1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2012 Alexander Block.  All rights reserved.
4   */
5  
6  #include <linux/bsearch.h>
7  #include <linux/fs.h>
8  #include <linux/file.h>
9  #include <linux/sort.h>
10  #include <linux/mount.h>
11  #include <linux/xattr.h>
12  #include <linux/posix_acl_xattr.h>
13  #include <linux/radix-tree.h>
14  #include <linux/vmalloc.h>
15  #include <linux/string.h>
16  #include <linux/compat.h>
17  #include <linux/crc32c.h>
18  #include <linux/fsverity.h>
19  
20  #include "send.h"
21  #include "ctree.h"
22  #include "backref.h"
23  #include "locking.h"
24  #include "disk-io.h"
25  #include "btrfs_inode.h"
26  #include "transaction.h"
27  #include "compression.h"
28  #include "print-tree.h"
29  #include "accessors.h"
30  #include "dir-item.h"
31  #include "file-item.h"
32  #include "ioctl.h"
33  #include "verity.h"
34  #include "lru_cache.h"
35  
36  /*
37   * Maximum number of references an extent can have in order for us to attempt to
38   * issue clone operations instead of write operations. This currently exists to
39   * avoid hitting limitations of the backreference walking code (taking a lot of
40   * time and using too much memory for extents with large number of references).
41   */
42  #define SEND_MAX_EXTENT_REFS	1024
43  
44  /*
45   * A fs_path is a helper to dynamically build path names with unknown size.
46   * It reallocates the internal buffer on demand.
47   * It allows fast adding of path elements on the right side (normal path) and
48   * fast adding to the left side (reversed path). A reversed path can also be
49   * unreversed if needed.
50   */
51  struct fs_path {
52  	union {
53  		struct {
54  			char *start;
55  			char *end;
56  
57  			char *buf;
58  			unsigned short buf_len:15;
59  			unsigned short reversed:1;
60  			char inline_buf[];
61  		};
62  		/*
63  		 * Average path length does not exceed 200 bytes, we'll have
64  		 * better packing in the slab and higher chance to satisfy
65  		 * an allocation later during send.
66  		 */
67  		char pad[256];
68  	};
69  };
70  #define FS_PATH_INLINE_SIZE \
71  	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72  
73  
74  /* reused for each extent */
75  struct clone_root {
76  	struct btrfs_root *root;
77  	u64 ino;
78  	u64 offset;
79  	u64 num_bytes;
80  	bool found_ref;
81  };
82  
83  #define SEND_MAX_NAME_CACHE_SIZE			256
84  
85  /*
86   * Limit the root_ids array of struct backref_cache_entry to 17 elements.
87   * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
88   * can be satisfied from the kmalloc-192 slab, without wasting any space.
89   * The most common case is to have a single root for cloning, which corresponds
90   * to the send root. Having the user specify more than 16 clone roots is not
91   * common, and in such rare cases we simply don't use caching if the number of
92   * cloning roots that lead down to a leaf is more than 17.
93   */
94  #define SEND_MAX_BACKREF_CACHE_ROOTS			17
95  
96  /*
97   * Max number of entries in the cache.
98   * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
99   * maple tree's internal nodes, is 24K.
100   */
101  #define SEND_MAX_BACKREF_CACHE_SIZE 128
102  
103  /*
104   * A backref cache entry maps a leaf to a list of IDs of roots from which the
105   * leaf is accessible and we can use for clone operations.
106   * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
107   * x86_64).
108   */
109  struct backref_cache_entry {
110  	struct btrfs_lru_cache_entry entry;
111  	u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
112  	/* Number of valid elements in the root_ids array. */
113  	int num_roots;
114  };
115  
116  /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
117  static_assert(offsetof(struct backref_cache_entry, entry) == 0);
118  
119  /*
120   * Max number of entries in the cache that stores directories that were already
121   * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
122   * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
123   * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
124   */
125  #define SEND_MAX_DIR_CREATED_CACHE_SIZE			64
126  
127  /*
128   * Max number of entries in the cache that stores directories that were already
129   * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
130   * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
131   * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
132   */
133  #define SEND_MAX_DIR_UTIMES_CACHE_SIZE			64
134  
135  struct send_ctx {
136  	struct file *send_filp;
137  	loff_t send_off;
138  	char *send_buf;
139  	u32 send_size;
140  	u32 send_max_size;
141  	/*
142  	 * Whether BTRFS_SEND_A_DATA attribute was already added to current
143  	 * command (since protocol v2, data must be the last attribute).
144  	 */
145  	bool put_data;
146  	struct page **send_buf_pages;
147  	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
148  	/* Protocol version compatibility requested */
149  	u32 proto;
150  
151  	struct btrfs_root *send_root;
152  	struct btrfs_root *parent_root;
153  	struct clone_root *clone_roots;
154  	int clone_roots_cnt;
155  
156  	/* current state of the compare_tree call */
157  	struct btrfs_path *left_path;
158  	struct btrfs_path *right_path;
159  	struct btrfs_key *cmp_key;
160  
161  	/*
162  	 * Keep track of the generation of the last transaction that was used
163  	 * for relocating a block group. This is periodically checked in order
164  	 * to detect if a relocation happened since the last check, so that we
165  	 * don't operate on stale extent buffers for nodes (level >= 1) or on
166  	 * stale disk_bytenr values of file extent items.
167  	 */
168  	u64 last_reloc_trans;
169  
170  	/*
171  	 * infos of the currently processed inode. In case of deleted inodes,
172  	 * these are the values from the deleted inode.
173  	 */
174  	u64 cur_ino;
175  	u64 cur_inode_gen;
176  	u64 cur_inode_size;
177  	u64 cur_inode_mode;
178  	u64 cur_inode_rdev;
179  	u64 cur_inode_last_extent;
180  	u64 cur_inode_next_write_offset;
181  	bool cur_inode_new;
182  	bool cur_inode_new_gen;
183  	bool cur_inode_deleted;
184  	bool ignore_cur_inode;
185  	bool cur_inode_needs_verity;
186  	void *verity_descriptor;
187  
188  	u64 send_progress;
189  
190  	struct list_head new_refs;
191  	struct list_head deleted_refs;
192  
193  	struct btrfs_lru_cache name_cache;
194  
195  	/*
196  	 * The inode we are currently processing. It's not NULL only when we
197  	 * need to issue write commands for data extents from this inode.
198  	 */
199  	struct inode *cur_inode;
200  	struct file_ra_state ra;
201  	u64 page_cache_clear_start;
202  	bool clean_page_cache;
203  
204  	/*
205  	 * We process inodes by their increasing order, so if before an
206  	 * incremental send we reverse the parent/child relationship of
207  	 * directories such that a directory with a lower inode number was
208  	 * the parent of a directory with a higher inode number, and the one
209  	 * becoming the new parent got renamed too, we can't rename/move the
210  	 * directory with lower inode number when we finish processing it - we
211  	 * must process the directory with higher inode number first, then
212  	 * rename/move it and then rename/move the directory with lower inode
213  	 * number. Example follows.
214  	 *
215  	 * Tree state when the first send was performed:
216  	 *
217  	 * .
218  	 * |-- a                   (ino 257)
219  	 *     |-- b               (ino 258)
220  	 *         |
221  	 *         |
222  	 *         |-- c           (ino 259)
223  	 *         |   |-- d       (ino 260)
224  	 *         |
225  	 *         |-- c2          (ino 261)
226  	 *
227  	 * Tree state when the second (incremental) send is performed:
228  	 *
229  	 * .
230  	 * |-- a                   (ino 257)
231  	 *     |-- b               (ino 258)
232  	 *         |-- c2          (ino 261)
233  	 *             |-- d2      (ino 260)
234  	 *                 |-- cc  (ino 259)
235  	 *
236  	 * The sequence of steps that lead to the second state was:
237  	 *
238  	 * mv /a/b/c/d /a/b/c2/d2
239  	 * mv /a/b/c /a/b/c2/d2/cc
240  	 *
241  	 * "c" has lower inode number, but we can't move it (2nd mv operation)
242  	 * before we move "d", which has higher inode number.
243  	 *
244  	 * So we just memorize which move/rename operations must be performed
245  	 * later when their respective parent is processed and moved/renamed.
246  	 */
247  
248  	/* Indexed by parent directory inode number. */
249  	struct rb_root pending_dir_moves;
250  
251  	/*
252  	 * Reverse index, indexed by the inode number of a directory that
253  	 * is waiting for the move/rename of its immediate parent before its
254  	 * own move/rename can be performed.
255  	 */
256  	struct rb_root waiting_dir_moves;
257  
258  	/*
259  	 * A directory that is going to be rm'ed might have a child directory
260  	 * which is in the pending directory moves index above. In this case,
261  	 * the directory can only be removed after the move/rename of its child
262  	 * is performed. Example:
263  	 *
264  	 * Parent snapshot:
265  	 *
266  	 * .                        (ino 256)
267  	 * |-- a/                   (ino 257)
268  	 *     |-- b/               (ino 258)
269  	 *         |-- c/           (ino 259)
270  	 *         |   |-- x/       (ino 260)
271  	 *         |
272  	 *         |-- y/           (ino 261)
273  	 *
274  	 * Send snapshot:
275  	 *
276  	 * .                        (ino 256)
277  	 * |-- a/                   (ino 257)
278  	 *     |-- b/               (ino 258)
279  	 *         |-- YY/          (ino 261)
280  	 *              |-- x/      (ino 260)
281  	 *
282  	 * Sequence of steps that lead to the send snapshot:
283  	 * rm -f /a/b/c/foo.txt
284  	 * mv /a/b/y /a/b/YY
285  	 * mv /a/b/c/x /a/b/YY
286  	 * rmdir /a/b/c
287  	 *
288  	 * When the child is processed, its move/rename is delayed until its
289  	 * parent is processed (as explained above), but all other operations
290  	 * like update utimes, chown, chgrp, etc, are performed and the paths
291  	 * that it uses for those operations must use the orphanized name of
292  	 * its parent (the directory we're going to rm later), so we need to
293  	 * memorize that name.
294  	 *
295  	 * Indexed by the inode number of the directory to be deleted.
296  	 */
297  	struct rb_root orphan_dirs;
298  
299  	struct rb_root rbtree_new_refs;
300  	struct rb_root rbtree_deleted_refs;
301  
302  	struct btrfs_lru_cache backref_cache;
303  	u64 backref_cache_last_reloc_trans;
304  
305  	struct btrfs_lru_cache dir_created_cache;
306  	struct btrfs_lru_cache dir_utimes_cache;
307  };
308  
309  struct pending_dir_move {
310  	struct rb_node node;
311  	struct list_head list;
312  	u64 parent_ino;
313  	u64 ino;
314  	u64 gen;
315  	struct list_head update_refs;
316  };
317  
318  struct waiting_dir_move {
319  	struct rb_node node;
320  	u64 ino;
321  	/*
322  	 * There might be some directory that could not be removed because it
323  	 * was waiting for this directory inode to be moved first. Therefore
324  	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
325  	 */
326  	u64 rmdir_ino;
327  	u64 rmdir_gen;
328  	bool orphanized;
329  };
330  
331  struct orphan_dir_info {
332  	struct rb_node node;
333  	u64 ino;
334  	u64 gen;
335  	u64 last_dir_index_offset;
336  	u64 dir_high_seq_ino;
337  };
338  
339  struct name_cache_entry {
340  	/*
341  	 * The key in the entry is an inode number, and the generation matches
342  	 * the inode's generation.
343  	 */
344  	struct btrfs_lru_cache_entry entry;
345  	u64 parent_ino;
346  	u64 parent_gen;
347  	int ret;
348  	int need_later_update;
349  	/* Name length without NUL terminator. */
350  	int name_len;
351  	/* Not NUL terminated. */
352  	char name[] __counted_by(name_len) __nonstring;
353  };
354  
355  /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
356  static_assert(offsetof(struct name_cache_entry, entry) == 0);
357  
358  #define ADVANCE							1
359  #define ADVANCE_ONLY_NEXT					-1
360  
361  enum btrfs_compare_tree_result {
362  	BTRFS_COMPARE_TREE_NEW,
363  	BTRFS_COMPARE_TREE_DELETED,
364  	BTRFS_COMPARE_TREE_CHANGED,
365  	BTRFS_COMPARE_TREE_SAME,
366  };
367  
368  __cold
inconsistent_snapshot_error(struct send_ctx * sctx,enum btrfs_compare_tree_result result,const char * what)369  static void inconsistent_snapshot_error(struct send_ctx *sctx,
370  					enum btrfs_compare_tree_result result,
371  					const char *what)
372  {
373  	const char *result_string;
374  
375  	switch (result) {
376  	case BTRFS_COMPARE_TREE_NEW:
377  		result_string = "new";
378  		break;
379  	case BTRFS_COMPARE_TREE_DELETED:
380  		result_string = "deleted";
381  		break;
382  	case BTRFS_COMPARE_TREE_CHANGED:
383  		result_string = "updated";
384  		break;
385  	case BTRFS_COMPARE_TREE_SAME:
386  		ASSERT(0);
387  		result_string = "unchanged";
388  		break;
389  	default:
390  		ASSERT(0);
391  		result_string = "unexpected";
392  	}
393  
394  	btrfs_err(sctx->send_root->fs_info,
395  		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
396  		  result_string, what, sctx->cmp_key->objectid,
397  		  btrfs_root_id(sctx->send_root),
398  		  (sctx->parent_root ?  btrfs_root_id(sctx->parent_root) : 0));
399  }
400  
401  __maybe_unused
proto_cmd_ok(const struct send_ctx * sctx,int cmd)402  static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
403  {
404  	switch (sctx->proto) {
405  	case 1:	 return cmd <= BTRFS_SEND_C_MAX_V1;
406  	case 2:	 return cmd <= BTRFS_SEND_C_MAX_V2;
407  	case 3:	 return cmd <= BTRFS_SEND_C_MAX_V3;
408  	default: return false;
409  	}
410  }
411  
412  static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
413  
414  static struct waiting_dir_move *
415  get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
416  
417  static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
418  
need_send_hole(struct send_ctx * sctx)419  static int need_send_hole(struct send_ctx *sctx)
420  {
421  	return (sctx->parent_root && !sctx->cur_inode_new &&
422  		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
423  		S_ISREG(sctx->cur_inode_mode));
424  }
425  
fs_path_reset(struct fs_path * p)426  static void fs_path_reset(struct fs_path *p)
427  {
428  	if (p->reversed) {
429  		p->start = p->buf + p->buf_len - 1;
430  		p->end = p->start;
431  		*p->start = 0;
432  	} else {
433  		p->start = p->buf;
434  		p->end = p->start;
435  		*p->start = 0;
436  	}
437  }
438  
fs_path_alloc(void)439  static struct fs_path *fs_path_alloc(void)
440  {
441  	struct fs_path *p;
442  
443  	p = kmalloc(sizeof(*p), GFP_KERNEL);
444  	if (!p)
445  		return NULL;
446  	p->reversed = 0;
447  	p->buf = p->inline_buf;
448  	p->buf_len = FS_PATH_INLINE_SIZE;
449  	fs_path_reset(p);
450  	return p;
451  }
452  
fs_path_alloc_reversed(void)453  static struct fs_path *fs_path_alloc_reversed(void)
454  {
455  	struct fs_path *p;
456  
457  	p = fs_path_alloc();
458  	if (!p)
459  		return NULL;
460  	p->reversed = 1;
461  	fs_path_reset(p);
462  	return p;
463  }
464  
fs_path_free(struct fs_path * p)465  static void fs_path_free(struct fs_path *p)
466  {
467  	if (!p)
468  		return;
469  	if (p->buf != p->inline_buf)
470  		kfree(p->buf);
471  	kfree(p);
472  }
473  
fs_path_len(struct fs_path * p)474  static int fs_path_len(struct fs_path *p)
475  {
476  	return p->end - p->start;
477  }
478  
fs_path_ensure_buf(struct fs_path * p,int len)479  static int fs_path_ensure_buf(struct fs_path *p, int len)
480  {
481  	char *tmp_buf;
482  	int path_len;
483  	int old_buf_len;
484  
485  	len++;
486  
487  	if (p->buf_len >= len)
488  		return 0;
489  
490  	if (len > PATH_MAX) {
491  		WARN_ON(1);
492  		return -ENOMEM;
493  	}
494  
495  	path_len = p->end - p->start;
496  	old_buf_len = p->buf_len;
497  
498  	/*
499  	 * Allocate to the next largest kmalloc bucket size, to let
500  	 * the fast path happen most of the time.
