378  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1379  * this reason take rename_lock and d_lock on dentry and ancestors.
1380  */
d_set_mounted(struct dentry * dentry)1381 int d_set_mounted(struct dentry *dentry)
1382 {
1383 	struct dentry *p;
1384 	int ret = -ENOENT;
1385 	write_seqlock(&rename_lock);
1386 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1387 		/* Need exclusion wrt. d_invalidate() */
1388 		spin_lock(&p->d_lock);
1389 		if (unlikely(d_unhashed(p))) {
1390 			spin_unlock(&p->d_lock);
1391 			goto out;
1392 		}
1393 		spin_unlock(&p->d_lock);
1394 	}
1395 	spin_lock(&dentry->d_lock);
1396 	if (!d_unlinked(dentry)) {
1397 		ret = -EBUSY;
1398 		if (!d_mountpoint(dentry)) {
1399 			dentry->d_flags |= DCACHE_MOUNTED;
1400 			ret = 0;
1401 		}
1402 	}
1403  	spin_unlock(&dentry->d_lock);
1404 out:
1405 	write_sequnlock(&rename_lock);
1406 	return ret;
1407 }
1408 
1409 /*
1410  * Search the dentry child list of the specified parent,
1411  * and move any unused dentries to the end of the unused
1412  * list for prune_dcache(). We descend to the next level
1413  * whenever the d_children list is non-empty and continue
1414  * searching.
1415  *
1416  * It returns zero iff there are no unused children,
1417  * otherwise  it returns the number of children moved to
1418  * the end of the unused list. This may not be the total
1419  * number of unused children, because select_parent can
1420  * drop the lock and return early due to latency
1421  * constraints.
1422  */
1423 
1424 struct select_data {
1425 	struct dentry *start;
1426 	union {
1427 		long found;
1428 		struct dentry *victim;
1429 	};
1430 	struct list_head dispose;
1431 };
1432 
select_collect(void * _data,struct dentry * dentry)1433 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1434 {
1435 	struct select_data *data = _data;
1436 	enum d_walk_ret ret = D_WALK_CONTINUE;
1437 
1438 	if (data->start == dentry)
1439 		goto out;
1440 
1441 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1442 		data->found++;
1443 	} else if (!dentry->d_lockref.count) {
1444 		to_shrink_list(dentry, &data->dispose);
1445 		data->found++;
1446 	} else if (dentry->d_lockref.count < 0) {
1447 		data->found++;
1448 	}
1449 	/*
1450 	 * We can return to the caller if we have found some (this
1451 	 * ensures forward progress). We'll be coming back to find
1452 	 * the rest.
1453 	 */
1454 	if (!list_empty(&data->dispose))
1455 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1456 out:
1457 	return ret;
1458 }
1459 
select_collect2(void * _data,struct dentry * dentry)1460 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1461 {
1462 	struct select_data *data = _data;
1463 	enum d_walk_ret ret = D_WALK_CONTINUE;
1464 
1465 	if (data->start == dentry)
1466 		goto out;
1467 
1468 	if (!dentry->d_lockref.count) {
1469 		if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1470 			rcu_read_lock();
1471 			data->victim = dentry;
1472 			return D_WALK_QUIT;
1473 		}
1474 		to_shrink_list(dentry, &data->dispose);
1475 	}
1476 	/*
1477 	 * We can return to the caller if we have found some (this
1478 	 * ensures forward progress). We'll be coming back to find
1479 	 * the rest.
1480 	 */
1481 	if (!list_empty(&data->dispose))
1482 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1483 out:
1484 	return ret;
1485 }
1486 
1487 /**
1488  * shrink_dcache_parent - prune dcache
1489  * @parent: parent of entries to prune
1490  *
1491  * Prune the dcache to remove unused children of the parent dentry.
1492  */
shrink_dcache_parent(struct dentry * parent)1493 void shrink_dcache_parent(struct dentry *parent)
1494 {
1495 	for (;;) {
1496 		struct select_data data = {.start = parent};
1497 
1498 		INIT_LIST_HEAD(&data.dispose);
1499 		d_walk(parent, &data, select_collect);
1500 
1501 		if (!list_empty(&data.dispose)) {
1502 			shrink_dentry_list(&data.dispose);
1503 			continue;
1504 		}
1505 
1506 		cond_resched();
1507 		if (!data.found)
1508 			break;
1509 		data.victim = NULL;
1510 		d_walk(parent, &data, select_collect2);
1511 		if (data.victim) {
1512 			spin_lock(&data.victim->d_lock);
1513 			if (!lock_for_kill(data.victim)) {
1514 				spin_unlock(&data.victim->d_lock);
1515 				rcu_read_unlock();
1516 			} else {
1517 				shrink_kill(data.victim);
1518 			}
1519 		}
1520 		if (!list_empty(&data.dispose))
1521 			shrink_dentry_list(&data.dispose);
1522 	}
1523 }
1524 EXPORT_SYMBOL(shrink_dcache_parent);
1525 
umount_check(void * _data,struct dentry * dentry)1526 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1527 {
1528 	/* it has busy descendents; complain about those instead */
1529 	if (!hlist_empty(&dentry->d_children))
1530 		return D_WALK_CONTINUE;
1531 
1532 	/* root with refcount 1 is fine */
1533 	if (dentry == _data && dentry->d_lockref.count == 1)
1534 		return D_WALK_CONTINUE;
1535 
1536 	WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1537 			" still in use (%d) [unmount of %s %s]\n",
1538 		       dentry,
1539 		       dentry->d_inode ?
1540 		       dentry->d_inode->i_ino : 0UL,
1541 		       dentry,
1542 		       dentry->d_lockref.count,
1543 		       dentry->d_sb->s_type->name,
1544 		       dentry->d_sb->s_id);
1545 	return D_WALK_CONTINUE;
1546 }
1547 
do_one_tree(struct dentry * dentry)1548 static void do_one_tree(struct dentry *dentry)
1549 {
1550 	shrink_dcache_parent(dentry);
1551 	d_walk(dentry, dentry, umount_check);
1552 	d_drop(dentry);
1553 	dput(dentry);
1554 }
1555 
1556 /*
1557  * destroy the dentries attached to a superblock on unmounting
1558  */
shrink_dcache_for_umount(struct super_block * sb)1559 void shrink_dcache_for_umount(struct super_block *sb)
1560 {
1561 	struct dentry *dentry;
1562 
1563 	rwsem_assert_held_write(&sb->s_umount);
1564 
1565 	dentry = sb->s_root;
1566 	sb->s_root = NULL;
1567 	do_one_tree(dentry);
1568 
1569 	while (!hlist_bl_empty(&sb->s_roots)) {
1570 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1571 		do_one_tree(dentry);
1572 	}
1573 }
1574 
find_submount(void * _data,struct dentry * dentry)1575 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1576 {
1577 	struct dentry **victim = _data;
1578 	if (d_mountpoint(dentry)) {
1579 		*victim = dget_dlock(dentry);
1580 		return D_WALK_QUIT;
1581 	}
1582 	return D_WALK_CONTINUE;
1583 }
1584 
1585 /**
1586  * d_invalidate - detach submounts, prune dcache, and drop
1587  * @dentry: dentry to invalidate (aka detach, prune and drop)
1588  */
d_invalidate(struct dentry * dentry)1589 void d_invalidate(struct dentry *dentry)
1590 {
1591 	bool had_submounts = false;
1592 	spin_lock(&dentry->d_lock);
1593 	if (d_unhashed(dentry)) {
1594 		spin_unlock(&dentry->d_lock);
1595 		return;
1596 	}
1597 	__d_drop(dentry);
1598 	spin_unlock(&dentry->d_lock);
1599 
1600 	/* Negative dentries can be dropped without further checks */
1601 	if (!dentry->d_inode)
1602 		return;
1603 
1604 	shrink_dcache_parent(dentry);
1605 	for (;;) {
1606 		struct dentry *victim = NULL;
1607 		d_walk(dentry, &victim, find_submount);
1608 		if (!victim) {
1609 			if (had_submounts)
1610 				shrink_dcache_parent(dentry);
1611 			return;
1612 		}
1613 		had_submounts = true;
1614 		detach_mounts(victim);
1615 		dput(victim);
1616 	}
1617 }
1618 EXPORT_SYMBOL(d_invalidate);
1619 
1620 /**
1621  * __d_alloc	-	allocate a dcache entry
1622  * @sb: filesystem it will belong to
1623  * @name: qstr of the name
1624  *
1625  * Allocates a dentry. It returns %NULL if there is insufficient memory
1626  * available. On a success the dentry is returned. The name passed in is
1627  * copied and the copy passed in may be reused after this call.
