1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "dev-replace.h"
16 #include "space-info.h"
17 #include "fs.h"
18 #include "accessors.h"
19 #include "bio.h"
20
21 /* Maximum number of zones to report per blkdev_report_zones() call */
22 #define BTRFS_REPORT_NR_ZONES 4096
23 /* Invalid allocation pointer value for missing devices */
24 #define WP_MISSING_DEV ((u64)-1)
25 /* Pseudo write pointer value for conventional zone */
26 #define WP_CONVENTIONAL ((u64)-2)
27
28 /*
29 * Location of the first zone of superblock logging zone pairs.
30 *
31 * - primary superblock: 0B (zone 0)
32 * - first copy: 512G (zone starting at that offset)
33 * - second copy: 4T (zone starting at that offset)
34 */
35 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
36 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
37 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
38
39 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
40 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
41
42 /* Number of superblock log zones */
43 #define BTRFS_NR_SB_LOG_ZONES 2
44
45 /*
46 * Minimum of active zones we need:
47 *
48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
50 * - 1 zone for tree-log dedicated block group
51 * - 1 zone for relocation
52 */
53 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
54
55 /*
56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
58 * We do not expect the zone size to become larger than 8GiB or smaller than
59 * 4MiB in the near future.
60 */
61 #define BTRFS_MAX_ZONE_SIZE SZ_8G
62 #define BTRFS_MIN_ZONE_SIZE SZ_4M
63
64 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
65
66 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
67 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
68
sb_zone_is_full(const struct blk_zone * zone)69 static inline bool sb_zone_is_full(const struct blk_zone *zone)
70 {
71 return (zone->cond == BLK_ZONE_COND_FULL) ||
72 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
73 }
74
copy_zone_info_cb(struct blk_zone * zone,unsigned int idx,void * data)75 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
76 {
77 struct blk_zone *zones = data;
78
79 memcpy(&zones[idx], zone, sizeof(*zone));
80
81 return 0;
82 }
83
sb_write_pointer(struct block_device * bdev,struct blk_zone * zones,u64 * wp_ret)84 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
85 u64 *wp_ret)
86 {
87 bool empty[BTRFS_NR_SB_LOG_ZONES];
88 bool full[BTRFS_NR_SB_LOG_ZONES];
89 sector_t sector;
90
91 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
92 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
93 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
94 full[i] = sb_zone_is_full(&zones[i]);
95 }
96
97 /*
98 * Possible states of log buffer zones
99 *
100 * Empty[0] In use[0] Full[0]
101 * Empty[1] * 0 1
102 * In use[1] x x 1
103 * Full[1] 0 0 C
104 *
105 * Log position:
106 * *: Special case, no superblock is written
107 * 0: Use write pointer of zones[0]
108 * 1: Use write pointer of zones[1]
109 * C: Compare super blocks from zones[0] and zones[1], use the latest
110 * one determined by generation
111 * x: Invalid state
112 */
113
114 if (empty[0] && empty[1]) {
115 /* Special case to distinguish no superblock to read */
116 *wp_ret = zones[0].start << SECTOR_SHIFT;
117 return -ENOENT;
118 } else if (full[0] && full[1]) {
119 /* Compare two super blocks */
120 struct address_space *mapping = bdev->bd_mapping;
121 struct page *page[BTRFS_NR_SB_LOG_ZONES];
122 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
123
124 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
125 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
126 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
127 BTRFS_SUPER_INFO_SIZE;
128
129 page[i] = read_cache_page_gfp(mapping,
130 bytenr >> PAGE_SHIFT, GFP_NOFS);
131 if (IS_ERR(page[i])) {
132 if (i == 1)
133 btrfs_release_disk_super(super[0]);
134 return PTR_ERR(page[i]);
135 }
136 super[i] = page_address(page[i]);
137 }
138
139 if (btrfs_super_generation(super[0]) >
140 btrfs_super_generation(super[1]))
141 sector = zones[1].start;
142 else
143 sector = zones[0].start;
144
145 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
146 btrfs_release_disk_super(super[i]);
147 } else if (!full[0] && (empty[1] || full[1])) {
148 sector = zones[0].wp;
149 } else if (full[0]) {
150 sector = zones[1].wp;
151 } else {
152 return -EUCLEAN;
153 }
154 *wp_ret = sector << SECTOR_SHIFT;
155 return 0;
156 }
157
158 /*
159 * Get the first zone number of the superblock mirror
160 */
sb_zone_number(int shift,int mirror)161 static inline u32 sb_zone_number(int shift, int mirror)
162 {
163 u64 zone = U64_MAX;
164
165 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
166 switch (mirror) {
167 case 0: zone = 0; break;
168 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
169 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
170 }
171
172 ASSERT(zone <= U32_MAX);
173
174 return (u32)zone;
175 }
176
zone_start_sector(u32 zone_number,struct block_device * bdev)177 static inline sector_t zone_start_sector(u32 zone_number,
178 struct block_device *bdev)
179 {
180 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
181 }
182
zone_start_physical(u32 zone_number,struct btrfs_zoned_device_info * zone_info)183 static inline u64 zone_start_physical(u32 zone_number,
184 struct btrfs_zoned_device_info *zone_info)
185 {
186 return (u64)zone_number << zone_info->zone_size_shift;
187 }
188
189 /*
190 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
191 * device into static sized chunks and fake a conventional zone on each of
192 * them.
193 */
emulate_report_zones(struct btrfs_device * device,u64 pos,struct blk_zone * zones,unsigned int nr_zones)194 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
195 struct blk_zone *zones, unsigned int nr_zones)
196 {
197 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
198 sector_t bdev_size = bdev_nr_sectors(device->bdev);
199 unsigned int i;
200
201 pos >>= SECTOR_SHIFT;
202 for (i = 0; i < nr_zones; i++) {
203 zones[i].start = i * zone_sectors + pos;
204 zones[i].len = zone_sectors;
205 zones[i].capacity = zone_sectors;
206 zones[i].wp = zones[i].start + zone_sectors;
207 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
208 zones[i].cond = BLK_ZONE_COND_NOT_WP;
209
210 if (zones[i].wp >= bdev_size) {
211 i++;
212 break;
213 }
214 }
215
216 return i;
217 }
218
btrfs_get_dev_zones(struct btrfs_device * device,u64 pos,struct blk_zone * zones,unsigned int * nr_zones)219 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
220 struct blk_zone *zones, unsigned int *nr_zones)
221 {
222 struct btrfs_zoned_device_info *zinfo = device->zone_info;
223 int ret;
224
225 if (!*nr_zones)
226 return 0;
227
228 if (!bdev_is_zoned(device->bdev)) {
229 ret = emulate_report_zones(device, pos, zones, *nr_zones);
230 *nr_zones = ret;
231 return 0;
232 }
233
234 /* Check cache */
235 if (zinfo->zone_cache) {
236 unsigned int i;
237 u32 zno;
238
239 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
240 zno = pos >> zinfo->zone_size_shift;
241 /*
242 * We cannot report zones beyond the zone end. So, it is OK to
243 * cap *nr_zones to at the end.
244 */
245 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
246
247 for (i = 0; i < *nr_zones; i++) {
248 struct blk_zone *zone_info;
249
250 zone_info = &zinfo->zone_cache[zno + i];
251 if (!zone_info->len)
252 break;
253 }
254
255 if (i == *nr_zones) {
256 /* Cache hit on all the zones */
257 memcpy(zones, zinfo->zone_cache + zno,
258 sizeof(*zinfo->zone_cache) * *nr_zones);
259 return 0;
260 }
261 }
262
263 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
264 copy_zone_info_cb, zones);
265 if (ret < 0) {
266 btrfs_err_in_rcu(device->fs_info,
267 "zoned: failed to read zone %llu on %s (devid %llu)",
268 pos, rcu_str_deref(device->name),
269 device->devid);
270 return ret;
271 }
272 *nr_zones = ret;
273 if (!ret)
274 return -EIO;
275
276 /* Populate cache */
277 if (zinfo->zone_cache) {
278 u32 zno = pos >> zinfo->zone_size_shift;
279
280 memcpy(zinfo->zone_cache + zno, zones,
281 sizeof(*zinfo->zone_cache) * *nr_zones);
282 }
283
284 return 0;
285 }
286
287 /* The emulated zone size is determined from the size of device extent */
calculate_emulated_zone_size(struct btrfs_fs_info * fs_info)288 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
289 {
290 BTRFS_PATH_AUTO_FREE(path);
291 struct btrfs_root *root = fs_info->dev_root;
292 struct btrfs_key key;
293 struct extent_buffer *leaf;
294 struct btrfs_dev_extent *dext;
295 int ret = 0;
296
297 key.objectid = 1;
298 key.type = BTRFS_DEV_EXTENT_KEY;
299 key.offset = 0;
300
301 path = btrfs_alloc_path();
302 if (!path)
303 return -ENOMEM;
304
305 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
306 if (ret < 0)
307 return ret;
308
309 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
310 ret = btrfs_next_leaf(root, path);
311 if (ret < 0)
312 return ret;
313 /* No dev extents at all? Not good */
314 if (ret > 0)
315 return -EUCLEAN;
316 }
317
318 leaf = path->nodes[0];
319 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
320 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
321 return 0;
322 }
323
btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info * fs_info)324 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
325 {
326 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
327 struct btrfs_device *device;
328 int ret = 0;
329
330 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
331 if (!btrfs_fs_incompat(fs_info, ZONED))
332 return 0;
333
334 mutex_lock(&fs_devices->device_list_mutex);
335 list_for_each_entry(device, &fs_devices->devices, dev_list) {
336 /* We can skip reading of zone info for missing devices */
337 if (!device->bdev)
338 continue;
339
340 ret = btrfs_get_dev_zone_info(device, true);
341 if (ret)
342 break;
343 }
344 mutex_unlock(&fs_devices->device_list_mutex);
345
346 return ret;
347 }
348
btrfs_get_dev_zone_info(struct btrfs_device * device,bool populate_cache)349 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
350 {
351 struct btrfs_fs_info *fs_info = device->fs_info;
352 struct btrfs_zoned_device_info *zone_info = NULL;
353 struct block_device *bdev = device->bdev;
354 unsigned int max_active_zones;
355 unsigned int nactive;
356 sector_t nr_sectors;
357 sector_t sector = 0;
358 struct blk_zone *zones = NULL;
359 unsigned int i, nreported = 0, nr_zones;
360 sector_t zone_sectors;
361 char *model, *emulated;
362 int ret;
363
364 /*
365 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
366 * yet be set.
