1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "fs.h"
27 #include "accessors.h"
28 #include "extent-tree.h"
29 #include "root-tree.h"
30 #include "dir-item.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 
36 static struct kmem_cache *btrfs_trans_handle_cachep;
37 
38 /*
39  * Transaction states and transitions
40  *
41  * No running transaction (fs tree blocks are not modified)
42  * |
43  * | To next stage:
44  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
45  * V
46  * Transaction N [[TRANS_STATE_RUNNING]]
47  * |
48  * | New trans handles can be attached to transaction N by calling all
49  * | start_transaction() variants.
50  * |
51  * | To next stage:
52  * |  Call btrfs_commit_transaction() on any trans handle attached to
53  * |  transaction N
54  * V
55  * Transaction N [[TRANS_STATE_COMMIT_PREP]]
56  * |
57  * | If there are simultaneous calls to btrfs_commit_transaction() one will win
58  * | the race and the rest will wait for the winner to commit the transaction.
59  * |
60  * | The winner will wait for previous running transaction to completely finish
61  * | if there is one.
62  * |
63  * Transaction N [[TRANS_STATE_COMMIT_START]]
64  * |
65  * | Then one of the following happens:
66  * | - Wait for all other trans handle holders to release.
67  * |   The btrfs_commit_transaction() caller will do the commit work.
68  * | - Wait for current transaction to be committed by others.
69  * |   Other btrfs_commit_transaction() caller will do the commit work.
70  * |
71  * | At this stage, only btrfs_join_transaction*() variants can attach
72  * | to this running transaction.
73  * | All other variants will wait for current one to finish and attach to
74  * | transaction N+1.
75  * |
76  * | To next stage:
77  * |  Caller is chosen to commit transaction N, and all other trans handle
78  * |  haven been released.
79  * V
80  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81  * |
82  * | The heavy lifting transaction work is started.
83  * | From running delayed refs (modifying extent tree) to creating pending
84  * | snapshots, running qgroups.
85  * | In short, modify supporting trees to reflect modifications of subvolume
86  * | trees.
87  * |
88  * | At this stage, all start_transaction() calls will wait for this
89  * | transaction to finish and attach to transaction N+1.
90  * |
91  * | To next stage:
92  * |  Until all supporting trees are updated.
93  * V
94  * Transaction N [[TRANS_STATE_UNBLOCKED]]
95  * |						    Transaction N+1
96  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
97  * | need to write them back to disk and update	    |
98  * | super blocks.				    |
99  * |						    |
100  * | At this stage, new transaction is allowed to   |
101  * | start.					    |
102  * | All new start_transaction() calls will be	    |
103  * | attached to transid N+1.			    |
104  * |						    |
105  * | To next stage:				    |
106  * |  Until all tree blocks are super blocks are    |
107  * |  written to block devices			    |
108  * V						    |
109  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
110  *   All tree blocks and super blocks are written.  Transaction N+1
111  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
112  *   data structures will be cleaned up.	    | Life goes on
113  */
114 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
115 	[TRANS_STATE_RUNNING]		= 0U,
116 	[TRANS_STATE_COMMIT_PREP]	= 0U,
117 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
118 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
119 					   __TRANS_ATTACH |
120 					   __TRANS_JOIN |
121 					   __TRANS_JOIN_NOSTART),
122 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
123 					   __TRANS_ATTACH |
124 					   __TRANS_JOIN |
125 					   __TRANS_JOIN_NOLOCK |
126 					   __TRANS_JOIN_NOSTART),
127 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
128 					   __TRANS_ATTACH |
129 					   __TRANS_JOIN |
130 					   __TRANS_JOIN_NOLOCK |
131 					   __TRANS_JOIN_NOSTART),
132 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
133 					   __TRANS_ATTACH |
134 					   __TRANS_JOIN |
135 					   __TRANS_JOIN_NOLOCK |
136 					   __TRANS_JOIN_NOSTART),
137 };
138 
btrfs_put_transaction(struct btrfs_transaction * transaction)139 void btrfs_put_transaction(struct btrfs_transaction *transaction)
140 {
141 	WARN_ON(refcount_read(&transaction->use_count) == 0);
142 	if (refcount_dec_and_test(&transaction->use_count)) {
143 		BUG_ON(!list_empty(&transaction->list));
144 		WARN_ON(!RB_EMPTY_ROOT(
145 				&transaction->delayed_refs.href_root.rb_root));
146 		WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents));
147 		if (transaction->delayed_refs.pending_csums)
148 			btrfs_err(transaction->fs_info,
149 				  "pending csums is %llu",
150 				  transaction->delayed_refs.pending_csums);
151 		/*
152 		 * If any block groups are found in ->deleted_bgs then it's
153 		 * because the transaction was aborted and a commit did not
154 		 * happen (things failed before writing the new superblock
155 		 * and calling btrfs_finish_extent_commit()), so we can not
156 		 * discard the physical locations of the block groups.
157 		 */
158 		while (!list_empty(&transaction->deleted_bgs)) {
159 			struct btrfs_block_group *cache;
160 
161 			cache = list_first_entry(&transaction->deleted_bgs,
162 						 struct btrfs_block_group,
163 						 bg_list);
164 			list_del_init(&cache->bg_list);
165 			btrfs_unfreeze_block_group(cache);
166 			btrfs_put_block_group(cache);
167 		}
168 		WARN_ON(!list_empty(&transaction->dev_update_list));
169 		kfree(transaction);
170 	}
171 }
172 
switch_commit_roots(struct btrfs_trans_handle * trans)173 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
174 {
175 	struct btrfs_transaction *cur_trans = trans->transaction;
176 	struct btrfs_fs_info *fs_info = trans->fs_info;
177 	struct btrfs_root *root, *tmp;
178 
179 	/*
180 	 * At this point no one can be using this transaction to modify any tree
181 	 * and no one can start another transaction to modify any tree either.
182 	 */
183 	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
184 
185 	down_write(&fs_info->commit_root_sem);
186 
187 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
188 		fs_info->last_reloc_trans = trans->transid;
189 
190 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
191 				 dirty_list) {
192 		list_del_init(&root->dirty_list);
193 		free_extent_buffer(root->commit_root);
194 		root->commit_root = btrfs_root_node(root);
195 		extent_io_tree_release(&root->dirty_log_pages);
196 		btrfs_qgroup_clean_swapped_blocks(root);
197 	}
198 
199 	/* We can free old roots now. */
200 	spin_lock(&cur_trans->dropped_roots_lock);
201 	while (!list_empty(&cur_trans->dropped_roots)) {
202 		root = list_first_entry(&cur_trans->dropped_roots,
203 					struct btrfs_root, root_list);
204 		list_del_init(&root->root_list);
205 		spin_unlock(&cur_trans->dropped_roots_lock);
206 		btrfs_free_log(trans, root);
207 		btrfs_drop_and_free_fs_root(fs_info, root);
208 		spin_lock(&cur_trans->dropped_roots_lock);
209 	}
210 	spin_unlock(&cur_trans->dropped_roots_lock);
211 
212 	up_write(&fs_info->commit_root_sem);
213 }
214 
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)215 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
216 					 unsigned int type)
217 {
218 	if (type & TRANS_EXTWRITERS)
219 		atomic_inc(&trans->num_extwriters);
220 }
221 
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)222 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
223 					 unsigned int type)
224 {
225 	if (type & TRANS_EXTWRITERS)
226 		atomic_dec(&trans->num_extwriters);
227 }
228 
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)229 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
230 					  unsigned int type)
231 {
232 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
233 }
234 
extwriter_counter_read(struct btrfs_transaction * trans)235 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
236 {
237 	return atomic_read(&trans->num_extwriters);
238 }
239 
240 /*
241  * To be called after doing the chunk btree updates right after allocating a new
242  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
243  * chunk after all chunk btree updates and after finishing the second phase of
244  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
245  * group had its chunk item insertion delayed to the second phase.
246  */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)247 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
248 {
249 	struct btrfs_fs_info *fs_info = trans->fs_info;
250 
251 	if (!trans->chunk_bytes_reserved)
252 		return;
253 
254 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
255 				trans->chunk_bytes_reserved, NULL);
256 	trans->chunk_bytes_reserved = 0;
257 }
258 
259 /*
260  * either allocate a new transaction or hop into the existing one
261  */
join_transaction(struct btrfs_fs_info * fs_info,unsigned int type)262 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
263 				     unsigned int type)
264 {
265 	struct btrfs_transaction *cur_trans;
266 
267 	spin_lock(&fs_info->trans_lock);
268 loop:
269 	/* The file system has been taken offline. No new transactions. */
270 	if (BTRFS_FS_ERROR(fs_info)) {
271 		spin_unlock(&fs_info->trans_lock);
272 		return -EROFS;
273 	}
274 
275 	cur_trans = fs_info->running_transaction;
276 	if (cur_trans) {
277 		if (TRANS_ABORTED(cur_trans)) {
278 			spin_unlock(&fs_info->trans_lock);
279 			return cur_trans->aborted;
280 		}
281 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
282 			spin_unlock(&fs_info->trans_lock);
283 			return -EBUSY;
284 		}
285 		refcount_inc(&cur_trans->use_count);
286 		atomic_inc(&cur_trans->num_writers);
287 		extwriter_counter_inc(cur_trans, type);
288 		spin_unlock(&fs_info->trans_lock);
289 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
290 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
291 		return 0;
292 	}
293 	spin_unlock(&fs_info->trans_lock);
294 
295 	/*
296 	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
297 	 * current transaction, and commit it. If there is no transaction, just
298 	 * return ENOENT.
299 	 */
300 	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
301 		return -ENOENT;
302 
303 	/*
304 	 * JOIN_NOLOCK only happens during the transaction commit, so
305 	 * it is impossible that ->running_transaction is NULL
306 	 */
307 	BUG_ON(type == TRANS_JOIN_NOLOCK);
308 
309 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
310 	if (!cur_trans)
311 		return -ENOMEM;
312 
313 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
314 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
315 
316 	spin_lock(&fs_info->trans_lock);
317 	if (fs_info->running_transaction) {
318 		/*
319 		 * someone started a transaction after we unlocked.  Make sure
320 		 * to redo the checks above
321 		 */
322 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
323 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
324 		kfree(cur_trans);
325 		goto loop;
326 	} else if (BTRFS_FS_ERROR(fs_info)) {
327 		spin_unlock(&fs_info->trans_lock);
328 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
329 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
330 		kfree(cur_trans);
331 		return -EROFS;
332 	}
333 
334 	cur_trans->fs_info = fs_info;
335 	atomic_set(&cur_trans->pending_ordered, 0);
336 	init_waitqueue_head(&cur_trans->pending_wait);
337 	atomic_set(&cur_trans->num_writers, 1);
338 	extwriter_counter_init(cur_trans, type);
339 	init_waitqueue_head(&cur_trans->writer_wait);
340 	init_waitqueue_head(&cur_trans->commit_wait);
341 	cur_trans->state = TRANS_STATE_RUNNING;
342 	/*
343 	 * One for this trans handle, one so it will live on until we
344 	 * commit the transaction.
345 	 */
346 	refcount_set(&cur_trans->use_count, 2);
347 	cur_trans->flags = 0;
348 	cur_trans->start_time = ktime_get_seconds();
349 
350 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
351 
352 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
353 	xa_init(&cur_trans->delayed_refs.dirty_extents);
354 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
355 
356 	/*
357 	 * although the tree mod log is per file system and not per transaction,
358 	 * the log must never go across transaction boundaries.