1628  */
1629 
__d_alloc(struct super_block * sb,const struct qstr * name)1630 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1631 {
1632 	struct dentry *dentry;
1633 	char *dname;
1634 	int err;
1635 
1636 	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1637 				      GFP_KERNEL);
1638 	if (!dentry)
1639 		return NULL;
1640 
1641 	/*
1642 	 * We guarantee that the inline name is always NUL-terminated.
1643 	 * This way the memcpy() done by the name switching in rename
1644 	 * will still always have a NUL at the end, even if we might
1645 	 * be overwriting an internal NUL character
1646 	 */
1647 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1648 	if (unlikely(!name)) {
1649 		name = &slash_name;
1650 		dname = dentry->d_iname;
1651 	} else if (name->len > DNAME_INLINE_LEN-1) {
1652 		size_t size = offsetof(struct external_name, name[1]);
1653 		struct external_name *p = kmalloc(size + name->len,
1654 						  GFP_KERNEL_ACCOUNT |
1655 						  __GFP_RECLAIMABLE);
1656 		if (!p) {
1657 			kmem_cache_free(dentry_cache, dentry);
1658 			return NULL;
1659 		}
1660 		atomic_set(&p->u.count, 1);
1661 		dname = p->name;
1662 	} else  {
1663 		dname = dentry->d_iname;
1664 	}
1665 
1666 	dentry->d_name.len = name->len;
1667 	dentry->d_name.hash = name->hash;
1668 	memcpy(dname, name->name, name->len);
1669 	dname[name->len] = 0;
1670 
1671 	/* Make sure we always see the terminating NUL character */
1672 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1673 
1674 	dentry->d_lockref.count = 1;
1675 	dentry->d_flags = 0;
1676 	spin_lock_init(&dentry->d_lock);
1677 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1678 	dentry->d_inode = NULL;
1679 	dentry->d_parent = dentry;
1680 	dentry->d_sb = sb;
1681 	dentry->d_op = NULL;
1682 	dentry->d_fsdata = NULL;
1683 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1684 	INIT_LIST_HEAD(&dentry->d_lru);
1685 	INIT_HLIST_HEAD(&dentry->d_children);
1686 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1687 	INIT_HLIST_NODE(&dentry->d_sib);
1688 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1689 
1690 	if (dentry->d_op && dentry->d_op->d_init) {
1691 		err = dentry->d_op->d_init(dentry);
1692 		if (err) {
1693 			if (dname_external(dentry))
1694 				kfree(external_name(dentry));
1695 			kmem_cache_free(dentry_cache, dentry);
1696 			return NULL;
1697 		}
1698 	}
1699 
1700 	this_cpu_inc(nr_dentry);
1701 
1702 	return dentry;
1703 }
1704 
1705 /**
1706  * d_alloc	-	allocate a dcache entry
1707  * @parent: parent of entry to allocate
1708  * @name: qstr of the name
1709  *
1710  * Allocates a dentry. It returns %NULL if there is insufficient memory
1711  * available. On a success the dentry is returned. The name passed in is
1712  * copied and the copy passed in may be reused after this call.
1713  */
d_alloc(struct dentry * parent,const struct qstr * name)1714 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1715 {
1716 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1717 	if (!dentry)
1718 		return NULL;
1719 	spin_lock(&parent->d_lock);
1720 	/*
1721 	 * don't need child lock because it is not subject
1722 	 * to concurrency here
1723 	 */
1724 	dentry->d_parent = dget_dlock(parent);
1725 	hlist_add_head(&dentry->d_sib, &parent->d_children);
1726 	spin_unlock(&parent->d_lock);
1727 
1728 	return dentry;
1729 }
1730 EXPORT_SYMBOL(d_alloc);
1731 
d_alloc_anon(struct super_block * sb)1732 struct dentry *d_alloc_anon(struct super_block *sb)
1733 {
1734 	return __d_alloc(sb, NULL);
1735 }
1736 EXPORT_SYMBOL(d_alloc_anon);
1737 
d_alloc_cursor(struct dentry * parent)1738 struct dentry *d_alloc_cursor(struct dentry * parent)
1739 {
1740 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1741 	if (dentry) {
1742 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1743 		dentry->d_parent = dget(parent);
1744 	}
1745 	return dentry;
1746 }
1747 
1748 /**
1749  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1750  * @sb: the superblock
1751  * @name: qstr of the name
1752  *
1753  * For a filesystem that just pins its dentries in memory and never
1754  * performs lookups at all, return an unhashed IS_ROOT dentry.
1755  * This is used for pipes, sockets et.al. - the stuff that should
1756  * never be anyone's children or parents.  Unlike all other
1757  * dentries, these will not have RCU delay between dropping the
1758  * last reference and freeing them.
1759  *
1760  * The only user is alloc_file_pseudo() and that's what should
1761  * be considered a public interface.  Don't use directly.
1762  */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1763 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1764 {
1765 	static const struct dentry_operations anon_ops = {
1766 		.d_dname = simple_dname
1767 	};
1768 	struct dentry *dentry = __d_alloc(sb, name);
1769 	if (likely(dentry)) {
1770 		dentry->d_flags |= DCACHE_NORCU;
1771 		if (!sb->s_d_op)
1772 			d_set_d_op(dentry, &anon_ops);
1773 	}
1774 	return dentry;
1775 }
1776 
d_alloc_name(struct dentry * parent,const char * name)1777 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1778 {
1779 	struct qstr q;
1780 
1781 	q.name = name;
1782 	q.hash_len = hashlen_string(parent, name);
1783 	return d_alloc(parent, &q);
1784 }
1785 EXPORT_SYMBOL(d_alloc_name);
1786 
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1787 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1788 {
1789 	WARN_ON_ONCE(dentry->d_op);
1790 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1791 				DCACHE_OP_COMPARE	|
1792 				DCACHE_OP_REVALIDATE	|
1793 				DCACHE_OP_WEAK_REVALIDATE	|
1794 				DCACHE_OP_DELETE	|
1795 				DCACHE_OP_REAL));
1796 	dentry->d_op = op;
1797 	if (!op)
1798 		return;
1799 	if (op->d_hash)
1800 		dentry->d_flags |= DCACHE_OP_HASH;
1801 	if (op->d_compare)
1802 		dentry->d_flags |= DCACHE_OP_COMPARE;
1803 	if (op->d_revalidate)
1804 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1805 	if (op->d_weak_revalidate)
1806 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1807 	if (op->d_delete)
1808 		dentry->d_flags |= DCACHE_OP_DELETE;
1809 	if (op->d_prune)
1810 		dentry->d_flags |= DCACHE_OP_PRUNE;
1811 	if (op->d_real)
1812 		dentry->d_flags |= DCACHE_OP_REAL;
1813 
1814 }
1815 EXPORT_SYMBOL(d_set_d_op);
1816 
d_flags_for_inode(struct inode * inode)1817 static unsigned d_flags_for_inode(struct inode *inode)
1818 {
1819 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1820 
1821 	if (!inode)
1822 		return DCACHE_MISS_TYPE;
1823 
1824 	if (S_ISDIR(inode->i_mode)) {
1825 		add_flags = DCACHE_DIRECTORY_TYPE;
1826 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1827 			if (unlikely(!inode->i_op->lookup))
1828 				add_flags = DCACHE_AUTODIR_TYPE;
1829 			else
1830 				inode->i_opflags |= IOP_LOOKUP;
1831 		}
1832 		goto type_determined;
1833 	}
1834 
1835 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1836 		if (unlikely(inode->i_op->get_link)) {
1837 			add_flags = DCACHE_SYMLINK_TYPE;
1838 			goto type_determined;
1839 		}
1840 		inode->i_opflags |= IOP_NOFOLLOW;
1841 	}
1842 
1843 	if (unlikely(!S_ISREG(inode->i_mode)))
1844 		add_flags = DCACHE_SPECIAL_TYPE;
1845 
1846 type_determined:
1847 	if (unlikely(IS_AUTOMOUNT(inode)))
1848 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1849 	return add_flags;
1850 }
1851 
__d_instantiate(struct dentry * dentry,struct inode * inode)1852 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1853 {
1854 	unsigned add_flags = d_flags_for_inode(inode);
1855 	WARN_ON(d_in_lookup(dentry));
1856 
1857 	spin_lock(&dentry->d_lock);
1858 	/*
1859 	 * The negative counter only tracks dentries on the LRU. Don't dec if
1860 	 * d_lru is on another list.