501  	 */
502  	len = kmalloc_size_roundup(len);
503  	/*
504  	 * First time the inline_buf does not suffice
505  	 */
506  	if (p->buf == p->inline_buf) {
507  		tmp_buf = kmalloc(len, GFP_KERNEL);
508  		if (tmp_buf)
509  			memcpy(tmp_buf, p->buf, old_buf_len);
510  	} else {
511  		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
512  	}
513  	if (!tmp_buf)
514  		return -ENOMEM;
515  	p->buf = tmp_buf;
516  	p->buf_len = len;
517  
518  	if (p->reversed) {
519  		tmp_buf = p->buf + old_buf_len - path_len - 1;
520  		p->end = p->buf + p->buf_len - 1;
521  		p->start = p->end - path_len;
522  		memmove(p->start, tmp_buf, path_len + 1);
523  	} else {
524  		p->start = p->buf;
525  		p->end = p->start + path_len;
526  	}
527  	return 0;
528  }
529  
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)530  static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
531  				   char **prepared)
532  {
533  	int ret;
534  	int new_len;
535  
536  	new_len = p->end - p->start + name_len;
537  	if (p->start != p->end)
538  		new_len++;
539  	ret = fs_path_ensure_buf(p, new_len);
540  	if (ret < 0)
541  		goto out;
542  
543  	if (p->reversed) {
544  		if (p->start != p->end)
545  			*--p->start = '/';
546  		p->start -= name_len;
547  		*prepared = p->start;
548  	} else {
549  		if (p->start != p->end)
550  			*p->end++ = '/';
551  		*prepared = p->end;
552  		p->end += name_len;
553  		*p->end = 0;
554  	}
555  
556  out:
557  	return ret;
558  }
559  
fs_path_add(struct fs_path * p,const char * name,int name_len)560  static int fs_path_add(struct fs_path *p, const char *name, int name_len)
561  {
562  	int ret;
563  	char *prepared;
564  
565  	ret = fs_path_prepare_for_add(p, name_len, &prepared);
566  	if (ret < 0)
567  		goto out;
568  	memcpy(prepared, name, name_len);
569  
570  out:
571  	return ret;
572  }
573  
fs_path_add_path(struct fs_path * p,struct fs_path * p2)574  static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
575  {
576  	int ret;
577  	char *prepared;
578  
579  	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
580  	if (ret < 0)
581  		goto out;
582  	memcpy(prepared, p2->start, p2->end - p2->start);
583  
584  out:
585  	return ret;
586  }
587  
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)588  static int fs_path_add_from_extent_buffer(struct fs_path *p,
589  					  struct extent_buffer *eb,
590  					  unsigned long off, int len)
591  {
592  	int ret;
593  	char *prepared;
594  
595  	ret = fs_path_prepare_for_add(p, len, &prepared);
596  	if (ret < 0)
597  		goto out;
598  
599  	read_extent_buffer(eb, prepared, off, len);
600  
601  out:
602  	return ret;
603  }
604  
fs_path_copy(struct fs_path * p,struct fs_path * from)605  static int fs_path_copy(struct fs_path *p, struct fs_path *from)
606  {
607  	p->reversed = from->reversed;
608  	fs_path_reset(p);
609  
610  	return fs_path_add_path(p, from);
611  }
612  
fs_path_unreverse(struct fs_path * p)613  static void fs_path_unreverse(struct fs_path *p)
614  {
615  	char *tmp;
616  	int len;
617  
618  	if (!p->reversed)
619  		return;
620  
621  	tmp = p->start;
622  	len = p->end - p->start;
623  	p->start = p->buf;
624  	p->end = p->start + len;
625  	memmove(p->start, tmp, len + 1);
626  	p->reversed = 0;
627  }
628  
alloc_path_for_send(void)629  static struct btrfs_path *alloc_path_for_send(void)
630  {
631  	struct btrfs_path *path;
632  
633  	path = btrfs_alloc_path();
634  	if (!path)
635  		return NULL;
636  	path->search_commit_root = 1;
637  	path->skip_locking = 1;
638  	path->need_commit_sem = 1;
639  	return path;
640  }
641  
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)642  static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
643  {
644  	int ret;
645  	u32 pos = 0;
646  
647  	while (pos < len) {
648  		ret = kernel_write(filp, buf + pos, len - pos, off);
649  		if (ret < 0)
650  			return ret;
651  		if (ret == 0)
652  			return -EIO;
653  		pos += ret;
654  	}
655  
656  	return 0;
657  }
658  
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)659  static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
660  {
661  	struct btrfs_tlv_header *hdr;
662  	int total_len = sizeof(*hdr) + len;
663  	int left = sctx->send_max_size - sctx->send_size;
664  
665  	if (WARN_ON_ONCE(sctx->put_data))
666  		return -EINVAL;
667  
668  	if (unlikely(left < total_len))
669  		return -EOVERFLOW;
670  
671  	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
672  	put_unaligned_le16(attr, &hdr->tlv_type);
673  	put_unaligned_le16(len, &hdr->tlv_len);
674  	memcpy(hdr + 1, data, len);
675  	sctx->send_size += total_len;
676  
677  	return 0;
678  }
679  
680  #define TLV_PUT_DEFINE_INT(bits) \
681  	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
682  			u##bits attr, u##bits value)			\
683  	{								\
684  		__le##bits __tmp = cpu_to_le##bits(value);		\
685  		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
686  	}
687  
688  TLV_PUT_DEFINE_INT(8)
689  TLV_PUT_DEFINE_INT(32)
690  TLV_PUT_DEFINE_INT(64)
691  
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)692  static int tlv_put_string(struct send_ctx *sctx, u16 attr,
693  			  const char *str, int len)
694  {
695  	if (len == -1)
696  		len = strlen(str);
697  	return tlv_put(sctx, attr, str, len);
698  }
699  
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)700  static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
701  			const u8 *uuid)
702  {
703  	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
704  }
705  
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)706  static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
707  				  struct extent_buffer *eb,
708  				  struct btrfs_timespec *ts)
709  {
710  	struct btrfs_timespec bts;
711  	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
712  	return tlv_put(sctx, attr, &bts, sizeof(bts));
713  }
714  
715  
716  #define TLV_PUT(sctx, attrtype, data, attrlen) \
717  	do { \
718  		ret = tlv_put(sctx, attrtype, data, attrlen); \
719  		if (ret < 0) \
720  			goto tlv_put_failure; \
721  	} while (0)
722  
723  #define TLV_PUT_INT(sctx, attrtype, bits, value) \
724  	do { \
725  		ret = tlv_put_u##bits(sctx, attrtype, value); \
726  		if (ret < 0) \
727  			goto tlv_put_failure; \
728  	} while (0)
729  
730  #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
731  #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
732  #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
733  #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
734  #define TLV_PUT_STRING(sctx, attrtype, str, len) \
735  	do { \
736  		ret = tlv_put_string(sctx, attrtype, str, len); \
737  		if (ret < 0) \
738  			goto tlv_put_failure; \
739  	} while (0)
740  #define TLV_PUT_PATH(sctx, attrtype, p) \
741  	do { \
742  		ret = tlv_put_string(sctx, attrtype, p->start, \
743  			p->end - p->start); \
744  		if (ret < 0) \
745  			goto tlv_put_failure; \
746  	} while(0)
747  #define TLV_PUT_UUID(sctx, attrtype, uuid) \
748  	do { \
749  		ret = tlv_put_uuid(sctx, attrtype, uuid); \
750  		if (ret < 0) \
751  			goto tlv_put_failure; \
752  	} while (0)
753  #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
754  	do { \
755  		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
756  		if (ret < 0) \
757  			goto tlv_put_failure; \
758  	} while (0)
759  
send_header(struct send_ctx * sctx)760  static int send_header(struct send_ctx *sctx)
761  {
762  	struct btrfs_stream_header hdr;
763  
764  	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
765  	hdr.version = cpu_to_le32(sctx->proto);
766  	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
767  					&sctx->send_off);
768  }
769  
770  /*
771   * For each command/item we want to send to userspace, we call this function.
772   */
begin_cmd(struct send_ctx * sctx,int cmd)773  static int begin_cmd(struct send_ctx *sctx, int cmd)
774  {
775  	struct btrfs_cmd_header *hdr;
776  
777  	if (WARN_ON(!sctx->send_buf))
778  		return -EINVAL;
779  
780  	if (unlikely(sctx->send_size != 0)) {
781  		btrfs_err(sctx->send_root->fs_info,
782  			  "send: command header buffer not empty cmd %d offset %llu",
783  			  cmd, sctx->send_off);
784  		return -EINVAL;
785  	}
786  
787  	sctx->send_size += sizeof(*hdr);
788  	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
789  	put_unaligned_le16(cmd, &hdr->cmd);
790  
791  	return 0;
792  }
793  
send_cmd(struct send_ctx * sctx)794  static int send_cmd(struct send_ctx *sctx)
795  {
796  	int ret;
797  	struct btrfs_cmd_header *hdr;
798  	u32 crc;
799  
800  	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
801  	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
802  	put_unaligned_le32(0, &hdr->crc);
803  
804  	crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
805  	put_unaligned_le32(crc, &hdr->crc);
806  
807  	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
808  					&sctx->send_off);
809  
810  	sctx->send_size = 0;
811  	sctx->put_data = false;
812  
813  	return ret;
814  }
815  
816  /*
817   * Sends a move instruction to user space
818   */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)819  static int send_rename(struct send_ctx *sctx,
820  		     struct fs_path *from, struct fs_path *to)
821  {
822  	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
823  	int ret;
824  
825  	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
826  
827  	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
828  	if (ret < 0)
829  		goto out;
830  
831  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
832  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
833  
834  	ret = send_cmd(sctx);
835  
836  tlv_put_failure:
837  out:
838  	return ret;
839  }
840  
841  /*
842   * Sends a link instruction to user space
843   */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)844  static int send_link(struct send_ctx *sctx,
845  		     struct fs_path *path, struct fs_path *lnk)
846  {
847  	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
848  	int ret;
849  
850  	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
851  
852  	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
853  	if (ret < 0)
854  		goto out;
855  
856  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
857  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
858  
859  	ret = send_cmd(sctx);
860  
861  tlv_put_failure:
862  out:
863  	return ret;
864  }
865  
866  /*
867   * Sends an unlink instruction to user space
868   */
send_unlink(struct send_ctx * sctx,struct fs_path * path)869  static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
870  {
871  	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
872  	int ret;
873  
874  	btrfs_debug(fs_info, "send_unlink %s", path->start);
875  
876  	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
877  	if (ret < 0)
878  		goto out;
879  
880  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
881  
882  	ret = send_cmd(sctx);
883  
884  tlv_put_failure:
885  out:
886  	return ret;
887  }
888  
889  /*
890   * Sends a rmdir instruction to user space
891   */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)892  static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
893  {
894  	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
895  	int ret;
896  
897  	btrfs_debug(fs_info, "send_rmdir %s", path->start);
898  
899  	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
900  	if (ret < 0)
901  		goto out;
902  
903  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
904  
905  	ret = send_cmd(sctx);
906  
907  tlv_put_failure:
908  out:
909  	return ret;
910  }
911  
912  struct btrfs_inode_info {
913  	u64 size;
914  	u64 gen;
915  	u64 mode;
916  	u64 uid;
917  	u64 gid;
918  	u64 rdev;
919  	u64 fileattr;
920  	u64 nlink;
921  };
922  
923  /*
924   * Helper function to retrieve some fields from an inode item.
925   */
get_inode_info(struct btrfs_root * root,u64 ino,struct btrfs_inode_info * info)926  static int get_inode_info(struct btrfs_root *root, u64 ino,
927  			  struct btrfs_inode_info *info)
928  {
929  	int ret;
930  	struct btrfs_path *path;
931  	struct btrfs_inode_item *ii;
932  	struct btrfs_key key;
933  
934  	path = alloc_path_for_send();
935  	if (!path)
936  		return -ENOMEM;
937  
938  	key.objectid = ino;
939  	key.type = BTRFS_INODE_ITEM_KEY;
940  	key.offset = 0;
941  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
942  	if (ret) {
943  		if (ret > 0)
944  			ret = -ENOENT;
945  		goto out;
946  	}
947  
948  	if (!info)
949  		goto out;
950  
951  	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
952  			struct btrfs_inode_item);
953  	info->size = btrfs_inode_size(path->nodes[0], ii);
954  	info->gen = btrfs_inode_generation(path->nodes[0], ii);
955  	info->mode = btrfs_inode_mode(path->nodes[0], ii);
956  	info->uid = btrfs_inode_uid(path->nodes[0], ii);
957  	info->gid = btrfs_inode_gid(path->nodes[0], ii);
958  	info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
959  	info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
960  	/*
961  	 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
962  	 * otherwise logically split to 32/32 parts.
963  	 */
964  	info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
965  
966  out:
967  	btrfs_free_path(path);
968  	return ret;
969  }
970  
get_inode_gen(struct btrfs_root * root,u64 ino,u64 * gen)971  static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
972  {
973  	int ret;
974  	struct btrfs_inode_info info = { 0 };
975  
976  	ASSERT(gen);
977  
978  	ret = get_inode_info(root, ino, &info);
979  	*gen = info.gen;
980  	return ret;
981  }
982  
983  typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
984  				   struct fs_path *p,
985  				   void *ctx);
986  
987  /*
988   * Helper function to iterate the entries in ONE btrfs_inode_ref or
989   * btrfs_inode_extref.
990   * The iterate callback may return a non zero value to stop iteration. This can
991   * be a negative value for error codes or 1 to simply stop it.
992   *
993   * path must point to the INODE_REF or INODE_EXTREF when called.
994   */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,int resolve,iterate_inode_ref_t iterate,void * ctx)995  static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
996  			     struct btrfs_key *found_key, int resolve,
997  			     iterate_inode_ref_t iterate, void *ctx)
998  {
999  	struct extent_buffer *eb = path->nodes[0];
1000  	struct btrfs_inode_ref *iref;
1001  	struct btrfs_inode_extref *extref;
1002  	struct btrfs_path *tmp_path;
1003  	struct fs_path *p;
1004  	u32 cur = 0;
1005  	u32 total;
1006  	int slot = path->slots[0];
1007  	u32 name_len;
1008  	char *start;
1009  	int ret = 0;
1010  	int num = 0;
1011  	int index;
1012  	u64 dir;
1013  	unsigned long name_off;
1014  	unsigned long elem_size;
1015  	unsigned long ptr;
1016  
1017  	p = fs_path_alloc_reversed();
1018  	if (!p)
1019  		return -ENOMEM;
1020  
1021  	tmp_path = alloc_path_for_send();
1022  	if (!tmp_path) {
1023  		fs_path_free(p);
1024  		return -ENOMEM;
1025  	}
1026  
1027  
1028  	if (found_key->type == BTRFS_INODE_REF_KEY) {
1029  		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1030  						    struct btrfs_inode_ref);
1031  		total = btrfs_item_size(eb, slot);
1032  		elem_size = sizeof(*iref);
1033  	} else {
1034  		ptr = btrfs_item_ptr_offset(eb, slot);
1035  		total = btrfs_item_size(eb, slot);
1036  		elem_size = sizeof(*extref);
1037  	}
1038  
1039  	while (cur < total) {
1040  		fs_path_reset(p);
1041  
1042  		if (found_key->type == BTRFS_INODE_REF_KEY) {
1043  			iref = (struct btrfs_inode_ref *)(ptr + cur);
1044  			name_len = btrfs_inode_ref_name_len(eb, iref);
1045  			name_off = (unsigned long)(iref + 1);
1046  			index = btrfs_inode_ref_index(eb, iref);
1047  			dir = found_key->offset;
1048  		} else {
1049  			extref = (struct btrfs_inode_extref *)(ptr + cur);
1050  			name_len = btrfs_inode_extref_name_len(eb, extref);
1051  			name_off = (unsigned long)&extref->name;
1052  			index = btrfs_inode_extref_index(eb, extref);
1053  			dir = btrfs_inode_extref_parent(eb, extref);
1054  		}
1055  
1056  		if (resolve) {
1057  			start = btrfs_ref_to_path(root, tmp_path, name_len,
1058  						  name_off, eb, dir,
1059  						  p->buf, p->buf_len);
1060  			if (IS_ERR(start)) {
1061  				ret = PTR_ERR(start);
1062  				goto out;
1063  			}
1064  			if (start < p->buf) {
1065  				/* overflow , try again with larger buffer */
1066  				ret = fs_path_ensure_buf(p,
1067  						p->buf_len + p->buf - start);
1068  				if (ret < 0)
1069  					goto out;
1070  				start = btrfs_ref_to_path(root, tmp_path,
1071  							  name_len, name_off,
1072  							  eb, dir,
1073  							  p->buf, p->buf_len);
1074  				if (IS_ERR(start)) {
1075  					ret = PTR_ERR(start);
1076  					goto out;
1077  				}
1078  				if (unlikely(start < p->buf)) {
1079  					btrfs_err(root->fs_info,
1080  			"send: path ref buffer underflow for key (%llu %u %llu)",
1081  						  found_key->objectid,
1082  						  found_key->type,
1083  						  found_key->offset);
1084  					ret = -EINVAL;
1085  					goto out;
1086  				}
1087  			}
1088  			p->start = start;
1089  		} else {
1090  			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1091  							     name_len);
1092  			if (ret < 0)
1093  				goto out;
1094  		}
1095  
1096  		cur += elem_size + name_len;
1097  		ret = iterate(num, dir, index, p, ctx);
1098  		if (ret)
1099  			goto out;
1100  		num++;
1101  	}
1102  
1103  out:
1104  	btrfs_free_path(tmp_path);
1105  	fs_path_free(p);
1106  	return ret;
1107  }
1108  
1109  typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1110  				  const char *name, int name_len,
1111  				  const char *data, int data_len,
1112  				  void *ctx);
1113  
1114  /*
1115   * Helper function to iterate the entries in ONE btrfs_dir_item.
1116   * The iterate callback may return a non zero value to stop iteration. This can
1117   * be a negative value for error codes or 1 to simply stop it.
1118   *
1119   * path must point to the dir item when called.
1120   */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,iterate_dir_item_t iterate,void * ctx)1121  static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1122  			    iterate_dir_item_t iterate, void *ctx)
1123  {
1124  	int ret = 0;
1125  	struct extent_buffer *eb;
1126  	struct btrfs_dir_item *di;
1127  	struct btrfs_key di_key;
1128  	char *buf = NULL;
1129  	int buf_len;
1130  	u32 name_len;
1131  	u32 data_len;
1132  	u32 cur;
1133  	u32 len;
1134  	u32 total;
1135  	int slot;
1136  	int num;
1137  
1138  	/*
1139  	 * Start with a small buffer (1 page). If later we end up needing more
1140  	 * space, which can happen for xattrs on a fs with a leaf size greater
1141  	 * than the page size, attempt to increase the buffer. Typically xattr
1142  	 * values are small.