367 */
368 if (!btrfs_fs_incompat(fs_info, ZONED))
369 return 0;
370
371 if (device->zone_info)
372 return 0;
373
374 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
375 if (!zone_info)
376 return -ENOMEM;
377
378 device->zone_info = zone_info;
379
380 if (!bdev_is_zoned(bdev)) {
381 if (!fs_info->zone_size) {
382 ret = calculate_emulated_zone_size(fs_info);
383 if (ret)
384 goto out;
385 }
386
387 ASSERT(fs_info->zone_size);
388 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
389 } else {
390 zone_sectors = bdev_zone_sectors(bdev);
391 }
392
393 ASSERT(is_power_of_two_u64(zone_sectors));
394 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
395
396 /* We reject devices with a zone size larger than 8GB */
397 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
398 btrfs_err_in_rcu(fs_info,
399 "zoned: %s: zone size %llu larger than supported maximum %llu",
400 rcu_str_deref(device->name),
401 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
402 ret = -EINVAL;
403 goto out;
404 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
405 btrfs_err_in_rcu(fs_info,
406 "zoned: %s: zone size %llu smaller than supported minimum %u",
407 rcu_str_deref(device->name),
408 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
409 ret = -EINVAL;
410 goto out;
411 }
412
413 nr_sectors = bdev_nr_sectors(bdev);
414 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
415 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
416 if (!IS_ALIGNED(nr_sectors, zone_sectors))
417 zone_info->nr_zones++;
418
419 max_active_zones = bdev_max_active_zones(bdev);
420 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
421 btrfs_err_in_rcu(fs_info,
422 "zoned: %s: max active zones %u is too small, need at least %u active zones",
423 rcu_str_deref(device->name), max_active_zones,
424 BTRFS_MIN_ACTIVE_ZONES);
425 ret = -EINVAL;
426 goto out;
427 }
428 zone_info->max_active_zones = max_active_zones;
429
430 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
431 if (!zone_info->seq_zones) {
432 ret = -ENOMEM;
433 goto out;
434 }
435
436 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
437 if (!zone_info->empty_zones) {
438 ret = -ENOMEM;
439 goto out;
440 }
441
442 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
443 if (!zone_info->active_zones) {
444 ret = -ENOMEM;
445 goto out;
446 }
447
448 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
449 if (!zones) {
450 ret = -ENOMEM;
451 goto out;
452 }
453
454 /*
455 * Enable zone cache only for a zoned device. On a non-zoned device, we
456 * fill the zone info with emulated CONVENTIONAL zones, so no need to
457 * use the cache.
458 */
459 if (populate_cache && bdev_is_zoned(device->bdev)) {
460 zone_info->zone_cache = vcalloc(zone_info->nr_zones,
461 sizeof(struct blk_zone));
462 if (!zone_info->zone_cache) {
463 btrfs_err_in_rcu(device->fs_info,
464 "zoned: failed to allocate zone cache for %s",
465 rcu_str_deref(device->name));
466 ret = -ENOMEM;
467 goto out;
468 }
469 }
470
471 /* Get zones type */
472 nactive = 0;
473 while (sector < nr_sectors) {
474 nr_zones = BTRFS_REPORT_NR_ZONES;
475 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
476 &nr_zones);
477 if (ret)
478 goto out;
479
480 for (i = 0; i < nr_zones; i++) {
481 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
482 __set_bit(nreported, zone_info->seq_zones);
483 switch (zones[i].cond) {
484 case BLK_ZONE_COND_EMPTY:
485 __set_bit(nreported, zone_info->empty_zones);
486 break;
487 case BLK_ZONE_COND_IMP_OPEN:
488 case BLK_ZONE_COND_EXP_OPEN:
489 case BLK_ZONE_COND_CLOSED:
490 __set_bit(nreported, zone_info->active_zones);
491 nactive++;
492 break;
493 }
494 nreported++;
495 }
496 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
497 }
498
499 if (nreported != zone_info->nr_zones) {
500 btrfs_err_in_rcu(device->fs_info,
501 "inconsistent number of zones on %s (%u/%u)",
502 rcu_str_deref(device->name), nreported,
503 zone_info->nr_zones);
504 ret = -EIO;
505 goto out;
506 }
507
508 if (max_active_zones) {
509 if (nactive > max_active_zones) {
510 btrfs_err_in_rcu(device->fs_info,
511 "zoned: %u active zones on %s exceeds max_active_zones %u",
512 nactive, rcu_str_deref(device->name),
513 max_active_zones);
514 ret = -EIO;
515 goto out;
516 }
517 atomic_set(&zone_info->active_zones_left,
518 max_active_zones - nactive);
519 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
520 }
521
522 /* Validate superblock log */
523 nr_zones = BTRFS_NR_SB_LOG_ZONES;
524 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
525 u32 sb_zone;
526 u64 sb_wp;
527 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
528
529 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
530 if (sb_zone + 1 >= zone_info->nr_zones)
531 continue;
532
533 ret = btrfs_get_dev_zones(device,
534 zone_start_physical(sb_zone, zone_info),
535 &zone_info->sb_zones[sb_pos],
536 &nr_zones);
537 if (ret)
538 goto out;
539
540 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
541 btrfs_err_in_rcu(device->fs_info,
542 "zoned: failed to read super block log zone info at devid %llu zone %u",
543 device->devid, sb_zone);
544 ret = -EUCLEAN;
545 goto out;
546 }
547
548 /*
549 * If zones[0] is conventional, always use the beginning of the
550 * zone to record superblock. No need to validate in that case.
551 */
552 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
553 BLK_ZONE_TYPE_CONVENTIONAL)
554 continue;
555
556 ret = sb_write_pointer(device->bdev,
557 &zone_info->sb_zones[sb_pos], &sb_wp);
558 if (ret != -ENOENT && ret) {
559 btrfs_err_in_rcu(device->fs_info,
560 "zoned: super block log zone corrupted devid %llu zone %u",
561 device->devid, sb_zone);
562 ret = -EUCLEAN;
563 goto out;
564 }
565 }
566
567
568 kvfree(zones);
569
570 if (bdev_is_zoned(bdev)) {
571 model = "host-managed zoned";
572 emulated = "";
573 } else {
574 model = "regular";
575 emulated = "emulated ";
576 }
577
578 btrfs_info_in_rcu(fs_info,
579 "%s block device %s, %u %szones of %llu bytes",
580 model, rcu_str_deref(device->name), zone_info->nr_zones,
581 emulated, zone_info->zone_size);
582
583 return 0;
584
585 out:
586 kvfree(zones);
587 btrfs_destroy_dev_zone_info(device);
588 return ret;
589 }
590
btrfs_destroy_dev_zone_info(struct btrfs_device * device)591 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
592 {
593 struct btrfs_zoned_device_info *zone_info = device->zone_info;
594
595 if (!zone_info)
596 return;
597
598 bitmap_free(zone_info->active_zones);
599 bitmap_free(zone_info->seq_zones);
600 bitmap_free(zone_info->empty_zones);
601 vfree(zone_info->zone_cache);
602 kfree(zone_info);
603 device->zone_info = NULL;
604 }
605
btrfs_clone_dev_zone_info(struct btrfs_device * orig_dev)606 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
607 {
608 struct btrfs_zoned_device_info *zone_info;
609
610 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
611 if (!zone_info)
612 return NULL;
613
614 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
615 if (!zone_info->seq_zones)
616 goto out;
617
618 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
619 zone_info->nr_zones);
620
621 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
622 if (!zone_info->empty_zones)
623 goto out;
624
625 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
626 zone_info->nr_zones);
627
628 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
629 if (!zone_info->active_zones)
630 goto out;
631
632 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
633 zone_info->nr_zones);
634 zone_info->zone_cache = NULL;
635
636 return zone_info;
637
638 out:
639 bitmap_free(zone_info->seq_zones);
640 bitmap_free(zone_info->empty_zones);
641 bitmap_free(zone_info->active_zones);
642 kfree(zone_info);
643 return NULL;
644 }
645
btrfs_get_dev_zone(struct btrfs_device * device,u64 pos,struct blk_zone * zone)646 static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone)
647 {
648 unsigned int nr_zones = 1;
649 int ret;
650
651 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
652 if (ret != 0 || !nr_zones)
653 return ret ? ret : -EIO;
654
655 return 0;
656 }
657
btrfs_check_for_zoned_device(struct btrfs_fs_info * fs_info)658 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
659 {
660 struct btrfs_device *device;
661
662 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
663 if (device->bdev && bdev_is_zoned(device->bdev)) {
664 btrfs_err(fs_info,
665 "zoned: mode not enabled but zoned device found: %pg",
666 device->bdev);
667 return -EINVAL;
668 }
669 }
670
671 return 0;
672 }
673
btrfs_check_zoned_mode(struct btrfs_fs_info * fs_info)674 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
675 {
676 struct queue_limits *lim = &fs_info->limits;
677 struct btrfs_device *device;
678 u64 zone_size = 0;
679 int ret;
680
681 /*
682 * Host-Managed devices can't be used without the ZONED flag. With the
683 * ZONED all devices can be used, using zone emulation if required.
684 */
685 if (!btrfs_fs_incompat(fs_info, ZONED))
686 return btrfs_check_for_zoned_device(fs_info);
687
688 blk_set_stacking_limits(lim);
689
690 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
691 struct btrfs_zoned_device_info *zone_info = device->zone_info;
692
693 if (!device->bdev)
694 continue;
695
696 if (!zone_size) {
697 zone_size = zone_info->zone_size;
698 } else if (zone_info->zone_size != zone_size) {
699 btrfs_err(fs_info,
700 "zoned: unequal block device zone sizes: have %llu found %llu",
701 zone_info->zone_size, zone_size);
702 return -EINVAL;
703 }
704
705 /*
706 * With the zoned emulation, we can have non-zoned device on the
707 * zoned mode. In this case, we don't have a valid max zone
708 * append size.