1861 	 */
1862 	if ((dentry->d_flags &
1863 	     (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1864 		this_cpu_dec(nr_dentry_negative);
1865 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1866 	raw_write_seqcount_begin(&dentry->d_seq);
1867 	__d_set_inode_and_type(dentry, inode, add_flags);
1868 	raw_write_seqcount_end(&dentry->d_seq);
1869 	fsnotify_update_flags(dentry);
1870 	spin_unlock(&dentry->d_lock);
1871 }
1872 
1873 /**
1874  * d_instantiate - fill in inode information for a dentry
1875  * @entry: dentry to complete
1876  * @inode: inode to attach to this dentry
1877  *
1878  * Fill in inode information in the entry.
1879  *
1880  * This turns negative dentries into productive full members
1881  * of society.
1882  *
1883  * NOTE! This assumes that the inode count has been incremented
1884  * (or otherwise set) by the caller to indicate that it is now
1885  * in use by the dcache.
1886  */
1887 
d_instantiate(struct dentry * entry,struct inode * inode)1888 void d_instantiate(struct dentry *entry, struct inode * inode)
1889 {
1890 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1891 	if (inode) {
1892 		security_d_instantiate(entry, inode);
1893 		spin_lock(&inode->i_lock);
1894 		__d_instantiate(entry, inode);
1895 		spin_unlock(&inode->i_lock);
1896 	}
1897 }
1898 EXPORT_SYMBOL(d_instantiate);
1899 
1900 /*
1901  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1902  * with lockdep-related part of unlock_new_inode() done before
1903  * anything else.  Use that instead of open-coding d_instantiate()/
1904  * unlock_new_inode() combinations.
1905  */
d_instantiate_new(struct dentry * entry,struct inode * inode)1906 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1907 {
1908 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1909 	BUG_ON(!inode);
1910 	lockdep_annotate_inode_mutex_key(inode);
1911 	security_d_instantiate(entry, inode);
1912 	spin_lock(&inode->i_lock);
1913 	__d_instantiate(entry, inode);
1914 	WARN_ON(!(inode->i_state & I_NEW));
1915 	inode->i_state &= ~I_NEW & ~I_CREATING;
1916 	/*
1917 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1918 	 * ___wait_var_event() either sees the bit cleared or
1919 	 * waitqueue_active() check in wake_up_var() sees the waiter.
1920 	 */
1921 	smp_mb();
1922 	inode_wake_up_bit(inode, __I_NEW);
1923 	spin_unlock(&inode->i_lock);
1924 }
1925 EXPORT_SYMBOL(d_instantiate_new);
1926 
d_make_root(struct inode * root_inode)1927 struct dentry *d_make_root(struct inode *root_inode)
1928 {
1929 	struct dentry *res = NULL;
1930 
1931 	if (root_inode) {
1932 		res = d_alloc_anon(root_inode->i_sb);
1933 		if (res)
1934 			d_instantiate(res, root_inode);
1935 		else
1936 			iput(root_inode);
1937 	}
1938 	return res;
1939 }
1940 EXPORT_SYMBOL(d_make_root);
1941 
__d_obtain_alias(struct inode * inode,bool disconnected)1942 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1943 {
1944 	struct super_block *sb;
1945 	struct dentry *new, *res;
1946 
1947 	if (!inode)
1948 		return ERR_PTR(-ESTALE);
1949 	if (IS_ERR(inode))
1950 		return ERR_CAST(inode);
1951 
1952 	sb = inode->i_sb;
1953 
1954 	res = d_find_any_alias(inode); /* existing alias? */
1955 	if (res)
1956 		goto out;
1957 
1958 	new = d_alloc_anon(sb);
1959 	if (!new) {
1960 		res = ERR_PTR(-ENOMEM);
1961 		goto out;
1962 	}
1963 
1964 	security_d_instantiate(new, inode);
1965 	spin_lock(&inode->i_lock);
1966 	res = __d_find_any_alias(inode); /* recheck under lock */
1967 	if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1968 		unsigned add_flags = d_flags_for_inode(inode);
1969 
1970 		if (disconnected)
1971 			add_flags |= DCACHE_DISCONNECTED;
1972 
1973 		spin_lock(&new->d_lock);
1974 		__d_set_inode_and_type(new, inode, add_flags);
1975 		hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
1976 		if (!disconnected) {
1977 			hlist_bl_lock(&sb->s_roots);
1978 			hlist_bl_add_head(&new->d_hash, &sb->s_roots);
1979 			hlist_bl_unlock(&sb->s_roots);
1980 		}
1981 		spin_unlock(&new->d_lock);
1982 		spin_unlock(&inode->i_lock);
1983 		inode = NULL; /* consumed by new->d_inode */
1984 		res = new;
1985 	} else {
1986 		spin_unlock(&inode->i_lock);
1987 		dput(new);
1988 	}
1989 
1990  out:
1991 	iput(inode);
1992 	return res;
1993 }
1994 
1995 /**
1996  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1997  * @inode: inode to allocate the dentry for
1998  *
1999  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2000  * similar open by handle operations.  The returned dentry may be anonymous,
2001  * or may have a full name (if the inode was already in the cache).
2002  *
2003  * When called on a directory inode, we must ensure that the inode only ever
2004  * has one dentry.  If a dentry is found, that is returned instead of
2005  * allocating a new one.
2006  *
2007  * On successful return, the reference to the inode has been transferred
2008  * to the dentry.  In case of an error the reference on the inode is released.
2009  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2010  * be passed in and the error will be propagated to the return value,
2011  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2012  */
d_obtain_alias(struct inode * inode)2013 struct dentry *d_obtain_alias(struct inode *inode)
2014 {
2015 	return __d_obtain_alias(inode, true);
2016 }
2017 EXPORT_SYMBOL(d_obtain_alias);
2018 
2019 /**
2020  * d_obtain_root - find or allocate a dentry for a given inode
2021  * @inode: inode to allocate the dentry for
2022  *
2023  * Obtain an IS_ROOT dentry for the root of a filesystem.
2024  *
2025  * We must ensure that directory inodes only ever have one dentry.  If a
2026  * dentry is found, that is returned instead of allocating a new one.
2027  *
2028  * On successful return, the reference to the inode has been transferred
2029  * to the dentry.  In case of an error the reference on the inode is
2030  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2031  * error will be propagate to the return value, with a %NULL @inode
2032  * replaced by ERR_PTR(-ESTALE).
2033  */
d_obtain_root(struct inode * inode)2034 struct dentry *d_obtain_root(struct inode *inode)
2035 {
2036 	return __d_obtain_alias(inode, false);
2037 }
2038 EXPORT_SYMBOL(d_obtain_root);
2039 
2040 /**
2041  * d_add_ci - lookup or allocate new dentry with case-exact name
2042  * @inode:  the inode case-insensitive lookup has found
2043  * @dentry: the negative dentry that was passed to the parent's lookup func
2044  * @name:   the case-exact name to be associated with the returned dentry
2045  *
2046  * This is to avoid filling the dcache with case-insensitive names to the
2047  * same inode, only the actual correct case is stored in the dcache for
2048  * case-insensitive filesystems.
2049  *
2050  * For a case-insensitive lookup match and if the case-exact dentry
2051  * already exists in the dcache, use it and return it.
2052  *
2053  * If no entry exists with the exact case name, allocate new dentry with
2054  * the exact case, and return the spliced entry.
2055  */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2056 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2057 			struct qstr *name)
2058 {
2059 	struct dentry *found, *res;
2060 
2061 	/*
2062 	 * First check if a dentry matching the name already exists,
2063 	 * if not go ahead and create it now.