1143  	 */
1144  	buf_len = PATH_MAX;
1145  	buf = kmalloc(buf_len, GFP_KERNEL);
1146  	if (!buf) {
1147  		ret = -ENOMEM;
1148  		goto out;
1149  	}
1150  
1151  	eb = path->nodes[0];
1152  	slot = path->slots[0];
1153  	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1154  	cur = 0;
1155  	len = 0;
1156  	total = btrfs_item_size(eb, slot);
1157  
1158  	num = 0;
1159  	while (cur < total) {
1160  		name_len = btrfs_dir_name_len(eb, di);
1161  		data_len = btrfs_dir_data_len(eb, di);
1162  		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1163  
1164  		if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1165  			if (name_len > XATTR_NAME_MAX) {
1166  				ret = -ENAMETOOLONG;
1167  				goto out;
1168  			}
1169  			if (name_len + data_len >
1170  					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1171  				ret = -E2BIG;
1172  				goto out;
1173  			}
1174  		} else {
1175  			/*
1176  			 * Path too long
1177  			 */
1178  			if (name_len + data_len > PATH_MAX) {
1179  				ret = -ENAMETOOLONG;
1180  				goto out;
1181  			}
1182  		}
1183  
1184  		if (name_len + data_len > buf_len) {
1185  			buf_len = name_len + data_len;
1186  			if (is_vmalloc_addr(buf)) {
1187  				vfree(buf);
1188  				buf = NULL;
1189  			} else {
1190  				char *tmp = krealloc(buf, buf_len,
1191  						GFP_KERNEL | __GFP_NOWARN);
1192  
1193  				if (!tmp)
1194  					kfree(buf);
1195  				buf = tmp;
1196  			}
1197  			if (!buf) {
1198  				buf = kvmalloc(buf_len, GFP_KERNEL);
1199  				if (!buf) {
1200  					ret = -ENOMEM;
1201  					goto out;
1202  				}
1203  			}
1204  		}
1205  
1206  		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1207  				name_len + data_len);
1208  
1209  		len = sizeof(*di) + name_len + data_len;
1210  		di = (struct btrfs_dir_item *)((char *)di + len);
1211  		cur += len;
1212  
1213  		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1214  			      data_len, ctx);
1215  		if (ret < 0)
1216  			goto out;
1217  		if (ret) {
1218  			ret = 0;
1219  			goto out;
1220  		}
1221  
1222  		num++;
1223  	}
1224  
1225  out:
1226  	kvfree(buf);
1227  	return ret;
1228  }
1229  
__copy_first_ref(int num,u64 dir,int index,struct fs_path * p,void * ctx)1230  static int __copy_first_ref(int num, u64 dir, int index,
1231  			    struct fs_path *p, void *ctx)
1232  {
1233  	int ret;
1234  	struct fs_path *pt = ctx;
1235  
1236  	ret = fs_path_copy(pt, p);
1237  	if (ret < 0)
1238  		return ret;
1239  
1240  	/* we want the first only */
1241  	return 1;
1242  }
1243  
1244  /*
1245   * Retrieve the first path of an inode. If an inode has more then one
1246   * ref/hardlink, this is ignored.
1247   */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1248  static int get_inode_path(struct btrfs_root *root,
1249  			  u64 ino, struct fs_path *path)
1250  {
1251  	int ret;
1252  	struct btrfs_key key, found_key;
1253  	struct btrfs_path *p;
1254  
1255  	p = alloc_path_for_send();
1256  	if (!p)
1257  		return -ENOMEM;
1258  
1259  	fs_path_reset(path);
1260  
1261  	key.objectid = ino;
1262  	key.type = BTRFS_INODE_REF_KEY;
1263  	key.offset = 0;
1264  
1265  	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1266  	if (ret < 0)
1267  		goto out;
1268  	if (ret) {
1269  		ret = 1;
1270  		goto out;
1271  	}
1272  	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1273  	if (found_key.objectid != ino ||
1274  	    (found_key.type != BTRFS_INODE_REF_KEY &&
1275  	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1276  		ret = -ENOENT;
1277  		goto out;
1278  	}
1279  
1280  	ret = iterate_inode_ref(root, p, &found_key, 1,
1281  				__copy_first_ref, path);
1282  	if (ret < 0)
1283  		goto out;
1284  	ret = 0;
1285  
1286  out:
1287  	btrfs_free_path(p);
1288  	return ret;
1289  }
1290  
1291  struct backref_ctx {
1292  	struct send_ctx *sctx;
1293  
1294  	/* number of total found references */
1295  	u64 found;
1296  
1297  	/*
1298  	 * used for clones found in send_root. clones found behind cur_objectid
1299  	 * and cur_offset are not considered as allowed clones.
1300  	 */
1301  	u64 cur_objectid;
1302  	u64 cur_offset;
1303  
1304  	/* may be truncated in case it's the last extent in a file */
1305  	u64 extent_len;
1306  
1307  	/* The bytenr the file extent item we are processing refers to. */
1308  	u64 bytenr;
1309  	/* The owner (root id) of the data backref for the current extent. */
1310  	u64 backref_owner;
1311  	/* The offset of the data backref for the current extent. */
1312  	u64 backref_offset;
1313  };
1314  
__clone_root_cmp_bsearch(const void * key,const void * elt)1315  static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1316  {
1317  	u64 root = (u64)(uintptr_t)key;
1318  	const struct clone_root *cr = elt;
1319  
1320  	if (root < btrfs_root_id(cr->root))
1321  		return -1;
1322  	if (root > btrfs_root_id(cr->root))
1323  		return 1;
1324  	return 0;
1325  }
1326  
__clone_root_cmp_sort(const void * e1,const void * e2)1327  static int __clone_root_cmp_sort(const void *e1, const void *e2)
1328  {
1329  	const struct clone_root *cr1 = e1;
1330  	const struct clone_root *cr2 = e2;
1331  
1332  	if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root))
1333  		return -1;
1334  	if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root))
1335  		return 1;
1336  	return 0;
1337  }
1338  
1339  /*
1340   * Called for every backref that is found for the current extent.
1341   * Results are collected in sctx->clone_roots->ino/offset.
1342   */
iterate_backrefs(u64 ino,u64 offset,u64 num_bytes,u64 root_id,void * ctx_)1343  static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1344  			    void *ctx_)
1345  {
1346  	struct backref_ctx *bctx = ctx_;
1347  	struct clone_root *clone_root;
1348  
1349  	/* First check if the root is in the list of accepted clone sources */
1350  	clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1351  			     bctx->sctx->clone_roots_cnt,
1352  			     sizeof(struct clone_root),
1353  			     __clone_root_cmp_bsearch);
1354  	if (!clone_root)
1355  		return 0;
1356  
1357  	/* This is our own reference, bail out as we can't clone from it. */
1358  	if (clone_root->root == bctx->sctx->send_root &&
1359  	    ino == bctx->cur_objectid &&
1360  	    offset == bctx->cur_offset)
1361  		return 0;
1362  
1363  	/*
1364  	 * Make sure we don't consider clones from send_root that are
1365  	 * behind the current inode/offset.
1366  	 */
1367  	if (clone_root->root == bctx->sctx->send_root) {
1368  		/*
1369  		 * If the source inode was not yet processed we can't issue a
1370  		 * clone operation, as the source extent does not exist yet at
1371  		 * the destination of the stream.
1372  		 */
1373  		if (ino > bctx->cur_objectid)
1374  			return 0;
1375  		/*
1376  		 * We clone from the inode currently being sent as long as the
1377  		 * source extent is already processed, otherwise we could try
1378  		 * to clone from an extent that does not exist yet at the
1379  		 * destination of the stream.
1380  		 */
1381  		if (ino == bctx->cur_objectid &&
1382  		    offset + bctx->extent_len >
1383  		    bctx->sctx->cur_inode_next_write_offset)
1384  			return 0;
1385  	}
1386  
1387  	bctx->found++;
1388  	clone_root->found_ref = true;
1389  
1390  	/*
1391  	 * If the given backref refers to a file extent item with a larger
1392  	 * number of bytes than what we found before, use the new one so that
1393  	 * we clone more optimally and end up doing less writes and getting
1394  	 * less exclusive, non-shared extents at the destination.
1395  	 */
1396  	if (num_bytes > clone_root->num_bytes) {
1397  		clone_root->ino = ino;
1398  		clone_root->offset = offset;
1399  		clone_root->num_bytes = num_bytes;
1400  
1401  		/*
1402  		 * Found a perfect candidate, so there's no need to continue
1403  		 * backref walking.
1404  		 */
1405  		if (num_bytes >= bctx->extent_len)
1406  			return BTRFS_ITERATE_EXTENT_INODES_STOP;
1407  	}
1408  
1409  	return 0;
1410  }
1411  
lookup_backref_cache(u64 leaf_bytenr,void * ctx,const u64 ** root_ids_ret,int * root_count_ret)1412  static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1413  				 const u64 **root_ids_ret, int *root_count_ret)
1414  {
1415  	struct backref_ctx *bctx = ctx;
1416  	struct send_ctx *sctx = bctx->sctx;
1417  	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1418  	const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1419  	struct btrfs_lru_cache_entry *raw_entry;
1420  	struct backref_cache_entry *entry;
1421  
1422  	if (sctx->backref_cache.size == 0)
1423  		return false;
1424  
1425  	/*
1426  	 * If relocation happened since we first filled the cache, then we must
1427  	 * empty the cache and can not use it, because even though we operate on
1428  	 * read-only roots, their leaves and nodes may have been reallocated and
1429  	 * now be used for different nodes/leaves of the same tree or some other
1430  	 * tree.
1431  	 *
1432  	 * We are called from iterate_extent_inodes() while either holding a
1433  	 * transaction handle or holding fs_info->commit_root_sem, so no need
1434  	 * to take any lock here.
1435  	 */
1436  	if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1437  		btrfs_lru_cache_clear(&sctx->backref_cache);
1438  		return false;
1439  	}
1440  
1441  	raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1442  	if (!raw_entry)
1443  		return false;
1444  
1445  	entry = container_of(raw_entry, struct backref_cache_entry, entry);
1446  	*root_ids_ret = entry->root_ids;
1447  	*root_count_ret = entry->num_roots;
1448  
1449  	return true;
1450  }
1451  
store_backref_cache(u64 leaf_bytenr,const struct ulist * root_ids,void * ctx)1452  static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1453  				void *ctx)
1454  {
1455  	struct backref_ctx *bctx = ctx;
1456  	struct send_ctx *sctx = bctx->sctx;
1457  	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1458  	struct backref_cache_entry *new_entry;
1459  	struct ulist_iterator uiter;
1460  	struct ulist_node *node;
1461  	int ret;
1462  
1463  	/*
1464  	 * We're called while holding a transaction handle or while holding
1465  	 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1466  	 * NOFS allocation.
1467  	 */
1468  	new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1469  	/* No worries, cache is optional. */
1470  	if (!new_entry)
1471  		return;
1472  
1473  	new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1474  	new_entry->entry.gen = 0;
1475  	new_entry->num_roots = 0;
1476  	ULIST_ITER_INIT(&uiter);
1477  	while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1478  		const u64 root_id = node->val;
1479  		struct clone_root *root;
1480  
1481  		root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1482  			       sctx->clone_roots_cnt, sizeof(struct clone_root),
1483  			       __clone_root_cmp_bsearch);
1484  		if (!root)
1485  			continue;
1486  
1487  		/* Too many roots, just exit, no worries as caching is optional. */
1488  		if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1489  			kfree(new_entry);
1490  			return;
1491  		}
1492  
1493  		new_entry->root_ids[new_entry->num_roots] = root_id;
1494  		new_entry->num_roots++;
1495  	}
1496  
1497  	/*
1498  	 * We may have not added any roots to the new cache entry, which means
1499  	 * none of the roots is part of the list of roots from which we are
1500  	 * allowed to clone. Cache the new entry as it's still useful to avoid
1501  	 * backref walking to determine which roots have a path to the leaf.
1502  	 *
1503  	 * Also use GFP_NOFS because we're called while holding a transaction
1504  	 * handle or while holding fs_info->commit_root_sem.
1505  	 */
1506  	ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1507  				    GFP_NOFS);
1508  	ASSERT(ret == 0 || ret == -ENOMEM);
1509  	if (ret) {
1510  		/* Caching is optional, no worries. */
1511  		kfree(new_entry);
1512  		return;
1513  	}
1514  
1515  	/*
1516  	 * We are called from iterate_extent_inodes() while either holding a
1517  	 * transaction handle or holding fs_info->commit_root_sem, so no need
1518  	 * to take any lock here.
1519  	 */
1520  	if (sctx->backref_cache.size == 1)
1521  		sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1522  }
1523  
check_extent_item(u64 bytenr,const struct btrfs_extent_item * ei,const struct extent_buffer * leaf,void * ctx)1524  static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1525  			     const struct extent_buffer *leaf, void *ctx)
1526  {
1527  	const u64 refs = btrfs_extent_refs(leaf, ei);
1528  	const struct backref_ctx *bctx = ctx;
1529  	const struct send_ctx *sctx = bctx->sctx;
1530  
1531  	if (bytenr == bctx->bytenr) {
1532  		const u64 flags = btrfs_extent_flags(leaf, ei);
1533  
1534  		if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1535  			return -EUCLEAN;
1536  
1537  		/*
1538  		 * If we have only one reference and only the send root as a
1539  		 * clone source - meaning no clone roots were given in the
1540  		 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1541  		 * it's our reference and there's no point in doing backref
1542  		 * walking which is expensive, so exit early.
1543  		 */
1544  		if (refs == 1 && sctx->clone_roots_cnt == 1)
1545  			return -ENOENT;
1546  	}
1547  
1548  	/*
1549  	 * Backreference walking (iterate_extent_inodes() below) is currently
1550  	 * too expensive when an extent has a large number of references, both
1551  	 * in time spent and used memory. So for now just fallback to write
1552  	 * operations instead of clone operations when an extent has more than
1553  	 * a certain amount of references.
1554  	 */
1555  	if (refs > SEND_MAX_EXTENT_REFS)
1556  		return -ENOENT;
1557  
1558  	return 0;
1559  }
1560  
skip_self_data_ref(u64 root,u64 ino,u64 offset,void * ctx)1561  static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1562  {
1563  	const struct backref_ctx *bctx = ctx;
1564  
1565  	if (ino == bctx->cur_objectid &&
1566  	    root == bctx->backref_owner &&
1567  	    offset == bctx->backref_offset)
1568  		return true;
1569  
1570  	return false;
1571  }
1572  
1573  /*
1574   * Given an inode, offset and extent item, it finds a good clone for a clone
1575   * instruction. Returns -ENOENT when none could be found. The function makes
1576   * sure that the returned clone is usable at the point where sending is at the
1577   * moment. This means, that no clones are accepted which lie behind the current
1578   * inode+offset.
1579   *
1580   * path must point to the extent item when called.
1581   */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1582  static int find_extent_clone(struct send_ctx *sctx,
1583  			     struct btrfs_path *path,
1584  			     u64 ino, u64 data_offset,
1585  			     u64 ino_size,
1586  			     struct clone_root **found)
1587  {
1588  	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1589  	int ret;
1590  	int extent_type;
1591  	u64 logical;
1592  	u64 disk_byte;
1593  	u64 num_bytes;
1594  	struct btrfs_file_extent_item *fi;
1595  	struct extent_buffer *eb = path->nodes[0];
1596  	struct backref_ctx backref_ctx = { 0 };
1597  	struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1598  	struct clone_root *cur_clone_root;
1599  	int compressed;
1600  	u32 i;
1601  
1602  	/*
1603  	 * With fallocate we can get prealloc extents beyond the inode's i_size,
1604  	 * so we don't do anything here because clone operations can not clone
1605  	 * to a range beyond i_size without increasing the i_size of the
1606  	 * destination inode.
1607  	 */
1608  	if (data_offset >= ino_size)
1609  		return 0;
1610  
1611  	fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1612  	extent_type = btrfs_file_extent_type(eb, fi);
1613  	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1614  		return -ENOENT;
1615  
1616  	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1617  	if (disk_byte == 0)
1618  		return -ENOENT;
1619  
1620  	compressed = btrfs_file_extent_compression(eb, fi);
1621  	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1622  	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1623  
1624  	/*
1625  	 * Setup the clone roots.
1626  	 */
1627  	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1628  		cur_clone_root = sctx->clone_roots + i;
1629  		cur_clone_root->ino = (u64)-1;
1630  		cur_clone_root->offset = 0;
1631  		cur_clone_root->num_bytes = 0;
1632  		cur_clone_root->found_ref = false;
1633  	}
1634  
1635  	backref_ctx.sctx = sctx;
1636  	backref_ctx.cur_objectid = ino;
1637  	backref_ctx.cur_offset = data_offset;
1638  	backref_ctx.bytenr = disk_byte;
1639  	/*
1640  	 * Use the header owner and not the send root's id, because in case of a
1641  	 * snapshot we can have shared subtrees.
1642  	 */
1643  	backref_ctx.backref_owner = btrfs_header_owner(eb);
1644  	backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1645  
1646  	/*
1647  	 * The last extent of a file may be too large due to page alignment.
1648  	 * We need to adjust extent_len in this case so that the checks in
1649  	 * iterate_backrefs() work.
1650  	 */
1651  	if (data_offset + num_bytes >= ino_size)
1652  		backref_ctx.extent_len = ino_size - data_offset;
1653  	else
1654  		backref_ctx.extent_len = num_bytes;
1655  
1656  	/*
1657  	 * Now collect all backrefs.
1658  	 */
1659  	backref_walk_ctx.bytenr = disk_byte;
1660  	if (compressed == BTRFS_COMPRESS_NONE)
1661  		backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1662  	backref_walk_ctx.fs_info = fs_info;
1663  	backref_walk_ctx.cache_lookup = lookup_backref_cache;
1664  	backref_walk_ctx.cache_store = store_backref_cache;
1665  	backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1666  	backref_walk_ctx.check_extent_item = check_extent_item;
1667  	backref_walk_ctx.user_ctx = &backref_ctx;
1668  
1669  	/*
1670  	 * If have a single clone root, then it's the send root and we can tell
1671  	 * the backref walking code to skip our own backref and not resolve it,
1672  	 * since we can not use it for cloning - the source and destination
1673  	 * ranges can't overlap and in case the leaf is shared through a subtree
1674  	 * due to snapshots, we can't use those other roots since they are not
1675  	 * in the list of clone roots.
1676  	 */
1677  	if (sctx->clone_roots_cnt == 1)
1678  		backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1679  
1680  	ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1681  				    &backref_ctx);
1682  	if (ret < 0)
1683  		return ret;
1684  
1685  	down_read(&fs_info->commit_root_sem);
1686  	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1687  		/*
1688  		 * A transaction commit for a transaction in which block group
1689  		 * relocation was done just happened.
1690  		 * The disk_bytenr of the file extent item we processed is
1691  		 * possibly stale, referring to the extent's location before
1692  		 * relocation. So act as if we haven't found any clone sources
1693  		 * and fallback to write commands, which will read the correct
1694  		 * data from the new extent location. Otherwise we will fail
1695  		 * below because we haven't found our own back reference or we
1696  		 * could be getting incorrect sources in case the old extent
1697  		 * was already reallocated after the relocation.