359 	 */
360 	smp_mb();
361 	if (!list_empty(&fs_info->tree_mod_seq_list))
362 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
363 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
364 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
365 	atomic64_set(&fs_info->tree_mod_seq, 0);
366 
367 	spin_lock_init(&cur_trans->delayed_refs.lock);
368 
369 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
370 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
371 	INIT_LIST_HEAD(&cur_trans->switch_commits);
372 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
373 	INIT_LIST_HEAD(&cur_trans->io_bgs);
374 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
375 	mutex_init(&cur_trans->cache_write_mutex);
376 	spin_lock_init(&cur_trans->dirty_bgs_lock);
377 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
378 	spin_lock_init(&cur_trans->dropped_roots_lock);
379 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
380 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
381 			IO_TREE_TRANS_DIRTY_PAGES);
382 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
383 			IO_TREE_FS_PINNED_EXTENTS);
384 	btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
385 	cur_trans->transid = fs_info->generation;
386 	fs_info->running_transaction = cur_trans;
387 	cur_trans->aborted = 0;
388 	spin_unlock(&fs_info->trans_lock);
389 
390 	return 0;
391 }
392 
393 /*
394  * This does all the record keeping required to make sure that a shareable root
395  * is properly recorded in a given transaction.  This is required to make sure
396  * the old root from before we joined the transaction is deleted when the
397  * transaction commits.
398  */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)399 static int record_root_in_trans(struct btrfs_trans_handle *trans,
400 			       struct btrfs_root *root,
401 			       int force)
402 {
403 	struct btrfs_fs_info *fs_info = root->fs_info;
404 	int ret = 0;
405 
406 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
407 	    btrfs_get_root_last_trans(root) < trans->transid) || force) {
408 		WARN_ON(!force && root->commit_root != root->node);
409 
410 		/*
411 		 * see below for IN_TRANS_SETUP usage rules
412 		 * we have the reloc mutex held now, so there
413 		 * is only one writer in this function
414 		 */
415 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
416 
417 		/* make sure readers find IN_TRANS_SETUP before
418 		 * they find our root->last_trans update
419 		 */
420 		smp_wmb();
421 
422 		spin_lock(&fs_info->fs_roots_radix_lock);
423 		if (btrfs_get_root_last_trans(root) == trans->transid && !force) {
424 			spin_unlock(&fs_info->fs_roots_radix_lock);
425 			return 0;
426 		}
427 		radix_tree_tag_set(&fs_info->fs_roots_radix,
428 				   (unsigned long)btrfs_root_id(root),
429 				   BTRFS_ROOT_TRANS_TAG);
430 		spin_unlock(&fs_info->fs_roots_radix_lock);
431 		btrfs_set_root_last_trans(root, trans->transid);
432 
433 		/* this is pretty tricky.  We don't want to
434 		 * take the relocation lock in btrfs_record_root_in_trans
435 		 * unless we're really doing the first setup for this root in
436 		 * this transaction.
437 		 *
438 		 * Normally we'd use root->last_trans as a flag to decide
439 		 * if we want to take the expensive mutex.
440 		 *
441 		 * But, we have to set root->last_trans before we
442 		 * init the relocation root, otherwise, we trip over warnings
443 		 * in ctree.c.  The solution used here is to flag ourselves
444 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
445 		 * fixing up the reloc trees and everyone must wait.
446 		 *
447 		 * When this is zero, they can trust root->last_trans and fly
448 		 * through btrfs_record_root_in_trans without having to take the
449 		 * lock.  smp_wmb() makes sure that all the writes above are
450 		 * done before we pop in the zero below
451 		 */
452 		ret = btrfs_init_reloc_root(trans, root);
453 		smp_mb__before_atomic();
454 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
455 	}
456 	return ret;
457 }
458 
459 
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)460 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
461 			    struct btrfs_root *root)
462 {
463 	struct btrfs_fs_info *fs_info = root->fs_info;
464 	struct btrfs_transaction *cur_trans = trans->transaction;
465 
466 	/* Add ourselves to the transaction dropped list */
467 	spin_lock(&cur_trans->dropped_roots_lock);
468 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
469 	spin_unlock(&cur_trans->dropped_roots_lock);
470 
471 	/* Make sure we don't try to update the root at commit time */
472 	spin_lock(&fs_info->fs_roots_radix_lock);
473 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
474 			     (unsigned long)btrfs_root_id(root),
475 			     BTRFS_ROOT_TRANS_TAG);
476 	spin_unlock(&fs_info->fs_roots_radix_lock);
477 }
478 
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)479 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
480 			       struct btrfs_root *root)
481 {
482 	struct btrfs_fs_info *fs_info = root->fs_info;
483 	int ret;
484 
485 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
486 		return 0;
487 
488 	/*
489 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
490 	 * and barriers
491 	 */
492 	smp_rmb();
493 	if (btrfs_get_root_last_trans(root) == trans->transid &&
494 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
495 		return 0;
496 
497 	mutex_lock(&fs_info->reloc_mutex);
498 	ret = record_root_in_trans(trans, root, 0);
499 	mutex_unlock(&fs_info->reloc_mutex);
500 
501 	return ret;
502 }
503 
is_transaction_blocked(struct btrfs_transaction * trans)504 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
505 {
506 	return (trans->state >= TRANS_STATE_COMMIT_START &&
507 		trans->state < TRANS_STATE_UNBLOCKED &&
508 		!TRANS_ABORTED(trans));
509 }
510 
511 /* wait for commit against the current transaction to become unblocked
512  * when this is done, it is safe to start a new transaction, but the current
513  * transaction might not be fully on disk.
514  */
wait_current_trans(struct btrfs_fs_info * fs_info)515 static void wait_current_trans(struct btrfs_fs_info *fs_info)
516 {
517 	struct btrfs_transaction *cur_trans;
518 
519 	spin_lock(&fs_info->trans_lock);
520 	cur_trans = fs_info->running_transaction;
521 	if (cur_trans && is_transaction_blocked(cur_trans)) {
522 		refcount_inc(&cur_trans->use_count);
523 		spin_unlock(&fs_info->trans_lock);
524 
525 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
526 		wait_event(fs_info->transaction_wait,
527 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
528 			   TRANS_ABORTED(cur_trans));
529 		btrfs_put_transaction(cur_trans);
530 	} else {
531 		spin_unlock(&fs_info->trans_lock);
532 	}
533 }
534 
may_wait_transaction(struct btrfs_fs_info * fs_info,int type)535 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
536 {
537 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
538 		return 0;
539 
540 	if (type == TRANS_START)
541 		return 1;
542 
543 	return 0;
544 }
545 
need_reserve_reloc_root(struct btrfs_root * root)546 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
547 {
548 	struct btrfs_fs_info *fs_info = root->fs_info;
549 
550 	if (!fs_info->reloc_ctl ||
551 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
552 	    btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
553 	    root->reloc_root)
554 		return false;
555 
556 	return true;
557 }
558 
btrfs_reserve_trans_metadata(struct btrfs_fs_info * fs_info,enum btrfs_reserve_flush_enum flush,u64 num_bytes,u64 * delayed_refs_bytes)559 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
560 					enum btrfs_reserve_flush_enum flush,
561 					u64 num_bytes,
562 					u64 *delayed_refs_bytes)
563 {
564 	struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
565 	u64 bytes = num_bytes + *delayed_refs_bytes;
566 	int ret;
567 
568 	/*
569 	 * We want to reserve all the bytes we may need all at once, so we only
570 	 * do 1 enospc flushing cycle per transaction start.
571 	 */
572 	ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
573 
574 	/*
575 	 * If we are an emergency flush, which can steal from the global block
576 	 * reserve, then attempt to not reserve space for the delayed refs, as
577 	 * we will consume space for them from the global block reserve.
578 	 */
579 	if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
580 		bytes -= *delayed_refs_bytes;
581 		*delayed_refs_bytes = 0;
582 		ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
583 	}
584 
585 	return ret;
586 }
587 
588 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush,bool enforce_qgroups)589 start_transaction(struct btrfs_root *root, unsigned int num_items,
590 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
591 		  bool enforce_qgroups)
592 {
593 	struct btrfs_fs_info *fs_info = root->fs_info;
594 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
595 	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
596 	struct btrfs_trans_handle *h;
597 	struct btrfs_transaction *cur_trans;
598 	u64 num_bytes = 0;
599 	u64 qgroup_reserved = 0;
600 	u64 delayed_refs_bytes = 0;
601 	bool reloc_reserved = false;
602 	bool do_chunk_alloc = false;
603 	int ret;
604 
605 	if (BTRFS_FS_ERROR(fs_info))
606 		return ERR_PTR(-EROFS);
607 
608 	if (current->journal_info) {
609 		WARN_ON(type & TRANS_EXTWRITERS);
610 		h = current->journal_info;
611 		refcount_inc(&h->use_count);
612 		WARN_ON(refcount_read(&h->use_count) > 2);
613 		h->orig_rsv = h->block_rsv;
614 		h->block_rsv = NULL;
615 		goto got_it;
616 	}
617 
618 	/*
619 	 * Do the reservation before we join the transaction so we can do all
620 	 * the appropriate flushing if need be.
621 	 */
622 	if (num_items && root != fs_info->chunk_root) {
623 		qgroup_reserved = num_items * fs_info->nodesize;
624 		/*
625 		 * Use prealloc for now, as there might be a currently running
626 		 * transaction that could free this reserved space prematurely
627 		 * by committing.
628 		 */
629 		ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
630 							 enforce_qgroups, false);
631 		if (ret)
632 			return ERR_PTR(ret);
633 
634 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
635 		/*
636 		 * If we plan to insert/update/delete "num_items" from a btree,
637 		 * we will also generate delayed refs for extent buffers in the
638 		 * respective btree paths, so reserve space for the delayed refs
639 		 * that will be generated by the caller as it modifies btrees.
640 		 * Try to reserve them to avoid excessive use of the global
641 		 * block reserve.
642 		 */
643 		delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
644 
645 		/*
646 		 * Do the reservation for the relocation root creation
647 		 */
648 		if (need_reserve_reloc_root(root)) {
649 			num_bytes += fs_info->nodesize;
650 			reloc_reserved = true;
651 		}
652 
653 		ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
654 						   &delayed_refs_bytes);
655 		if (ret)
656 			goto reserve_fail;
657 
658 		btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
659 
660 		if (trans_rsv->space_info->force_alloc)
661 			do_chunk_alloc = true;
662 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
663 		   !btrfs_block_rsv_full(delayed_refs_rsv)) {
664 		/*
665 		 * Some people call with btrfs_start_transaction(root, 0)
666 		 * because they can be throttled, but have some other mechanism
667 		 * for reserving space.  We still want these guys to refill the
668 		 * delayed block_rsv so just add 1 items worth of reservation
669 		 * here.
670 		 */
671 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
672 		if (ret)
673 			goto reserve_fail;
674 	}
675 again:
676 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
677 	if (!h) {
678 		ret = -ENOMEM;
679 		goto alloc_fail;
680 	}
681 
682 	/*
683 	 * If we are JOIN_NOLOCK we're already committing a transaction and
684 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
685 	 * because we're already holding a ref.  We need this because we could
686 	 * have raced in and did an fsync() on a file which can kick a commit
687 	 * and then we deadlock with somebody doing a freeze.