2064 	 */
2065 	found = d_hash_and_lookup(dentry->d_parent, name);
2066 	if (found) {
2067 		iput(inode);
2068 		return found;
2069 	}
2070 	if (d_in_lookup(dentry)) {
2071 		found = d_alloc_parallel(dentry->d_parent, name,
2072 					dentry->d_wait);
2073 		if (IS_ERR(found) || !d_in_lookup(found)) {
2074 			iput(inode);
2075 			return found;
2076 		}
2077 	} else {
2078 		found = d_alloc(dentry->d_parent, name);
2079 		if (!found) {
2080 			iput(inode);
2081 			return ERR_PTR(-ENOMEM);
2082 		}
2083 	}
2084 	res = d_splice_alias(inode, found);
2085 	if (res) {
2086 		d_lookup_done(found);
2087 		dput(found);
2088 		return res;
2089 	}
2090 	return found;
2091 }
2092 EXPORT_SYMBOL(d_add_ci);
2093 
2094 /**
2095  * d_same_name - compare dentry name with case-exact name
2096  * @parent: parent dentry
2097  * @dentry: the negative dentry that was passed to the parent's lookup func
2098  * @name:   the case-exact name to be associated with the returned dentry
2099  *
2100  * Return: true if names are same, or false
2101  */
d_same_name(const struct dentry * dentry,const struct dentry * parent,const struct qstr * name)2102 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2103 		 const struct qstr *name)
2104 {
2105 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2106 		if (dentry->d_name.len != name->len)
2107 			return false;
2108 		return dentry_cmp(dentry, name->name, name->len) == 0;
2109 	}
2110 	return parent->d_op->d_compare(dentry,
2111 				       dentry->d_name.len, dentry->d_name.name,
2112 				       name) == 0;
2113 }
2114 EXPORT_SYMBOL_GPL(d_same_name);
2115 
2116 /*
2117  * This is __d_lookup_rcu() when the parent dentry has
2118  * DCACHE_OP_COMPARE, which makes things much nastier.
2119  */
__d_lookup_rcu_op_compare(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2120 static noinline struct dentry *__d_lookup_rcu_op_compare(
2121 	const struct dentry *parent,
2122 	const struct qstr *name,
2123 	unsigned *seqp)
2124 {
2125 	u64 hashlen = name->hash_len;
2126 	struct hlist_bl_head *b = d_hash(hashlen);
2127 	struct hlist_bl_node *node;
2128 	struct dentry *dentry;
2129 
2130 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2131 		int tlen;
2132 		const char *tname;
2133 		unsigned seq;
2134 
2135 seqretry:
2136 		seq = raw_seqcount_begin(&dentry->d_seq);
2137 		if (dentry->d_parent != parent)
2138 			continue;
2139 		if (d_unhashed(dentry))
2140 			continue;
2141 		if (dentry->d_name.hash != hashlen_hash(hashlen))
2142 			continue;
2143 		tlen = dentry->d_name.len;
2144 		tname = dentry->d_name.name;
2145 		/* we want a consistent (name,len) pair */
2146 		if (read_seqcount_retry(&dentry->d_seq, seq)) {
2147 			cpu_relax();
2148 			goto seqretry;
2149 		}
2150 		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2151 			continue;
2152 		*seqp = seq;
2153 		return dentry;
2154 	}
2155 	return NULL;
2156 }
2157 
2158 /**
2159  * __d_lookup_rcu - search for a dentry (racy, store-free)
2160  * @parent: parent dentry
2161  * @name: qstr of name we wish to find
2162  * @seqp: returns d_seq value at the point where the dentry was found
2163  * Returns: dentry, or NULL
2164  *
2165  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2166  * resolution (store-free path walking) design described in
2167  * Documentation/filesystems/path-lookup.txt.
2168  *
2169  * This is not to be used outside core vfs.
2170  *
2171  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2172  * held, and rcu_read_lock held. The returned dentry must not be stored into
2173  * without taking d_lock and checking d_seq sequence count against @seq
2174  * returned here.
2175  *
2176  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2177  * the returned dentry, so long as its parent's seqlock is checked after the
2178  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2179  * is formed, giving integrity down the path walk.
2180  *
2181  * NOTE! The caller *has* to check the resulting dentry against the sequence
2182  * number we've returned before using any of the resulting dentry state!
2183  */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2184 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2185 				const struct qstr *name,
2186 				unsigned *seqp)
2187 {
2188 	u64 hashlen = name->hash_len;
2189 	const unsigned char *str = name->name;
2190 	struct hlist_bl_head *b = d_hash(hashlen);
2191 	struct hlist_bl_node *node;
2192 	struct dentry *dentry;
2193 
2194 	/*
2195 	 * Note: There is significant duplication with __d_lookup_rcu which is
2196 	 * required to prevent single threaded performance regressions
2197 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2198 	 * Keep the two functions in sync.
2199 	 */
2200 
2201 	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2202 		return __d_lookup_rcu_op_compare(parent, name, seqp);
2203 
2204 	/*
2205 	 * The hash list is protected using RCU.
2206 	 *
2207 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2208 	 * races with d_move().
2209 	 *
2210 	 * It is possible that concurrent renames can mess up our list
2211 	 * walk here and result in missing our dentry, resulting in the
2212 	 * false-negative result. d_lookup() protects against concurrent
2213 	 * renames using rename_lock seqlock.
2214 	 *
2215 	 * See Documentation/filesystems/path-lookup.txt for more details.
2216 	 */
2217 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2218 		unsigned seq;
2219 
2220 		/*
2221 		 * The dentry sequence count protects us from concurrent
2222 		 * renames, and thus protects parent and name fields.
2223 		 *
2224 		 * The caller must perform a seqcount check in order
2225 		 * to do anything useful with the returned dentry.
2226 		 *
2227 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2228 		 * we don't wait for the sequence count to stabilize if it
2229 		 * is in the middle of a sequence change. If we do the slow
2230 		 * dentry compare, we will do seqretries until it is stable,
2231 		 * and if we end up with a successful lookup, we actually
2232 		 * want to exit RCU lookup anyway.
2233 		 *
2234 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2235 		 * we are still guaranteed NUL-termination of ->d_name.name.
2236 		 */
2237 		seq = raw_seqcount_begin(&dentry->d_seq);
2238 		if (dentry->d_parent != parent)
2239 			continue;
2240 		if (d_unhashed(dentry))
2241 			continue;
2242 		if (dentry->d_name.hash_len != hashlen)
2243 			continue;
2244 		if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2245 			continue;
2246 		*seqp = seq;
2247 		return dentry;
2248 	}
2249 	return NULL;
2250 }
2251 
2252 /**
2253  * d_lookup - search for a dentry
2254  * @parent: parent dentry
2255  * @name: qstr of name we wish to find
2256  * Returns: dentry, or NULL
2257  *
2258  * d_lookup searches the children of the parent dentry for the name in
2259  * question. If the dentry is found its reference count is incremented and the
2260  * dentry is returned. The caller must use dput to free the entry when it has
2261  * finished using it. %NULL is returned if the dentry does not exist.
2262  */
d_lookup(const struct dentry * parent,const struct qstr * name)2263 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2264 {
2265 	struct dentry *dentry;
2266 	unsigned seq;
2267 
2268 	do {
2269 		seq = read_seqbegin(&rename_lock);
2270 		dentry = __d_lookup(parent, name);
2271 		if (dentry)
2272 			break;
2273 	} while (read_seqretry(&rename_lock, seq));
2274 	return dentry;
2275 }
2276 EXPORT_SYMBOL(d_lookup);
2277 
2278 /**
2279  * __d_lookup - search for a dentry (racy)
2280  * @parent: parent dentry
2281  * @name: qstr of name we wish to find
2282  * Returns: dentry, or NULL
2283  *
2284  * __d_lookup is like d_lookup, however it may (rarely) return a
2285  * false-negative result due to unrelated rename activity.
2286  *
2287  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2288  * however it must be used carefully, eg. with a following d_lookup in
2289  * the case of failure.
2290  *
2291  * __d_lookup callers must be commented.
2292  */
__d_lookup(const struct dentry * parent,const struct qstr * name)2293 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2294 {
2295 	unsigned int hash = name->hash;
2296 	struct hlist_bl_head *b = d_hash(hash);
2297 	struct hlist_bl_node *node;
2298 	struct dentry *found = NULL;
2299 	struct dentry *dentry;
2300 
2301 	/*
2302 	 * Note: There is significant duplication with __d_lookup_rcu which is
2303 	 * required to prevent single threaded performance regressions
2304 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2305 	 * Keep the two functions in sync.