1698  		 */
1699  		up_read(&fs_info->commit_root_sem);
1700  		return -ENOENT;
1701  	}
1702  	up_read(&fs_info->commit_root_sem);
1703  
1704  	btrfs_debug(fs_info,
1705  		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1706  		    data_offset, ino, num_bytes, logical);
1707  
1708  	if (!backref_ctx.found) {
1709  		btrfs_debug(fs_info, "no clones found");
1710  		return -ENOENT;
1711  	}
1712  
1713  	cur_clone_root = NULL;
1714  	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1715  		struct clone_root *clone_root = &sctx->clone_roots[i];
1716  
1717  		if (!clone_root->found_ref)
1718  			continue;
1719  
1720  		/*
1721  		 * Choose the root from which we can clone more bytes, to
1722  		 * minimize write operations and therefore have more extent
1723  		 * sharing at the destination (the same as in the source).
1724  		 */
1725  		if (!cur_clone_root ||
1726  		    clone_root->num_bytes > cur_clone_root->num_bytes) {
1727  			cur_clone_root = clone_root;
1728  
1729  			/*
1730  			 * We found an optimal clone candidate (any inode from
1731  			 * any root is fine), so we're done.
1732  			 */
1733  			if (clone_root->num_bytes >= backref_ctx.extent_len)
1734  				break;
1735  		}
1736  	}
1737  
1738  	if (cur_clone_root) {
1739  		*found = cur_clone_root;
1740  		ret = 0;
1741  	} else {
1742  		ret = -ENOENT;
1743  	}
1744  
1745  	return ret;
1746  }
1747  
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1748  static int read_symlink(struct btrfs_root *root,
1749  			u64 ino,
1750  			struct fs_path *dest)
1751  {
1752  	int ret;
1753  	struct btrfs_path *path;
1754  	struct btrfs_key key;
1755  	struct btrfs_file_extent_item *ei;
1756  	u8 type;
1757  	u8 compression;
1758  	unsigned long off;
1759  	int len;
1760  
1761  	path = alloc_path_for_send();
1762  	if (!path)
1763  		return -ENOMEM;
1764  
1765  	key.objectid = ino;
1766  	key.type = BTRFS_EXTENT_DATA_KEY;
1767  	key.offset = 0;
1768  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1769  	if (ret < 0)
1770  		goto out;
1771  	if (ret) {
1772  		/*
1773  		 * An empty symlink inode. Can happen in rare error paths when
1774  		 * creating a symlink (transaction committed before the inode
1775  		 * eviction handler removed the symlink inode items and a crash
1776  		 * happened in between or the subvol was snapshoted in between).
1777  		 * Print an informative message to dmesg/syslog so that the user
1778  		 * can delete the symlink.
1779  		 */
1780  		btrfs_err(root->fs_info,
1781  			  "Found empty symlink inode %llu at root %llu",
1782  			  ino, btrfs_root_id(root));
1783  		ret = -EIO;
1784  		goto out;
1785  	}
1786  
1787  	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1788  			struct btrfs_file_extent_item);
1789  	type = btrfs_file_extent_type(path->nodes[0], ei);
1790  	if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1791  		ret = -EUCLEAN;
1792  		btrfs_crit(root->fs_info,
1793  "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1794  			   ino, btrfs_root_id(root), type);
1795  		goto out;
1796  	}
1797  	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1798  	if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1799  		ret = -EUCLEAN;
1800  		btrfs_crit(root->fs_info,
1801  "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1802  			   ino, btrfs_root_id(root), compression);
1803  		goto out;
1804  	}
1805  
1806  	off = btrfs_file_extent_inline_start(ei);
1807  	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1808  
1809  	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1810  
1811  out:
1812  	btrfs_free_path(path);
1813  	return ret;
1814  }
1815  
1816  /*
1817   * Helper function to generate a file name that is unique in the root of
1818   * send_root and parent_root. This is used to generate names for orphan inodes.
1819   */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1820  static int gen_unique_name(struct send_ctx *sctx,
1821  			   u64 ino, u64 gen,
1822  			   struct fs_path *dest)
1823  {
1824  	int ret = 0;
1825  	struct btrfs_path *path;
1826  	struct btrfs_dir_item *di;
1827  	char tmp[64];
1828  	int len;
1829  	u64 idx = 0;
1830  
1831  	path = alloc_path_for_send();
1832  	if (!path)
1833  		return -ENOMEM;
1834  
1835  	while (1) {
1836  		struct fscrypt_str tmp_name;
1837  
1838  		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1839  				ino, gen, idx);
1840  		ASSERT(len < sizeof(tmp));
1841  		tmp_name.name = tmp;
1842  		tmp_name.len = strlen(tmp);
1843  
1844  		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1845  				path, BTRFS_FIRST_FREE_OBJECTID,
1846  				&tmp_name, 0);
1847  		btrfs_release_path(path);
1848  		if (IS_ERR(di)) {
1849  			ret = PTR_ERR(di);
1850  			goto out;
1851  		}
1852  		if (di) {
1853  			/* not unique, try again */
1854  			idx++;
1855  			continue;
1856  		}
1857  
1858  		if (!sctx->parent_root) {
1859  			/* unique */
1860  			ret = 0;
1861  			break;
1862  		}
1863  
1864  		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1865  				path, BTRFS_FIRST_FREE_OBJECTID,
1866  				&tmp_name, 0);
1867  		btrfs_release_path(path);
1868  		if (IS_ERR(di)) {
1869  			ret = PTR_ERR(di);
1870  			goto out;
1871  		}
1872  		if (di) {
1873  			/* not unique, try again */
1874  			idx++;
1875  			continue;
1876  		}
1877  		/* unique */
1878  		break;
1879  	}
1880  
1881  	ret = fs_path_add(dest, tmp, strlen(tmp));
1882  
1883  out:
1884  	btrfs_free_path(path);
1885  	return ret;
1886  }
1887  
1888  enum inode_state {
1889  	inode_state_no_change,
1890  	inode_state_will_create,
1891  	inode_state_did_create,
1892  	inode_state_will_delete,
1893  	inode_state_did_delete,
1894  };
1895  
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1896  static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1897  			       u64 *send_gen, u64 *parent_gen)
1898  {
1899  	int ret;
1900  	int left_ret;
1901  	int right_ret;
1902  	u64 left_gen;
1903  	u64 right_gen = 0;
1904  	struct btrfs_inode_info info;
1905  
1906  	ret = get_inode_info(sctx->send_root, ino, &info);
1907  	if (ret < 0 && ret != -ENOENT)
1908  		goto out;
1909  	left_ret = (info.nlink == 0) ? -ENOENT : ret;
1910  	left_gen = info.gen;
1911  	if (send_gen)
1912  		*send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1913  
1914  	if (!sctx->parent_root) {
1915  		right_ret = -ENOENT;
1916  	} else {
1917  		ret = get_inode_info(sctx->parent_root, ino, &info);
1918  		if (ret < 0 && ret != -ENOENT)
1919  			goto out;
1920  		right_ret = (info.nlink == 0) ? -ENOENT : ret;
1921  		right_gen = info.gen;
1922  		if (parent_gen)
1923  			*parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1924  	}
1925  
1926  	if (!left_ret && !right_ret) {
1927  		if (left_gen == gen && right_gen == gen) {
1928  			ret = inode_state_no_change;
1929  		} else if (left_gen == gen) {
1930  			if (ino < sctx->send_progress)
1931  				ret = inode_state_did_create;
1932  			else
1933  				ret = inode_state_will_create;
1934  		} else if (right_gen == gen) {
1935  			if (ino < sctx->send_progress)
1936  				ret = inode_state_did_delete;
1937  			else
1938  				ret = inode_state_will_delete;
1939  		} else  {
1940  			ret = -ENOENT;
1941  		}
1942  	} else if (!left_ret) {
1943  		if (left_gen == gen) {
1944  			if (ino < sctx->send_progress)
1945  				ret = inode_state_did_create;
1946  			else
1947  				ret = inode_state_will_create;
1948  		} else {
1949  			ret = -ENOENT;
1950  		}
1951  	} else if (!right_ret) {
1952  		if (right_gen == gen) {
1953  			if (ino < sctx->send_progress)
1954  				ret = inode_state_did_delete;
1955  			else
1956  				ret = inode_state_will_delete;
1957  		} else {
1958  			ret = -ENOENT;
1959  		}
1960  	} else {
1961  		ret = -ENOENT;
1962  	}
1963  
1964  out:
1965  	return ret;
1966  }
1967  
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1968  static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1969  			     u64 *send_gen, u64 *parent_gen)
1970  {
1971  	int ret;
1972  
1973  	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1974  		return 1;
1975  
1976  	ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1977  	if (ret < 0)
1978  		goto out;
1979  
1980  	if (ret == inode_state_no_change ||
1981  	    ret == inode_state_did_create ||
1982  	    ret == inode_state_will_delete)
1983  		ret = 1;
1984  	else
1985  		ret = 0;
1986  
1987  out:
1988  	return ret;
1989  }
1990  
1991  /*
1992   * Helper function to lookup a dir item in a dir.
1993   */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode)1994  static int lookup_dir_item_inode(struct btrfs_root *root,
1995  				 u64 dir, const char *name, int name_len,
1996  				 u64 *found_inode)
1997  {
1998  	int ret = 0;
1999  	struct btrfs_dir_item *di;
2000  	struct btrfs_key key;
2001  	struct btrfs_path *path;
2002  	struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
2003  
2004  	path = alloc_path_for_send();
2005  	if (!path)
2006  		return -ENOMEM;
2007  
2008  	di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
2009  	if (IS_ERR_OR_NULL(di)) {
2010  		ret = di ? PTR_ERR(di) : -ENOENT;
2011  		goto out;
2012  	}
2013  	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2014  	if (key.type == BTRFS_ROOT_ITEM_KEY) {
2015  		ret = -ENOENT;
2016  		goto out;
2017  	}
2018  	*found_inode = key.objectid;
2019  
2020  out:
2021  	btrfs_free_path(path);
2022  	return ret;
2023  }
2024  
2025  /*
2026   * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2027   * generation of the parent dir and the name of the dir entry.
2028   */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)2029  static int get_first_ref(struct btrfs_root *root, u64 ino,
2030  			 u64 *dir, u64 *dir_gen, struct fs_path *name)
2031  {
2032  	int ret;
2033  	struct btrfs_key key;
2034  	struct btrfs_key found_key;
2035  	struct btrfs_path *path;
2036  	int len;
2037  	u64 parent_dir;
2038  
2039  	path = alloc_path_for_send();
2040  	if (!path)
2041  		return -ENOMEM;
2042  
2043  	key.objectid = ino;
2044  	key.type = BTRFS_INODE_REF_KEY;
2045  	key.offset = 0;
2046  
2047  	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2048  	if (ret < 0)
2049  		goto out;
2050  	if (!ret)
2051  		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2052  				path->slots[0]);
2053  	if (ret || found_key.objectid != ino ||
2054  	    (found_key.type != BTRFS_INODE_REF_KEY &&
2055  	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2056  		ret = -ENOENT;
2057  		goto out;
2058  	}
2059  
2060  	if (found_key.type == BTRFS_INODE_REF_KEY) {
2061  		struct btrfs_inode_ref *iref;
2062  		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2063  				      struct btrfs_inode_ref);
2064  		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2065  		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2066  						     (unsigned long)(iref + 1),
2067  						     len);
2068  		parent_dir = found_key.offset;
2069  	} else {
2070  		struct btrfs_inode_extref *extref;
2071  		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2072  					struct btrfs_inode_extref);
2073  		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2074  		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2075  					(unsigned long)&extref->name, len);
2076  		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2077  	}
2078  	if (ret < 0)
2079  		goto out;
2080  	btrfs_release_path(path);
2081  
2082  	if (dir_gen) {
2083  		ret = get_inode_gen(root, parent_dir, dir_gen);
2084  		if (ret < 0)
2085  			goto out;
2086  	}
2087  
2088  	*dir = parent_dir;
2089  
2090  out:
2091  	btrfs_free_path(path);
2092  	return ret;
2093  }
2094  
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)2095  static int is_first_ref(struct btrfs_root *root,
2096  			u64 ino, u64 dir,
2097  			const char *name, int name_len)
2098  {
2099  	int ret;
2100  	struct fs_path *tmp_name;
2101  	u64 tmp_dir;
2102  
2103  	tmp_name = fs_path_alloc();
2104  	if (!tmp_name)
2105  		return -ENOMEM;
2106  
2107  	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2108  	if (ret < 0)
2109  		goto out;
2110  
2111  	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2112  		ret = 0;
2113  		goto out;
2114  	}
2115  
2116  	ret = !memcmp(tmp_name->start, name, name_len);
2117  
2118  out:
2119  	fs_path_free(tmp_name);
2120  	return ret;
2121  }
2122  
2123  /*
2124   * Used by process_recorded_refs to determine if a new ref would overwrite an
2125   * already existing ref. In case it detects an overwrite, it returns the
2126   * inode/gen in who_ino/who_gen.
2127   * When an overwrite is detected, process_recorded_refs does proper orphanizing
2128   * to make sure later references to the overwritten inode are possible.
2129   * Orphanizing is however only required for the first ref of an inode.
2130   * process_recorded_refs does an additional is_first_ref check to see if
2131   * orphanizing is really required.
2132   */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen,u64 * who_mode)2133  static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2134  			      const char *name, int name_len,
2135  			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
2136  {
2137  	int ret;
2138  	u64 parent_root_dir_gen;
2139  	u64 other_inode = 0;
2140  	struct btrfs_inode_info info;
2141  
2142  	if (!sctx->parent_root)
2143  		return 0;
2144  
2145  	ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2146  	if (ret <= 0)
2147  		return 0;
2148  
2149  	/*
2150  	 * If we have a parent root we need to verify that the parent dir was
2151  	 * not deleted and then re-created, if it was then we have no overwrite
2152  	 * and we can just unlink this entry.
2153  	 *
2154  	 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2155  	 * parent root.
2156  	 */
2157  	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2158  	    parent_root_dir_gen != dir_gen)
2159  		return 0;
2160  
2161  	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2162  				    &other_inode);
2163  	if (ret == -ENOENT)
2164  		return 0;
2165  	else if (ret < 0)
2166  		return ret;
2167  
2168  	/*
2169  	 * Check if the overwritten ref was already processed. If yes, the ref
2170  	 * was already unlinked/moved, so we can safely assume that we will not
2171  	 * overwrite anything at this point in time.
2172  	 */
2173  	if (other_inode > sctx->send_progress ||
2174  	    is_waiting_for_move(sctx, other_inode)) {
2175  		ret = get_inode_info(sctx->parent_root, other_inode, &info);
2176  		if (ret < 0)
2177  			return ret;
2178  
2179  		*who_ino = other_inode;
2180  		*who_gen = info.gen;
2181  		*who_mode = info.mode;
2182  		return 1;
2183  	}
2184  
2185  	return 0;
2186  }
2187  
2188  /*
2189   * Checks if the ref was overwritten by an already processed inode. This is
2190   * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2191   * thus the orphan name needs be used.
2192   * process_recorded_refs also uses it to avoid unlinking of refs that were
2193   * overwritten.
2194   */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)2195  static int did_overwrite_ref(struct send_ctx *sctx,
2196  			    u64 dir, u64 dir_gen,
2197  			    u64 ino, u64 ino_gen,
2198  			    const char *name, int name_len)
2199  {
2200  	int ret;
2201  	u64 ow_inode;
2202  	u64 ow_gen = 0;
2203  	u64 send_root_dir_gen;
2204  
2205  	if (!sctx->parent_root)
2206  		return 0;
2207  
2208  	ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2209  	if (ret <= 0)
2210  		return ret;
2211  
2212  	/*
2213  	 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2214  	 * send root.
2215  	 */
2216  	if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2217  		return 0;
2218  
2219  	/* check if the ref was overwritten by another ref */
2220  	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2221  				    &ow_inode);
2222  	if (ret == -ENOENT) {
2223  		/* was never and will never be overwritten */
2224  		return 0;
2225  	} else if (ret < 0) {
2226  		return ret;
2227  	}
2228  
2229  	if (ow_inode == ino) {
2230  		ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2231  		if (ret < 0)
2232  			return ret;
2233  
2234  		/* It's the same inode, so no overwrite happened. */
2235  		if (ow_gen == ino_gen)
2236  			return 0;
2237  	}
2238  
2239  	/*
2240  	 * We know that it is or will be overwritten. Check this now.
2241  	 * The current inode being processed might have been the one that caused
2242  	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2243  	 * the current inode being processed.
2244  	 */
2245  	if (ow_inode < sctx->send_progress)
2246  		return 1;
2247  
2248  	if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2249  		if (ow_gen == 0) {
2250  			ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2251  			if (ret < 0)
2252  				return ret;
2253  		}
2254  		if (ow_gen == sctx->cur_inode_gen)
2255  			return 1;
2256  	}
2257  
2258  	return 0;
2259  }
2260  
2261  /*
2262   * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2263   * that got overwritten. This is used by process_recorded_refs to determine
2264   * if it has to use the path as returned by get_cur_path or the orphan name.
2265   */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)2266  static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2267  {
2268  	int ret = 0;
2269  	struct fs_path *name = NULL;
2270  	u64 dir;
2271  	u64 dir_gen;
2272  
2273  	if (!sctx->parent_root)
2274  		goto out;
2275  
2276  	name = fs_path_alloc();
2277  	if (!name)
2278  		return -ENOMEM;
2279  
2280  	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2281  	if (ret < 0)
2282  		goto out;
2283  
2284  	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2285  			name->start, fs_path_len(name));
2286  
2287  out:
2288  	fs_path_free(name);
2289  	return ret;
2290  }
2291  
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2292  static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2293  							 u64 ino, u64 gen)
2294  {
2295  	struct btrfs_lru_cache_entry *entry;
2296  
2297  	entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2298  	if (!entry)
2299  		return NULL;
2300  
2301  	return container_of(entry, struct name_cache_entry, entry);
2302  }
2303  
2304  /*
2305   * Used by get_cur_path for each ref up to the root.
2306   * Returns 0 if it succeeded.
2307   * Returns 1 if the inode is not existent or got overwritten. In that case, the
2308   * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2309   * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2310   * Returns <0 in case of error.