709 */
710 if (bdev_is_zoned(device->bdev)) {
711 blk_stack_limits(lim,
712 &bdev_get_queue(device->bdev)->limits,
713 0);
714 }
715 }
716
717 /*
718 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
719 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
720 * check the alignment here.
721 */
722 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
723 btrfs_err(fs_info,
724 "zoned: zone size %llu not aligned to stripe %u",
725 zone_size, BTRFS_STRIPE_LEN);
726 return -EINVAL;
727 }
728
729 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
730 btrfs_err(fs_info, "zoned: mixed block groups not supported");
731 return -EINVAL;
732 }
733
734 fs_info->zone_size = zone_size;
735 /*
736 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
737 * Technically, we can have multiple pages per segment. But, since
738 * we add the pages one by one to a bio, and cannot increase the
739 * metadata reservation even if it increases the number of extents, it
740 * is safe to stick with the limit.
741 */
742 fs_info->max_zone_append_size = ALIGN_DOWN(
743 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
744 (u64)lim->max_sectors << SECTOR_SHIFT,
745 (u64)lim->max_segments << PAGE_SHIFT),
746 fs_info->sectorsize);
747 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
748 if (fs_info->max_zone_append_size < fs_info->max_extent_size)
749 fs_info->max_extent_size = fs_info->max_zone_append_size;
750
751 /*
752 * Check mount options here, because we might change fs_info->zoned
753 * from fs_info->zone_size.
754 */
755 ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
756 if (ret)
757 return ret;
758
759 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
760 return 0;
761 }
762
btrfs_check_mountopts_zoned(const struct btrfs_fs_info * info,unsigned long long * mount_opt)763 int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info,
764 unsigned long long *mount_opt)
765 {
766 if (!btrfs_is_zoned(info))
767 return 0;
768
769 /*
770 * Space cache writing is not COWed. Disable that to avoid write errors
771 * in sequential zones.
772 */
773 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
774 btrfs_err(info, "zoned: space cache v1 is not supported");
775 return -EINVAL;
776 }
777
778 if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
779 btrfs_err(info, "zoned: NODATACOW not supported");
780 return -EINVAL;
781 }
782
783 if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
784 btrfs_info(info,
785 "zoned: async discard ignored and disabled for zoned mode");
786 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
787 }
788
789 return 0;
790 }
791
sb_log_location(struct block_device * bdev,struct blk_zone * zones,int rw,u64 * bytenr_ret)792 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
793 int rw, u64 *bytenr_ret)
794 {
795 u64 wp;
796 int ret;
797
798 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
799 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
800 return 0;
801 }
802
803 ret = sb_write_pointer(bdev, zones, &wp);
804 if (ret != -ENOENT && ret < 0)
805 return ret;
806
807 if (rw == WRITE) {
808 struct blk_zone *reset = NULL;
809
810 if (wp == zones[0].start << SECTOR_SHIFT)
811 reset = &zones[0];
812 else if (wp == zones[1].start << SECTOR_SHIFT)
813 reset = &zones[1];
814
815 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
816 unsigned int nofs_flags;
817
818 ASSERT(sb_zone_is_full(reset));
819
820 nofs_flags = memalloc_nofs_save();
821 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
822 reset->start, reset->len);
823 memalloc_nofs_restore(nofs_flags);
824 if (ret)
825 return ret;
826
827 reset->cond = BLK_ZONE_COND_EMPTY;
828 reset->wp = reset->start;
829 }
830 } else if (ret != -ENOENT) {
831 /*
832 * For READ, we want the previous one. Move write pointer to
833 * the end of a zone, if it is at the head of a zone.
834 */
835 u64 zone_end = 0;
836
837 if (wp == zones[0].start << SECTOR_SHIFT)
838 zone_end = zones[1].start + zones[1].capacity;
839 else if (wp == zones[1].start << SECTOR_SHIFT)
840 zone_end = zones[0].start + zones[0].capacity;
841 if (zone_end)
842 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
843 BTRFS_SUPER_INFO_SIZE);
844
845 wp -= BTRFS_SUPER_INFO_SIZE;
846 }
847
848 *bytenr_ret = wp;
849 return 0;
850
851 }
852
btrfs_sb_log_location_bdev(struct block_device * bdev,int mirror,int rw,u64 * bytenr_ret)853 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
854 u64 *bytenr_ret)
855 {
856 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
857 sector_t zone_sectors;
858 u32 sb_zone;
859 int ret;
860 u8 zone_sectors_shift;
861 sector_t nr_sectors;
862 u32 nr_zones;
863
864 if (!bdev_is_zoned(bdev)) {
865 *bytenr_ret = btrfs_sb_offset(mirror);
866 return 0;
867 }
868
869 ASSERT(rw == READ || rw == WRITE);
870
871 zone_sectors = bdev_zone_sectors(bdev);
872 if (!is_power_of_2(zone_sectors))
873 return -EINVAL;
874 zone_sectors_shift = ilog2(zone_sectors);
875 nr_sectors = bdev_nr_sectors(bdev);
876 nr_zones = nr_sectors >> zone_sectors_shift;
877
878 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
879 if (sb_zone + 1 >= nr_zones)
880 return -ENOENT;
881
882 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
883 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
884 zones);
885 if (ret < 0)
886 return ret;
887 if (ret != BTRFS_NR_SB_LOG_ZONES)
888 return -EIO;
889
890 return sb_log_location(bdev, zones, rw, bytenr_ret);
891 }
892
btrfs_sb_log_location(struct btrfs_device * device,int mirror,int rw,u64 * bytenr_ret)893 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
894 u64 *bytenr_ret)
895 {
896 struct btrfs_zoned_device_info *zinfo = device->zone_info;
897 u32 zone_num;
898
899 /*
900 * For a zoned filesystem on a non-zoned block device, use the same
901 * super block locations as regular filesystem. Doing so, the super
902 * block can always be retrieved and the zoned flag of the volume
903 * detected from the super block information.
904 */
905 if (!bdev_is_zoned(device->bdev)) {
906 *bytenr_ret = btrfs_sb_offset(mirror);
907 return 0;
908 }
909
910 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
911 if (zone_num + 1 >= zinfo->nr_zones)
912 return -ENOENT;
913
914 return sb_log_location(device->bdev,
915 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
916 rw, bytenr_ret);
917 }
918
is_sb_log_zone(struct btrfs_zoned_device_info * zinfo,int mirror)919 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
920 int mirror)
921 {
922 u32 zone_num;
923
924 if (!zinfo)
925 return false;
926
927 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
928 if (zone_num + 1 >= zinfo->nr_zones)
929 return false;
930
931 if (!test_bit(zone_num, zinfo->seq_zones))
932 return false;
933
934 return true;
935 }
936
btrfs_advance_sb_log(struct btrfs_device * device,int mirror)937 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
938 {
939 struct btrfs_zoned_device_info *zinfo = device->zone_info;
940 struct blk_zone *zone;
941 int i;
942
943 if (!is_sb_log_zone(zinfo, mirror))
944 return 0;
945
946 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
947 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
948 /* Advance the next zone */
949 if (zone->cond == BLK_ZONE_COND_FULL) {
950 zone++;
951 continue;
952 }
953
954 if (zone->cond == BLK_ZONE_COND_EMPTY)
955 zone->cond = BLK_ZONE_COND_IMP_OPEN;
956
957 zone->wp += SUPER_INFO_SECTORS;
958
959 if (sb_zone_is_full(zone)) {
960 /*
961 * No room left to write new superblock. Since
962 * superblock is written with REQ_SYNC, it is safe to
963 * finish the zone now.
964 *
965 * If the write pointer is exactly at the capacity,
966 * explicit ZONE_FINISH is not necessary.
967 */
968 if (zone->wp != zone->start + zone->capacity) {
969 unsigned int nofs_flags;
970 int ret;
971
972 nofs_flags = memalloc_nofs_save();
973 ret = blkdev_zone_mgmt(device->bdev,
974 REQ_OP_ZONE_FINISH, zone->start,
975 zone->len);
976 memalloc_nofs_restore(nofs_flags);
977 if (ret)
978 return ret;
979 }
980
981 zone->wp = zone->start + zone->len;
982 zone->cond = BLK_ZONE_COND_FULL;
983 }
984 return 0;
985 }
986
987 /* All the zones are FULL. Should not reach here. */
988 ASSERT(0);
989 return -EIO;
990 }
991
btrfs_reset_sb_log_zones(struct block_device * bdev,int mirror)992 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
993 {
994 unsigned int nofs_flags;
995 sector_t zone_sectors;
996 sector_t nr_sectors;
997 u8 zone_sectors_shift;
998 u32 sb_zone;
999 u32 nr_zones;
1000 int ret;
1001
1002 zone_sectors = bdev_zone_sectors(bdev);
1003 zone_sectors_shift = ilog2(zone_sectors);
1004 nr_sectors = bdev_nr_sectors(bdev);
1005 nr_zones = nr_sectors >> zone_sectors_shift;
1006
1007 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1008 if (sb_zone + 1 >= nr_zones)
1009 return -ENOENT;
1010
1011 nofs_flags = memalloc_nofs_save();
1012 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1013 zone_start_sector(sb_zone, bdev),
1014 zone_sectors * BTRFS_NR_SB_LOG_ZONES);
1015 memalloc_nofs_restore(nofs_flags);
1016 return ret;
1017 }
1018
1019 /*
1020 * Find allocatable zones within a given region.
1021 *
1022 * @device: the device to allocate a region on
1023 * @hole_start: the position of the hole to allocate the region
1024 * @num_bytes: size of wanted region
1025 * @hole_end: the end of the hole
1026 * @return: position of allocatable zones
1027 *
1028 * Allocatable region should not contain any superblock locations.