2306 	 */
2307 
2308 	/*
2309 	 * The hash list is protected using RCU.
2310 	 *
2311 	 * Take d_lock when comparing a candidate dentry, to avoid races
2312 	 * with d_move().
2313 	 *
2314 	 * It is possible that concurrent renames can mess up our list
2315 	 * walk here and result in missing our dentry, resulting in the
2316 	 * false-negative result. d_lookup() protects against concurrent
2317 	 * renames using rename_lock seqlock.
2318 	 *
2319 	 * See Documentation/filesystems/path-lookup.txt for more details.
2320 	 */
2321 	rcu_read_lock();
2322 
2323 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2324 
2325 		if (dentry->d_name.hash != hash)
2326 			continue;
2327 
2328 		spin_lock(&dentry->d_lock);
2329 		if (dentry->d_parent != parent)
2330 			goto next;
2331 		if (d_unhashed(dentry))
2332 			goto next;
2333 
2334 		if (!d_same_name(dentry, parent, name))
2335 			goto next;
2336 
2337 		dentry->d_lockref.count++;
2338 		found = dentry;
2339 		spin_unlock(&dentry->d_lock);
2340 		break;
2341 next:
2342 		spin_unlock(&dentry->d_lock);
2343  	}
2344  	rcu_read_unlock();
2345 
2346  	return found;
2347 }
2348 
2349 /**
2350  * d_hash_and_lookup - hash the qstr then search for a dentry
2351  * @dir: Directory to search in
2352  * @name: qstr of name we wish to find
2353  *
2354  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2355  */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2356 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2357 {
2358 	/*
2359 	 * Check for a fs-specific hash function. Note that we must
2360 	 * calculate the standard hash first, as the d_op->d_hash()
2361 	 * routine may choose to leave the hash value unchanged.
2362 	 */
2363 	name->hash = full_name_hash(dir, name->name, name->len);
2364 	if (dir->d_flags & DCACHE_OP_HASH) {
2365 		int err = dir->d_op->d_hash(dir, name);
2366 		if (unlikely(err < 0))
2367 			return ERR_PTR(err);
2368 	}
2369 	return d_lookup(dir, name);
2370 }
2371 EXPORT_SYMBOL(d_hash_and_lookup);
2372 
2373 /*
2374  * When a file is deleted, we have two options:
2375  * - turn this dentry into a negative dentry
2376  * - unhash this dentry and free it.
2377  *
2378  * Usually, we want to just turn this into
2379  * a negative dentry, but if anybody else is
2380  * currently using the dentry or the inode
2381  * we can't do that and we fall back on removing
2382  * it from the hash queues and waiting for
2383  * it to be deleted later when it has no users
2384  */
2385 
2386 /**
2387  * d_delete - delete a dentry
2388  * @dentry: The dentry to delete
2389  *
2390  * Turn the dentry into a negative dentry if possible, otherwise
2391  * remove it from the hash queues so it can be deleted later
2392  */
2393 
d_delete(struct dentry * dentry)2394 void d_delete(struct dentry * dentry)
2395 {
2396 	struct inode *inode = dentry->d_inode;
2397 
2398 	spin_lock(&inode->i_lock);
2399 	spin_lock(&dentry->d_lock);
2400 	/*
2401 	 * Are we the only user?
2402 	 */
2403 	if (dentry->d_lockref.count == 1) {
2404 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2405 		dentry_unlink_inode(dentry);
2406 	} else {
2407 		__d_drop(dentry);
2408 		spin_unlock(&dentry->d_lock);
2409 		spin_unlock(&inode->i_lock);
2410 	}
2411 }
2412 EXPORT_SYMBOL(d_delete);
2413 
__d_rehash(struct dentry * entry)2414 static void __d_rehash(struct dentry *entry)
2415 {
2416 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2417 
2418 	hlist_bl_lock(b);
2419 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2420 	hlist_bl_unlock(b);
2421 }
2422 
2423 /**
2424  * d_rehash	- add an entry back to the hash
2425  * @entry: dentry to add to the hash
2426  *
2427  * Adds a dentry to the hash according to its name.
2428  */
2429 
d_rehash(struct dentry * entry)2430 void d_rehash(struct dentry * entry)
2431 {
2432 	spin_lock(&entry->d_lock);
2433 	__d_rehash(entry);
2434 	spin_unlock(&entry->d_lock);
2435 }
2436 EXPORT_SYMBOL(d_rehash);
2437 
start_dir_add(struct inode * dir)2438 static inline unsigned start_dir_add(struct inode *dir)
2439 {
2440 	preempt_disable_nested();
2441 	for (;;) {
2442 		unsigned n = dir->i_dir_seq;
2443 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2444 			return n;
2445 		cpu_relax();
2446 	}
2447 }
2448 
end_dir_add(struct inode * dir,unsigned int n,wait_queue_head_t * d_wait)2449 static inline void end_dir_add(struct inode *dir, unsigned int n,
2450 			       wait_queue_head_t *d_wait)
2451 {
2452 	smp_store_release(&dir->i_dir_seq, n + 2);
2453 	preempt_enable_nested();
2454 	wake_up_all(d_wait);
2455 }
2456 
d_wait_lookup(struct dentry * dentry)2457 static void d_wait_lookup(struct dentry *dentry)
2458 {
2459 	if (d_in_lookup(dentry)) {
2460 		DECLARE_WAITQUEUE(wait, current);
2461 		add_wait_queue(dentry->d_wait, &wait);
2462 		do {
2463 			set_current_state(TASK_UNINTERRUPTIBLE);
2464 			spin_unlock(&dentry->d_lock);
2465 			schedule();
2466 			spin_lock(&dentry->d_lock);
2467 		} while (d_in_lookup(dentry));
2468 	}
2469 }
2470 
d_alloc_parallel(struct dentry * parent,const struct qstr * name,wait_queue_head_t * wq)2471 struct dentry *d_alloc_parallel(struct dentry *parent,
2472 				const struct qstr *name,
2473 				wait_queue_head_t *wq)
2474 {
2475 	unsigned int hash = name->hash;
2476 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2477 	struct hlist_bl_node *node;
2478 	struct dentry *new = d_alloc(parent, name);
2479 	struct dentry *dentry;
2480 	unsigned seq, r_seq, d_seq;
2481 
2482 	if (unlikely(!new))
2483 		return ERR_PTR(-ENOMEM);
2484 
2485 retry:
2486 	rcu_read_lock();
2487 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2488 	r_seq = read_seqbegin(&rename_lock);
2489 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2490 	if (unlikely(dentry)) {
2491 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2492 			rcu_read_unlock();
2493 			goto retry;
2494 		}
2495 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2496 			rcu_read_unlock();
2497 			dput(dentry);
2498 			goto retry;
2499 		}
2500 		rcu_read_unlock();
2501 		dput(new);
2502 		return dentry;
2503 	}
2504 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2505 		rcu_read_unlock();
2506 		goto retry;
2507 	}
2508 
2509 	if (unlikely(seq & 1)) {
2510 		rcu_read_unlock();
2511 		goto retry;
2512 	}
2513 
2514 	hlist_bl_lock(b);
2515 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2516 		hlist_bl_unlock(b);
2517 		rcu_read_unlock();
2518 		goto retry;
2519 	}
2520 	/*
2521 	 * No changes for the parent since the beginning of d_lookup().
2522 	 * Since all removals from the chain happen with hlist_bl_lock(),
2523 	 * any potential in-lookup matches are going to stay here until
2524 	 * we unlock the chain.  All fields are stable in everything
2525 	 * we encounter.
2526 	 */
2527 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2528 		if (dentry->d_name.hash != hash)
2529 			continue;
2530 		if (dentry->d_parent != parent)
2531 			continue;
2532 		if (!d_same_name(dentry, parent, name))
2533 			continue;
2534 		hlist_bl_unlock(b);
2535 		/* now we can try to grab a reference */
2536 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2537 			rcu_read_unlock();
2538 			goto retry;
2539 		}
2540 
2541 		rcu_read_unlock();
2542 		/*
2543 		 * somebody is likely to be still doing lookup for it;
2544 		 * wait for them to finish
2545 		 */
2546 		spin_lock(&dentry->d_lock);
2547 		d_wait_lookup(dentry);
2548 		/*
2549 		 * it's not in-lookup anymore; in principle we should repeat
2550 		 * everything from dcache lookup, but it's likely to be what
2551 		 * d_lookup() would've found anyway.  If it is, just return it;
2552 		 * otherwise we really have to repeat the whole thing.