688 	 *
689 	 * If we are ATTACH, it means we just want to catch the current
690 	 * transaction and commit it, so we needn't do sb_start_intwrite().
691 	 */
692 	if (type & __TRANS_FREEZABLE)
693 		sb_start_intwrite(fs_info->sb);
694 
695 	if (may_wait_transaction(fs_info, type))
696 		wait_current_trans(fs_info);
697 
698 	do {
699 		ret = join_transaction(fs_info, type);
700 		if (ret == -EBUSY) {
701 			wait_current_trans(fs_info);
702 			if (unlikely(type == TRANS_ATTACH ||
703 				     type == TRANS_JOIN_NOSTART))
704 				ret = -ENOENT;
705 		}
706 	} while (ret == -EBUSY);
707 
708 	if (ret < 0)
709 		goto join_fail;
710 
711 	cur_trans = fs_info->running_transaction;
712 
713 	h->transid = cur_trans->transid;
714 	h->transaction = cur_trans;
715 	refcount_set(&h->use_count, 1);
716 	h->fs_info = root->fs_info;
717 
718 	h->type = type;
719 	INIT_LIST_HEAD(&h->new_bgs);
720 	btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
721 
722 	smp_mb();
723 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
724 	    may_wait_transaction(fs_info, type)) {
725 		current->journal_info = h;
726 		btrfs_commit_transaction(h);
727 		goto again;
728 	}
729 
730 	if (num_bytes) {
731 		trace_btrfs_space_reservation(fs_info, "transaction",
732 					      h->transid, num_bytes, 1);
733 		h->block_rsv = trans_rsv;
734 		h->bytes_reserved = num_bytes;
735 		if (delayed_refs_bytes > 0) {
736 			trace_btrfs_space_reservation(fs_info,
737 						      "local_delayed_refs_rsv",
738 						      h->transid,
739 						      delayed_refs_bytes, 1);
740 			h->delayed_refs_bytes_reserved = delayed_refs_bytes;
741 			btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
742 			delayed_refs_bytes = 0;
743 		}
744 		h->reloc_reserved = reloc_reserved;
745 	}
746 
747 got_it:
748 	if (!current->journal_info)
749 		current->journal_info = h;
750 
751 	/*
752 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
753 	 * ALLOC_FORCE the first run through, and then we won't allocate for
754 	 * anybody else who races in later.  We don't care about the return
755 	 * value here.
756 	 */
757 	if (do_chunk_alloc && num_bytes) {
758 		u64 flags = h->block_rsv->space_info->flags;
759 
760 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
761 				  CHUNK_ALLOC_NO_FORCE);
762 	}
763 
764 	/*
765 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
766 	 * call btrfs_join_transaction() while we're also starting a
767 	 * transaction.
768 	 *
769 	 * Thus it need to be called after current->journal_info initialized,
770 	 * or we can deadlock.
771 	 */
772 	ret = btrfs_record_root_in_trans(h, root);
773 	if (ret) {
774 		/*
775 		 * The transaction handle is fully initialized and linked with
776 		 * other structures so it needs to be ended in case of errors,
777 		 * not just freed.
778 		 */
779 		btrfs_end_transaction(h);
780 		goto reserve_fail;
781 	}
782 	/*
783 	 * Now that we have found a transaction to be a part of, convert the
784 	 * qgroup reservation from prealloc to pertrans. A different transaction
785 	 * can't race in and free our pertrans out from under us.
786 	 */
787 	if (qgroup_reserved)
788 		btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
789 
790 	return h;
791 
792 join_fail:
793 	if (type & __TRANS_FREEZABLE)
794 		sb_end_intwrite(fs_info->sb);
795 	kmem_cache_free(btrfs_trans_handle_cachep, h);
796 alloc_fail:
797 	if (num_bytes)
798 		btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
799 	if (delayed_refs_bytes)
800 		btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
801 						    delayed_refs_bytes);
802 reserve_fail:
803 	btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
804 	return ERR_PTR(ret);
805 }
806 
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)807 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
808 						   unsigned int num_items)
809 {
810 	return start_transaction(root, num_items, TRANS_START,
811 				 BTRFS_RESERVE_FLUSH_ALL, true);
812 }
813 
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items)814 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
815 					struct btrfs_root *root,
816 					unsigned int num_items)
817 {
818 	return start_transaction(root, num_items, TRANS_START,
819 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
820 }
821 
btrfs_join_transaction(struct btrfs_root * root)822 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
823 {
824 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
825 				 true);
826 }
827 
btrfs_join_transaction_spacecache(struct btrfs_root * root)828 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
829 {
830 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
831 				 BTRFS_RESERVE_NO_FLUSH, true);
832 }
833 
834 /*
835  * Similar to regular join but it never starts a transaction when none is
836  * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
837  * This is similar to btrfs_attach_transaction() but it allows the join to
838  * happen if the transaction commit already started but it's not yet in the
839  * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
840  */
btrfs_join_transaction_nostart(struct btrfs_root * root)841 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
842 {
843 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
844 				 BTRFS_RESERVE_NO_FLUSH, true);
845 }
846 
847 /*
848  * Catch the running transaction.
849  *
850  * It is used when we want to commit the current the transaction, but
851  * don't want to start a new one.
852  *
853  * Note: If this function return -ENOENT, it just means there is no
854  * running transaction. But it is possible that the inactive transaction
855  * is still in the memory, not fully on disk. If you hope there is no
856  * inactive transaction in the fs when -ENOENT is returned, you should
857  * invoke
858  *     btrfs_attach_transaction_barrier()
859  */
btrfs_attach_transaction(struct btrfs_root * root)860 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
861 {
862 	return start_transaction(root, 0, TRANS_ATTACH,
863 				 BTRFS_RESERVE_NO_FLUSH, true);
864 }
865 
866 /*
867  * Catch the running transaction.
868  *
869  * It is similar to the above function, the difference is this one
870  * will wait for all the inactive transactions until they fully
871  * complete.
872  */
873 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)874 btrfs_attach_transaction_barrier(struct btrfs_root *root)
875 {
876 	struct btrfs_trans_handle *trans;
877 
878 	trans = start_transaction(root, 0, TRANS_ATTACH,
879 				  BTRFS_RESERVE_NO_FLUSH, true);
880 	if (trans == ERR_PTR(-ENOENT)) {
881 		int ret;
882 
883 		ret = btrfs_wait_for_commit(root->fs_info, 0);
884 		if (ret)
885 			return ERR_PTR(ret);
886 	}
887 
888 	return trans;
889 }
890 
891 /* Wait for a transaction commit to reach at least the given state. */
wait_for_commit(struct btrfs_transaction * commit,const enum btrfs_trans_state min_state)892 static noinline void wait_for_commit(struct btrfs_transaction *commit,
893 				     const enum btrfs_trans_state min_state)
894 {
895 	struct btrfs_fs_info *fs_info = commit->fs_info;
896 	u64 transid = commit->transid;
897 	bool put = false;
898 
899 	/*
900 	 * At the moment this function is called with min_state either being
901 	 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
902 	 */
903 	if (min_state == TRANS_STATE_COMPLETED)
904 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
905 	else
906 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
907 
908 	while (1) {
909 		wait_event(commit->commit_wait, commit->state >= min_state);
910 		if (put)
911 			btrfs_put_transaction(commit);
912 
913 		if (min_state < TRANS_STATE_COMPLETED)
914 			break;
915 
916 		/*
917 		 * A transaction isn't really completed until all of the
918 		 * previous transactions are completed, but with fsync we can
919 		 * end up with SUPER_COMMITTED transactions before a COMPLETED
920 		 * transaction. Wait for those.
921 		 */
922 
923 		spin_lock(&fs_info->trans_lock);
924 		commit = list_first_entry_or_null(&fs_info->trans_list,
925 						  struct btrfs_transaction,
926 						  list);
927 		if (!commit || commit->transid > transid) {
928 			spin_unlock(&fs_info->trans_lock);
929 			break;
930 		}
931 		refcount_inc(&commit->use_count);
932 		put = true;
933 		spin_unlock(&fs_info->trans_lock);
934 	}
935 }
936 
btrfs_wait_for_commit(struct btrfs_fs_info * fs_info,u64 transid)937 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
938 {
939 	struct btrfs_transaction *cur_trans = NULL, *t;
940 	int ret = 0;
941 
942 	if (transid) {
943 		if (transid <= btrfs_get_last_trans_committed(fs_info))
944 			goto out;
945 
946 		/* find specified transaction */
947 		spin_lock(&fs_info->trans_lock);
948 		list_for_each_entry(t, &fs_info->trans_list, list) {
949 			if (t->transid == transid) {
950 				cur_trans = t;
951 				refcount_inc(&cur_trans->use_count);
952 				ret = 0;
953 				break;
954 			}
955 			if (t->transid > transid) {
956 				ret = 0;
957 				break;
958 			}
959 		}
960 		spin_unlock(&fs_info->trans_lock);
961 
962 		/*
963 		 * The specified transaction doesn't exist, or we
964 		 * raced with btrfs_commit_transaction
965 		 */
966 		if (!cur_trans) {
967 			if (transid > btrfs_get_last_trans_committed(fs_info))
968 				ret = -EINVAL;
969 			goto out;
970 		}
971 	} else {
972 		/* find newest transaction that is committing | committed */
973 		spin_lock(&fs_info->trans_lock);
974 		list_for_each_entry_reverse(t, &fs_info->trans_list,
975 					    list) {
976 			if (t->state >= TRANS_STATE_COMMIT_START) {
977 				if (t->state == TRANS_STATE_COMPLETED)
978 					break;
979 				cur_trans = t;
980 				refcount_inc(&cur_trans->use_count);
981 				break;
982 			}
983 		}
984 		spin_unlock(&fs_info->trans_lock);
985 		if (!cur_trans)
986 			goto out;  /* nothing committing|committed */
987 	}
988 
989 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
990 	ret = cur_trans->aborted;
991 	btrfs_put_transaction(cur_trans);
992 out:
993 	return ret;
994 }
995 
btrfs_throttle(struct btrfs_fs_info * fs_info)996 void btrfs_throttle(struct btrfs_fs_info *fs_info)
997 {
998 	wait_current_trans(fs_info);
999 }
1000 
btrfs_should_end_transaction(struct btrfs_trans_handle * trans)1001 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1002 {
1003 	struct btrfs_transaction *cur_trans = trans->transaction;
1004 
1005 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1006 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1007 		return true;
1008 
1009 	if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1010 		return true;
1011 
1012 	return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1013 }
1014 
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans)1015 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1016 
1017 {
1018 	struct btrfs_fs_info *fs_info = trans->fs_info;
1019 
1020 	if (!trans->block_rsv) {
1021 		ASSERT(!trans->bytes_reserved);
1022 		ASSERT(!trans->delayed_refs_bytes_reserved);
1023 		return;
1024 	}
1025 
1026 	if (!trans->bytes_reserved) {
1027 		ASSERT(!trans->delayed_refs_bytes_reserved);
1028 		return;
1029 	}
1030 
1031 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1032 	trace_btrfs_space_reservation(fs_info, "transaction",
1033 				      trans->transid, trans->bytes_reserved, 0);
1034 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
1035 				trans->bytes_reserved, NULL);
1036 	trans->bytes_reserved = 0;
1037 
1038 	if (!trans->delayed_refs_bytes_reserved)
1039 		return;
1040 
1041 	trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1042 				      trans->transid,
1043 				      trans->delayed_refs_bytes_reserved, 0);
1044 	btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1045 				trans->delayed_refs_bytes_reserved, NULL);