1029 */
btrfs_find_allocatable_zones(struct btrfs_device * device,u64 hole_start,u64 hole_end,u64 num_bytes)1030 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1031 u64 hole_end, u64 num_bytes)
1032 {
1033 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1034 const u8 shift = zinfo->zone_size_shift;
1035 u64 nzones = num_bytes >> shift;
1036 u64 pos = hole_start;
1037 u64 begin, end;
1038 bool have_sb;
1039 int i;
1040
1041 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1042 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1043
1044 while (pos < hole_end) {
1045 begin = pos >> shift;
1046 end = begin + nzones;
1047
1048 if (end > zinfo->nr_zones)
1049 return hole_end;
1050
1051 /* Check if zones in the region are all empty */
1052 if (btrfs_dev_is_sequential(device, pos) &&
1053 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1054 pos += zinfo->zone_size;
1055 continue;
1056 }
1057
1058 have_sb = false;
1059 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1060 u32 sb_zone;
1061 u64 sb_pos;
1062
1063 sb_zone = sb_zone_number(shift, i);
1064 if (!(end <= sb_zone ||
1065 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1066 have_sb = true;
1067 pos = zone_start_physical(
1068 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1069 break;
1070 }
1071
1072 /* We also need to exclude regular superblock positions */
1073 sb_pos = btrfs_sb_offset(i);
1074 if (!(pos + num_bytes <= sb_pos ||
1075 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1076 have_sb = true;
1077 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1078 zinfo->zone_size);
1079 break;
1080 }
1081 }
1082 if (!have_sb)
1083 break;
1084 }
1085
1086 return pos;
1087 }
1088
btrfs_dev_set_active_zone(struct btrfs_device * device,u64 pos)1089 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1090 {
1091 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1092 unsigned int zno = (pos >> zone_info->zone_size_shift);
1093
1094 /* We can use any number of zones */
1095 if (zone_info->max_active_zones == 0)
1096 return true;
1097
1098 if (!test_bit(zno, zone_info->active_zones)) {
1099 /* Active zone left? */
1100 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1101 return false;
1102 if (test_and_set_bit(zno, zone_info->active_zones)) {
1103 /* Someone already set the bit */
1104 atomic_inc(&zone_info->active_zones_left);
1105 }
1106 }
1107
1108 return true;
1109 }
1110
btrfs_dev_clear_active_zone(struct btrfs_device * device,u64 pos)1111 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1112 {
1113 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1114 unsigned int zno = (pos >> zone_info->zone_size_shift);
1115
1116 /* We can use any number of zones */
1117 if (zone_info->max_active_zones == 0)
1118 return;
1119
1120 if (test_and_clear_bit(zno, zone_info->active_zones))
1121 atomic_inc(&zone_info->active_zones_left);
1122 }
1123
btrfs_reset_device_zone(struct btrfs_device * device,u64 physical,u64 length,u64 * bytes)1124 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1125 u64 length, u64 *bytes)
1126 {
1127 unsigned int nofs_flags;
1128 int ret;
1129
1130 *bytes = 0;
1131 nofs_flags = memalloc_nofs_save();
1132 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1133 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT);
1134 memalloc_nofs_restore(nofs_flags);
1135 if (ret)
1136 return ret;
1137
1138 *bytes = length;
1139 while (length) {
1140 btrfs_dev_set_zone_empty(device, physical);
1141 btrfs_dev_clear_active_zone(device, physical);
1142 physical += device->zone_info->zone_size;
1143 length -= device->zone_info->zone_size;
1144 }
1145
1146 return 0;
1147 }
1148
btrfs_ensure_empty_zones(struct btrfs_device * device,u64 start,u64 size)1149 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1150 {
1151 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1152 const u8 shift = zinfo->zone_size_shift;
1153 unsigned long begin = start >> shift;
1154 unsigned long nbits = size >> shift;
1155 u64 pos;
1156 int ret;
1157
1158 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1159 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1160
1161 if (begin + nbits > zinfo->nr_zones)
1162 return -ERANGE;
1163
1164 /* All the zones are conventional */
1165 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1166 return 0;
1167
1168 /* All the zones are sequential and empty */
1169 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1170 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1171 return 0;
1172
1173 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1174 u64 reset_bytes;
1175
1176 if (!btrfs_dev_is_sequential(device, pos) ||
1177 btrfs_dev_is_empty_zone(device, pos))
1178 continue;
1179
1180 /* Free regions should be empty */
1181 btrfs_warn_in_rcu(
1182 device->fs_info,
1183 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1184 rcu_str_deref(device->name), device->devid, pos >> shift);
1185 WARN_ON_ONCE(1);
1186
1187 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1188 &reset_bytes);
1189 if (ret)
1190 return ret;
1191 }
1192
1193 return 0;
1194 }
1195
1196 /*
1197 * Calculate an allocation pointer from the extent allocation information
1198 * for a block group consist of conventional zones. It is pointed to the
1199 * end of the highest addressed extent in the block group as an allocation
1200 * offset.
1201 */
calculate_alloc_pointer(struct btrfs_block_group * cache,u64 * offset_ret,bool new)1202 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1203 u64 *offset_ret, bool new)
1204 {
1205 struct btrfs_fs_info *fs_info = cache->fs_info;
1206 struct btrfs_root *root;
1207 BTRFS_PATH_AUTO_FREE(path);
1208 struct btrfs_key key;
1209 struct btrfs_key found_key;
1210 int ret;
1211 u64 length;
1212
1213 /*
1214 * Avoid tree lookups for a new block group, there's no use for it.
1215 * It must always be 0.
1216 *
1217 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1218 * For new a block group, this function is called from
1219 * btrfs_make_block_group() which is already taking the chunk mutex.
1220 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1221 * buffer locks to avoid deadlock.
1222 */
1223 if (new) {
1224 *offset_ret = 0;
1225 return 0;
1226 }
1227
1228 path = btrfs_alloc_path();
1229 if (!path)
1230 return -ENOMEM;
1231
1232 key.objectid = cache->start + cache->length;
1233 key.type = 0;
1234 key.offset = 0;
1235
1236 root = btrfs_extent_root(fs_info, key.objectid);
1237 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1238 /* We should not find the exact match */
1239 if (!ret)
1240 ret = -EUCLEAN;
1241 if (ret < 0)
1242 return ret;
1243
1244 ret = btrfs_previous_extent_item(root, path, cache->start);
1245 if (ret) {
1246 if (ret == 1) {
1247 ret = 0;
1248 *offset_ret = 0;
1249 }
1250 return ret;
1251 }
1252
1253 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1254
1255 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1256 length = found_key.offset;
1257 else
1258 length = fs_info->nodesize;
1259
1260 if (!(found_key.objectid >= cache->start &&
1261 found_key.objectid + length <= cache->start + cache->length)) {
1262 return -EUCLEAN;
1263 }
1264 *offset_ret = found_key.objectid + length - cache->start;
1265 return 0;
1266 }
1267
1268 struct zone_info {
1269 u64 physical;
1270 u64 capacity;
1271 u64 alloc_offset;
1272 };
1273
btrfs_load_zone_info(struct btrfs_fs_info * fs_info,int zone_idx,struct zone_info * info,unsigned long * active,struct btrfs_chunk_map * map)1274 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1275 struct zone_info *info, unsigned long *active,
1276 struct btrfs_chunk_map *map)
1277 {
1278 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1279 struct btrfs_device *device;
1280 int dev_replace_is_ongoing = 0;
1281 unsigned int nofs_flag;
1282 struct blk_zone zone;
1283 int ret;
1284
1285 info->physical = map->stripes[zone_idx].physical;
1286
1287 down_read(&dev_replace->rwsem);
1288 device = map->stripes[zone_idx].dev;
1289
1290 if (!device->bdev) {
1291 up_read(&dev_replace->rwsem);
1292 info->alloc_offset = WP_MISSING_DEV;
1293 return 0;
1294 }
1295
1296 /* Consider a zone as active if we can allow any number of active zones. */
1297 if (!device->zone_info->max_active_zones)
1298 __set_bit(zone_idx, active);
1299
1300 if (!btrfs_dev_is_sequential(device, info->physical)) {
1301 up_read(&dev_replace->rwsem);
1302 info->alloc_offset = WP_CONVENTIONAL;
1303 return 0;
1304 }
1305
1306 /* This zone will be used for allocation, so mark this zone non-empty. */
1307 btrfs_dev_clear_zone_empty(device, info->physical);
1308
1309 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1310 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1311 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1312
1313 /*
1314 * The group is mapped to a sequential zone. Get the zone write pointer
1315 * to determine the allocation offset within the zone.