2553 		 */
2554 		if (unlikely(dentry->d_name.hash != hash))
2555 			goto mismatch;
2556 		if (unlikely(dentry->d_parent != parent))
2557 			goto mismatch;
2558 		if (unlikely(d_unhashed(dentry)))
2559 			goto mismatch;
2560 		if (unlikely(!d_same_name(dentry, parent, name)))
2561 			goto mismatch;
2562 		/* OK, it *is* a hashed match; return it */
2563 		spin_unlock(&dentry->d_lock);
2564 		dput(new);
2565 		return dentry;
2566 	}
2567 	rcu_read_unlock();
2568 	/* we can't take ->d_lock here; it's OK, though. */
2569 	new->d_flags |= DCACHE_PAR_LOOKUP;
2570 	new->d_wait = wq;
2571 	hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2572 	hlist_bl_unlock(b);
2573 	return new;
2574 mismatch:
2575 	spin_unlock(&dentry->d_lock);
2576 	dput(dentry);
2577 	goto retry;
2578 }
2579 EXPORT_SYMBOL(d_alloc_parallel);
2580 
2581 /*
2582  * - Unhash the dentry
2583  * - Retrieve and clear the waitqueue head in dentry
2584  * - Return the waitqueue head
2585  */
__d_lookup_unhash(struct dentry * dentry)2586 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2587 {
2588 	wait_queue_head_t *d_wait;
2589 	struct hlist_bl_head *b;
2590 
2591 	lockdep_assert_held(&dentry->d_lock);
2592 
2593 	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2594 	hlist_bl_lock(b);
2595 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2596 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2597 	d_wait = dentry->d_wait;
2598 	dentry->d_wait = NULL;
2599 	hlist_bl_unlock(b);
2600 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2601 	INIT_LIST_HEAD(&dentry->d_lru);
2602 	return d_wait;
2603 }
2604 
__d_lookup_unhash_wake(struct dentry * dentry)2605 void __d_lookup_unhash_wake(struct dentry *dentry)
2606 {
2607 	spin_lock(&dentry->d_lock);
2608 	wake_up_all(__d_lookup_unhash(dentry));
2609 	spin_unlock(&dentry->d_lock);
2610 }
2611 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2612 
2613 /* inode->i_lock held if inode is non-NULL */
2614 
__d_add(struct dentry * dentry,struct inode * inode)2615 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2616 {
2617 	wait_queue_head_t *d_wait;
2618 	struct inode *dir = NULL;
2619 	unsigned n;
2620 	spin_lock(&dentry->d_lock);
2621 	if (unlikely(d_in_lookup(dentry))) {
2622 		dir = dentry->d_parent->d_inode;
2623 		n = start_dir_add(dir);
2624 		d_wait = __d_lookup_unhash(dentry);
2625 	}
2626 	if (inode) {
2627 		unsigned add_flags = d_flags_for_inode(inode);
2628 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2629 		raw_write_seqcount_begin(&dentry->d_seq);
2630 		__d_set_inode_and_type(dentry, inode, add_flags);
2631 		raw_write_seqcount_end(&dentry->d_seq);
2632 		fsnotify_update_flags(dentry);
2633 	}
2634 	__d_rehash(dentry);
2635 	if (dir)
2636 		end_dir_add(dir, n, d_wait);
2637 	spin_unlock(&dentry->d_lock);
2638 	if (inode)
2639 		spin_unlock(&inode->i_lock);
2640 }
2641 
2642 /**
2643  * d_add - add dentry to hash queues
2644  * @entry: dentry to add
2645  * @inode: The inode to attach to this dentry
2646  *
2647  * This adds the entry to the hash queues and initializes @inode.
2648  * The entry was actually filled in earlier during d_alloc().
2649  */
2650 
d_add(struct dentry * entry,struct inode * inode)2651 void d_add(struct dentry *entry, struct inode *inode)
2652 {
2653 	if (inode) {
2654 		security_d_instantiate(entry, inode);
2655 		spin_lock(&inode->i_lock);
2656 	}
2657 	__d_add(entry, inode);
2658 }
2659 EXPORT_SYMBOL(d_add);
2660 
2661 /**
2662  * d_exact_alias - find and hash an exact unhashed alias
2663  * @entry: dentry to add
2664  * @inode: The inode to go with this dentry
2665  *
2666  * If an unhashed dentry with the same name/parent and desired
2667  * inode already exists, hash and return it.  Otherwise, return
2668  * NULL.
2669  *
2670  * Parent directory should be locked.
2671  */
d_exact_alias(struct dentry * entry,struct inode * inode)2672 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2673 {
2674 	struct dentry *alias;
2675 	unsigned int hash = entry->d_name.hash;
2676 
2677 	spin_lock(&inode->i_lock);
2678 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2679 		/*
2680 		 * Don't need alias->d_lock here, because aliases with
2681 		 * d_parent == entry->d_parent are not subject to name or
2682 		 * parent changes, because the parent inode i_mutex is held.
2683 		 */
2684 		if (alias->d_name.hash != hash)
2685 			continue;
2686 		if (alias->d_parent != entry->d_parent)
2687 			continue;
2688 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2689 			continue;
2690 		spin_lock(&alias->d_lock);
2691 		if (!d_unhashed(alias)) {
2692 			spin_unlock(&alias->d_lock);
2693 			alias = NULL;
2694 		} else {
2695 			dget_dlock(alias);
2696 			__d_rehash(alias);
2697 			spin_unlock(&alias->d_lock);
2698 		}
2699 		spin_unlock(&inode->i_lock);
2700 		return alias;
2701 	}
2702 	spin_unlock(&inode->i_lock);
2703 	return NULL;
2704 }
2705 EXPORT_SYMBOL(d_exact_alias);
2706 
swap_names(struct dentry * dentry,struct dentry * target)2707 static void swap_names(struct dentry *dentry, struct dentry *target)
2708 {
2709 	if (unlikely(dname_external(target))) {
2710 		if (unlikely(dname_external(dentry))) {
2711 			/*
2712 			 * Both external: swap the pointers
2713 			 */
2714 			swap(target->d_name.name, dentry->d_name.name);
2715 		} else {
2716 			/*
2717 			 * dentry:internal, target:external.  Steal target's
2718 			 * storage and make target internal.
2719 			 */
2720 			memcpy(target->d_iname, dentry->d_name.name,
2721 					dentry->d_name.len + 1);
2722 			dentry->d_name.name = target->d_name.name;
2723 			target->d_name.name = target->d_iname;
2724 		}
2725 	} else {
2726 		if (unlikely(dname_external(dentry))) {
2727 			/*
2728 			 * dentry:external, target:internal.  Give dentry's
2729 			 * storage to target and make dentry internal
2730 			 */
2731 			memcpy(dentry->d_iname, target->d_name.name,
2732 					target->d_name.len + 1);
2733 			target->d_name.name = dentry->d_name.name;
2734 			dentry->d_name.name = dentry->d_iname;
2735 		} else {
2736 			/*
2737 			 * Both are internal.