1046 	trans->delayed_refs_bytes_reserved = 0;
1047 }
1048 
__btrfs_end_transaction(struct btrfs_trans_handle * trans,int throttle)1049 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1050 				   int throttle)
1051 {
1052 	struct btrfs_fs_info *info = trans->fs_info;
1053 	struct btrfs_transaction *cur_trans = trans->transaction;
1054 	int ret = 0;
1055 
1056 	if (refcount_read(&trans->use_count) > 1) {
1057 		refcount_dec(&trans->use_count);
1058 		trans->block_rsv = trans->orig_rsv;
1059 		return 0;
1060 	}
1061 
1062 	btrfs_trans_release_metadata(trans);
1063 	trans->block_rsv = NULL;
1064 
1065 	btrfs_create_pending_block_groups(trans);
1066 
1067 	btrfs_trans_release_chunk_metadata(trans);
1068 
1069 	if (trans->type & __TRANS_FREEZABLE)
1070 		sb_end_intwrite(info->sb);
1071 
1072 	WARN_ON(cur_trans != info->running_transaction);
1073 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1074 	atomic_dec(&cur_trans->num_writers);
1075 	extwriter_counter_dec(cur_trans, trans->type);
1076 
1077 	cond_wake_up(&cur_trans->writer_wait);
1078 
1079 	btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1080 	btrfs_lockdep_release(info, btrfs_trans_num_writers);
1081 
1082 	btrfs_put_transaction(cur_trans);
1083 
1084 	if (current->journal_info == trans)
1085 		current->journal_info = NULL;
1086 
1087 	if (throttle)
1088 		btrfs_run_delayed_iputs(info);
1089 
1090 	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1091 		wake_up_process(info->transaction_kthread);
1092 		if (TRANS_ABORTED(trans))
1093 			ret = trans->aborted;
1094 		else
1095 			ret = -EROFS;
1096 	}
1097 
1098 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1099 	return ret;
1100 }
1101 
btrfs_end_transaction(struct btrfs_trans_handle * trans)1102 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1103 {
1104 	return __btrfs_end_transaction(trans, 0);
1105 }
1106 
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans)1107 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1108 {
1109 	return __btrfs_end_transaction(trans, 1);
1110 }
1111 
1112 /*
1113  * when btree blocks are allocated, they have some corresponding bits set for
1114  * them in one of two extent_io trees.  This is used to make sure all of
1115  * those extents are sent to disk but does not wait on them
1116  */
btrfs_write_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)1117 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1118 			       struct extent_io_tree *dirty_pages, int mark)
1119 {
1120 	int ret = 0;
1121 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1122 	struct extent_state *cached_state = NULL;
1123 	u64 start = 0;
1124 	u64 end;
1125 
1126 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1127 				     mark, &cached_state)) {
1128 		bool wait_writeback = false;
1129 
1130 		ret = convert_extent_bit(dirty_pages, start, end,
1131 					 EXTENT_NEED_WAIT,
1132 					 mark, &cached_state);
1133 		/*
1134 		 * convert_extent_bit can return -ENOMEM, which is most of the
1135 		 * time a temporary error. So when it happens, ignore the error
1136 		 * and wait for writeback of this range to finish - because we
1137 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1138 		 * to __btrfs_wait_marked_extents() would not know that
1139 		 * writeback for this range started and therefore wouldn't
1140 		 * wait for it to finish - we don't want to commit a
1141 		 * superblock that points to btree nodes/leafs for which
1142 		 * writeback hasn't finished yet (and without errors).
1143 		 * We cleanup any entries left in the io tree when committing
1144 		 * the transaction (through extent_io_tree_release()).
1145 		 */
1146 		if (ret == -ENOMEM) {
1147 			ret = 0;
1148 			wait_writeback = true;
1149 		}
1150 		if (!ret)
1151 			ret = filemap_fdatawrite_range(mapping, start, end);
1152 		if (!ret && wait_writeback)
1153 			ret = filemap_fdatawait_range(mapping, start, end);
1154 		free_extent_state(cached_state);
1155 		if (ret)
1156 			break;
1157 		cached_state = NULL;
1158 		cond_resched();
1159 		start = end + 1;
1160 	}
1161 	return ret;
1162 }
1163 
1164 /*
1165  * when btree blocks are allocated, they have some corresponding bits set for
1166  * them in one of two extent_io trees.  This is used to make sure all of
1167  * those extents are on disk for transaction or log commit.  We wait
1168  * on all the pages and clear them from the dirty pages state tree
1169  */
__btrfs_wait_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1170 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1171 				       struct extent_io_tree *dirty_pages)
1172 {
1173 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1174 	struct extent_state *cached_state = NULL;
1175 	u64 start = 0;
1176 	u64 end;
1177 	int ret = 0;
1178 
1179 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1180 				     EXTENT_NEED_WAIT, &cached_state)) {
1181 		/*
1182 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1183 		 * When committing the transaction, we'll remove any entries
1184 		 * left in the io tree. For a log commit, we don't remove them
1185 		 * after committing the log because the tree can be accessed
1186 		 * concurrently - we do it only at transaction commit time when
1187 		 * it's safe to do it (through extent_io_tree_release()).
1188 		 */
1189 		ret = clear_extent_bit(dirty_pages, start, end,
1190 				       EXTENT_NEED_WAIT, &cached_state);
1191 		if (ret == -ENOMEM)
1192 			ret = 0;
1193 		if (!ret)
1194 			ret = filemap_fdatawait_range(mapping, start, end);
1195 		free_extent_state(cached_state);
1196 		if (ret)
1197 			break;
1198 		cached_state = NULL;
1199 		cond_resched();
1200 		start = end + 1;
1201 	}
1202 	return ret;
1203 }
1204 
btrfs_wait_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1205 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1206 		       struct extent_io_tree *dirty_pages)
1207 {
1208 	bool errors = false;
1209 	int err;
1210 
1211 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1212 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1213 		errors = true;
1214 
1215 	if (errors && !err)
1216 		err = -EIO;
1217 	return err;
1218 }
1219 
btrfs_wait_tree_log_extents(struct btrfs_root * log_root,int mark)1220 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1221 {
1222 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1223 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1224 	bool errors = false;
1225 	int err;
1226 
1227 	ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID);
1228 
1229 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1230 	if ((mark & EXTENT_DIRTY) &&
1231 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1232 		errors = true;
1233 
1234 	if ((mark & EXTENT_NEW) &&
1235 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1236 		errors = true;
1237 
1238 	if (errors && !err)
1239 		err = -EIO;
1240 	return err;
1241 }
1242 
1243 /*
1244  * When btree blocks are allocated the corresponding extents are marked dirty.
1245  * This function ensures such extents are persisted on disk for transaction or
1246  * log commit.
1247  *
1248  * @trans: transaction whose dirty pages we'd like to write
1249  */
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans)1250 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1251 {
1252 	int ret;
1253 	int ret2;
1254 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1255 	struct btrfs_fs_info *fs_info = trans->fs_info;
1256 	struct blk_plug plug;
1257 
1258 	blk_start_plug(&plug);
1259 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1260 	blk_finish_plug(&plug);
1261 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1262 
1263 	extent_io_tree_release(&trans->transaction->dirty_pages);
1264 
1265 	if (ret)
1266 		return ret;
1267 	else if (ret2)
1268 		return ret2;
1269 	else
1270 		return 0;
1271 }
1272 
1273 /*
1274  * this is used to update the root pointer in the tree of tree roots.
1275  *
1276  * But, in the case of the extent allocation tree, updating the root
1277  * pointer may allocate blocks which may change the root of the extent
1278  * allocation tree.
1279  *
1280  * So, this loops and repeats and makes sure the cowonly root didn't
1281  * change while the root pointer was being updated in the metadata.
1282  */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1283 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1284 			       struct btrfs_root *root)
1285 {
1286 	int ret;
1287 	u64 old_root_bytenr;
1288 	u64 old_root_used;
1289 	struct btrfs_fs_info *fs_info = root->fs_info;
1290 	struct btrfs_root *tree_root = fs_info->tree_root;
1291 
1292 	old_root_used = btrfs_root_used(&root->root_item);
1293 
1294 	while (1) {
1295 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1296 		if (old_root_bytenr == root->node->start &&
1297 		    old_root_used == btrfs_root_used(&root->root_item))
1298 			break;
1299 
1300 		btrfs_set_root_node(&root->root_item, root->node);
1301 		ret = btrfs_update_root(trans, tree_root,
1302 					&root->root_key,
1303 					&root->root_item);
1304 		if (ret)
1305 			return ret;
1306 
1307 		old_root_used = btrfs_root_used(&root->root_item);
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 /*
1314  * update all the cowonly tree roots on disk
1315  *
1316  * The error handling in this function may not be obvious. Any of the
1317  * failures will cause the file system to go offline. We still need
1318  * to clean up the delayed refs.
1319  */
commit_cowonly_roots(struct btrfs_trans_handle * trans)1320 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1321 {
1322 	struct btrfs_fs_info *fs_info = trans->fs_info;
1323 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1324 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1325 	struct list_head *next;
1326 	struct extent_buffer *eb;
1327 	int ret;
1328 
1329 	/*
1330 	 * At this point no one can be using this transaction to modify any tree
1331 	 * and no one can start another transaction to modify any tree either.
1332 	 */
1333 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1334 
1335 	eb = btrfs_lock_root_node(fs_info->tree_root);
1336 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1337 			      0, &eb, BTRFS_NESTING_COW);
1338 	btrfs_tree_unlock(eb);
1339 	free_extent_buffer(eb);
1340 
1341 	if (ret)
1342 		return ret;
1343 
1344 	ret = btrfs_run_dev_stats(trans);
1345 	if (ret)
1346 		return ret;
1347 	ret = btrfs_run_dev_replace(trans);
1348 	if (ret)
1349 		return ret;
1350 	ret = btrfs_run_qgroups(trans);
1351 	if (ret)
1352 		return ret;
1353 
1354 	ret = btrfs_setup_space_cache(trans);
1355 	if (ret)
1356 		return ret;
1357 
1358 again:
1359 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1360 		struct btrfs_root *root;
1361 		next = fs_info->dirty_cowonly_roots.next;
1362 		list_del_init(next);
1363 		root = list_entry(next, struct btrfs_root, dirty_list);
1364 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1365 
1366 		list_add_tail(&root->dirty_list,
1367 			      &trans->transaction->switch_commits);
1368 		ret = update_cowonly_root(trans, root);
1369 		if (ret)
1370 			return ret;
1371 	}
1372 
1373 	/* Now flush any delayed refs generated by updating all of the roots */
1374 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1375 	if (ret)
1376 		return ret;
1377 
1378 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1379 		ret = btrfs_write_dirty_block_groups(trans);
1380 		if (ret)
1381 			return ret;
1382 
1383 		/*
1384 		 * We're writing the dirty block groups, which could generate
1385 		 * delayed refs, which could generate more dirty block groups,
1386 		 * so we want to keep this flushing in this loop to make sure
1387 		 * everything gets run.