2311   */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2312  static int __get_cur_name_and_parent(struct send_ctx *sctx,
2313  				     u64 ino, u64 gen,
2314  				     u64 *parent_ino,
2315  				     u64 *parent_gen,
2316  				     struct fs_path *dest)
2317  {
2318  	int ret;
2319  	int nce_ret;
2320  	struct name_cache_entry *nce;
2321  
2322  	/*
2323  	 * First check if we already did a call to this function with the same
2324  	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2325  	 * return the cached result.
2326  	 */
2327  	nce = name_cache_search(sctx, ino, gen);
2328  	if (nce) {
2329  		if (ino < sctx->send_progress && nce->need_later_update) {
2330  			btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2331  			nce = NULL;
2332  		} else {
2333  			*parent_ino = nce->parent_ino;
2334  			*parent_gen = nce->parent_gen;
2335  			ret = fs_path_add(dest, nce->name, nce->name_len);
2336  			if (ret < 0)
2337  				goto out;
2338  			ret = nce->ret;
2339  			goto out;
2340  		}
2341  	}
2342  
2343  	/*
2344  	 * If the inode is not existent yet, add the orphan name and return 1.
2345  	 * This should only happen for the parent dir that we determine in
2346  	 * record_new_ref_if_needed().
2347  	 */
2348  	ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2349  	if (ret < 0)
2350  		goto out;
2351  
2352  	if (!ret) {
2353  		ret = gen_unique_name(sctx, ino, gen, dest);
2354  		if (ret < 0)
2355  			goto out;
2356  		ret = 1;
2357  		goto out_cache;
2358  	}
2359  
2360  	/*
2361  	 * Depending on whether the inode was already processed or not, use
2362  	 * send_root or parent_root for ref lookup.
2363  	 */
2364  	if (ino < sctx->send_progress)
2365  		ret = get_first_ref(sctx->send_root, ino,
2366  				    parent_ino, parent_gen, dest);
2367  	else
2368  		ret = get_first_ref(sctx->parent_root, ino,
2369  				    parent_ino, parent_gen, dest);
2370  	if (ret < 0)
2371  		goto out;
2372  
2373  	/*
2374  	 * Check if the ref was overwritten by an inode's ref that was processed
2375  	 * earlier. If yes, treat as orphan and return 1.
2376  	 */
2377  	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2378  			dest->start, dest->end - dest->start);
2379  	if (ret < 0)
2380  		goto out;
2381  	if (ret) {
2382  		fs_path_reset(dest);
2383  		ret = gen_unique_name(sctx, ino, gen, dest);
2384  		if (ret < 0)
2385  			goto out;
2386  		ret = 1;
2387  	}
2388  
2389  out_cache:
2390  	/*
2391  	 * Store the result of the lookup in the name cache.
2392  	 */
2393  	nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL);
2394  	if (!nce) {
2395  		ret = -ENOMEM;
2396  		goto out;
2397  	}
2398  
2399  	nce->entry.key = ino;
2400  	nce->entry.gen = gen;
2401  	nce->parent_ino = *parent_ino;
2402  	nce->parent_gen = *parent_gen;
2403  	nce->name_len = fs_path_len(dest);
2404  	nce->ret = ret;
2405  	memcpy(nce->name, dest->start, nce->name_len);
2406  
2407  	if (ino < sctx->send_progress)
2408  		nce->need_later_update = 0;
2409  	else
2410  		nce->need_later_update = 1;
2411  
2412  	nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2413  	if (nce_ret < 0) {
2414  		kfree(nce);
2415  		ret = nce_ret;
2416  	}
2417  
2418  out:
2419  	return ret;
2420  }
2421  
2422  /*
2423   * Magic happens here. This function returns the first ref to an inode as it
2424   * would look like while receiving the stream at this point in time.
2425   * We walk the path up to the root. For every inode in between, we check if it
2426   * was already processed/sent. If yes, we continue with the parent as found
2427   * in send_root. If not, we continue with the parent as found in parent_root.
2428   * If we encounter an inode that was deleted at this point in time, we use the
2429   * inodes "orphan" name instead of the real name and stop. Same with new inodes
2430   * that were not created yet and overwritten inodes/refs.
2431   *
2432   * When do we have orphan inodes:
2433   * 1. When an inode is freshly created and thus no valid refs are available yet
2434   * 2. When a directory lost all it's refs (deleted) but still has dir items
2435   *    inside which were not processed yet (pending for move/delete). If anyone
2436   *    tried to get the path to the dir items, it would get a path inside that
2437   *    orphan directory.
2438   * 3. When an inode is moved around or gets new links, it may overwrite the ref
2439   *    of an unprocessed inode. If in that case the first ref would be
2440   *    overwritten, the overwritten inode gets "orphanized". Later when we
2441   *    process this overwritten inode, it is restored at a new place by moving
2442   *    the orphan inode.
2443   *
2444   * sctx->send_progress tells this function at which point in time receiving
2445   * would be.
2446   */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2447  static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2448  			struct fs_path *dest)
2449  {
2450  	int ret = 0;
2451  	struct fs_path *name = NULL;
2452  	u64 parent_inode = 0;
2453  	u64 parent_gen = 0;
2454  	int stop = 0;
2455  
2456  	name = fs_path_alloc();
2457  	if (!name) {
2458  		ret = -ENOMEM;
2459  		goto out;
2460  	}
2461  
2462  	dest->reversed = 1;
2463  	fs_path_reset(dest);
2464  
2465  	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2466  		struct waiting_dir_move *wdm;
2467  
2468  		fs_path_reset(name);
2469  
2470  		if (is_waiting_for_rm(sctx, ino, gen)) {
2471  			ret = gen_unique_name(sctx, ino, gen, name);
2472  			if (ret < 0)
2473  				goto out;
2474  			ret = fs_path_add_path(dest, name);
2475  			break;
2476  		}
2477  
2478  		wdm = get_waiting_dir_move(sctx, ino);
2479  		if (wdm && wdm->orphanized) {
2480  			ret = gen_unique_name(sctx, ino, gen, name);
2481  			stop = 1;
2482  		} else if (wdm) {
2483  			ret = get_first_ref(sctx->parent_root, ino,
2484  					    &parent_inode, &parent_gen, name);
2485  		} else {
2486  			ret = __get_cur_name_and_parent(sctx, ino, gen,
2487  							&parent_inode,
2488  							&parent_gen, name);
2489  			if (ret)
2490  				stop = 1;
2491  		}
2492  
2493  		if (ret < 0)
2494  			goto out;
2495  
2496  		ret = fs_path_add_path(dest, name);
2497  		if (ret < 0)
2498  			goto out;
2499  
2500  		ino = parent_inode;
2501  		gen = parent_gen;
2502  	}
2503  
2504  out:
2505  	fs_path_free(name);
2506  	if (!ret)
2507  		fs_path_unreverse(dest);
2508  	return ret;
2509  }
2510  
2511  /*
2512   * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2513   */
send_subvol_begin(struct send_ctx * sctx)2514  static int send_subvol_begin(struct send_ctx *sctx)
2515  {
2516  	int ret;
2517  	struct btrfs_root *send_root = sctx->send_root;
2518  	struct btrfs_root *parent_root = sctx->parent_root;
2519  	struct btrfs_path *path;
2520  	struct btrfs_key key;
2521  	struct btrfs_root_ref *ref;
2522  	struct extent_buffer *leaf;
2523  	char *name = NULL;
2524  	int namelen;
2525  
2526  	path = btrfs_alloc_path();
2527  	if (!path)
2528  		return -ENOMEM;
2529  
2530  	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2531  	if (!name) {
2532  		btrfs_free_path(path);
2533  		return -ENOMEM;
2534  	}
2535  
2536  	key.objectid = btrfs_root_id(send_root);
2537  	key.type = BTRFS_ROOT_BACKREF_KEY;
2538  	key.offset = 0;
2539  
2540  	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2541  				&key, path, 1, 0);
2542  	if (ret < 0)
2543  		goto out;
2544  	if (ret) {
2545  		ret = -ENOENT;
2546  		goto out;
2547  	}
2548  
2549  	leaf = path->nodes[0];
2550  	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2551  	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2552  	    key.objectid != btrfs_root_id(send_root)) {
2553  		ret = -ENOENT;
2554  		goto out;
2555  	}
2556  	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2557  	namelen = btrfs_root_ref_name_len(leaf, ref);
2558  	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2559  	btrfs_release_path(path);
2560  
2561  	if (parent_root) {
2562  		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2563  		if (ret < 0)
2564  			goto out;
2565  	} else {
2566  		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2567  		if (ret < 0)
2568  			goto out;
2569  	}
2570  
2571  	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2572  
2573  	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2574  		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2575  			    sctx->send_root->root_item.received_uuid);
2576  	else
2577  		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2578  			    sctx->send_root->root_item.uuid);
2579  
2580  	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2581  		    btrfs_root_ctransid(&sctx->send_root->root_item));
2582  	if (parent_root) {
2583  		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2584  			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2585  				     parent_root->root_item.received_uuid);
2586  		else
2587  			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2588  				     parent_root->root_item.uuid);
2589  		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2590  			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2591  	}
2592  
2593  	ret = send_cmd(sctx);
2594  
2595  tlv_put_failure:
2596  out:
2597  	btrfs_free_path(path);
2598  	kfree(name);
2599  	return ret;
2600  }
2601  
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2602  static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2603  {
2604  	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2605  	int ret = 0;
2606  	struct fs_path *p;
2607  
2608  	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2609  
2610  	p = fs_path_alloc();
2611  	if (!p)
2612  		return -ENOMEM;
2613  
2614  	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2615  	if (ret < 0)
2616  		goto out;
2617  
2618  	ret = get_cur_path(sctx, ino, gen, p);
2619  	if (ret < 0)
2620  		goto out;
2621  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2622  	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2623  
2624  	ret = send_cmd(sctx);
2625  
2626  tlv_put_failure:
2627  out:
2628  	fs_path_free(p);
2629  	return ret;
2630  }
2631  
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2632  static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2633  {
2634  	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2635  	int ret = 0;
2636  	struct fs_path *p;
2637  
2638  	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2639  
2640  	p = fs_path_alloc();
2641  	if (!p)
2642  		return -ENOMEM;
2643  
2644  	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2645  	if (ret < 0)
2646  		goto out;
2647  
2648  	ret = get_cur_path(sctx, ino, gen, p);
2649  	if (ret < 0)
2650  		goto out;
2651  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2652  	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2653  
2654  	ret = send_cmd(sctx);
2655  
2656  tlv_put_failure:
2657  out:
2658  	fs_path_free(p);
2659  	return ret;
2660  }
2661  
send_fileattr(struct send_ctx * sctx,u64 ino,u64 gen,u64 fileattr)2662  static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2663  {
2664  	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2665  	int ret = 0;
2666  	struct fs_path *p;
2667  
2668  	if (sctx->proto < 2)
2669  		return 0;
2670  
2671  	btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2672  
2673  	p = fs_path_alloc();
2674  	if (!p)
2675  		return -ENOMEM;
2676  
2677  	ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2678  	if (ret < 0)
2679  		goto out;
2680  
2681  	ret = get_cur_path(sctx, ino, gen, p);
2682  	if (ret < 0)
2683  		goto out;
2684  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2685  	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2686  
2687  	ret = send_cmd(sctx);
2688  
2689  tlv_put_failure:
2690  out:
2691  	fs_path_free(p);
2692  	return ret;
2693  }
2694  
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2695  static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2696  {
2697  	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2698  	int ret = 0;
2699  	struct fs_path *p;
2700  
2701  	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2702  		    ino, uid, gid);
2703  
2704  	p = fs_path_alloc();
2705  	if (!p)
2706  		return -ENOMEM;
2707  
2708  	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2709  	if (ret < 0)
2710  		goto out;
2711  
2712  	ret = get_cur_path(sctx, ino, gen, p);
2713  	if (ret < 0)
2714  		goto out;
2715  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2716  	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2717  	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2718  
2719  	ret = send_cmd(sctx);
2720  
2721  tlv_put_failure:
2722  out:
2723  	fs_path_free(p);
2724  	return ret;
2725  }
2726  
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2727  static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2728  {
2729  	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2730  	int ret = 0;
2731  	struct fs_path *p = NULL;
2732  	struct btrfs_inode_item *ii;
2733  	struct btrfs_path *path = NULL;
2734  	struct extent_buffer *eb;
2735  	struct btrfs_key key;
2736  	int slot;
2737  
2738  	btrfs_debug(fs_info, "send_utimes %llu", ino);
2739  
2740  	p = fs_path_alloc();
2741  	if (!p)
2742  		return -ENOMEM;
2743  
2744  	path = alloc_path_for_send();
2745  	if (!path) {
2746  		ret = -ENOMEM;
2747  		goto out;
2748  	}
2749  
2750  	key.objectid = ino;
2751  	key.type = BTRFS_INODE_ITEM_KEY;
2752  	key.offset = 0;
2753  	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2754  	if (ret > 0)
2755  		ret = -ENOENT;
2756  	if (ret < 0)
2757  		goto out;
2758  
2759  	eb = path->nodes[0];
2760  	slot = path->slots[0];
2761  	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2762  
2763  	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2764  	if (ret < 0)
2765  		goto out;
2766  
2767  	ret = get_cur_path(sctx, ino, gen, p);
2768  	if (ret < 0)
2769  		goto out;
2770  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2771  	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2772  	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2773  	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2774  	if (sctx->proto >= 2)
2775  		TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2776  
2777  	ret = send_cmd(sctx);
2778  
2779  tlv_put_failure:
2780  out:
2781  	fs_path_free(p);
2782  	btrfs_free_path(path);
2783  	return ret;
2784  }
2785  
2786  /*
2787   * If the cache is full, we can't remove entries from it and do a call to
2788   * send_utimes() for each respective inode, because we might be finishing
2789   * processing an inode that is a directory and it just got renamed, and existing
2790   * entries in the cache may refer to inodes that have the directory in their
2791   * full path - in which case we would generate outdated paths (pre-rename)
2792   * for the inodes that the cache entries point to. Instead of prunning the
2793   * cache when inserting, do it after we finish processing each inode at
2794   * finish_inode_if_needed().
2795   */
cache_dir_utimes(struct send_ctx * sctx,u64 dir,u64 gen)2796  static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2797  {
2798  	struct btrfs_lru_cache_entry *entry;
2799  	int ret;
2800  
2801  	entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2802  	if (entry != NULL)
2803  		return 0;
2804  
2805  	/* Caching is optional, don't fail if we can't allocate memory. */
2806  	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2807  	if (!entry)
2808  		return send_utimes(sctx, dir, gen);
2809  
2810  	entry->key = dir;
2811  	entry->gen = gen;
2812  
2813  	ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2814  	ASSERT(ret != -EEXIST);
2815  	if (ret) {
2816  		kfree(entry);
2817  		return send_utimes(sctx, dir, gen);
2818  	}
2819  
2820  	return 0;
2821  }
2822  
trim_dir_utimes_cache(struct send_ctx * sctx)2823  static int trim_dir_utimes_cache(struct send_ctx *sctx)
2824  {
2825  	while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2826  		struct btrfs_lru_cache_entry *lru;
2827  		int ret;
2828  
2829  		lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2830  		ASSERT(lru != NULL);
2831  
2832  		ret = send_utimes(sctx, lru->key, lru->gen);
2833  		if (ret)
2834  			return ret;
2835  
2836  		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2837  	}
2838  
2839  	return 0;
2840  }
2841  
2842  /*
2843   * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2844   * a valid path yet because we did not process the refs yet. So, the inode
2845   * is created as orphan.
2846   */
send_create_inode(struct send_ctx * sctx,u64 ino)2847  static int send_create_inode(struct send_ctx *sctx, u64 ino)
2848  {
2849  	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2850  	int ret = 0;
2851  	struct fs_path *p;
2852  	int cmd;
2853  	struct btrfs_inode_info info;
2854  	u64 gen;
2855  	u64 mode;
2856  	u64 rdev;
2857  
2858  	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2859  
2860  	p = fs_path_alloc();
2861  	if (!p)
2862  		return -ENOMEM;
2863  
2864  	if (ino != sctx->cur_ino) {
2865  		ret = get_inode_info(sctx->send_root, ino, &info);
2866  		if (ret < 0)
2867  			goto out;
2868  		gen = info.gen;
2869  		mode = info.mode;
2870  		rdev = info.rdev;
2871  	} else {
2872  		gen = sctx->cur_inode_gen;
2873  		mode = sctx->cur_inode_mode;
2874  		rdev = sctx->cur_inode_rdev;
2875  	}
2876  
2877  	if (S_ISREG(mode)) {
2878  		cmd = BTRFS_SEND_C_MKFILE;
2879  	} else if (S_ISDIR(mode)) {
2880  		cmd = BTRFS_SEND_C_MKDIR;
2881  	} else if (S_ISLNK(mode)) {
2882  		cmd = BTRFS_SEND_C_SYMLINK;
2883  	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2884  		cmd = BTRFS_SEND_C_MKNOD;
2885  	} else if (S_ISFIFO(mode)) {
2886  		cmd = BTRFS_SEND_C_MKFIFO;
2887  	} else if (S_ISSOCK(mode)) {
2888  		cmd = BTRFS_SEND_C_MKSOCK;
2889  	} else {
2890  		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2891  				(int)(mode & S_IFMT));
2892  		ret = -EOPNOTSUPP;
2893  		goto out;
2894  	}
2895  
2896  	ret = begin_cmd(sctx, cmd);
2897  	if (ret < 0)
2898  		goto out;
2899  
2900  	ret = gen_unique_name(sctx, ino, gen, p);
2901  	if (ret < 0)
2902  		goto out;
2903  
2904  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2905  	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2906  
2907  	if (S_ISLNK(mode)) {
2908  		fs_path_reset(p);
2909  		ret = read_symlink(sctx->send_root, ino, p);
2910  		if (ret < 0)
2911  			goto out;
2912  		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2913  	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2914  		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2915  		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2916  		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2917  	}
2918  
2919  	ret = send_cmd(sctx);
2920  	if (ret < 0)
2921  		goto out;
2922  
2923  
2924  tlv_put_failure:
2925  out:
2926  	fs_path_free(p);
2927  	return ret;
2928  }
2929  
cache_dir_created(struct send_ctx * sctx,u64 dir)2930  static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2931  {
2932  	struct btrfs_lru_cache_entry *entry;
2933  	int ret;
2934  
2935  	/* Caching is optional, ignore any failures. */
2936  	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2937  	if (!entry)
2938  		return;
2939  
2940  	entry->key = dir;
2941  	entry->gen = 0;
2942  	ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2943  	if (ret < 0)
2944  		kfree(entry);
2945  }
2946  
2947  /*
2948   * We need some special handling for inodes that get processed before the parent
2949   * directory got created. See process_recorded_refs for details.