1316 */
1317 WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1318 nofs_flag = memalloc_nofs_save();
1319 ret = btrfs_get_dev_zone(device, info->physical, &zone);
1320 memalloc_nofs_restore(nofs_flag);
1321 if (ret) {
1322 up_read(&dev_replace->rwsem);
1323 if (ret != -EIO && ret != -EOPNOTSUPP)
1324 return ret;
1325 info->alloc_offset = WP_MISSING_DEV;
1326 return 0;
1327 }
1328
1329 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1330 btrfs_err_in_rcu(fs_info,
1331 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1332 zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1333 device->devid);
1334 up_read(&dev_replace->rwsem);
1335 return -EIO;
1336 }
1337
1338 info->capacity = (zone.capacity << SECTOR_SHIFT);
1339
1340 switch (zone.cond) {
1341 case BLK_ZONE_COND_OFFLINE:
1342 case BLK_ZONE_COND_READONLY:
1343 btrfs_err_in_rcu(fs_info,
1344 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1345 (info->physical >> device->zone_info->zone_size_shift),
1346 rcu_str_deref(device->name), device->devid);
1347 info->alloc_offset = WP_MISSING_DEV;
1348 break;
1349 case BLK_ZONE_COND_EMPTY:
1350 info->alloc_offset = 0;
1351 break;
1352 case BLK_ZONE_COND_FULL:
1353 info->alloc_offset = info->capacity;
1354 break;
1355 default:
1356 /* Partially used zone. */
1357 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1358 __set_bit(zone_idx, active);
1359 break;
1360 }
1361
1362 up_read(&dev_replace->rwsem);
1363
1364 return 0;
1365 }
1366
btrfs_load_block_group_single(struct btrfs_block_group * bg,struct zone_info * info,unsigned long * active)1367 static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1368 struct zone_info *info,
1369 unsigned long *active)
1370 {
1371 if (info->alloc_offset == WP_MISSING_DEV) {
1372 btrfs_err(bg->fs_info,
1373 "zoned: cannot recover write pointer for zone %llu",
1374 info->physical);
1375 return -EIO;
1376 }
1377
1378 bg->alloc_offset = info->alloc_offset;
1379 bg->zone_capacity = info->capacity;
1380 if (test_bit(0, active))
1381 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1382 return 0;
1383 }
1384
btrfs_load_block_group_dup(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active)1385 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1386 struct btrfs_chunk_map *map,
1387 struct zone_info *zone_info,
1388 unsigned long *active)
1389 {
1390 struct btrfs_fs_info *fs_info = bg->fs_info;
1391
1392 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1393 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1394 return -EINVAL;
1395 }
1396
1397 bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1398
1399 if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1400 btrfs_err(bg->fs_info,
1401 "zoned: cannot recover write pointer for zone %llu",
1402 zone_info[0].physical);
1403 return -EIO;
1404 }
1405 if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1406 btrfs_err(bg->fs_info,
1407 "zoned: cannot recover write pointer for zone %llu",
1408 zone_info[1].physical);
1409 return -EIO;
1410 }
1411 if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1412 btrfs_err(bg->fs_info,
1413 "zoned: write pointer offset mismatch of zones in DUP profile");
1414 return -EIO;
1415 }
1416
1417 if (test_bit(0, active) != test_bit(1, active)) {
1418 if (!btrfs_zone_activate(bg))
1419 return -EIO;
1420 } else if (test_bit(0, active)) {
1421 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1422 }
1423
1424 bg->alloc_offset = zone_info[0].alloc_offset;
1425 return 0;
1426 }
1427
btrfs_load_block_group_raid1(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active)1428 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1429 struct btrfs_chunk_map *map,
1430 struct zone_info *zone_info,
1431 unsigned long *active)
1432 {
1433 struct btrfs_fs_info *fs_info = bg->fs_info;
1434 int i;
1435
1436 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1437 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1438 btrfs_bg_type_to_raid_name(map->type));
1439 return -EINVAL;
1440 }
1441
1442 /* In case a device is missing we have a cap of 0, so don't use it. */
1443 bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1444
1445 for (i = 0; i < map->num_stripes; i++) {
1446 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1447 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1448 continue;
1449
1450 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1451 !btrfs_test_opt(fs_info, DEGRADED)) {
1452 btrfs_err(fs_info,
1453 "zoned: write pointer offset mismatch of zones in %s profile",
1454 btrfs_bg_type_to_raid_name(map->type));
1455 return -EIO;
1456 }
1457 if (test_bit(0, active) != test_bit(i, active)) {
1458 if (!btrfs_test_opt(fs_info, DEGRADED) &&
1459 !btrfs_zone_activate(bg)) {
1460 return -EIO;
1461 }
1462 } else {
1463 if (test_bit(0, active))
1464 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1465 }
1466 }
1467
1468 if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1469 bg->alloc_offset = zone_info[0].alloc_offset;
1470 else
1471 bg->alloc_offset = zone_info[i - 1].alloc_offset;
1472
1473 return 0;
1474 }
1475
btrfs_load_block_group_raid0(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active)1476 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1477 struct btrfs_chunk_map *map,
1478 struct zone_info *zone_info,
1479 unsigned long *active)
1480 {
1481 struct btrfs_fs_info *fs_info = bg->fs_info;
1482
1483 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1484 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1485 btrfs_bg_type_to_raid_name(map->type));
1486 return -EINVAL;
1487 }
1488
1489 for (int i = 0; i < map->num_stripes; i++) {
1490 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1491 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1492 continue;
1493
1494 if (test_bit(0, active) != test_bit(i, active)) {
1495 if (!btrfs_zone_activate(bg))
1496 return -EIO;
1497 } else {
1498 if (test_bit(0, active))
1499 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1500 }
1501 bg->zone_capacity += zone_info[i].capacity;
1502 bg->alloc_offset += zone_info[i].alloc_offset;
1503 }
1504
1505 return 0;
1506 }
1507
btrfs_load_block_group_raid10(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active)1508 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1509 struct btrfs_chunk_map *map,
1510 struct zone_info *zone_info,
1511 unsigned long *active)
1512 {
1513 struct btrfs_fs_info *fs_info = bg->fs_info;
1514
1515 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1516 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1517 btrfs_bg_type_to_raid_name(map->type));
1518 return -EINVAL;
1519 }
1520
1521 for (int i = 0; i < map->num_stripes; i++) {
1522 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1523 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1524 continue;
1525
1526 if (test_bit(0, active) != test_bit(i, active)) {
1527 if (!btrfs_zone_activate(bg))
1528 return -EIO;
1529 } else {
1530 if (test_bit(0, active))
1531 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1532 }
1533
1534 if ((i % map->sub_stripes) == 0) {
1535 bg->zone_capacity += zone_info[i].capacity;
1536 bg->alloc_offset += zone_info[i].alloc_offset;
1537 }
1538 }
1539
1540 return 0;
1541 }
1542
btrfs_load_block_group_zone_info(struct btrfs_block_group * cache,bool new)1543 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1544 {
1545 struct btrfs_fs_info *fs_info = cache->fs_info;
1546 struct btrfs_chunk_map *map;
1547 u64 logical = cache->start;
1548 u64 length = cache->length;
1549 struct zone_info *zone_info = NULL;
1550 int ret;
1551 int i;
1552 unsigned long *active = NULL;
1553 u64 last_alloc = 0;
1554 u32 num_sequential = 0, num_conventional = 0;
1555 u64 profile;
1556
1557 if (!btrfs_is_zoned(fs_info))
1558 return 0;
1559
1560 /* Sanity check */
1561 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1562 btrfs_err(fs_info,
1563 "zoned: block group %llu len %llu unaligned to zone size %llu",
1564 logical, length, fs_info->zone_size);
1565 return -EIO;
1566 }
1567
1568 map = btrfs_find_chunk_map(fs_info, logical, length);
1569 if (!map)
1570 return -EINVAL;
1571
1572 cache->physical_map = map;
1573
1574 zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1575 if (!zone_info) {
1576 ret = -ENOMEM;
1577 goto out;
1578 }
1579
1580 active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1581 if (!active) {
1582 ret = -ENOMEM;
1583 goto out;
1584 }
1585
1586 for (i = 0; i < map->num_stripes; i++) {
1587 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map);
1588 if (ret)
1589 goto out;
1590
1591 if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1592 num_conventional++;
1593 else
1594 num_sequential++;
1595 }
1596
1597 if (num_sequential > 0)
1598 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1599
1600 if (num_conventional > 0) {
1601 /* Zone capacity is always zone size in emulation */
1602 cache->zone_capacity = cache->length;
1603 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1604 if (ret) {
1605 btrfs_err(fs_info,
1606 "zoned: failed to determine allocation offset of bg %llu",
1607 cache->start);
1608 goto out;
1609 } else if (map->num_stripes == num_conventional) {
1610 cache->alloc_offset = last_alloc;
1611 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1612 goto out;
1613 }
1614 }
1615
1616 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
1617 switch (profile) {
1618 case 0: /* single */
1619 ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1620 break;
1621 case BTRFS_BLOCK_GROUP_DUP:
1622 ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
1623 break;
1624 case BTRFS_BLOCK_GROUP_RAID1:
1625 case BTRFS_BLOCK_GROUP_RAID1C3:
1626 case BTRFS_BLOCK_GROUP_RAID1C4:
1627 ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
1628 break;
1629 case BTRFS_BLOCK_GROUP_RAID0:
1630 ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
1631 break;
1632 case BTRFS_BLOCK_GROUP_RAID10:
1633 ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
1634 break;
1635 case BTRFS_BLOCK_GROUP_RAID5:
1636 case BTRFS_BLOCK_GROUP_RAID6:
1637 default:
1638 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1639 btrfs_bg_type_to_raid_name(map->type));
1640 ret = -EINVAL;
1641 goto out;
1642 }
1643
1644 if (ret == -EIO && profile != 0 && profile != BTRFS_BLOCK_GROUP_RAID0 &&
1645 profile != BTRFS_BLOCK_GROUP_RAID10) {
1646 /*
1647 * Detected broken write pointer. Make this block group
1648 * unallocatable by setting the allocation pointer at the end of
1649 * allocatable region. Relocating this block group will fix the
1650 * mismatch.
1651 *
1652 * Currently, we cannot handle RAID0 or RAID10 case like this
1653 * because we don't have a proper zone_capacity value. But,
1654 * reading from this block group won't work anyway by a missing
1655 * stripe.