1388 		 */
1389 		ret = btrfs_run_delayed_refs(trans, U64_MAX);
1390 		if (ret)
1391 			return ret;
1392 	}
1393 
1394 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1395 		goto again;
1396 
1397 	/* Update dev-replace pointer once everything is committed */
1398 	fs_info->dev_replace.committed_cursor_left =
1399 		fs_info->dev_replace.cursor_left_last_write_of_item;
1400 
1401 	return 0;
1402 }
1403 
1404 /*
1405  * If we had a pending drop we need to see if there are any others left in our
1406  * dead roots list, and if not clear our bit and wake any waiters.
1407  */
btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1408 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1409 {
1410 	/*
1411 	 * We put the drop in progress roots at the front of the list, so if the
1412 	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1413 	 * up.
1414 	 */
1415 	spin_lock(&fs_info->trans_lock);
1416 	if (!list_empty(&fs_info->dead_roots)) {
1417 		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1418 							   struct btrfs_root,
1419 							   root_list);
1420 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1421 			spin_unlock(&fs_info->trans_lock);
1422 			return;
1423 		}
1424 	}
1425 	spin_unlock(&fs_info->trans_lock);
1426 
1427 	btrfs_wake_unfinished_drop(fs_info);
1428 }
1429 
1430 /*
1431  * dead roots are old snapshots that need to be deleted.  This allocates
1432  * a dirty root struct and adds it into the list of dead roots that need to
1433  * be deleted
1434  */
btrfs_add_dead_root(struct btrfs_root * root)1435 void btrfs_add_dead_root(struct btrfs_root *root)
1436 {
1437 	struct btrfs_fs_info *fs_info = root->fs_info;
1438 
1439 	spin_lock(&fs_info->trans_lock);
1440 	if (list_empty(&root->root_list)) {
1441 		btrfs_grab_root(root);
1442 
1443 		/* We want to process the partially complete drops first. */
1444 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1445 			list_add(&root->root_list, &fs_info->dead_roots);
1446 		else
1447 			list_add_tail(&root->root_list, &fs_info->dead_roots);
1448 	}
1449 	spin_unlock(&fs_info->trans_lock);
1450 }
1451 
1452 /*
1453  * Update each subvolume root and its relocation root, if it exists, in the tree
1454  * of tree roots. Also free log roots if they exist.
1455  */
commit_fs_roots(struct btrfs_trans_handle * trans)1456 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1457 {
1458 	struct btrfs_fs_info *fs_info = trans->fs_info;
1459 	struct btrfs_root *gang[8];
1460 	int i;
1461 	int ret;
1462 
1463 	/*
1464 	 * At this point no one can be using this transaction to modify any tree
1465 	 * and no one can start another transaction to modify any tree either.
1466 	 */
1467 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1468 
1469 	spin_lock(&fs_info->fs_roots_radix_lock);
1470 	while (1) {
1471 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1472 						 (void **)gang, 0,
1473 						 ARRAY_SIZE(gang),
1474 						 BTRFS_ROOT_TRANS_TAG);
1475 		if (ret == 0)
1476 			break;
1477 		for (i = 0; i < ret; i++) {
1478 			struct btrfs_root *root = gang[i];
1479 			int ret2;
1480 
1481 			/*
1482 			 * At this point we can neither have tasks logging inodes
1483 			 * from a root nor trying to commit a log tree.
1484 			 */
1485 			ASSERT(atomic_read(&root->log_writers) == 0);
1486 			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1487 			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1488 
1489 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1490 					(unsigned long)btrfs_root_id(root),
1491 					BTRFS_ROOT_TRANS_TAG);
1492 			btrfs_qgroup_free_meta_all_pertrans(root);
1493 			spin_unlock(&fs_info->fs_roots_radix_lock);
1494 
1495 			btrfs_free_log(trans, root);
1496 			ret2 = btrfs_update_reloc_root(trans, root);
1497 			if (ret2)
1498 				return ret2;
1499 
1500 			/* see comments in should_cow_block() */
1501 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1502 			smp_mb__after_atomic();
1503 
1504 			if (root->commit_root != root->node) {
1505 				list_add_tail(&root->dirty_list,
1506 					&trans->transaction->switch_commits);
1507 				btrfs_set_root_node(&root->root_item,
1508 						    root->node);
1509 			}
1510 
1511 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1512 						&root->root_key,
1513 						&root->root_item);
1514 			if (ret2)
1515 				return ret2;
1516 			spin_lock(&fs_info->fs_roots_radix_lock);
1517 		}
1518 	}
1519 	spin_unlock(&fs_info->fs_roots_radix_lock);
1520 	return 0;
1521 }
1522 
1523 /*
1524  * Do all special snapshot related qgroup dirty hack.
1525  *
1526  * Will do all needed qgroup inherit and dirty hack like switch commit
1527  * roots inside one transaction and write all btree into disk, to make
1528  * qgroup works.
1529  */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1530 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1531 				   struct btrfs_root *src,
1532 				   struct btrfs_root *parent,
1533 				   struct btrfs_qgroup_inherit *inherit,
1534 				   u64 dst_objectid)
1535 {
1536 	struct btrfs_fs_info *fs_info = src->fs_info;
1537 	int ret;
1538 
1539 	/*
1540 	 * Save some performance in the case that qgroups are not enabled. If
1541 	 * this check races with the ioctl, rescan will kick in anyway.
1542 	 */
1543 	if (!btrfs_qgroup_full_accounting(fs_info))
1544 		return 0;
1545 
1546 	/*
1547 	 * Ensure dirty @src will be committed.  Or, after coming
1548 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1549 	 * recorded root will never be updated again, causing an outdated root
1550 	 * item.
1551 	 */
1552 	ret = record_root_in_trans(trans, src, 1);
1553 	if (ret)
1554 		return ret;
1555 
1556 	/*
1557 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1558 	 * src root, so we must run the delayed refs here.
1559 	 *
1560 	 * However this isn't particularly fool proof, because there's no
1561 	 * synchronization keeping us from changing the tree after this point
1562 	 * before we do the qgroup_inherit, or even from making changes while
1563 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1564 	 * for now flush the delayed refs to narrow the race window where the
1565 	 * qgroup counters could end up wrong.
1566 	 */
1567 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1568 	if (ret) {
1569 		btrfs_abort_transaction(trans, ret);
1570 		return ret;
1571 	}
1572 
1573 	ret = commit_fs_roots(trans);
1574 	if (ret)
1575 		goto out;
1576 	ret = btrfs_qgroup_account_extents(trans);
1577 	if (ret < 0)
1578 		goto out;
1579 
1580 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1581 	ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid,
1582 				   btrfs_root_id(parent), inherit);
1583 	if (ret < 0)
1584 		goto out;
1585 
1586 	/*
1587 	 * Now we do a simplified commit transaction, which will:
1588 	 * 1) commit all subvolume and extent tree
1589 	 *    To ensure all subvolume and extent tree have a valid
1590 	 *    commit_root to accounting later insert_dir_item()
1591 	 * 2) write all btree blocks onto disk
1592 	 *    This is to make sure later btree modification will be cowed
1593 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1594 	 * In this simplified commit, we don't really care about other trees
1595 	 * like chunk and root tree, as they won't affect qgroup.
1596 	 * And we don't write super to avoid half committed status.
1597 	 */
1598 	ret = commit_cowonly_roots(trans);
1599 	if (ret)
1600 		goto out;
1601 	switch_commit_roots(trans);
1602 	ret = btrfs_write_and_wait_transaction(trans);
1603 	if (ret)
1604 		btrfs_handle_fs_error(fs_info, ret,
1605 			"Error while writing out transaction for qgroup");
1606 
1607 out:
1608 	/*
1609 	 * Force parent root to be updated, as we recorded it before so its
1610 	 * last_trans == cur_transid.
1611 	 * Or it won't be committed again onto disk after later
1612 	 * insert_dir_item()
1613 	 */
1614 	if (!ret)
1615 		ret = record_root_in_trans(trans, parent, 1);
1616 	return ret;
1617 }
1618 
1619 /*
1620  * new snapshots need to be created at a very specific time in the
1621  * transaction commit.  This does the actual creation.
1622  *
1623  * Note:
1624  * If the error which may affect the commitment of the current transaction
1625  * happens, we should return the error number. If the error which just affect
1626  * the creation of the pending snapshots, just return 0.
1627  */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)1628 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1629 				   struct btrfs_pending_snapshot *pending)
1630 {
1631 
1632 	struct btrfs_fs_info *fs_info = trans->fs_info;
1633 	struct btrfs_key key;
1634 	struct btrfs_root_item *new_root_item;
1635 	struct btrfs_root *tree_root = fs_info->tree_root;
1636 	struct btrfs_root *root = pending->root;
1637 	struct btrfs_root *parent_root;
1638 	struct btrfs_block_rsv *rsv;
1639 	struct inode *parent_inode = &pending->dir->vfs_inode;
1640 	struct btrfs_path *path;
1641 	struct btrfs_dir_item *dir_item;
1642 	struct extent_buffer *tmp;
1643 	struct extent_buffer *old;
1644 	struct timespec64 cur_time;
1645 	int ret = 0;
1646 	u64 to_reserve = 0;
1647 	u64 index = 0;
1648 	u64 objectid;
1649 	u64 root_flags;
1650 	unsigned int nofs_flags;
1651 	struct fscrypt_name fname;
1652 
1653 	ASSERT(pending->path);
1654 	path = pending->path;
1655 
1656 	ASSERT(pending->root_item);
1657 	new_root_item = pending->root_item;
1658 
1659 	/*
1660 	 * We're inside a transaction and must make sure that any potential
1661 	 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1662 	 * filesystem.
1663 	 */
1664 	nofs_flags = memalloc_nofs_save();
1665 	pending->error = fscrypt_setup_filename(parent_inode,
1666 						&pending->dentry->d_name, 0,
1667 						&fname);
1668 	memalloc_nofs_restore(nofs_flags);
1669 	if (pending->error)
1670 		goto free_pending;
1671 
1672 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1673 	if (pending->error)
1674 		goto free_fname;
1675 
1676 	/*
1677 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1678 	 * accounted by later btrfs_qgroup_inherit().