2950   * This function does the check if we already created the dir out of order.
2951   */
did_create_dir(struct send_ctx * sctx,u64 dir)2952  static int did_create_dir(struct send_ctx *sctx, u64 dir)
2953  {
2954  	int ret = 0;
2955  	int iter_ret = 0;
2956  	struct btrfs_path *path = NULL;
2957  	struct btrfs_key key;
2958  	struct btrfs_key found_key;
2959  	struct btrfs_key di_key;
2960  	struct btrfs_dir_item *di;
2961  
2962  	if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2963  		return 1;
2964  
2965  	path = alloc_path_for_send();
2966  	if (!path)
2967  		return -ENOMEM;
2968  
2969  	key.objectid = dir;
2970  	key.type = BTRFS_DIR_INDEX_KEY;
2971  	key.offset = 0;
2972  
2973  	btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2974  		struct extent_buffer *eb = path->nodes[0];
2975  
2976  		if (found_key.objectid != key.objectid ||
2977  		    found_key.type != key.type) {
2978  			ret = 0;
2979  			break;
2980  		}
2981  
2982  		di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2983  		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2984  
2985  		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2986  		    di_key.objectid < sctx->send_progress) {
2987  			ret = 1;
2988  			cache_dir_created(sctx, dir);
2989  			break;
2990  		}
2991  	}
2992  	/* Catch error found during iteration */
2993  	if (iter_ret < 0)
2994  		ret = iter_ret;
2995  
2996  	btrfs_free_path(path);
2997  	return ret;
2998  }
2999  
3000  /*
3001   * Only creates the inode if it is:
3002   * 1. Not a directory
3003   * 2. Or a directory which was not created already due to out of order
3004   *    directories. See did_create_dir and process_recorded_refs for details.
3005   */
send_create_inode_if_needed(struct send_ctx * sctx)3006  static int send_create_inode_if_needed(struct send_ctx *sctx)
3007  {
3008  	int ret;
3009  
3010  	if (S_ISDIR(sctx->cur_inode_mode)) {
3011  		ret = did_create_dir(sctx, sctx->cur_ino);
3012  		if (ret < 0)
3013  			return ret;
3014  		else if (ret > 0)
3015  			return 0;
3016  	}
3017  
3018  	ret = send_create_inode(sctx, sctx->cur_ino);
3019  
3020  	if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3021  		cache_dir_created(sctx, sctx->cur_ino);
3022  
3023  	return ret;
3024  }
3025  
3026  struct recorded_ref {
3027  	struct list_head list;
3028  	char *name;
3029  	struct fs_path *full_path;
3030  	u64 dir;
3031  	u64 dir_gen;
3032  	int name_len;
3033  	struct rb_node node;
3034  	struct rb_root *root;
3035  };
3036  
recorded_ref_alloc(void)3037  static struct recorded_ref *recorded_ref_alloc(void)
3038  {
3039  	struct recorded_ref *ref;
3040  
3041  	ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3042  	if (!ref)
3043  		return NULL;
3044  	RB_CLEAR_NODE(&ref->node);
3045  	INIT_LIST_HEAD(&ref->list);
3046  	return ref;
3047  }
3048  
recorded_ref_free(struct recorded_ref * ref)3049  static void recorded_ref_free(struct recorded_ref *ref)
3050  {
3051  	if (!ref)
3052  		return;
3053  	if (!RB_EMPTY_NODE(&ref->node))
3054  		rb_erase(&ref->node, ref->root);
3055  	list_del(&ref->list);
3056  	fs_path_free(ref->full_path);
3057  	kfree(ref);
3058  }
3059  
set_ref_path(struct recorded_ref * ref,struct fs_path * path)3060  static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3061  {
3062  	ref->full_path = path;
3063  	ref->name = (char *)kbasename(ref->full_path->start);
3064  	ref->name_len = ref->full_path->end - ref->name;
3065  }
3066  
dup_ref(struct recorded_ref * ref,struct list_head * list)3067  static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3068  {
3069  	struct recorded_ref *new;
3070  
3071  	new = recorded_ref_alloc();
3072  	if (!new)
3073  		return -ENOMEM;
3074  
3075  	new->dir = ref->dir;
3076  	new->dir_gen = ref->dir_gen;
3077  	list_add_tail(&new->list, list);
3078  	return 0;
3079  }
3080  
__free_recorded_refs(struct list_head * head)3081  static void __free_recorded_refs(struct list_head *head)
3082  {
3083  	struct recorded_ref *cur;
3084  
3085  	while (!list_empty(head)) {
3086  		cur = list_entry(head->next, struct recorded_ref, list);
3087  		recorded_ref_free(cur);
3088  	}
3089  }
3090  
free_recorded_refs(struct send_ctx * sctx)3091  static void free_recorded_refs(struct send_ctx *sctx)
3092  {
3093  	__free_recorded_refs(&sctx->new_refs);
3094  	__free_recorded_refs(&sctx->deleted_refs);
3095  }
3096  
3097  /*
3098   * Renames/moves a file/dir to its orphan name. Used when the first
3099   * ref of an unprocessed inode gets overwritten and for all non empty
3100   * directories.
3101   */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)3102  static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3103  			  struct fs_path *path)
3104  {
3105  	int ret;
3106  	struct fs_path *orphan;
3107  
3108  	orphan = fs_path_alloc();
3109  	if (!orphan)
3110  		return -ENOMEM;
3111  
3112  	ret = gen_unique_name(sctx, ino, gen, orphan);
3113  	if (ret < 0)
3114  		goto out;
3115  
3116  	ret = send_rename(sctx, path, orphan);
3117  
3118  out:
3119  	fs_path_free(orphan);
3120  	return ret;
3121  }
3122  
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 dir_gen)3123  static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3124  						   u64 dir_ino, u64 dir_gen)
3125  {
3126  	struct rb_node **p = &sctx->orphan_dirs.rb_node;
3127  	struct rb_node *parent = NULL;
3128  	struct orphan_dir_info *entry, *odi;
3129  
3130  	while (*p) {
3131  		parent = *p;
3132  		entry = rb_entry(parent, struct orphan_dir_info, node);
3133  		if (dir_ino < entry->ino)
3134  			p = &(*p)->rb_left;
3135  		else if (dir_ino > entry->ino)
3136  			p = &(*p)->rb_right;
3137  		else if (dir_gen < entry->gen)
3138  			p = &(*p)->rb_left;
3139  		else if (dir_gen > entry->gen)
3140  			p = &(*p)->rb_right;
3141  		else
3142  			return entry;
3143  	}
3144  
3145  	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3146  	if (!odi)
3147  		return ERR_PTR(-ENOMEM);
3148  	odi->ino = dir_ino;
3149  	odi->gen = dir_gen;
3150  	odi->last_dir_index_offset = 0;
3151  	odi->dir_high_seq_ino = 0;
3152  
3153  	rb_link_node(&odi->node, parent, p);
3154  	rb_insert_color(&odi->node, &sctx->orphan_dirs);
3155  	return odi;
3156  }
3157  
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 gen)3158  static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3159  						   u64 dir_ino, u64 gen)
3160  {
3161  	struct rb_node *n = sctx->orphan_dirs.rb_node;
3162  	struct orphan_dir_info *entry;
3163  
3164  	while (n) {
3165  		entry = rb_entry(n, struct orphan_dir_info, node);
3166  		if (dir_ino < entry->ino)
3167  			n = n->rb_left;
3168  		else if (dir_ino > entry->ino)
3169  			n = n->rb_right;
3170  		else if (gen < entry->gen)
3171  			n = n->rb_left;
3172  		else if (gen > entry->gen)
3173  			n = n->rb_right;
3174  		else
3175  			return entry;
3176  	}
3177  	return NULL;
3178  }
3179  
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino,u64 gen)3180  static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3181  {
3182  	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3183  
3184  	return odi != NULL;
3185  }
3186  
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)3187  static void free_orphan_dir_info(struct send_ctx *sctx,
3188  				 struct orphan_dir_info *odi)
3189  {
3190  	if (!odi)
3191  		return;
3192  	rb_erase(&odi->node, &sctx->orphan_dirs);
3193  	kfree(odi);
3194  }
3195  
3196  /*
3197   * Returns 1 if a directory can be removed at this point in time.
3198   * We check this by iterating all dir items and checking if the inode behind
3199   * the dir item was already processed.
3200   */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen)3201  static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3202  {
3203  	int ret = 0;
3204  	int iter_ret = 0;
3205  	struct btrfs_root *root = sctx->parent_root;
3206  	struct btrfs_path *path;
3207  	struct btrfs_key key;
3208  	struct btrfs_key found_key;
3209  	struct btrfs_key loc;
3210  	struct btrfs_dir_item *di;
3211  	struct orphan_dir_info *odi = NULL;
3212  	u64 dir_high_seq_ino = 0;
3213  	u64 last_dir_index_offset = 0;
3214  
3215  	/*
3216  	 * Don't try to rmdir the top/root subvolume dir.
3217  	 */
3218  	if (dir == BTRFS_FIRST_FREE_OBJECTID)
3219  		return 0;
3220  
3221  	odi = get_orphan_dir_info(sctx, dir, dir_gen);
3222  	if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3223  		return 0;
3224  
3225  	path = alloc_path_for_send();
3226  	if (!path)
3227  		return -ENOMEM;
3228  
3229  	if (!odi) {
3230  		/*
3231  		 * Find the inode number associated with the last dir index
3232  		 * entry. This is very likely the inode with the highest number
3233  		 * of all inodes that have an entry in the directory. We can
3234  		 * then use it to avoid future calls to can_rmdir(), when
3235  		 * processing inodes with a lower number, from having to search
3236  		 * the parent root b+tree for dir index keys.
3237  		 */
3238  		key.objectid = dir;
3239  		key.type = BTRFS_DIR_INDEX_KEY;
3240  		key.offset = (u64)-1;
3241  
3242  		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3243  		if (ret < 0) {
3244  			goto out;
3245  		} else if (ret > 0) {
3246  			/* Can't happen, the root is never empty. */
3247  			ASSERT(path->slots[0] > 0);
3248  			if (WARN_ON(path->slots[0] == 0)) {
3249  				ret = -EUCLEAN;
3250  				goto out;
3251  			}
3252  			path->slots[0]--;
3253  		}
3254  
3255  		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3256  		if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3257  			/* No index keys, dir can be removed. */
3258  			ret = 1;
3259  			goto out;
3260  		}
3261  
3262  		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3263  				    struct btrfs_dir_item);
3264  		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3265  		dir_high_seq_ino = loc.objectid;
3266  		if (sctx->cur_ino < dir_high_seq_ino) {
3267  			ret = 0;
3268  			goto out;
3269  		}
3270  
3271  		btrfs_release_path(path);
3272  	}
3273  
3274  	key.objectid = dir;
3275  	key.type = BTRFS_DIR_INDEX_KEY;
3276  	key.offset = (odi ? odi->last_dir_index_offset : 0);
3277  
3278  	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3279  		struct waiting_dir_move *dm;
3280  
3281  		if (found_key.objectid != key.objectid ||
3282  		    found_key.type != key.type)
3283  			break;
3284  
3285  		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3286  				struct btrfs_dir_item);
3287  		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3288  
3289  		dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3290  		last_dir_index_offset = found_key.offset;
3291  
3292  		dm = get_waiting_dir_move(sctx, loc.objectid);
3293  		if (dm) {
3294  			dm->rmdir_ino = dir;
3295  			dm->rmdir_gen = dir_gen;
3296  			ret = 0;
3297  			goto out;
3298  		}
3299  
3300  		if (loc.objectid > sctx->cur_ino) {
3301  			ret = 0;
3302  			goto out;
3303  		}
3304  	}
3305  	if (iter_ret < 0) {
3306  		ret = iter_ret;
3307  		goto out;
3308  	}
3309  	free_orphan_dir_info(sctx, odi);
3310  
3311  	ret = 1;
3312  
3313  out:
3314  	btrfs_free_path(path);
3315  
3316  	if (ret)
3317  		return ret;
3318  
3319  	if (!odi) {
3320  		odi = add_orphan_dir_info(sctx, dir, dir_gen);
3321  		if (IS_ERR(odi))
3322  			return PTR_ERR(odi);
3323  
3324  		odi->gen = dir_gen;
3325  	}
3326  
3327  	odi->last_dir_index_offset = last_dir_index_offset;
3328  	odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3329  
3330  	return 0;
3331  }
3332  
is_waiting_for_move(struct send_ctx * sctx,u64 ino)3333  static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3334  {
3335  	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3336  
3337  	return entry != NULL;
3338  }
3339  
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)3340  static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3341  {
3342  	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3343  	struct rb_node *parent = NULL;
3344  	struct waiting_dir_move *entry, *dm;
3345  
3346  	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3347  	if (!dm)
3348  		return -ENOMEM;
3349  	dm->ino = ino;
3350  	dm->rmdir_ino = 0;
3351  	dm->rmdir_gen = 0;
3352  	dm->orphanized = orphanized;
3353  
3354  	while (*p) {
3355  		parent = *p;
3356  		entry = rb_entry(parent, struct waiting_dir_move, node);
3357  		if (ino < entry->ino) {
3358  			p = &(*p)->rb_left;
3359  		} else if (ino > entry->ino) {
3360  			p = &(*p)->rb_right;
3361  		} else {
3362  			kfree(dm);
3363  			return -EEXIST;
3364  		}
3365  	}
3366  
3367  	rb_link_node(&dm->node, parent, p);
3368  	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3369  	return 0;
3370  }
3371  
3372  static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3373  get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3374  {
3375  	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3376  	struct waiting_dir_move *entry;
3377  
3378  	while (n) {
3379  		entry = rb_entry(n, struct waiting_dir_move, node);
3380  		if (ino < entry->ino)
3381  			n = n->rb_left;
3382  		else if (ino > entry->ino)
3383  			n = n->rb_right;
3384  		else
3385  			return entry;
3386  	}
3387  	return NULL;
3388  }
3389  
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3390  static void free_waiting_dir_move(struct send_ctx *sctx,
3391  				  struct waiting_dir_move *dm)
3392  {
3393  	if (!dm)
3394  		return;
3395  	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3396  	kfree(dm);
3397  }
3398  
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3399  static int add_pending_dir_move(struct send_ctx *sctx,
3400  				u64 ino,
3401  				u64 ino_gen,
3402  				u64 parent_ino,
3403  				struct list_head *new_refs,
3404  				struct list_head *deleted_refs,
3405  				const bool is_orphan)
3406  {
3407  	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3408  	struct rb_node *parent = NULL;
3409  	struct pending_dir_move *entry = NULL, *pm;
3410  	struct recorded_ref *cur;
3411  	int exists = 0;
3412  	int ret;
3413  
3414  	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3415  	if (!pm)
3416  		return -ENOMEM;
3417  	pm->parent_ino = parent_ino;
3418  	pm->ino = ino;
3419  	pm->gen = ino_gen;
3420  	INIT_LIST_HEAD(&pm->list);
3421  	INIT_LIST_HEAD(&pm->update_refs);
3422  	RB_CLEAR_NODE(&pm->node);
3423  
3424  	while (*p) {
3425  		parent = *p;
3426  		entry = rb_entry(parent, struct pending_dir_move, node);
3427  		if (parent_ino < entry->parent_ino) {
3428  			p = &(*p)->rb_left;
3429  		} else if (parent_ino > entry->parent_ino) {
3430  			p = &(*p)->rb_right;
3431  		} else {
3432  			exists = 1;
3433  			break;
3434  		}
3435  	}
3436  
3437  	list_for_each_entry(cur, deleted_refs, list) {
3438  		ret = dup_ref(cur, &pm->update_refs);
3439  		if (ret < 0)
3440  			goto out;
3441  	}
3442  	list_for_each_entry(cur, new_refs, list) {
3443  		ret = dup_ref(cur, &pm->update_refs);
3444  		if (ret < 0)
3445  			goto out;
3446  	}
3447  
3448  	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3449  	if (ret)
3450  		goto out;
3451  
3452  	if (exists) {
3453  		list_add_tail(&pm->list, &entry->list);
3454  	} else {
3455  		rb_link_node(&pm->node, parent, p);
3456  		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3457  	}
3458  	ret = 0;
3459  out:
3460  	if (ret) {
3461  		__free_recorded_refs(&pm->update_refs);
3462  		kfree(pm);
3463  	}
3464  	return ret;
3465  }
3466  
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3467  static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3468  						      u64 parent_ino)
3469  {
3470  	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3471  	struct pending_dir_move *entry;
3472  
3473  	while (n) {
3474  		entry = rb_entry(n, struct pending_dir_move, node);
3475  		if (parent_ino < entry->parent_ino)
3476  			n = n->rb_left;
3477  		else if (parent_ino > entry->parent_ino)
3478  			n = n->rb_right;
3479  		else
3480  			return entry;
3481  	}
3482  	return NULL;
3483  }
3484  
path_loop(struct send_ctx * sctx,struct fs_path * name,u64 ino,u64 gen,u64 * ancestor_ino)3485  static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3486  		     u64 ino, u64 gen, u64 *ancestor_ino)
3487  {
3488  	int ret = 0;
3489  	u64 parent_inode = 0;
3490  	u64 parent_gen = 0;
3491  	u64 start_ino = ino;
3492  
3493  	*ancestor_ino = 0;
3494  	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3495  		fs_path_reset(name);
3496  
3497  		if (is_waiting_for_rm(sctx, ino, gen))
3498  			break;
3499  		if (is_waiting_for_move(sctx, ino)) {
3500  			if (*ancestor_ino == 0)
3501  				*ancestor_ino = ino;
3502  			ret = get_first_ref(sctx->parent_root, ino,
3503  					    &parent_inode, &parent_gen, name);
3504  		} else {
3505  			ret = __get_cur_name_and_parent(sctx, ino, gen,
3506  							&parent_inode,
3507  							&parent_gen, name);
3508  			if (ret > 0) {
3509  				ret = 0;
3510  				break;
3511  			}
3512  		}
3513  		if (ret < 0)
3514  			break;
3515  		if (parent_inode == start_ino) {
3516  			ret = 1;
3517  			if (*ancestor_ino == 0)
3518  				*ancestor_ino = ino;
3519  			break;
3520  		}
3521  		ino = parent_inode;
3522  		gen = parent_gen;
3523  	}
3524  	return ret;
3525  }
3526  
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3527  static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3528  {
3529  	struct fs_path *from_path = NULL;
3530  	struct fs_path *to_path = NULL;
3531  	struct fs_path *name = NULL;
3532  	u64 orig_progress = sctx->send_progress;
3533  	struct recorded_ref *cur;
3534  	u64 parent_ino, parent_gen;
3535  	struct waiting_dir_move *dm = NULL;
3536  	u64 rmdir_ino = 0;
3537  	u64 rmdir_gen;
3538  	u64 ancestor;
3539  	bool is_orphan;
3540  	int ret;
3541  
3542  	name = fs_path_alloc();
3543  	from_path = fs_path_alloc();
3544  	if (!name || !from_path) {
3545  		ret = -ENOMEM;
3546  		goto out;
3547  	}
3548  
3549  	dm = get_waiting_dir_move(sctx, pm->ino);
3550  	ASSERT(dm);
3551  	rmdir_ino = dm->rmdir_ino;
3552  	rmdir_gen = dm->rmdir_gen;
3553  	is_orphan = dm->orphanized;
3554  	free_waiting_dir_move(sctx, dm);
3555  
3556  	if (is_orphan) {
3557  		ret = gen_unique_name(sctx, pm->ino,
3558  				      pm->gen, from_path);
3559  	} else {
3560  		ret = get_first_ref(sctx->parent_root, pm->ino,
3561  				    &parent_ino, &parent_gen, name);
3562  		if (ret < 0)
3563  			goto out;
3564  		ret = get_cur_path(sctx, parent_ino, parent_gen,
3565  				   from_path);
3566  		if (ret < 0)
3567  			goto out;
3568  		ret = fs_path_add_path(from_path, name);
3569  	}
3570  	if (ret < 0)
3571  		goto out;
3572  
3573  	sctx->send_progress = sctx->cur_ino + 1;
3574  	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3575  	if (ret < 0)
3576  		goto out;
3577  	if (ret) {
3578  		LIST_HEAD(deleted_refs);
3579  		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3580  		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3581  					   &pm->update_refs, &deleted_refs,
3582  					   is_orphan);
3583  		if (ret < 0)
3584  			goto out;
3585  		if (rmdir_ino) {
3586  			dm = get_waiting_dir_move(sctx, pm->ino);
3587  			ASSERT(dm);
3588  			dm->rmdir_ino = rmdir_ino;
3589  			dm->rmdir_gen = rmdir_gen;
3590  		}
3591  		goto out;
3592  	}
3593  	fs_path_reset(name);
3594  	to_path = name;
3595  	name = NULL;
3596  	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3597  	if (ret < 0)
3598  		goto out;
3599  
3600  	ret = send_rename(sctx, from_path, to_path);
3601  	if (ret < 0)
3602  		goto out;
3603  
3604  	if (rmdir_ino) {
3605  		struct orphan_dir_info *odi;
3606  		u64 gen;
3607  
3608  		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3609  		if (!odi) {
3610  			/* already deleted */
3611  			goto finish;
3612  		}
3613  		gen = odi->gen;
3614  
3615  		ret = can_rmdir(sctx, rmdir_ino, gen);
3616  		if (ret < 0)
3617  			goto out;
3618  		if (!ret)
3619  			goto finish;
3620  
3621  		name = fs_path_alloc();
3622  		if (!name) {
3623  			ret = -ENOMEM;
3624  			goto out;
3625  		}
3626  		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3627  		if (ret < 0)
3628  			goto out;
3629  		ret = send_rmdir(sctx, name);
3630  		if (ret < 0)
3631  			goto out;
3632  	}
3633  
3634  finish:
3635  	ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3636  	if (ret < 0)
3637  		goto out;
3638  
3639  	/*
3640  	 * After rename/move, need to update the utimes of both new parent(s)
3641  	 * and old parent(s).