1656 */
1657 cache->alloc_offset = cache->zone_capacity;
1658 ret = 0;
1659 }
1660
1661 out:
1662 /* Reject non SINGLE data profiles without RST */
1663 if ((map->type & BTRFS_BLOCK_GROUP_DATA) &&
1664 (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
1665 !fs_info->stripe_root) {
1666 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1667 btrfs_bg_type_to_raid_name(map->type));
1668 return -EINVAL;
1669 }
1670
1671 if (cache->alloc_offset > cache->zone_capacity) {
1672 btrfs_err(fs_info,
1673 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1674 cache->alloc_offset, cache->zone_capacity,
1675 cache->start);
1676 ret = -EIO;
1677 }
1678
1679 /* An extent is allocated after the write pointer */
1680 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1681 btrfs_err(fs_info,
1682 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1683 logical, last_alloc, cache->alloc_offset);
1684 ret = -EIO;
1685 }
1686
1687 if (!ret) {
1688 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1689 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1690 btrfs_get_block_group(cache);
1691 spin_lock(&fs_info->zone_active_bgs_lock);
1692 list_add_tail(&cache->active_bg_list,
1693 &fs_info->zone_active_bgs);
1694 spin_unlock(&fs_info->zone_active_bgs_lock);
1695 }
1696 } else {
1697 btrfs_free_chunk_map(cache->physical_map);
1698 cache->physical_map = NULL;
1699 }
1700 bitmap_free(active);
1701 kfree(zone_info);
1702
1703 return ret;
1704 }
1705
btrfs_calc_zone_unusable(struct btrfs_block_group * cache)1706 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1707 {
1708 u64 unusable, free;
1709
1710 if (!btrfs_is_zoned(cache->fs_info))
1711 return;
1712
1713 WARN_ON(cache->bytes_super != 0);
1714 unusable = (cache->alloc_offset - cache->used) +
1715 (cache->length - cache->zone_capacity);
1716 free = cache->zone_capacity - cache->alloc_offset;
1717
1718 /* We only need ->free_space in ALLOC_SEQ block groups */
1719 cache->cached = BTRFS_CACHE_FINISHED;
1720 cache->free_space_ctl->free_space = free;
1721 cache->zone_unusable = unusable;
1722 }
1723
btrfs_use_zone_append(struct btrfs_bio * bbio)1724 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1725 {
1726 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1727 struct btrfs_inode *inode = bbio->inode;
1728 struct btrfs_fs_info *fs_info = bbio->fs_info;
1729 struct btrfs_block_group *cache;
1730 bool ret = false;
1731
1732 if (!btrfs_is_zoned(fs_info))
1733 return false;
1734
1735 if (!inode || !is_data_inode(inode))
1736 return false;
1737
1738 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1739 return false;
1740
1741 /*
1742 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1743 * extent layout the relocation code has.
1744 * Furthermore we have set aside own block-group from which only the
1745 * relocation "process" can allocate and make sure only one process at a
1746 * time can add pages to an extent that gets relocated, so it's safe to
1747 * use regular REQ_OP_WRITE for this special case.
1748 */
1749 if (btrfs_is_data_reloc_root(inode->root))
1750 return false;
1751
1752 cache = btrfs_lookup_block_group(fs_info, start);
1753 ASSERT(cache);
1754 if (!cache)
1755 return false;
1756
1757 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1758 btrfs_put_block_group(cache);
1759
1760 return ret;
1761 }
1762
btrfs_record_physical_zoned(struct btrfs_bio * bbio)1763 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1764 {
1765 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1766 struct btrfs_ordered_sum *sum = bbio->sums;
1767
1768 if (physical < bbio->orig_physical)
1769 sum->logical -= bbio->orig_physical - physical;
1770 else
1771 sum->logical += physical - bbio->orig_physical;
1772 }
1773
btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent * ordered,u64 logical)1774 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1775 u64 logical)
1776 {
1777 struct extent_map_tree *em_tree = &ordered->inode->extent_tree;
1778 struct extent_map *em;
1779
1780 ordered->disk_bytenr = logical;
1781
1782 write_lock(&em_tree->lock);
1783 em = search_extent_mapping(em_tree, ordered->file_offset,
1784 ordered->num_bytes);
1785 /* The em should be a new COW extent, thus it should not have an offset. */
1786 ASSERT(em->offset == 0);
1787 em->disk_bytenr = logical;
1788 free_extent_map(em);
1789 write_unlock(&em_tree->lock);
1790 }
1791
btrfs_zoned_split_ordered(struct btrfs_ordered_extent * ordered,u64 logical,u64 len)1792 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1793 u64 logical, u64 len)
1794 {
1795 struct btrfs_ordered_extent *new;
1796
1797 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1798 split_extent_map(ordered->inode, ordered->file_offset,
1799 ordered->num_bytes, len, logical))
1800 return false;
1801
1802 new = btrfs_split_ordered_extent(ordered, len);
1803 if (IS_ERR(new))
1804 return false;
1805 new->disk_bytenr = logical;
1806 btrfs_finish_one_ordered(new);
1807 return true;
1808 }
1809
btrfs_finish_ordered_zoned(struct btrfs_ordered_extent * ordered)1810 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1811 {
1812 struct btrfs_inode *inode = ordered->inode;
1813 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1814 struct btrfs_ordered_sum *sum;
1815 u64 logical, len;
1816
1817 /*
1818 * Write to pre-allocated region is for the data relocation, and so
1819 * it should use WRITE operation. No split/rewrite are necessary.
1820 */
1821 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1822 return;
1823
1824 ASSERT(!list_empty(&ordered->list));
1825 /* The ordered->list can be empty in the above pre-alloc case. */
1826 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1827 logical = sum->logical;
1828 len = sum->len;
1829
1830 while (len < ordered->disk_num_bytes) {
1831 sum = list_next_entry(sum, list);
1832 if (sum->logical == logical + len) {
1833 len += sum->len;
1834 continue;
1835 }
1836 if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1837 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1838 btrfs_err(fs_info, "failed to split ordered extent");
1839 goto out;
1840 }
1841 logical = sum->logical;
1842 len = sum->len;
1843 }
1844
1845 if (ordered->disk_bytenr != logical)
1846 btrfs_rewrite_logical_zoned(ordered, logical);
1847
1848 out:
1849 /*
1850 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1851 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1852 * addresses and don't contain actual checksums. We thus must free them
1853 * here so that we don't attempt to log the csums later.
1854 */
1855 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1856 test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) {
1857 while ((sum = list_first_entry_or_null(&ordered->list,
1858 typeof(*sum), list))) {
1859 list_del(&sum->list);
1860 kfree(sum);
1861 }
1862 }
1863 }
1864
check_bg_is_active(struct btrfs_eb_write_context * ctx,struct btrfs_block_group ** active_bg)1865 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1866 struct btrfs_block_group **active_bg)
1867 {
1868 const struct writeback_control *wbc = ctx->wbc;
1869 struct btrfs_block_group *block_group = ctx->zoned_bg;
1870 struct btrfs_fs_info *fs_info = block_group->fs_info;
1871
1872 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1873 return true;
1874
1875 if (fs_info->treelog_bg == block_group->start) {
1876 if (!btrfs_zone_activate(block_group)) {
1877 int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1878
1879 if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1880 return false;
1881 }
1882 } else if (*active_bg != block_group) {
1883 struct btrfs_block_group *tgt = *active_bg;
1884
1885 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1886 lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1887
1888 if (tgt) {
1889 /*
1890 * If there is an unsent IO left in the allocated area,
1891 * we cannot wait for them as it may cause a deadlock.
1892 */
1893 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1894 if (wbc->sync_mode == WB_SYNC_NONE ||
1895 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1896 return false;
1897 }
1898
1899 /* Pivot active metadata/system block group. */
1900 btrfs_zoned_meta_io_unlock(fs_info);
1901 wait_eb_writebacks(tgt);
1902 do_zone_finish(tgt, true);
1903 btrfs_zoned_meta_io_lock(fs_info);
1904 if (*active_bg == tgt) {
1905 btrfs_put_block_group(tgt);
1906 *active_bg = NULL;
1907 }
1908 }
1909 if (!btrfs_zone_activate(block_group))
1910 return false;
1911 if (*active_bg != block_group) {
1912 ASSERT(*active_bg == NULL);
1913 *active_bg = block_group;
1914 btrfs_get_block_group(block_group);
1915 }
1916 }
1917
1918 return true;
1919 }
1920
1921 /*
1922 * Check if @ctx->eb is aligned to the write pointer.
1923 *
1924 * Return:
1925 * 0: @ctx->eb is at the write pointer. You can write it.
1926 * -EAGAIN: There is a hole. The caller should handle the case.
1927 * -EBUSY: There is a hole, but the caller can just bail out.
1928 */
btrfs_check_meta_write_pointer(struct btrfs_fs_info * fs_info,struct btrfs_eb_write_context * ctx)1929 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1930 struct btrfs_eb_write_context *ctx)
1931 {
1932 const struct writeback_control *wbc = ctx->wbc;
1933 const struct extent_buffer *eb = ctx->eb;
1934 struct btrfs_block_group *block_group = ctx->zoned_bg;
1935
1936 if (!btrfs_is_zoned(fs_info))
1937 return 0;
1938
1939 if (block_group) {
1940 if (block_group->start > eb->start ||
1941 block_group->start + block_group->length <= eb->start) {
1942 btrfs_put_block_group(block_group);
1943 block_group = NULL;
1944 ctx->zoned_bg = NULL;
1945 }
1946 }
1947
1948 if (!block_group) {
1949 block_group = btrfs_lookup_block_group(fs_info, eb->start);
1950 if (!block_group)
1951 return 0;
1952 ctx->zoned_bg = block_group;
1953 }
1954
1955 if (block_group->meta_write_pointer == eb->start) {
1956 struct btrfs_block_group **tgt;
1957
1958 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1959 return 0;
1960
1961 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1962 tgt = &fs_info->active_system_bg;
1963 else
1964 tgt = &fs_info->active_meta_bg;
1965 if (check_bg_is_active(ctx, tgt))
1966 return 0;
1967 }
1968
1969 /*
1970 * Since we may release fs_info->zoned_meta_io_lock, someone can already
1971 * start writing this eb. In that case, we can just bail out.