1679 	 */
1680 	btrfs_set_skip_qgroup(trans, objectid);
1681 
1682 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1683 
1684 	if (to_reserve > 0) {
1685 		pending->error = btrfs_block_rsv_add(fs_info,
1686 						     &pending->block_rsv,
1687 						     to_reserve,
1688 						     BTRFS_RESERVE_NO_FLUSH);
1689 		if (pending->error)
1690 			goto clear_skip_qgroup;
1691 	}
1692 
1693 	key.objectid = objectid;
1694 	key.offset = (u64)-1;
1695 	key.type = BTRFS_ROOT_ITEM_KEY;
1696 
1697 	rsv = trans->block_rsv;
1698 	trans->block_rsv = &pending->block_rsv;
1699 	trans->bytes_reserved = trans->block_rsv->reserved;
1700 	trace_btrfs_space_reservation(fs_info, "transaction",
1701 				      trans->transid,
1702 				      trans->bytes_reserved, 1);
1703 	parent_root = BTRFS_I(parent_inode)->root;
1704 	ret = record_root_in_trans(trans, parent_root, 0);
1705 	if (ret)
1706 		goto fail;
1707 	cur_time = current_time(parent_inode);
1708 
1709 	/*
1710 	 * insert the directory item
1711 	 */
1712 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1713 	if (ret) {
1714 		btrfs_abort_transaction(trans, ret);
1715 		goto fail;
1716 	}
1717 
1718 	/* check if there is a file/dir which has the same name. */
1719 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1720 					 btrfs_ino(BTRFS_I(parent_inode)),
1721 					 &fname.disk_name, 0);
1722 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1723 		pending->error = -EEXIST;
1724 		goto dir_item_existed;
1725 	} else if (IS_ERR(dir_item)) {
1726 		ret = PTR_ERR(dir_item);
1727 		btrfs_abort_transaction(trans, ret);
1728 		goto fail;
1729 	}
1730 	btrfs_release_path(path);
1731 
1732 	ret = btrfs_create_qgroup(trans, objectid);
1733 	if (ret && ret != -EEXIST) {
1734 		btrfs_abort_transaction(trans, ret);
1735 		goto fail;
1736 	}
1737 
1738 	/*
1739 	 * pull in the delayed directory update
1740 	 * and the delayed inode item
1741 	 * otherwise we corrupt the FS during
1742 	 * snapshot
1743 	 */
1744 	ret = btrfs_run_delayed_items(trans);
1745 	if (ret) {	/* Transaction aborted */
1746 		btrfs_abort_transaction(trans, ret);
1747 		goto fail;
1748 	}
1749 
1750 	ret = record_root_in_trans(trans, root, 0);
1751 	if (ret) {
1752 		btrfs_abort_transaction(trans, ret);
1753 		goto fail;
1754 	}
1755 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1756 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1757 	btrfs_check_and_init_root_item(new_root_item);
1758 
1759 	root_flags = btrfs_root_flags(new_root_item);
1760 	if (pending->readonly)
1761 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1762 	else
1763 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1764 	btrfs_set_root_flags(new_root_item, root_flags);
1765 
1766 	btrfs_set_root_generation_v2(new_root_item,
1767 			trans->transid);
1768 	generate_random_guid(new_root_item->uuid);
1769 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1770 			BTRFS_UUID_SIZE);
1771 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1772 		memset(new_root_item->received_uuid, 0,
1773 		       sizeof(new_root_item->received_uuid));
1774 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1775 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1776 		btrfs_set_root_stransid(new_root_item, 0);
1777 		btrfs_set_root_rtransid(new_root_item, 0);
1778 	}
1779 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1780 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1781 	btrfs_set_root_otransid(new_root_item, trans->transid);
1782 
1783 	old = btrfs_lock_root_node(root);
1784 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1785 			      BTRFS_NESTING_COW);
1786 	if (ret) {
1787 		btrfs_tree_unlock(old);
1788 		free_extent_buffer(old);
1789 		btrfs_abort_transaction(trans, ret);
1790 		goto fail;
1791 	}
1792 
1793 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1794 	/* clean up in any case */
1795 	btrfs_tree_unlock(old);
1796 	free_extent_buffer(old);
1797 	if (ret) {
1798 		btrfs_abort_transaction(trans, ret);
1799 		goto fail;
1800 	}
1801 	/* see comments in should_cow_block() */
1802 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1803 	smp_wmb();
1804 
1805 	btrfs_set_root_node(new_root_item, tmp);
1806 	/* record when the snapshot was created in key.offset */
1807 	key.offset = trans->transid;
1808 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1809 	btrfs_tree_unlock(tmp);
1810 	free_extent_buffer(tmp);
1811 	if (ret) {
1812 		btrfs_abort_transaction(trans, ret);
1813 		goto fail;
1814 	}
1815 
1816 	/*
1817 	 * insert root back/forward references
1818 	 */
1819 	ret = btrfs_add_root_ref(trans, objectid,
1820 				 btrfs_root_id(parent_root),
1821 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1822 				 &fname.disk_name);
1823 	if (ret) {
1824 		btrfs_abort_transaction(trans, ret);
1825 		goto fail;
1826 	}
1827 
1828 	key.offset = (u64)-1;
1829 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1830 	if (IS_ERR(pending->snap)) {
1831 		ret = PTR_ERR(pending->snap);
1832 		pending->snap = NULL;
1833 		btrfs_abort_transaction(trans, ret);
1834 		goto fail;
1835 	}
1836 
1837 	ret = btrfs_reloc_post_snapshot(trans, pending);
1838 	if (ret) {
1839 		btrfs_abort_transaction(trans, ret);
1840 		goto fail;
1841 	}
1842 
1843 	/*
1844 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1845 	 * snapshot hack to do fast snapshot.
1846 	 * To co-operate with that hack, we do hack again.
1847 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1848 	 */
1849 	if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1850 		ret = qgroup_account_snapshot(trans, root, parent_root,
1851 					      pending->inherit, objectid);
1852 	else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1853 		ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid,
1854 					   btrfs_root_id(parent_root), pending->inherit);
1855 	if (ret < 0)
1856 		goto fail;
1857 
1858 	ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1859 				    BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1860 				    index);
1861 	if (ret) {
1862 		btrfs_abort_transaction(trans, ret);
1863 		goto fail;
1864 	}
1865 
1866 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1867 						  fname.disk_name.len * 2);
1868 	inode_set_mtime_to_ts(parent_inode,
1869 			      inode_set_ctime_current(parent_inode));
1870 	ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1871 	if (ret) {
1872 		btrfs_abort_transaction(trans, ret);
1873 		goto fail;
1874 	}
1875 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1876 				  BTRFS_UUID_KEY_SUBVOL,
1877 				  objectid);
1878 	if (ret) {
1879 		btrfs_abort_transaction(trans, ret);
1880 		goto fail;
1881 	}
1882 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1883 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1884 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1885 					  objectid);
1886 		if (ret && ret != -EEXIST) {
1887 			btrfs_abort_transaction(trans, ret);
1888 			goto fail;
1889 		}
1890 	}
1891 
1892 fail:
1893 	pending->error = ret;
1894 dir_item_existed:
1895 	trans->block_rsv = rsv;
1896 	trans->bytes_reserved = 0;
1897 clear_skip_qgroup:
1898 	btrfs_clear_skip_qgroup(trans);
1899 free_fname:
1900 	fscrypt_free_filename(&fname);
1901 free_pending:
1902 	kfree(new_root_item);
1903 	pending->root_item = NULL;
1904 	btrfs_free_path(path);
1905 	pending->path = NULL;
1906 
1907 	return ret;
1908 }
1909 
1910 /*
1911  * create all the snapshots we've scheduled for creation
1912  */
create_pending_snapshots(struct btrfs_trans_handle * trans)1913 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1914 {
1915 	struct btrfs_pending_snapshot *pending, *next;
1916 	struct list_head *head = &trans->transaction->pending_snapshots;
1917 	int ret = 0;
1918 
1919 	list_for_each_entry_safe(pending, next, head, list) {
1920 		list_del(&pending->list);
1921 		ret = create_pending_snapshot(trans, pending);
1922 		if (ret)
1923 			break;
1924 	}
1925 	return ret;
1926 }
1927 
update_super_roots(struct btrfs_fs_info * fs_info)1928 static void update_super_roots(struct btrfs_fs_info *fs_info)
1929 {
1930 	struct btrfs_root_item *root_item;
1931 	struct btrfs_super_block *super;
1932 
1933 	super = fs_info->super_copy;
1934 
1935 	root_item = &fs_info->chunk_root->root_item;
1936 	super->chunk_root = root_item->bytenr;
1937 	super->chunk_root_generation = root_item->generation;
1938 	super->chunk_root_level = root_item->level;
1939 
1940 	root_item = &fs_info->tree_root->root_item;
1941 	super->root = root_item->bytenr;
1942 	super->generation = root_item->generation;
1943 	super->root_level = root_item->level;
1944 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1945 		super->cache_generation = root_item->generation;
1946 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1947 		super->cache_generation = 0;
1948 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1949 		super->uuid_tree_generation = root_item->generation;
1950 }
1951 
btrfs_transaction_blocked(struct btrfs_fs_info * info)1952 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1953 {
1954 	struct btrfs_transaction *trans;
1955 	int ret = 0;
1956 
1957 	spin_lock(&info->trans_lock);
1958 	trans = info->running_transaction;
1959 	if (trans)
1960 		ret = is_transaction_blocked(trans);
1961 	spin_unlock(&info->trans_lock);
1962 	return ret;
1963 }
1964 
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans)1965 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1966 {
1967 	struct btrfs_fs_info *fs_info = trans->fs_info;
1968 	struct btrfs_transaction *cur_trans;
1969 
1970 	/* Kick the transaction kthread. */
1971 	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1972 	wake_up_process(fs_info->transaction_kthread);
1973 
1974 	/* take transaction reference */
1975 	cur_trans = trans->transaction;
1976 	refcount_inc(&cur_trans->use_count);
1977 
1978 	btrfs_end_transaction(trans);
1979 
1980 	/*
1981 	 * Wait for the current transaction commit to start and block
1982 	 * subsequent transaction joins
1983 	 */
1984 	btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1985 	wait_event(fs_info->transaction_blocked_wait,
1986 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1987 		   TRANS_ABORTED(cur_trans));
1988 	btrfs_put_transaction(cur_trans);
1989 }
1990 
1991 /*
1992  * If there is a running transaction commit it or if it's already committing,
1993  * wait for its commit to complete. Does not start and commit a new transaction
1994  * if there isn't any running.
1995  */
btrfs_commit_current_transaction(struct btrfs_root * root)1996 int btrfs_commit_current_transaction(struct btrfs_root *root)
1997 {
1998 	struct btrfs_trans_handle *trans;
1999 
2000 	trans = btrfs_attach_transaction_barrier(root);
2001 	if (IS_ERR(trans)) {
2002 		int ret = PTR_ERR(trans);
2003 
2004 		return (ret == -ENOENT) ? 0 : ret;
2005 	}
2006 
2007 	return btrfs_commit_transaction(trans);
2008 }
2009 
cleanup_transaction(struct btrfs_trans_handle * trans,int err)2010 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2011 {
2012 	struct btrfs_fs_info *fs_info = trans->fs_info;
2013 	struct btrfs_transaction *cur_trans = trans->transaction;
2014 
2015 	WARN_ON(refcount_read(&trans->use_count) > 1);
2016 
2017 	btrfs_abort_transaction(trans, err);
2018 
2019 	spin_lock(&fs_info->trans_lock);
2020 
2021 	/*
2022 	 * If the transaction is removed from the list, it means this
2023 	 * transaction has been committed successfully, so it is impossible
2024 	 * to call the cleanup function.
2025 	 */
2026 	BUG_ON(list_empty(&cur_trans->list));
2027 
2028 	if (cur_trans == fs_info->running_transaction) {
2029 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
2030 		spin_unlock(&fs_info->trans_lock);
2031 
2032 		/*
2033 		 * The thread has already released the lockdep map as reader
2034 		 * already in btrfs_commit_transaction().
2035 		 */
2036 		btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2037 		wait_event(cur_trans->writer_wait,
2038 			   atomic_read(&cur_trans->num_writers) == 1);
2039 
2040 		spin_lock(&fs_info->trans_lock);
2041 	}
2042 
2043 	/*
2044 	 * Now that we know no one else is still using the transaction we can
2045 	 * remove the transaction from the list of transactions. This avoids
2046 	 * the transaction kthread from cleaning up the transaction while some
2047 	 * other task is still using it, which could result in a use-after-free
2048 	 * on things like log trees, as it forces the transaction kthread to
2049 	 * wait for this transaction to be cleaned up by us.