2738 			 */
2739 			unsigned int i;
2740 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2741 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2742 				swap(((long *) &dentry->d_iname)[i],
2743 				     ((long *) &target->d_iname)[i]);
2744 			}
2745 		}
2746 	}
2747 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2748 }
2749 
copy_name(struct dentry * dentry,struct dentry * target)2750 static void copy_name(struct dentry *dentry, struct dentry *target)
2751 {
2752 	struct external_name *old_name = NULL;
2753 	if (unlikely(dname_external(dentry)))
2754 		old_name = external_name(dentry);
2755 	if (unlikely(dname_external(target))) {
2756 		atomic_inc(&external_name(target)->u.count);
2757 		dentry->d_name = target->d_name;
2758 	} else {
2759 		memcpy(dentry->d_iname, target->d_name.name,
2760 				target->d_name.len + 1);
2761 		dentry->d_name.name = dentry->d_iname;
2762 		dentry->d_name.hash_len = target->d_name.hash_len;
2763 	}
2764 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2765 		kfree_rcu(old_name, u.head);
2766 }
2767 
2768 /*
2769  * __d_move - move a dentry
2770  * @dentry: entry to move
2771  * @target: new dentry
2772  * @exchange: exchange the two dentries
2773  *
2774  * Update the dcache to reflect the move of a file name. Negative
2775  * dcache entries should not be moved in this way. Caller must hold
2776  * rename_lock, the i_mutex of the source and target directories,
2777  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2778  */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2779 static void __d_move(struct dentry *dentry, struct dentry *target,
2780 		     bool exchange)
2781 {
2782 	struct dentry *old_parent, *p;
2783 	wait_queue_head_t *d_wait;
2784 	struct inode *dir = NULL;
2785 	unsigned n;
2786 
2787 	WARN_ON(!dentry->d_inode);
2788 	if (WARN_ON(dentry == target))
2789 		return;
2790 
2791 	BUG_ON(d_ancestor(target, dentry));
2792 	old_parent = dentry->d_parent;
2793 	p = d_ancestor(old_parent, target);
2794 	if (IS_ROOT(dentry)) {
2795 		BUG_ON(p);
2796 		spin_lock(&target->d_parent->d_lock);
2797 	} else if (!p) {
2798 		/* target is not a descendent of dentry->d_parent */
2799 		spin_lock(&target->d_parent->d_lock);
2800 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2801 	} else {
2802 		BUG_ON(p == dentry);
2803 		spin_lock(&old_parent->d_lock);
2804 		if (p != target)
2805 			spin_lock_nested(&target->d_parent->d_lock,
2806 					DENTRY_D_LOCK_NESTED);
2807 	}
2808 	spin_lock_nested(&dentry->d_lock, 2);
2809 	spin_lock_nested(&target->d_lock, 3);
2810 
2811 	if (unlikely(d_in_lookup(target))) {
2812 		dir = target->d_parent->d_inode;
2813 		n = start_dir_add(dir);
2814 		d_wait = __d_lookup_unhash(target);
2815 	}
2816 
2817 	write_seqcount_begin(&dentry->d_seq);
2818 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2819 
2820 	/* unhash both */
2821 	if (!d_unhashed(dentry))
2822 		___d_drop(dentry);
2823 	if (!d_unhashed(target))
2824 		___d_drop(target);
2825 
2826 	/* ... and switch them in the tree */
2827 	dentry->d_parent = target->d_parent;
2828 	if (!exchange) {
2829 		copy_name(dentry, target);
2830 		target->d_hash.pprev = NULL;
2831 		dentry->d_parent->d_lockref.count++;
2832 		if (dentry != old_parent) /* wasn't IS_ROOT */
2833 			WARN_ON(!--old_parent->d_lockref.count);
2834 	} else {
2835 		target->d_parent = old_parent;
2836 		swap_names(dentry, target);
2837 		if (!hlist_unhashed(&target->d_sib))
2838 			__hlist_del(&target->d_sib);
2839 		hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2840 		__d_rehash(target);
2841 		fsnotify_update_flags(target);
2842 	}
2843 	if (!hlist_unhashed(&dentry->d_sib))
2844 		__hlist_del(&dentry->d_sib);
2845 	hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2846 	__d_rehash(dentry);
2847 	fsnotify_update_flags(dentry);
2848 	fscrypt_handle_d_move(dentry);
2849 
2850 	write_seqcount_end(&target->d_seq);
2851 	write_seqcount_end(&dentry->d_seq);
2852 
2853 	if (dir)
2854 		end_dir_add(dir, n, d_wait);
2855 
2856 	if (dentry->d_parent != old_parent)
2857 		spin_unlock(&dentry->d_parent->d_lock);
2858 	if (dentry != old_parent)
2859 		spin_unlock(&old_parent->d_lock);
2860 	spin_unlock(&target->d_lock);
2861 	spin_unlock(&dentry->d_lock);
2862 }
2863 
2864 /*
2865  * d_move - move a dentry
2866  * @dentry: entry to move
2867  * @target: new dentry
2868  *
2869  * Update the dcache to reflect the move of a file name. Negative
2870  * dcache entries should not be moved in this way. See the locking
2871  * requirements for __d_move.
2872  */
d_move(struct dentry * dentry,struct dentry * target)2873 void d_move(struct dentry *dentry, struct dentry *target)
2874 {
2875 	write_seqlock(&rename_lock);
2876 	__d_move(dentry, target, false);
2877 	write_sequnlock(&rename_lock);
2878 }
2879 EXPORT_SYMBOL(d_move);
2880 
2881 /*
2882  * d_exchange - exchange two dentries
2883  * @dentry1: first dentry
2884  * @dentry2: second dentry
2885  */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2886 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2887 {
2888 	write_seqlock(&rename_lock);
2889 
2890 	WARN_ON(!dentry1->d_inode);
2891 	WARN_ON(!dentry2->d_inode);
2892 	WARN_ON(IS_ROOT(dentry1));
2893 	WARN_ON(IS_ROOT(dentry2));
2894 
2895 	__d_move(dentry1, dentry2, true);
2896 
2897 	write_sequnlock(&rename_lock);
2898 }
2899 
2900 /**
2901  * d_ancestor - search for an ancestor
2902  * @p1: ancestor dentry
2903  * @p2: child dentry
2904  *
2905  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2906  * an ancestor of p2, else NULL.
2907  */
d_ancestor(struct dentry * p1,struct dentry * p2)2908 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2909 {
2910 	struct dentry *p;
2911 
2912 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2913 		if (p->d_parent == p1)
2914 			return p;
2915 	}
2916 	return NULL;
2917 }
2918 
2919 /*
2920  * This helper attempts to cope with remotely renamed directories
2921  *
2922  * It assumes that the caller is already holding
2923  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2924  *
2925  * Note: If ever the locking in lock_rename() changes, then please
2926  * remember to update this too...
2927  */
__d_unalias(struct dentry * dentry,struct dentry * alias)2928 static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2929 {
2930 	struct mutex *m1 = NULL;
2931 	struct rw_semaphore *m2 = NULL;
2932 	int ret = -ESTALE;
2933 
2934 	/* If alias and dentry share a parent, then no extra locks required */
2935 	if (alias->d_parent == dentry->d_parent)
2936 		goto out_unalias;
2937 
2938 	/* See lock_rename() */
2939 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2940 		goto out_err;
2941 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2942 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2943 		goto out_err;
2944 	m2 = &alias->d_parent->d_inode->i_rwsem;
2945 out_unalias:
2946 	__d_move(alias, dentry, false);
2947 	ret = 0;
2948 out_err:
2949 	if (m2)
2950 		up_read(m2);
2951 	if (m1)
2952 		mutex_unlock(m1);
2953 	return ret;
2954 }
2955 
2956 /**
2957  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2958  * @inode:  the inode which may have a disconnected dentry
2959  * @dentry: a negative dentry which we want to point to the inode.
2960  *
2961  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2962  * place of the given dentry and return it, else simply d_add the inode
2963  * to the dentry and return NULL.
2964  *
2965  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2966  * we should error out: directories can't have multiple aliases.
2967  *
2968  * This is needed in the lookup routine of any filesystem that is exportable
2969  * (via knfsd) so that we can build dcache paths to directories effectively.
2970  *
2971  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2972  * is returned.  This matches the expected return value of ->lookup.
2973  *
2974  * Cluster filesystems may call this function with a negative, hashed dentry.
2975  * In that case, we know that the inode will be a regular file, and also this
2976  * will only occur during atomic_open. So we need to check for the dentry
2977  * being already hashed only in the final case.