3642  	 */
3643  	list_for_each_entry(cur, &pm->update_refs, list) {
3644  		/*
3645  		 * The parent inode might have been deleted in the send snapshot
3646  		 */
3647  		ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3648  		if (ret == -ENOENT) {
3649  			ret = 0;
3650  			continue;
3651  		}
3652  		if (ret < 0)
3653  			goto out;
3654  
3655  		ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3656  		if (ret < 0)
3657  			goto out;
3658  	}
3659  
3660  out:
3661  	fs_path_free(name);
3662  	fs_path_free(from_path);
3663  	fs_path_free(to_path);
3664  	sctx->send_progress = orig_progress;
3665  
3666  	return ret;
3667  }
3668  
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3669  static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3670  {
3671  	if (!list_empty(&m->list))
3672  		list_del(&m->list);
3673  	if (!RB_EMPTY_NODE(&m->node))
3674  		rb_erase(&m->node, &sctx->pending_dir_moves);
3675  	__free_recorded_refs(&m->update_refs);
3676  	kfree(m);
3677  }
3678  
tail_append_pending_moves(struct send_ctx * sctx,struct pending_dir_move * moves,struct list_head * stack)3679  static void tail_append_pending_moves(struct send_ctx *sctx,
3680  				      struct pending_dir_move *moves,
3681  				      struct list_head *stack)
3682  {
3683  	if (list_empty(&moves->list)) {
3684  		list_add_tail(&moves->list, stack);
3685  	} else {
3686  		LIST_HEAD(list);
3687  		list_splice_init(&moves->list, &list);
3688  		list_add_tail(&moves->list, stack);
3689  		list_splice_tail(&list, stack);
3690  	}
3691  	if (!RB_EMPTY_NODE(&moves->node)) {
3692  		rb_erase(&moves->node, &sctx->pending_dir_moves);
3693  		RB_CLEAR_NODE(&moves->node);
3694  	}
3695  }
3696  
apply_children_dir_moves(struct send_ctx * sctx)3697  static int apply_children_dir_moves(struct send_ctx *sctx)
3698  {
3699  	struct pending_dir_move *pm;
3700  	LIST_HEAD(stack);
3701  	u64 parent_ino = sctx->cur_ino;
3702  	int ret = 0;
3703  
3704  	pm = get_pending_dir_moves(sctx, parent_ino);
3705  	if (!pm)
3706  		return 0;
3707  
3708  	tail_append_pending_moves(sctx, pm, &stack);
3709  
3710  	while (!list_empty(&stack)) {
3711  		pm = list_first_entry(&stack, struct pending_dir_move, list);
3712  		parent_ino = pm->ino;
3713  		ret = apply_dir_move(sctx, pm);
3714  		free_pending_move(sctx, pm);
3715  		if (ret)
3716  			goto out;
3717  		pm = get_pending_dir_moves(sctx, parent_ino);
3718  		if (pm)
3719  			tail_append_pending_moves(sctx, pm, &stack);
3720  	}
3721  	return 0;
3722  
3723  out:
3724  	while (!list_empty(&stack)) {
3725  		pm = list_first_entry(&stack, struct pending_dir_move, list);
3726  		free_pending_move(sctx, pm);
3727  	}
3728  	return ret;
3729  }
3730  
3731  /*
3732   * We might need to delay a directory rename even when no ancestor directory
3733   * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3734   * renamed. This happens when we rename a directory to the old name (the name
3735   * in the parent root) of some other unrelated directory that got its rename
3736   * delayed due to some ancestor with higher number that got renamed.
3737   *
3738   * Example:
3739   *
3740   * Parent snapshot:
3741   * .                                       (ino 256)
3742   * |---- a/                                (ino 257)
3743   * |     |---- file                        (ino 260)
3744   * |
3745   * |---- b/                                (ino 258)
3746   * |---- c/                                (ino 259)
3747   *
3748   * Send snapshot:
3749   * .                                       (ino 256)
3750   * |---- a/                                (ino 258)
3751   * |---- x/                                (ino 259)
3752   *       |---- y/                          (ino 257)
3753   *             |----- file                 (ino 260)
3754   *
3755   * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3756   * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3757   * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3758   * must issue is:
3759   *
3760   * 1 - rename 259 from 'c' to 'x'
3761   * 2 - rename 257 from 'a' to 'x/y'
3762   * 3 - rename 258 from 'b' to 'a'
3763   *
3764   * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3765   * be done right away and < 0 on error.
3766   */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3767  static int wait_for_dest_dir_move(struct send_ctx *sctx,
3768  				  struct recorded_ref *parent_ref,
3769  				  const bool is_orphan)
3770  {
3771  	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3772  	struct btrfs_path *path;
3773  	struct btrfs_key key;
3774  	struct btrfs_key di_key;
3775  	struct btrfs_dir_item *di;
3776  	u64 left_gen;
3777  	u64 right_gen;
3778  	int ret = 0;
3779  	struct waiting_dir_move *wdm;
3780  
3781  	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3782  		return 0;
3783  
3784  	path = alloc_path_for_send();
3785  	if (!path)
3786  		return -ENOMEM;
3787  
3788  	key.objectid = parent_ref->dir;
3789  	key.type = BTRFS_DIR_ITEM_KEY;
3790  	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3791  
3792  	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3793  	if (ret < 0) {
3794  		goto out;
3795  	} else if (ret > 0) {
3796  		ret = 0;
3797  		goto out;
3798  	}
3799  
3800  	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3801  				       parent_ref->name_len);
3802  	if (!di) {
3803  		ret = 0;
3804  		goto out;
3805  	}
3806  	/*
3807  	 * di_key.objectid has the number of the inode that has a dentry in the
3808  	 * parent directory with the same name that sctx->cur_ino is being
3809  	 * renamed to. We need to check if that inode is in the send root as
3810  	 * well and if it is currently marked as an inode with a pending rename,
3811  	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3812  	 * that it happens after that other inode is renamed.
3813  	 */
3814  	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3815  	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3816  		ret = 0;
3817  		goto out;
3818  	}
3819  
3820  	ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3821  	if (ret < 0)
3822  		goto out;
3823  	ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3824  	if (ret < 0) {
3825  		if (ret == -ENOENT)
3826  			ret = 0;
3827  		goto out;
3828  	}
3829  
3830  	/* Different inode, no need to delay the rename of sctx->cur_ino */
3831  	if (right_gen != left_gen) {
3832  		ret = 0;
3833  		goto out;
3834  	}
3835  
3836  	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3837  	if (wdm && !wdm->orphanized) {
3838  		ret = add_pending_dir_move(sctx,
3839  					   sctx->cur_ino,
3840  					   sctx->cur_inode_gen,
3841  					   di_key.objectid,
3842  					   &sctx->new_refs,
3843  					   &sctx->deleted_refs,
3844  					   is_orphan);
3845  		if (!ret)
3846  			ret = 1;
3847  	}
3848  out:
3849  	btrfs_free_path(path);
3850  	return ret;
3851  }
3852  
3853  /*
3854   * Check if inode ino2, or any of its ancestors, is inode ino1.
3855   * Return 1 if true, 0 if false and < 0 on error.
3856   */
check_ino_in_path(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,const u64 ino2_gen,struct fs_path * fs_path)3857  static int check_ino_in_path(struct btrfs_root *root,
3858  			     const u64 ino1,
3859  			     const u64 ino1_gen,
3860  			     const u64 ino2,
3861  			     const u64 ino2_gen,
3862  			     struct fs_path *fs_path)
3863  {
3864  	u64 ino = ino2;
3865  
3866  	if (ino1 == ino2)
3867  		return ino1_gen == ino2_gen;
3868  
3869  	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3870  		u64 parent;
3871  		u64 parent_gen;
3872  		int ret;
3873  
3874  		fs_path_reset(fs_path);
3875  		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3876  		if (ret < 0)
3877  			return ret;
3878  		if (parent == ino1)
3879  			return parent_gen == ino1_gen;
3880  		ino = parent;
3881  	}
3882  	return 0;
3883  }
3884  
3885  /*
3886   * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3887   * possible path (in case ino2 is not a directory and has multiple hard links).
3888   * Return 1 if true, 0 if false and < 0 on error.
3889   */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3890  static int is_ancestor(struct btrfs_root *root,
3891  		       const u64 ino1,
3892  		       const u64 ino1_gen,
3893  		       const u64 ino2,
3894  		       struct fs_path *fs_path)
3895  {
3896  	bool free_fs_path = false;
3897  	int ret = 0;
3898  	int iter_ret = 0;
3899  	struct btrfs_path *path = NULL;
3900  	struct btrfs_key key;
3901  
3902  	if (!fs_path) {
3903  		fs_path = fs_path_alloc();
3904  		if (!fs_path)
3905  			return -ENOMEM;
3906  		free_fs_path = true;
3907  	}
3908  
3909  	path = alloc_path_for_send();
3910  	if (!path) {
3911  		ret = -ENOMEM;
3912  		goto out;
3913  	}
3914  
3915  	key.objectid = ino2;
3916  	key.type = BTRFS_INODE_REF_KEY;
3917  	key.offset = 0;
3918  
3919  	btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3920  		struct extent_buffer *leaf = path->nodes[0];
3921  		int slot = path->slots[0];
3922  		u32 cur_offset = 0;
3923  		u32 item_size;
3924  
3925  		if (key.objectid != ino2)
3926  			break;
3927  		if (key.type != BTRFS_INODE_REF_KEY &&
3928  		    key.type != BTRFS_INODE_EXTREF_KEY)
3929  			break;
3930  
3931  		item_size = btrfs_item_size(leaf, slot);
3932  		while (cur_offset < item_size) {
3933  			u64 parent;
3934  			u64 parent_gen;
3935  
3936  			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3937  				unsigned long ptr;
3938  				struct btrfs_inode_extref *extref;
3939  
3940  				ptr = btrfs_item_ptr_offset(leaf, slot);
3941  				extref = (struct btrfs_inode_extref *)
3942  					(ptr + cur_offset);
3943  				parent = btrfs_inode_extref_parent(leaf,
3944  								   extref);
3945  				cur_offset += sizeof(*extref);
3946  				cur_offset += btrfs_inode_extref_name_len(leaf,
3947  								  extref);
3948  			} else {
3949  				parent = key.offset;
3950  				cur_offset = item_size;
3951  			}
3952  
3953  			ret = get_inode_gen(root, parent, &parent_gen);
3954  			if (ret < 0)
3955  				goto out;
3956  			ret = check_ino_in_path(root, ino1, ino1_gen,
3957  						parent, parent_gen, fs_path);
3958  			if (ret)
3959  				goto out;
3960  		}
3961  	}
3962  	ret = 0;
3963  	if (iter_ret < 0)
3964  		ret = iter_ret;
3965  
3966  out:
3967  	btrfs_free_path(path);
3968  	if (free_fs_path)
3969  		fs_path_free(fs_path);
3970  	return ret;
3971  }
3972  
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3973  static int wait_for_parent_move(struct send_ctx *sctx,
3974  				struct recorded_ref *parent_ref,
3975  				const bool is_orphan)
3976  {
3977  	int ret = 0;
3978  	u64 ino = parent_ref->dir;
3979  	u64 ino_gen = parent_ref->dir_gen;
3980  	u64 parent_ino_before, parent_ino_after;
3981  	struct fs_path *path_before = NULL;
3982  	struct fs_path *path_after = NULL;
3983  	int len1, len2;
3984  
3985  	path_after = fs_path_alloc();
3986  	path_before = fs_path_alloc();
3987  	if (!path_after || !path_before) {
3988  		ret = -ENOMEM;
3989  		goto out;
3990  	}
3991  
3992  	/*
3993  	 * Our current directory inode may not yet be renamed/moved because some
3994  	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3995  	 * such ancestor exists and make sure our own rename/move happens after
3996  	 * that ancestor is processed to avoid path build infinite loops (done
3997  	 * at get_cur_path()).
3998  	 */
3999  	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
4000  		u64 parent_ino_after_gen;
4001  
4002  		if (is_waiting_for_move(sctx, ino)) {
4003  			/*
4004  			 * If the current inode is an ancestor of ino in the
4005  			 * parent root, we need to delay the rename of the
4006  			 * current inode, otherwise don't delayed the rename
4007  			 * because we can end up with a circular dependency
4008  			 * of renames, resulting in some directories never
4009  			 * getting the respective rename operations issued in
4010  			 * the send stream or getting into infinite path build
4011  			 * loops.
4012  			 */
4013  			ret = is_ancestor(sctx->parent_root,
4014  					  sctx->cur_ino, sctx->cur_inode_gen,
4015  					  ino, path_before);
4016  			if (ret)
4017  				break;
4018  		}
4019  
4020  		fs_path_reset(path_before);
4021  		fs_path_reset(path_after);
4022  
4023  		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4024  				    &parent_ino_after_gen, path_after);
4025  		if (ret < 0)
4026  			goto out;
4027  		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4028  				    NULL, path_before);
4029  		if (ret < 0 && ret != -ENOENT) {
4030  			goto out;
4031  		} else if (ret == -ENOENT) {
4032  			ret = 0;
4033  			break;
4034  		}
4035  
4036  		len1 = fs_path_len(path_before);
4037  		len2 = fs_path_len(path_after);
4038  		if (ino > sctx->cur_ino &&
4039  		    (parent_ino_before != parent_ino_after || len1 != len2 ||
4040  		     memcmp(path_before->start, path_after->start, len1))) {
4041  			u64 parent_ino_gen;
4042  
4043  			ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4044  			if (ret < 0)
4045  				goto out;
4046  			if (ino_gen == parent_ino_gen) {
4047  				ret = 1;
4048  				break;
4049  			}
4050  		}
4051  		ino = parent_ino_after;
4052  		ino_gen = parent_ino_after_gen;
4053  	}
4054  
4055  out:
4056  	fs_path_free(path_before);
4057  	fs_path_free(path_after);
4058  
4059  	if (ret == 1) {
4060  		ret = add_pending_dir_move(sctx,
4061  					   sctx->cur_ino,
4062  					   sctx->cur_inode_gen,
4063  					   ino,
4064  					   &sctx->new_refs,
4065  					   &sctx->deleted_refs,
4066  					   is_orphan);
4067  		if (!ret)
4068  			ret = 1;
4069  	}
4070  
4071  	return ret;
4072  }
4073  
update_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4074  static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4075  {
4076  	int ret;
4077  	struct fs_path *new_path;
4078  
4079  	/*
4080  	 * Our reference's name member points to its full_path member string, so
4081  	 * we use here a new path.