2050 	 */
2051 	list_del_init(&cur_trans->list);
2052 
2053 	spin_unlock(&fs_info->trans_lock);
2054 
2055 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2056 
2057 	spin_lock(&fs_info->trans_lock);
2058 	if (cur_trans == fs_info->running_transaction)
2059 		fs_info->running_transaction = NULL;
2060 	spin_unlock(&fs_info->trans_lock);
2061 
2062 	if (trans->type & __TRANS_FREEZABLE)
2063 		sb_end_intwrite(fs_info->sb);
2064 	btrfs_put_transaction(cur_trans);
2065 	btrfs_put_transaction(cur_trans);
2066 
2067 	trace_btrfs_transaction_commit(fs_info);
2068 
2069 	if (current->journal_info == trans)
2070 		current->journal_info = NULL;
2071 
2072 	/*
2073 	 * If relocation is running, we can't cancel scrub because that will
2074 	 * result in a deadlock. Before relocating a block group, relocation
2075 	 * pauses scrub, then starts and commits a transaction before unpausing
2076 	 * scrub. If the transaction commit is being done by the relocation
2077 	 * task or triggered by another task and the relocation task is waiting
2078 	 * for the commit, and we end up here due to an error in the commit
2079 	 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2080 	 * asking for scrub to stop while having it asked to be paused higher
2081 	 * above in relocation code.
2082 	 */
2083 	if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2084 		btrfs_scrub_cancel(fs_info);
2085 
2086 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2087 }
2088 
2089 /*
2090  * Release reserved delayed ref space of all pending block groups of the
2091  * transaction and remove them from the list
2092  */
btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle * trans)2093 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2094 {
2095        struct btrfs_fs_info *fs_info = trans->fs_info;
2096        struct btrfs_block_group *block_group, *tmp;
2097 
2098        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2099                btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2100                list_del_init(&block_group->bg_list);
2101        }
2102 }
2103 
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)2104 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2105 {
2106 	/*
2107 	 * We use try_to_writeback_inodes_sb() here because if we used
2108 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2109 	 * Currently are holding the fs freeze lock, if we do an async flush
2110 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2111 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2112 	 * from already being in a transaction and our join_transaction doesn't
2113 	 * have to re-take the fs freeze lock.
2114 	 *
2115 	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2116 	 * if it can read lock sb->s_umount. It will always be able to lock it,
2117 	 * except when the filesystem is being unmounted or being frozen, but in
2118 	 * those cases sync_filesystem() is called, which results in calling
2119 	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2120 	 * Note that we don't call writeback_inodes_sb() directly, because it
2121 	 * will emit a warning if sb->s_umount is not locked.
2122 	 */
2123 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2124 		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2125 	return 0;
2126 }
2127 
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)2128 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2129 {
2130 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2131 		btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
2132 }
2133 
2134 /*
2135  * Add a pending snapshot associated with the given transaction handle to the
2136  * respective handle. This must be called after the transaction commit started
2137  * and while holding fs_info->trans_lock.
2138  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2139  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2140  * returns an error.
2141  */
add_pending_snapshot(struct btrfs_trans_handle * trans)2142 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2143 {
2144 	struct btrfs_transaction *cur_trans = trans->transaction;
2145 
2146 	if (!trans->pending_snapshot)
2147 		return;
2148 
2149 	lockdep_assert_held(&trans->fs_info->trans_lock);
2150 	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2151 
2152 	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2153 }
2154 
update_commit_stats(struct btrfs_fs_info * fs_info,ktime_t interval)2155 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2156 {
2157 	fs_info->commit_stats.commit_count++;
2158 	fs_info->commit_stats.last_commit_dur = interval;
2159 	fs_info->commit_stats.max_commit_dur =
2160 			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2161 	fs_info->commit_stats.total_commit_dur += interval;
2162 }
2163 
btrfs_commit_transaction(struct btrfs_trans_handle * trans)2164 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2165 {
2166 	struct btrfs_fs_info *fs_info = trans->fs_info;
2167 	struct btrfs_transaction *cur_trans = trans->transaction;
2168 	struct btrfs_transaction *prev_trans = NULL;
2169 	int ret;
2170 	ktime_t start_time;
2171 	ktime_t interval;
2172 
2173 	ASSERT(refcount_read(&trans->use_count) == 1);
2174 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2175 
2176 	clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2177 
2178 	/* Stop the commit early if ->aborted is set */
2179 	if (TRANS_ABORTED(cur_trans)) {
2180 		ret = cur_trans->aborted;
2181 		goto lockdep_trans_commit_start_release;
2182 	}
2183 
2184 	btrfs_trans_release_metadata(trans);
2185 	trans->block_rsv = NULL;
2186 
2187 	/*
2188 	 * We only want one transaction commit doing the flushing so we do not
2189 	 * waste a bunch of time on lock contention on the extent root node.
2190 	 */
2191 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2192 			      &cur_trans->delayed_refs.flags)) {
2193 		/*
2194 		 * Make a pass through all the delayed refs we have so far.
2195 		 * Any running threads may add more while we are here.
2196 		 */
2197 		ret = btrfs_run_delayed_refs(trans, 0);
2198 		if (ret)
2199 			goto lockdep_trans_commit_start_release;
2200 	}
2201 
2202 	btrfs_create_pending_block_groups(trans);
2203 
2204 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2205 		int run_it = 0;
2206 
2207 		/* this mutex is also taken before trying to set
2208 		 * block groups readonly.  We need to make sure
2209 		 * that nobody has set a block group readonly
2210 		 * after a extents from that block group have been
2211 		 * allocated for cache files.  btrfs_set_block_group_ro
2212 		 * will wait for the transaction to commit if it
2213 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2214 		 *
2215 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2216 		 * only one process starts all the block group IO.  It wouldn't
2217 		 * hurt to have more than one go through, but there's no
2218 		 * real advantage to it either.
2219 		 */
2220 		mutex_lock(&fs_info->ro_block_group_mutex);
2221 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2222 				      &cur_trans->flags))
2223 			run_it = 1;
2224 		mutex_unlock(&fs_info->ro_block_group_mutex);
2225 
2226 		if (run_it) {
2227 			ret = btrfs_start_dirty_block_groups(trans);
2228 			if (ret)
2229 				goto lockdep_trans_commit_start_release;
2230 		}
2231 	}
2232 
2233 	spin_lock(&fs_info->trans_lock);
2234 	if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2235 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2236 
2237 		add_pending_snapshot(trans);
2238 
2239 		spin_unlock(&fs_info->trans_lock);
2240 		refcount_inc(&cur_trans->use_count);
2241 
2242 		if (trans->in_fsync)
2243 			want_state = TRANS_STATE_SUPER_COMMITTED;
2244 
2245 		btrfs_trans_state_lockdep_release(fs_info,
2246 						  BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2247 		ret = btrfs_end_transaction(trans);
2248 		wait_for_commit(cur_trans, want_state);
2249 
2250 		if (TRANS_ABORTED(cur_trans))
2251 			ret = cur_trans->aborted;
2252 
2253 		btrfs_put_transaction(cur_trans);
2254 
2255 		return ret;
2256 	}
2257 
2258 	cur_trans->state = TRANS_STATE_COMMIT_PREP;
2259 	wake_up(&fs_info->transaction_blocked_wait);
2260 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2261 
2262 	if (cur_trans->list.prev != &fs_info->trans_list) {
2263 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2264 
2265 		if (trans->in_fsync)
2266 			want_state = TRANS_STATE_SUPER_COMMITTED;
2267 
2268 		prev_trans = list_entry(cur_trans->list.prev,
2269 					struct btrfs_transaction, list);
2270 		if (prev_trans->state < want_state) {
2271 			refcount_inc(&prev_trans->use_count);
2272 			spin_unlock(&fs_info->trans_lock);
2273 
2274 			wait_for_commit(prev_trans, want_state);
2275 
2276 			ret = READ_ONCE(prev_trans->aborted);
2277 
2278 			btrfs_put_transaction(prev_trans);
2279 			if (ret)
2280 				goto lockdep_release;
2281 			spin_lock(&fs_info->trans_lock);
2282 		}
2283 	} else {
2284 		/*
2285 		 * The previous transaction was aborted and was already removed
2286 		 * from the list of transactions at fs_info->trans_list. So we
2287 		 * abort to prevent writing a new superblock that reflects a
2288 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2289 		 */
2290 		if (BTRFS_FS_ERROR(fs_info)) {
2291 			spin_unlock(&fs_info->trans_lock);
2292 			ret = -EROFS;
2293 			goto lockdep_release;
2294 		}
2295 	}
2296 
2297 	cur_trans->state = TRANS_STATE_COMMIT_START;
2298 	wake_up(&fs_info->transaction_blocked_wait);
2299 	spin_unlock(&fs_info->trans_lock);
2300 
2301 	/*
2302 	 * Get the time spent on the work done by the commit thread and not
2303 	 * the time spent waiting on a previous commit
2304 	 */
2305 	start_time = ktime_get_ns();
2306 
2307 	extwriter_counter_dec(cur_trans, trans->type);
2308 
2309 	ret = btrfs_start_delalloc_flush(fs_info);
2310 	if (ret)
2311 		goto lockdep_release;
2312 
2313 	ret = btrfs_run_delayed_items(trans);
2314 	if (ret)
2315 		goto lockdep_release;
2316 
2317 	/*
2318 	 * The thread has started/joined the transaction thus it holds the
2319 	 * lockdep map as a reader. It has to release it before acquiring the
2320 	 * lockdep map as a writer.
2321 	 */
2322 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2323 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2324 	wait_event(cur_trans->writer_wait,
2325 		   extwriter_counter_read(cur_trans) == 0);
2326 
2327 	/* some pending stuffs might be added after the previous flush. */
2328 	ret = btrfs_run_delayed_items(trans);
2329 	if (ret) {
2330 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2331 		goto cleanup_transaction;
2332 	}
2333 
2334 	btrfs_wait_delalloc_flush(fs_info);
2335 
2336 	/*
2337 	 * Wait for all ordered extents started by a fast fsync that joined this
2338 	 * transaction. Otherwise if this transaction commits before the ordered
2339 	 * extents complete we lose logged data after a power failure.
2340 	 */
2341 	btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2342 	wait_event(cur_trans->pending_wait,
2343 		   atomic_read(&cur_trans->pending_ordered) == 0);
2344 
2345 	btrfs_scrub_pause(fs_info);
2346 	/*
2347 	 * Ok now we need to make sure to block out any other joins while we
2348 	 * commit the transaction.  We could have started a join before setting
2349 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2350 	 */
2351 	spin_lock(&fs_info->trans_lock);
2352 	add_pending_snapshot(trans);
2353 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2354 	spin_unlock(&fs_info->trans_lock);
2355 
2356 	/*
2357 	 * The thread has started/joined the transaction thus it holds the
2358 	 * lockdep map as a reader. It has to release it before acquiring the
2359 	 * lockdep map as a writer.