1972 */
1973 if (block_group->meta_write_pointer > eb->start)
1974 return -EBUSY;
1975
1976 /* If for_sync, this hole will be filled with trasnsaction commit. */
1977 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1978 return -EAGAIN;
1979 return -EBUSY;
1980 }
1981
btrfs_zoned_issue_zeroout(struct btrfs_device * device,u64 physical,u64 length)1982 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1983 {
1984 if (!btrfs_dev_is_sequential(device, physical))
1985 return -EOPNOTSUPP;
1986
1987 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1988 length >> SECTOR_SHIFT, GFP_NOFS, 0);
1989 }
1990
read_zone_info(struct btrfs_fs_info * fs_info,u64 logical,struct blk_zone * zone)1991 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1992 struct blk_zone *zone)
1993 {
1994 struct btrfs_io_context *bioc = NULL;
1995 u64 mapped_length = PAGE_SIZE;
1996 unsigned int nofs_flag;
1997 int nmirrors;
1998 int i, ret;
1999
2000 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2001 &mapped_length, &bioc, NULL, NULL);
2002 if (ret || !bioc || mapped_length < PAGE_SIZE) {
2003 ret = -EIO;
2004 goto out_put_bioc;
2005 }
2006
2007 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2008 ret = -EINVAL;
2009 goto out_put_bioc;
2010 }
2011
2012 nofs_flag = memalloc_nofs_save();
2013 nmirrors = (int)bioc->num_stripes;
2014 for (i = 0; i < nmirrors; i++) {
2015 u64 physical = bioc->stripes[i].physical;
2016 struct btrfs_device *dev = bioc->stripes[i].dev;
2017
2018 /* Missing device */
2019 if (!dev->bdev)
2020 continue;
2021
2022 ret = btrfs_get_dev_zone(dev, physical, zone);
2023 /* Failing device */
2024 if (ret == -EIO || ret == -EOPNOTSUPP)
2025 continue;
2026 break;
2027 }
2028 memalloc_nofs_restore(nofs_flag);
2029 out_put_bioc:
2030 btrfs_put_bioc(bioc);
2031 return ret;
2032 }
2033
2034 /*
2035 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2036 * filling zeros between @physical_pos to a write pointer of dev-replace
2037 * source device.
2038 */
btrfs_sync_zone_write_pointer(struct btrfs_device * tgt_dev,u64 logical,u64 physical_start,u64 physical_pos)2039 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2040 u64 physical_start, u64 physical_pos)
2041 {
2042 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2043 struct blk_zone zone;
2044 u64 length;
2045 u64 wp;
2046 int ret;
2047
2048 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2049 return 0;
2050
2051 ret = read_zone_info(fs_info, logical, &zone);
2052 if (ret)
2053 return ret;
2054
2055 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2056
2057 if (physical_pos == wp)
2058 return 0;
2059
2060 if (physical_pos > wp)
2061 return -EUCLEAN;
2062
2063 length = wp - physical_pos;
2064 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2065 }
2066
2067 /*
2068 * Activate block group and underlying device zones
2069 *
2070 * @block_group: the block group to activate
2071 *
2072 * Return: true on success, false otherwise
2073 */
btrfs_zone_activate(struct btrfs_block_group * block_group)2074 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2075 {
2076 struct btrfs_fs_info *fs_info = block_group->fs_info;
2077 struct btrfs_chunk_map *map;
2078 struct btrfs_device *device;
2079 u64 physical;
2080 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2081 bool ret;
2082 int i;
2083
2084 if (!btrfs_is_zoned(block_group->fs_info))
2085 return true;
2086
2087 map = block_group->physical_map;
2088
2089 spin_lock(&fs_info->zone_active_bgs_lock);
2090 spin_lock(&block_group->lock);
2091 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2092 ret = true;
2093 goto out_unlock;
2094 }
2095
2096 /* No space left */
2097 if (btrfs_zoned_bg_is_full(block_group)) {
2098 ret = false;
2099 goto out_unlock;
2100 }
2101
2102 for (i = 0; i < map->num_stripes; i++) {
2103 struct btrfs_zoned_device_info *zinfo;
2104 int reserved = 0;
2105
2106 device = map->stripes[i].dev;
2107 physical = map->stripes[i].physical;
2108 zinfo = device->zone_info;
2109
2110 if (zinfo->max_active_zones == 0)
2111 continue;
2112
2113 if (is_data)
2114 reserved = zinfo->reserved_active_zones;
2115 /*
2116 * For the data block group, leave active zones for one
2117 * metadata block group and one system block group.
2118 */
2119 if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2120 ret = false;
2121 goto out_unlock;
2122 }
2123
2124 if (!btrfs_dev_set_active_zone(device, physical)) {
2125 /* Cannot activate the zone */
2126 ret = false;
2127 goto out_unlock;
2128 }
2129 if (!is_data)
2130 zinfo->reserved_active_zones--;
2131 }
2132
2133 /* Successfully activated all the zones */
2134 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2135 spin_unlock(&block_group->lock);
2136
2137 /* For the active block group list */
2138 btrfs_get_block_group(block_group);
2139 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2140 spin_unlock(&fs_info->zone_active_bgs_lock);
2141
2142 return true;
2143
2144 out_unlock:
2145 spin_unlock(&block_group->lock);
2146 spin_unlock(&fs_info->zone_active_bgs_lock);
2147 return ret;
2148 }
2149
wait_eb_writebacks(struct btrfs_block_group * block_group)2150 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2151 {
2152 struct btrfs_fs_info *fs_info = block_group->fs_info;
2153 const u64 end = block_group->start + block_group->length;
2154 struct radix_tree_iter iter;
2155 struct extent_buffer *eb;
2156 void __rcu **slot;
2157
2158 rcu_read_lock();
2159 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2160 block_group->start >> fs_info->sectorsize_bits) {
2161 eb = radix_tree_deref_slot(slot);
2162 if (!eb)
2163 continue;
2164 if (radix_tree_deref_retry(eb)) {
2165 slot = radix_tree_iter_retry(&iter);
2166 continue;
2167 }
2168
2169 if (eb->start < block_group->start)
2170 continue;
2171 if (eb->start >= end)
2172 break;
2173
2174 slot = radix_tree_iter_resume(slot, &iter);
2175 rcu_read_unlock();
2176 wait_on_extent_buffer_writeback(eb);
2177 rcu_read_lock();
2178 }
2179 rcu_read_unlock();
2180 }
2181
do_zone_finish(struct btrfs_block_group * block_group,bool fully_written)2182 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2183 {
2184 struct btrfs_fs_info *fs_info = block_group->fs_info;
2185 struct btrfs_chunk_map *map;
2186 const bool is_metadata = (block_group->flags &
2187 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2188 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2189 int ret = 0;
2190 int i;
2191
2192 spin_lock(&block_group->lock);
2193 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2194 spin_unlock(&block_group->lock);
2195 return 0;
2196 }
2197
2198 /* Check if we have unwritten allocated space */
2199 if (is_metadata &&
2200 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2201 spin_unlock(&block_group->lock);
2202 return -EAGAIN;
2203 }
2204
2205 /*
2206 * If we are sure that the block group is full (= no more room left for
2207 * new allocation) and the IO for the last usable block is completed, we
2208 * don't need to wait for the other IOs. This holds because we ensure
2209 * the sequential IO submissions using the ZONE_APPEND command for data
2210 * and block_group->meta_write_pointer for metadata.
2211 */
2212 if (!fully_written) {
2213 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2214 spin_unlock(&block_group->lock);
2215 return -EAGAIN;
2216 }
2217 spin_unlock(&block_group->lock);
2218
2219 ret = btrfs_inc_block_group_ro(block_group, false);
2220 if (ret)
2221 return ret;
2222
2223 /* Ensure all writes in this block group finish */
2224 btrfs_wait_block_group_reservations(block_group);
2225 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2226 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group);
2227 /* Wait for extent buffers to be written. */
2228 if (is_metadata)
2229 wait_eb_writebacks(block_group);
2230
2231 spin_lock(&block_group->lock);
2232
2233 /*
2234 * Bail out if someone already deactivated the block group, or
2235 * allocated space is left in the block group.