2978  */
d_splice_alias(struct inode * inode,struct dentry * dentry)2979 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2980 {
2981 	if (IS_ERR(inode))
2982 		return ERR_CAST(inode);
2983 
2984 	BUG_ON(!d_unhashed(dentry));
2985 
2986 	if (!inode)
2987 		goto out;
2988 
2989 	security_d_instantiate(dentry, inode);
2990 	spin_lock(&inode->i_lock);
2991 	if (S_ISDIR(inode->i_mode)) {
2992 		struct dentry *new = __d_find_any_alias(inode);
2993 		if (unlikely(new)) {
2994 			/* The reference to new ensures it remains an alias */
2995 			spin_unlock(&inode->i_lock);
2996 			write_seqlock(&rename_lock);
2997 			if (unlikely(d_ancestor(new, dentry))) {
2998 				write_sequnlock(&rename_lock);
2999 				dput(new);
3000 				new = ERR_PTR(-ELOOP);
3001 				pr_warn_ratelimited(
3002 					"VFS: Lookup of '%s' in %s %s"
3003 					" would have caused loop\n",
3004 					dentry->d_name.name,
3005 					inode->i_sb->s_type->name,
3006 					inode->i_sb->s_id);
3007 			} else if (!IS_ROOT(new)) {
3008 				struct dentry *old_parent = dget(new->d_parent);
3009 				int err = __d_unalias(dentry, new);
3010 				write_sequnlock(&rename_lock);
3011 				if (err) {
3012 					dput(new);
3013 					new = ERR_PTR(err);
3014 				}
3015 				dput(old_parent);
3016 			} else {
3017 				__d_move(new, dentry, false);
3018 				write_sequnlock(&rename_lock);
3019 			}
3020 			iput(inode);
3021 			return new;
3022 		}
3023 	}
3024 out:
3025 	__d_add(dentry, inode);
3026 	return NULL;
3027 }
3028 EXPORT_SYMBOL(d_splice_alias);
3029 
3030 /*
3031  * Test whether new_dentry is a subdirectory of old_dentry.
3032  *
3033  * Trivially implemented using the dcache structure
3034  */
3035 
3036 /**
3037  * is_subdir - is new dentry a subdirectory of old_dentry
3038  * @new_dentry: new dentry
3039  * @old_dentry: old dentry
3040  *
3041  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3042  * Returns false otherwise.
3043  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3044  */
3045 
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3046 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3047 {
3048 	bool subdir;
3049 	unsigned seq;
3050 
3051 	if (new_dentry == old_dentry)
3052 		return true;
3053 
3054 	/* Access d_parent under rcu as d_move() may change it. */
3055 	rcu_read_lock();
3056 	seq = read_seqbegin(&rename_lock);
3057 	subdir = d_ancestor(old_dentry, new_dentry);
3058 	 /* Try lockless once... */
3059 	if (read_seqretry(&rename_lock, seq)) {
3060 		/* ...else acquire lock for progress even on deep chains. */
3061 		read_seqlock_excl(&rename_lock);
3062 		subdir = d_ancestor(old_dentry, new_dentry);
3063 		read_sequnlock_excl(&rename_lock);
3064 	}
3065 	rcu_read_unlock();
3066 	return subdir;
3067 }
3068 EXPORT_SYMBOL(is_subdir);
3069 
d_genocide_kill(void * data,struct dentry * dentry)3070 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3071 {
3072 	struct dentry *root = data;
3073 	if (dentry != root) {
3074 		if (d_unhashed(dentry) || !dentry->d_inode)
3075 			return D_WALK_SKIP;
3076 
3077 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3078 			dentry->d_flags |= DCACHE_GENOCIDE;
3079 			dentry->d_lockref.count--;
3080 		}
3081 	}
3082 	return D_WALK_CONTINUE;
3083 }
3084 
d_genocide(struct dentry * parent)3085 void d_genocide(struct dentry *parent)
3086 {
3087 	d_walk(parent, parent, d_genocide_kill);
3088 }
3089 
d_mark_tmpfile(struct file * file,struct inode * inode)3090 void d_mark_tmpfile(struct file *file, struct inode *inode)
3091 {
3092 	struct dentry *dentry = file->f_path.dentry;
3093 
3094 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3095 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3096 		!d_unlinked(dentry));
3097 	spin_lock(&dentry->d_parent->d_lock);
3098 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3099 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3100 				(unsigned long long)inode->i_ino);
3101 	spin_unlock(&dentry->d_lock);
3102 	spin_unlock(&dentry->d_parent->d_lock);
3103 }
3104 EXPORT_SYMBOL(d_mark_tmpfile);
3105 
d_tmpfile(struct file * file,struct inode * inode)3106 void d_tmpfile(struct file *file, struct inode *inode)
3107 {
3108 	struct dentry *dentry = file->f_path.dentry;
3109 
3110 	inode_dec_link_count(inode);
3111 	d_mark_tmpfile(file, inode);
3112 	d_instantiate(dentry, inode);
3113 }
3114 EXPORT_SYMBOL(d_tmpfile);
3115 
3116 /*
3117  * Obtain inode number of the parent dentry.
3118  */
d_parent_ino(struct dentry * dentry)3119 ino_t d_parent_ino(struct dentry *dentry)
3120 {
3121 	struct dentry *parent;
3122 	struct inode *iparent;
3123 	unsigned seq;
3124 	ino_t ret;
3125 
3126 	scoped_guard(rcu) {
3127 		seq = raw_seqcount_begin(&dentry->d_seq);
3128 		parent = READ_ONCE(dentry->d_parent);
3129 		iparent = d_inode_rcu(parent);
3130 		if (likely(iparent)) {
3131 			ret = iparent->i_ino;
3132 			if (!read_seqcount_retry(&dentry->d_seq, seq))
3133 				return ret;
3134 		}
3135 	}
3136 
3137 	spin_lock(&dentry->d_lock);
3138 	ret = dentry->d_parent->d_inode->i_ino;
3139 	spin_unlock(&dentry->d_lock);
3140 	return ret;
3141 }
3142 EXPORT_SYMBOL(d_parent_ino);
3143 
3144 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3145 static int __init set_dhash_entries(char *str)
3146 {
3147 	if (!str)
3148 		return 0;
3149 	dhash_entries = simple_strtoul(str, &str, 0);
3150 	return 1;
3151 }
3152 __setup("dhash_entries=", set_dhash_entries);
3153 
dcache_init_early(void)3154 static void __init dcache_init_early(void)
3155 {
3156 	/* If hashes are distributed across NUMA nodes, defer
3157 	 * hash allocation until vmalloc space is available.
3158 	 */
3159 	if (hashdist)
3160 		return;
3161 
3162 	dentry_hashtable =
3163 		alloc_large_system_hash("Dentry cache",
3164 					sizeof(struct hlist_bl_head),
3165 					dhash_entries,
3166 					13,
3167 					HASH_EARLY | HASH_ZERO,
3168 					&d_hash_shift,
3169 					NULL,
3170 					0,
3171 					0);
3172 	d_hash_shift = 32 - d_hash_shift;
3173 
3174 	runtime_const_init(shift, d_hash_shift);
3175 	runtime_const_init(ptr, dentry_hashtable);
3176 }
3177 
dcache_init(void)3178 static void __init dcache_init(void)
3179 {
3180 	/*
3181 	 * A constructor could be added for stable state like the lists,
3182 	 * but it is probably not worth it because of the cache nature
3183 	 * of the dcache.
3184 	 */
3185 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3186 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3187 		d_iname);
3188 
3189 	/* Hash may have been set up in dcache_init_early */
3190 	if (!hashdist)
3191 		return;
3192 
3193 	dentry_hashtable =
3194 		alloc_large_system_hash("Dentry cache",
3195 					sizeof(struct hlist_bl_head),
3196 					dhash_entries,
3197 					13,
3198 					HASH_ZERO,
3199 					&d_hash_shift,
3200 					NULL,
3201 					0,
3202 					0);
3203 	d_hash_shift = 32 - d_hash_shift;
3204 
3205 	runtime_const_init(shift, d_hash_shift);
3206 	runtime_const_init(ptr, dentry_hashtable);
3207 }
3208 
3209 /* SLAB cache for __getname() consumers */
3210 struct kmem_cache *names_cachep __ro_after_init;
3211 EXPORT_SYMBOL(names_cachep);
3212 
vfs_caches_init_early(void)3213 void __init vfs_caches_init_early(void)
3214 {
3215 	int i;
3216 
3217 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3218 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3219 
3220 	dcache_init_early();
3221 	inode_init_early();
3222 }
3223 
vfs_caches_init(void)3224 void __init vfs_caches_init(void)
3225 {
3226 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3227 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3228 
3229 	dcache_init();
3230 	inode_init();
3231 	files_init();
3232 	files_maxfiles_init();
3233 	mnt_init();
3234 	bdev_cache_init();
3235 	chrdev_init();
3236 }
3237