2360 	 */
2361 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2362 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2363 	wait_event(cur_trans->writer_wait,
2364 		   atomic_read(&cur_trans->num_writers) == 1);
2365 
2366 	/*
2367 	 * Make lockdep happy by acquiring the state locks after
2368 	 * btrfs_trans_num_writers is released. If we acquired the state locks
2369 	 * before releasing the btrfs_trans_num_writers lock then lockdep would
2370 	 * complain because we did not follow the reverse order unlocking rule.
2371 	 */
2372 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2373 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2374 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2375 
2376 	/*
2377 	 * We've started the commit, clear the flag in case we were triggered to
2378 	 * do an async commit but somebody else started before the transaction
2379 	 * kthread could do the work.
2380 	 */
2381 	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2382 
2383 	if (TRANS_ABORTED(cur_trans)) {
2384 		ret = cur_trans->aborted;
2385 		btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2386 		goto scrub_continue;
2387 	}
2388 	/*
2389 	 * the reloc mutex makes sure that we stop
2390 	 * the balancing code from coming in and moving
2391 	 * extents around in the middle of the commit
2392 	 */
2393 	mutex_lock(&fs_info->reloc_mutex);
2394 
2395 	/*
2396 	 * We needn't worry about the delayed items because we will
2397 	 * deal with them in create_pending_snapshot(), which is the
2398 	 * core function of the snapshot creation.
2399 	 */
2400 	ret = create_pending_snapshots(trans);
2401 	if (ret)
2402 		goto unlock_reloc;
2403 
2404 	/*
2405 	 * We insert the dir indexes of the snapshots and update the inode
2406 	 * of the snapshots' parents after the snapshot creation, so there
2407 	 * are some delayed items which are not dealt with. Now deal with
2408 	 * them.
2409 	 *
2410 	 * We needn't worry that this operation will corrupt the snapshots,
2411 	 * because all the tree which are snapshoted will be forced to COW
2412 	 * the nodes and leaves.
2413 	 */
2414 	ret = btrfs_run_delayed_items(trans);
2415 	if (ret)
2416 		goto unlock_reloc;
2417 
2418 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
2419 	if (ret)
2420 		goto unlock_reloc;
2421 
2422 	/*
2423 	 * make sure none of the code above managed to slip in a
2424 	 * delayed item
2425 	 */
2426 	btrfs_assert_delayed_root_empty(fs_info);
2427 
2428 	WARN_ON(cur_trans != trans->transaction);
2429 
2430 	ret = commit_fs_roots(trans);
2431 	if (ret)
2432 		goto unlock_reloc;
2433 
2434 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2435 	 * safe to free the root of tree log roots
2436 	 */
2437 	btrfs_free_log_root_tree(trans, fs_info);
2438 
2439 	/*
2440 	 * Since fs roots are all committed, we can get a quite accurate
2441 	 * new_roots. So let's do quota accounting.
2442 	 */
2443 	ret = btrfs_qgroup_account_extents(trans);
2444 	if (ret < 0)
2445 		goto unlock_reloc;
2446 
2447 	ret = commit_cowonly_roots(trans);
2448 	if (ret)
2449 		goto unlock_reloc;
2450 
2451 	/*
2452 	 * The tasks which save the space cache and inode cache may also
2453 	 * update ->aborted, check it.
2454 	 */
2455 	if (TRANS_ABORTED(cur_trans)) {
2456 		ret = cur_trans->aborted;
2457 		goto unlock_reloc;
2458 	}
2459 
2460 	cur_trans = fs_info->running_transaction;
2461 
2462 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2463 			    fs_info->tree_root->node);
2464 	list_add_tail(&fs_info->tree_root->dirty_list,
2465 		      &cur_trans->switch_commits);
2466 
2467 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2468 			    fs_info->chunk_root->node);
2469 	list_add_tail(&fs_info->chunk_root->dirty_list,
2470 		      &cur_trans->switch_commits);
2471 
2472 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2473 		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2474 				    fs_info->block_group_root->node);
2475 		list_add_tail(&fs_info->block_group_root->dirty_list,
2476 			      &cur_trans->switch_commits);
2477 	}
2478 
2479 	switch_commit_roots(trans);
2480 
2481 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2482 	ASSERT(list_empty(&cur_trans->io_bgs));
2483 	update_super_roots(fs_info);
2484 
2485 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2486 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2487 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2488 	       sizeof(*fs_info->super_copy));
2489 
2490 	btrfs_commit_device_sizes(cur_trans);
2491 
2492 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2493 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2494 
2495 	btrfs_trans_release_chunk_metadata(trans);
2496 
2497 	/*
2498 	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2499 	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2500 	 * make sure that before we commit our superblock, no other task can
2501 	 * start a new transaction and commit a log tree before we commit our
2502 	 * superblock. Anyone trying to commit a log tree locks this mutex before
2503 	 * writing its superblock.
2504 	 */
2505 	mutex_lock(&fs_info->tree_log_mutex);
2506 
2507 	spin_lock(&fs_info->trans_lock);
2508 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2509 	fs_info->running_transaction = NULL;
2510 	spin_unlock(&fs_info->trans_lock);
2511 	mutex_unlock(&fs_info->reloc_mutex);
2512 
2513 	wake_up(&fs_info->transaction_wait);
2514 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2515 
2516 	/* If we have features changed, wake up the cleaner to update sysfs. */
2517 	if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2518 	    fs_info->cleaner_kthread)
2519 		wake_up_process(fs_info->cleaner_kthread);
2520 
2521 	ret = btrfs_write_and_wait_transaction(trans);
2522 	if (ret) {
2523 		btrfs_handle_fs_error(fs_info, ret,
2524 				      "Error while writing out transaction");
2525 		mutex_unlock(&fs_info->tree_log_mutex);
2526 		goto scrub_continue;
2527 	}
2528 
2529 	ret = write_all_supers(fs_info, 0);
2530 	/*
2531 	 * the super is written, we can safely allow the tree-loggers
2532 	 * to go about their business
2533 	 */
2534 	mutex_unlock(&fs_info->tree_log_mutex);
2535 	if (ret)
2536 		goto scrub_continue;
2537 
2538 	/*
2539 	 * We needn't acquire the lock here because there is no other task
2540 	 * which can change it.
2541 	 */
2542 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2543 	wake_up(&cur_trans->commit_wait);
2544 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2545 
2546 	btrfs_finish_extent_commit(trans);
2547 
2548 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2549 		btrfs_clear_space_info_full(fs_info);
2550 
2551 	btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2552 	/*
2553 	 * We needn't acquire the lock here because there is no other task
2554 	 * which can change it.
2555 	 */
2556 	cur_trans->state = TRANS_STATE_COMPLETED;
2557 	wake_up(&cur_trans->commit_wait);
2558 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2559 
2560 	spin_lock(&fs_info->trans_lock);
2561 	list_del_init(&cur_trans->list);
2562 	spin_unlock(&fs_info->trans_lock);
2563 
2564 	btrfs_put_transaction(cur_trans);
2565 	btrfs_put_transaction(cur_trans);
2566 
2567 	if (trans->type & __TRANS_FREEZABLE)
2568 		sb_end_intwrite(fs_info->sb);
2569 
2570 	trace_btrfs_transaction_commit(fs_info);
2571 
2572 	interval = ktime_get_ns() - start_time;
2573 
2574 	btrfs_scrub_continue(fs_info);
2575 
2576 	if (current->journal_info == trans)
2577 		current->journal_info = NULL;
2578 
2579 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2580 
2581 	update_commit_stats(fs_info, interval);
2582 
2583 	return ret;
2584 
2585 unlock_reloc:
2586 	mutex_unlock(&fs_info->reloc_mutex);
2587 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2588 scrub_continue:
2589 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2590 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2591 	btrfs_scrub_continue(fs_info);
2592 cleanup_transaction:
2593 	btrfs_trans_release_metadata(trans);
2594 	btrfs_cleanup_pending_block_groups(trans);
2595 	btrfs_trans_release_chunk_metadata(trans);
2596 	trans->block_rsv = NULL;
2597 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2598 	if (current->journal_info == trans)
2599 		current->journal_info = NULL;
2600 	cleanup_transaction(trans, ret);
2601 
2602 	return ret;
2603 
2604 lockdep_release:
2605 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2606 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2607 	goto cleanup_transaction;
2608 
2609 lockdep_trans_commit_start_release:
2610 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2611 	btrfs_end_transaction(trans);
2612 	return ret;
2613 }
2614 
2615 /*
2616  * return < 0 if error
2617  * 0 if there are no more dead_roots at the time of call
2618  * 1 there are more to be processed, call me again
2619  *
2620  * The return value indicates there are certainly more snapshots to delete, but
2621  * if there comes a new one during processing, it may return 0. We don't mind,
2622  * because btrfs_commit_super will poke cleaner thread and it will process it a
2623  * few seconds later.
2624  */
btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info * fs_info)2625 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2626 {
2627 	struct btrfs_root *root;
2628 	int ret;
2629 
2630 	spin_lock(&fs_info->trans_lock);
2631 	if (list_empty(&fs_info->dead_roots)) {
2632 		spin_unlock(&fs_info->trans_lock);
2633 		return 0;
2634 	}
2635 	root = list_first_entry(&fs_info->dead_roots,
2636 			struct btrfs_root, root_list);
2637 	list_del_init(&root->root_list);
2638 	spin_unlock(&fs_info->trans_lock);
2639 
2640 	btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root));
2641 
2642 	btrfs_kill_all_delayed_nodes(root);
2643 
2644 	if (btrfs_header_backref_rev(root->node) <
2645 			BTRFS_MIXED_BACKREF_REV)
2646 		ret = btrfs_drop_snapshot(root, 0, 0);
2647 	else
2648 		ret = btrfs_drop_snapshot(root, 1, 0);
2649 
2650 	btrfs_put_root(root);
2651 	return (ret < 0) ? 0 : 1;
2652 }
2653 
2654 /*
2655  * We only mark the transaction aborted and then set the file system read-only.
2656  * This will prevent new transactions from starting or trying to join this
2657  * one.
2658  *
2659  * This means that error recovery at the call site is limited to freeing
2660  * any local memory allocations and passing the error code up without
2661  * further cleanup. The transaction should complete as it normally would
2662  * in the call path but will return -EIO.
2663  *
2664  * We'll complete the cleanup in btrfs_end_transaction and
2665  * btrfs_commit_transaction.
2666  */
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,const char * function,unsigned int line,int error,bool first_hit)2667 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2668 				      const char *function,
2669 				      unsigned int line, int error, bool first_hit)
2670 {
2671 	struct btrfs_fs_info *fs_info = trans->fs_info;
2672 
2673 	WRITE_ONCE(trans->aborted, error);
2674 	WRITE_ONCE(trans->transaction->aborted, error);
2675 	if (first_hit && error == -ENOSPC)
2676 		btrfs_dump_space_info_for_trans_abort(fs_info);
2677 	/* Wake up anybody who may be waiting on this transaction */
2678 	wake_up(&fs_info->transaction_wait);
2679 	wake_up(&fs_info->transaction_blocked_wait);
2680 	__btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2681 }
2682 
btrfs_transaction_init(void)2683 int __init btrfs_transaction_init(void)
2684 {
2685 	btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2686 	if (!btrfs_trans_handle_cachep)
2687 		return -ENOMEM;
2688 	return 0;
2689 }
2690 
btrfs_transaction_exit(void)2691 void __cold btrfs_transaction_exit(void)
2692 {
2693 	kmem_cache_destroy(btrfs_trans_handle_cachep);
2694 }
2695