2236 */
2237 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2238 &block_group->runtime_flags)) {
2239 spin_unlock(&block_group->lock);
2240 btrfs_dec_block_group_ro(block_group);
2241 return 0;
2242 }
2243
2244 if (block_group->reserved ||
2245 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2246 &block_group->runtime_flags)) {
2247 spin_unlock(&block_group->lock);
2248 btrfs_dec_block_group_ro(block_group);
2249 return -EAGAIN;
2250 }
2251 }
2252
2253 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2254 block_group->alloc_offset = block_group->zone_capacity;
2255 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2256 block_group->meta_write_pointer = block_group->start +
2257 block_group->zone_capacity;
2258 block_group->free_space_ctl->free_space = 0;
2259 btrfs_clear_treelog_bg(block_group);
2260 btrfs_clear_data_reloc_bg(block_group);
2261 spin_unlock(&block_group->lock);
2262
2263 down_read(&dev_replace->rwsem);
2264 map = block_group->physical_map;
2265 for (i = 0; i < map->num_stripes; i++) {
2266 struct btrfs_device *device = map->stripes[i].dev;
2267 const u64 physical = map->stripes[i].physical;
2268 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2269 unsigned int nofs_flags;
2270
2271 if (zinfo->max_active_zones == 0)
2272 continue;
2273
2274 nofs_flags = memalloc_nofs_save();
2275 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2276 physical >> SECTOR_SHIFT,
2277 zinfo->zone_size >> SECTOR_SHIFT);
2278 memalloc_nofs_restore(nofs_flags);
2279
2280 if (ret) {
2281 up_read(&dev_replace->rwsem);
2282 return ret;
2283 }
2284
2285 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2286 zinfo->reserved_active_zones++;
2287 btrfs_dev_clear_active_zone(device, physical);
2288 }
2289 up_read(&dev_replace->rwsem);
2290
2291 if (!fully_written)
2292 btrfs_dec_block_group_ro(block_group);
2293
2294 spin_lock(&fs_info->zone_active_bgs_lock);
2295 ASSERT(!list_empty(&block_group->active_bg_list));
2296 list_del_init(&block_group->active_bg_list);
2297 spin_unlock(&fs_info->zone_active_bgs_lock);
2298
2299 /* For active_bg_list */
2300 btrfs_put_block_group(block_group);
2301
2302 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2303
2304 return 0;
2305 }
2306
btrfs_zone_finish(struct btrfs_block_group * block_group)2307 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2308 {
2309 if (!btrfs_is_zoned(block_group->fs_info))
2310 return 0;
2311
2312 return do_zone_finish(block_group, false);
2313 }
2314
btrfs_can_activate_zone(struct btrfs_fs_devices * fs_devices,u64 flags)2315 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2316 {
2317 struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2318 struct btrfs_device *device;
2319 bool ret = false;
2320
2321 if (!btrfs_is_zoned(fs_info))
2322 return true;
2323
2324 /* Check if there is a device with active zones left */
2325 mutex_lock(&fs_info->chunk_mutex);
2326 spin_lock(&fs_info->zone_active_bgs_lock);
2327 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2328 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2329 int reserved = 0;
2330
2331 if (!device->bdev)
2332 continue;
2333
2334 if (!zinfo->max_active_zones) {
2335 ret = true;
2336 break;
2337 }
2338
2339 if (flags & BTRFS_BLOCK_GROUP_DATA)
2340 reserved = zinfo->reserved_active_zones;
2341
2342 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2343 case 0: /* single */
2344 ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2345 break;
2346 case BTRFS_BLOCK_GROUP_DUP:
2347 ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2348 break;
2349 }
2350 if (ret)
2351 break;
2352 }
2353 spin_unlock(&fs_info->zone_active_bgs_lock);
2354 mutex_unlock(&fs_info->chunk_mutex);
2355
2356 if (!ret)
2357 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2358
2359 return ret;
2360 }
2361
btrfs_zone_finish_endio(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2362 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2363 {
2364 struct btrfs_block_group *block_group;
2365 u64 min_alloc_bytes;
2366
2367 if (!btrfs_is_zoned(fs_info))
2368 return;
2369
2370 block_group = btrfs_lookup_block_group(fs_info, logical);
2371 ASSERT(block_group);
2372
2373 /* No MIXED_BG on zoned btrfs. */
2374 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2375 min_alloc_bytes = fs_info->sectorsize;
2376 else
2377 min_alloc_bytes = fs_info->nodesize;
2378
2379 /* Bail out if we can allocate more data from this block group. */
2380 if (logical + length + min_alloc_bytes <=
2381 block_group->start + block_group->zone_capacity)
2382 goto out;
2383
2384 do_zone_finish(block_group, true);
2385
2386 out:
2387 btrfs_put_block_group(block_group);
2388 }
2389
btrfs_zone_finish_endio_workfn(struct work_struct * work)2390 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2391 {
2392 struct btrfs_block_group *bg =
2393 container_of(work, struct btrfs_block_group, zone_finish_work);
2394
2395 wait_on_extent_buffer_writeback(bg->last_eb);
2396 free_extent_buffer(bg->last_eb);
2397 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2398 btrfs_put_block_group(bg);
2399 }
2400
btrfs_schedule_zone_finish_bg(struct btrfs_block_group * bg,struct extent_buffer * eb)2401 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2402 struct extent_buffer *eb)
2403 {
2404 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2405 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2406 return;
2407
2408 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2409 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2410 bg->start);
2411 return;
2412 }
2413
2414 /* For the work */
2415 btrfs_get_block_group(bg);
2416 atomic_inc(&eb->refs);
2417 bg->last_eb = eb;
2418 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2419 queue_work(system_unbound_wq, &bg->zone_finish_work);
2420 }
2421
btrfs_clear_data_reloc_bg(struct btrfs_block_group * bg)2422 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2423 {
2424 struct btrfs_fs_info *fs_info = bg->fs_info;
2425
2426 spin_lock(&fs_info->relocation_bg_lock);
2427 if (fs_info->data_reloc_bg == bg->start)
2428 fs_info->data_reloc_bg = 0;
2429 spin_unlock(&fs_info->relocation_bg_lock);
2430 }
2431
btrfs_free_zone_cache(struct btrfs_fs_info * fs_info)2432 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2433 {
2434 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2435 struct btrfs_device *device;
2436
2437 if (!btrfs_is_zoned(fs_info))
2438 return;
2439
2440 mutex_lock(&fs_devices->device_list_mutex);
2441 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2442 if (device->zone_info) {
2443 vfree(device->zone_info->zone_cache);
2444 device->zone_info->zone_cache = NULL;
2445 }
2446 }
2447 mutex_unlock(&fs_devices->device_list_mutex);
2448 }
2449
btrfs_zoned_should_reclaim(const struct btrfs_fs_info * fs_info)2450 bool btrfs_zoned_should_reclaim(const struct btrfs_fs_info *fs_info)
2451 {
2452 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2453 struct btrfs_device *device;
2454 u64 used = 0;
2455 u64 total = 0;
2456 u64 factor;
2457
2458 ASSERT(btrfs_is_zoned(fs_info));
2459
2460 if (fs_info->bg_reclaim_threshold == 0)
2461 return false;
2462
2463 mutex_lock(&fs_devices->device_list_mutex);
2464 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2465 if (!device->bdev)
2466 continue;
2467
2468 total += device->disk_total_bytes;
2469 used += device->bytes_used;
2470 }
2471 mutex_unlock(&fs_devices->device_list_mutex);
2472
2473 factor = div64_u64(used * 100, total);
2474 return factor >= fs_info->bg_reclaim_threshold;
2475 }
2476
btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2477 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2478 u64 length)
2479 {
2480 struct btrfs_block_group *block_group;
2481
2482 if (!btrfs_is_zoned(fs_info))
2483 return;
2484
2485 block_group = btrfs_lookup_block_group(fs_info, logical);
2486 /* It should be called on a previous data relocation block group. */
2487 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2488
2489 spin_lock(&block_group->lock);
2490 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2491 goto out;
2492
2493 /* All relocation extents are written. */
2494 if (block_group->start + block_group->alloc_offset == logical + length) {
2495 /*
2496 * Now, release this block group for further allocations and
2497 * zone finish.
2498 */
2499 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2500 &block_group->runtime_flags);
2501 }
2502
2503 out:
2504 spin_unlock(&block_group->lock);
2505 btrfs_put_block_group(block_group);
2506 }
2507
btrfs_zone_finish_one_bg(struct btrfs_fs_info * fs_info)2508 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2509 {
2510 struct btrfs_block_group *block_group;
2511 struct btrfs_block_group *min_bg = NULL;
2512 u64 min_avail = U64_MAX;
2513 int ret;
2514
2515 spin_lock(&fs_info->zone_active_bgs_lock);
2516 list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2517 active_bg_list) {
2518 u64 avail;
2519
2520 spin_lock(&block_group->lock);
2521 if (block_group->reserved || block_group->alloc_offset == 0 ||
2522 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2523 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2524 spin_unlock(&block_group->lock);
2525 continue;
2526 }
2527
2528 avail = block_group->zone_capacity - block_group->alloc_offset;
2529 if (min_avail > avail) {
2530 if (min_bg)
2531 btrfs_put_block_group(min_bg);
2532 min_bg = block_group;
2533 min_avail = avail;
2534 btrfs_get_block_group(min_bg);
2535 }
2536 spin_unlock(&block_group->lock);
2537 }
2538 spin_unlock(&fs_info->zone_active_bgs_lock);
2539
2540 if (!min_bg)
2541 return 0;
2542
2543 ret = btrfs_zone_finish(min_bg);
2544 btrfs_put_block_group(min_bg);
2545
2546 return ret < 0 ? ret : 1;
2547 }
2548
btrfs_zoned_activate_one_bg(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,bool do_finish)2549 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2550 struct btrfs_space_info *space_info,
2551 bool do_finish)
2552 {
2553 struct btrfs_block_group *bg;
2554 int index;
2555
2556 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2557 return 0;
2558
2559 for (;;) {
2560 int ret;
2561 bool need_finish = false;
2562
2563 down_read(&space_info->groups_sem);
2564 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2565 list_for_each_entry(bg, &space_info->block_groups[index],
2566 list) {
2567 if (!spin_trylock(&bg->lock))
2568 continue;
2569 if (btrfs_zoned_bg_is_full(bg) ||
2570 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2571 &bg->runtime_flags)) {
2572 spin_unlock(&bg->lock);
2573 continue;
2574 }
2575 spin_unlock(&bg->lock);
2576
2577 if (btrfs_zone_activate(bg)) {
2578 up_read(&space_info->groups_sem);
2579 return 1;
2580 }
2581
2582 need_finish = true;
2583 }
2584 }
2585 up_read(&space_info->groups_sem);
2586
2587 if (!do_finish || !need_finish)
2588 break;
2589
2590 ret = btrfs_zone_finish_one_bg(fs_info);
2591 if (ret == 0)
2592 break;
2593 if (ret < 0)
2594 return ret;
2595 }
2596
2597 return 0;
2598 }
2599
2600 /*
2601 * Reserve zones for one metadata block group, one tree-log block group, and one
2602 * system block group.
2603 */
btrfs_check_active_zone_reservation(struct btrfs_fs_info * fs_info)2604 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2605 {
2606 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2607 struct btrfs_block_group *block_group;
2608 struct btrfs_device *device;
2609 /* Reserve zones for normal SINGLE metadata and tree-log block group. */
2610 unsigned int metadata_reserve = 2;
2611 /* Reserve a zone for SINGLE system block group. */
2612 unsigned int system_reserve = 1;
2613
2614 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2615 return;
2616
2617 /*
2618 * This function is called from the mount context. So, there is no
2619 * parallel process touching the bits. No need for read_seqretry().
2620 */
2621 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2622 metadata_reserve = 4;
2623 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2624 system_reserve = 2;
2625
2626 /* Apply the reservation on all the devices. */
2627 mutex_lock(&fs_devices->device_list_mutex);
2628 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2629 if (!device->bdev)
2630 continue;
2631
2632 device->zone_info->reserved_active_zones =
2633 metadata_reserve + system_reserve;
2634 }
2635 mutex_unlock(&fs_devices->device_list_mutex);
2636
2637 /* Release reservation for currently active block groups. */
2638 spin_lock(&fs_info->zone_active_bgs_lock);
2639 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2640 struct btrfs_chunk_map *map = block_group->physical_map;
2641
2642 if (!(block_group->flags &
2643 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2644 continue;
2645
2646 for (int i = 0; i < map->num_stripes; i++)
2647 map->stripes[i].dev->zone_info->reserved_active_zones--;
2648 }
2649 spin_unlock(&fs_info->zone_active_bgs_lock);
2650 }
2651