4082  	 */
4083  	new_path = fs_path_alloc();
4084  	if (!new_path)
4085  		return -ENOMEM;
4086  
4087  	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4088  	if (ret < 0) {
4089  		fs_path_free(new_path);
4090  		return ret;
4091  	}
4092  	ret = fs_path_add(new_path, ref->name, ref->name_len);
4093  	if (ret < 0) {
4094  		fs_path_free(new_path);
4095  		return ret;
4096  	}
4097  
4098  	fs_path_free(ref->full_path);
4099  	set_ref_path(ref, new_path);
4100  
4101  	return 0;
4102  }
4103  
4104  /*
4105   * When processing the new references for an inode we may orphanize an existing
4106   * directory inode because its old name conflicts with one of the new references
4107   * of the current inode. Later, when processing another new reference of our
4108   * inode, we might need to orphanize another inode, but the path we have in the
4109   * reference reflects the pre-orphanization name of the directory we previously
4110   * orphanized. For example:
4111   *
4112   * parent snapshot looks like:
4113   *
4114   * .                                     (ino 256)
4115   * |----- f1                             (ino 257)
4116   * |----- f2                             (ino 258)
4117   * |----- d1/                            (ino 259)
4118   *        |----- d2/                     (ino 260)
4119   *
4120   * send snapshot looks like:
4121   *
4122   * .                                     (ino 256)
4123   * |----- d1                             (ino 258)
4124   * |----- f2/                            (ino 259)
4125   *        |----- f2_link/                (ino 260)
4126   *        |       |----- f1              (ino 257)
4127   *        |
4128   *        |----- d2                      (ino 258)
4129   *
4130   * When processing inode 257 we compute the name for inode 259 as "d1", and we
4131   * cache it in the name cache. Later when we start processing inode 258, when
4132   * collecting all its new references we set a full path of "d1/d2" for its new
4133   * reference with name "d2". When we start processing the new references we
4134   * start by processing the new reference with name "d1", and this results in
4135   * orphanizing inode 259, since its old reference causes a conflict. Then we
4136   * move on the next new reference, with name "d2", and we find out we must
4137   * orphanize inode 260, as its old reference conflicts with ours - but for the
4138   * orphanization we use a source path corresponding to the path we stored in the
4139   * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4140   * receiver fail since the path component "d1/" no longer exists, it was renamed
4141   * to "o259-6-0/" when processing the previous new reference. So in this case we
4142   * must recompute the path in the new reference and use it for the new
4143   * orphanization operation.
4144   */
refresh_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4145  static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4146  {
4147  	char *name;
4148  	int ret;
4149  
4150  	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4151  	if (!name)
4152  		return -ENOMEM;
4153  
4154  	fs_path_reset(ref->full_path);
4155  	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4156  	if (ret < 0)
4157  		goto out;
4158  
4159  	ret = fs_path_add(ref->full_path, name, ref->name_len);
4160  	if (ret < 0)
4161  		goto out;
4162  
4163  	/* Update the reference's base name pointer. */
4164  	set_ref_path(ref, ref->full_path);
4165  out:
4166  	kfree(name);
4167  	return ret;
4168  }
4169  
4170  /*
4171   * This does all the move/link/unlink/rmdir magic.
4172   */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)4173  static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4174  {
4175  	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4176  	int ret = 0;
4177  	struct recorded_ref *cur;
4178  	struct recorded_ref *cur2;
4179  	LIST_HEAD(check_dirs);
4180  	struct fs_path *valid_path = NULL;
4181  	u64 ow_inode = 0;
4182  	u64 ow_gen;
4183  	u64 ow_mode;
4184  	int did_overwrite = 0;
4185  	int is_orphan = 0;
4186  	u64 last_dir_ino_rm = 0;
4187  	bool can_rename = true;
4188  	bool orphanized_dir = false;
4189  	bool orphanized_ancestor = false;
4190  
4191  	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4192  
4193  	/*
4194  	 * This should never happen as the root dir always has the same ref
4195  	 * which is always '..'
4196  	 */
4197  	if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4198  		btrfs_err(fs_info,
4199  			  "send: unexpected inode %llu in process_recorded_refs()",
4200  			  sctx->cur_ino);
4201  		ret = -EINVAL;
4202  		goto out;
4203  	}
4204  
4205  	valid_path = fs_path_alloc();
4206  	if (!valid_path) {
4207  		ret = -ENOMEM;
4208  		goto out;
4209  	}
4210  
4211  	/*
4212  	 * First, check if the first ref of the current inode was overwritten
4213  	 * before. If yes, we know that the current inode was already orphanized
4214  	 * and thus use the orphan name. If not, we can use get_cur_path to
4215  	 * get the path of the first ref as it would like while receiving at
4216  	 * this point in time.
4217  	 * New inodes are always orphan at the beginning, so force to use the
4218  	 * orphan name in this case.
4219  	 * The first ref is stored in valid_path and will be updated if it
4220  	 * gets moved around.
4221  	 */
4222  	if (!sctx->cur_inode_new) {
4223  		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4224  				sctx->cur_inode_gen);
4225  		if (ret < 0)
4226  			goto out;
4227  		if (ret)
4228  			did_overwrite = 1;
4229  	}
4230  	if (sctx->cur_inode_new || did_overwrite) {
4231  		ret = gen_unique_name(sctx, sctx->cur_ino,
4232  				sctx->cur_inode_gen, valid_path);
4233  		if (ret < 0)
4234  			goto out;
4235  		is_orphan = 1;
4236  	} else {
4237  		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4238  				valid_path);
4239  		if (ret < 0)
4240  			goto out;
4241  	}
4242  
4243  	/*
4244  	 * Before doing any rename and link operations, do a first pass on the
4245  	 * new references to orphanize any unprocessed inodes that may have a
4246  	 * reference that conflicts with one of the new references of the current
4247  	 * inode. This needs to happen first because a new reference may conflict
4248  	 * with the old reference of a parent directory, so we must make sure
4249  	 * that the path used for link and rename commands don't use an
4250  	 * orphanized name when an ancestor was not yet orphanized.
4251  	 *
4252  	 * Example:
4253  	 *
4254  	 * Parent snapshot:
4255  	 *
4256  	 * .                                                      (ino 256)
4257  	 * |----- testdir/                                        (ino 259)
4258  	 * |          |----- a                                    (ino 257)
4259  	 * |
4260  	 * |----- b                                               (ino 258)
4261  	 *
4262  	 * Send snapshot:
4263  	 *
4264  	 * .                                                      (ino 256)
4265  	 * |----- testdir_2/                                      (ino 259)
4266  	 * |          |----- a                                    (ino 260)
4267  	 * |
4268  	 * |----- testdir                                         (ino 257)
4269  	 * |----- b                                               (ino 257)
4270  	 * |----- b2                                              (ino 258)
4271  	 *
4272  	 * Processing the new reference for inode 257 with name "b" may happen
4273  	 * before processing the new reference with name "testdir". If so, we
4274  	 * must make sure that by the time we send a link command to create the
4275  	 * hard link "b", inode 259 was already orphanized, since the generated
4276  	 * path in "valid_path" already contains the orphanized name for 259.
4277  	 * We are processing inode 257, so only later when processing 259 we do
4278  	 * the rename operation to change its temporary (orphanized) name to
4279  	 * "testdir_2".
4280  	 */
4281  	list_for_each_entry(cur, &sctx->new_refs, list) {
4282  		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4283  		if (ret < 0)
4284  			goto out;
4285  		if (ret == inode_state_will_create)
4286  			continue;
4287  
4288  		/*
4289  		 * Check if this new ref would overwrite the first ref of another
4290  		 * unprocessed inode. If yes, orphanize the overwritten inode.
4291  		 * If we find an overwritten ref that is not the first ref,
4292  		 * simply unlink it.
4293  		 */
4294  		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4295  				cur->name, cur->name_len,
4296  				&ow_inode, &ow_gen, &ow_mode);
4297  		if (ret < 0)
4298  			goto out;
4299  		if (ret) {
4300  			ret = is_first_ref(sctx->parent_root,
4301  					   ow_inode, cur->dir, cur->name,
4302  					   cur->name_len);
4303  			if (ret < 0)
4304  				goto out;
4305  			if (ret) {
4306  				struct name_cache_entry *nce;
4307  				struct waiting_dir_move *wdm;
4308  
4309  				if (orphanized_dir) {
4310  					ret = refresh_ref_path(sctx, cur);
4311  					if (ret < 0)
4312  						goto out;
4313  				}
4314  
4315  				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4316  						cur->full_path);
4317  				if (ret < 0)
4318  					goto out;
4319  				if (S_ISDIR(ow_mode))
4320  					orphanized_dir = true;
4321  
4322  				/*
4323  				 * If ow_inode has its rename operation delayed
4324  				 * make sure that its orphanized name is used in
4325  				 * the source path when performing its rename
4326  				 * operation.
4327  				 */
4328  				wdm = get_waiting_dir_move(sctx, ow_inode);
4329  				if (wdm)
4330  					wdm->orphanized = true;
4331  
4332  				/*
4333  				 * Make sure we clear our orphanized inode's
4334  				 * name from the name cache. This is because the
4335  				 * inode ow_inode might be an ancestor of some
4336  				 * other inode that will be orphanized as well
4337  				 * later and has an inode number greater than
4338  				 * sctx->send_progress. We need to prevent
4339  				 * future name lookups from using the old name
4340  				 * and get instead the orphan name.
4341  				 */
4342  				nce = name_cache_search(sctx, ow_inode, ow_gen);
4343  				if (nce)
4344  					btrfs_lru_cache_remove(&sctx->name_cache,
4345  							       &nce->entry);
4346  
4347  				/*
4348  				 * ow_inode might currently be an ancestor of
4349  				 * cur_ino, therefore compute valid_path (the
4350  				 * current path of cur_ino) again because it
4351  				 * might contain the pre-orphanization name of
4352  				 * ow_inode, which is no longer valid.
4353  				 */
4354  				ret = is_ancestor(sctx->parent_root,
4355  						  ow_inode, ow_gen,
4356  						  sctx->cur_ino, NULL);
4357  				if (ret > 0) {
4358  					orphanized_ancestor = true;
4359  					fs_path_reset(valid_path);
4360  					ret = get_cur_path(sctx, sctx->cur_ino,
4361  							   sctx->cur_inode_gen,
4362  							   valid_path);
4363  				}
4364  				if (ret < 0)
4365  					goto out;
4366  			} else {
4367  				/*
4368  				 * If we previously orphanized a directory that
4369  				 * collided with a new reference that we already
4370  				 * processed, recompute the current path because
4371  				 * that directory may be part of the path.
4372  				 */
4373  				if (orphanized_dir) {
4374  					ret = refresh_ref_path(sctx, cur);
4375  					if (ret < 0)
4376  						goto out;
4377  				}
4378  				ret = send_unlink(sctx, cur->full_path);
4379  				if (ret < 0)
4380  					goto out;
4381  			}
4382  		}
4383  
4384  	}
4385  
4386  	list_for_each_entry(cur, &sctx->new_refs, list) {
4387  		/*
4388  		 * We may have refs where the parent directory does not exist
4389  		 * yet. This happens if the parent directories inum is higher
4390  		 * than the current inum. To handle this case, we create the
4391  		 * parent directory out of order. But we need to check if this
4392  		 * did already happen before due to other refs in the same dir.
4393  		 */
4394  		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4395  		if (ret < 0)
4396  			goto out;
4397  		if (ret == inode_state_will_create) {
4398  			ret = 0;
4399  			/*
4400  			 * First check if any of the current inodes refs did
4401  			 * already create the dir.
4402  			 */
4403  			list_for_each_entry(cur2, &sctx->new_refs, list) {
4404  				if (cur == cur2)
4405  					break;
4406  				if (cur2->dir == cur->dir) {
4407  					ret = 1;
4408  					break;
4409  				}
4410  			}
4411  
4412  			/*
4413  			 * If that did not happen, check if a previous inode
4414  			 * did already create the dir.
4415  			 */
4416  			if (!ret)
4417  				ret = did_create_dir(sctx, cur->dir);
4418  			if (ret < 0)
4419  				goto out;
4420  			if (!ret) {
4421  				ret = send_create_inode(sctx, cur->dir);
4422  				if (ret < 0)
4423  					goto out;
4424  				cache_dir_created(sctx, cur->dir);
4425  			}
4426  		}
4427  
4428  		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4429  			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4430  			if (ret < 0)
4431  				goto out;
4432  			if (ret == 1) {
4433  				can_rename = false;
4434  				*pending_move = 1;
4435  			}
4436  		}
4437  
4438  		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4439  		    can_rename) {
4440  			ret = wait_for_parent_move(sctx, cur, is_orphan);
4441  			if (ret < 0)
4442  				goto out;
4443  			if (ret == 1) {
4444  				can_rename = false;
4445  				*pending_move = 1;
4446  			}
4447  		}
4448  
4449  		/*
4450  		 * link/move the ref to the new place. If we have an orphan
4451  		 * inode, move it and update valid_path. If not, link or move
4452  		 * it depending on the inode mode.
4453  		 */
4454  		if (is_orphan && can_rename) {
4455  			ret = send_rename(sctx, valid_path, cur->full_path);
4456  			if (ret < 0)
4457  				goto out;
4458  			is_orphan = 0;
4459  			ret = fs_path_copy(valid_path, cur->full_path);
4460  			if (ret < 0)
4461  				goto out;
4462  		} else if (can_rename) {
4463  			if (S_ISDIR(sctx->cur_inode_mode)) {
4464  				/*
4465  				 * Dirs can't be linked, so move it. For moved
4466  				 * dirs, we always have one new and one deleted
4467  				 * ref. The deleted ref is ignored later.
4468  				 */
4469  				ret = send_rename(sctx, valid_path,
4470  						  cur->full_path);
4471  				if (!ret)
4472  					ret = fs_path_copy(valid_path,
4473  							   cur->full_path);
4474  				if (ret < 0)
4475  					goto out;
4476  			} else {
4477  				/*
4478  				 * We might have previously orphanized an inode
4479  				 * which is an ancestor of our current inode,
4480  				 * so our reference's full path, which was
4481  				 * computed before any such orphanizations, must
4482  				 * be updated.
4483  				 */
4484  				if (orphanized_dir) {
4485  					ret = update_ref_path(sctx, cur);
4486  					if (ret < 0)
4487  						goto out;
4488  				}
4489  				ret = send_link(sctx, cur->full_path,
4490  						valid_path);
4491  				if (ret < 0)
4492  					goto out;
4493  			}
4494  		}
4495  		ret = dup_ref(cur, &check_dirs);
4496  		if (ret < 0)
4497  			goto out;
4498  	}
4499  
4500  	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4501  		/*
4502  		 * Check if we can already rmdir the directory. If not,
4503  		 * orphanize it. For every dir item inside that gets deleted
4504  		 * later, we do this check again and rmdir it then if possible.
4505  		 * See the use of check_dirs for more details.
4506  		 */
4507  		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4508  		if (ret < 0)
4509  			goto out;
4510  		if (ret) {
4511  			ret = send_rmdir(sctx, valid_path);
4512  			if (ret < 0)
4513  				goto out;
4514  		} else if (!is_orphan) {
4515  			ret = orphanize_inode(sctx, sctx->cur_ino,
4516  					sctx->cur_inode_gen, valid_path);
4517  			if (ret < 0)
4518  				goto out;
4519  			is_orphan = 1;
4520  		}
4521  
4522  		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4523  			ret = dup_ref(cur, &check_dirs);
4524  			if (ret < 0)
4525  				goto out;
4526  		}
4527  	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4528  		   !list_empty(&sctx->deleted_refs)) {
4529  		/*
4530  		 * We have a moved dir. Add the old parent to check_dirs
4531  		 */
4532  		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4533  				list);
4534  		ret = dup_ref(cur, &check_dirs);
4535  		if (ret < 0)
4536  			goto out;
4537  	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4538  		/*
4539  		 * We have a non dir inode. Go through all deleted refs and
4540  		 * unlink them if they were not already overwritten by other
4541  		 * inodes.
4542  		 */
4543  		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4544  			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4545  					sctx->cur_ino, sctx->cur_inode_gen,
4546  					cur->name, cur->name_len);
4547  			if (ret < 0)
4548  				goto out;
4549  			if (!ret) {
4550  				/*
4551  				 * If we orphanized any ancestor before, we need
4552  				 * to recompute the full path for deleted names,
4553  				 * since any such path was computed before we
4554  				 * processed any references and orphanized any
4555  				 * ancestor inode.
4556  				 */
4557  				if (orphanized_ancestor) {
4558  					ret = update_ref_path(sctx, cur);
4559  					if (ret < 0)
4560  						goto out;
4561  				}
4562  				ret = send_unlink(sctx, cur->full_path);
4563  				if (ret < 0)
4564  					goto out;
4565  			}
4566  			ret = dup_ref(cur, &check_dirs);
4567  			if (ret < 0)
4568  				goto out;
4569  		}
4570  		/*
4571  		 * If the inode is still orphan, unlink the orphan. This may
4572  		 * happen when a previous inode did overwrite the first ref
4573  		 * of this inode and no new refs were added for the current
4574  		 * inode. Unlinking does not mean that the inode is deleted in
4575  		 * all cases. There may still be links to this inode in other
4576  		 * places.
4577  		 */
4578  		if (is_orphan) {
4579  			ret = send_unlink(sctx, valid_path);
4580  			if (ret < 0)
4581  				goto out;
4582  		}
4583  	}
4584  
4585  	/*
4586  	 * We did collect all parent dirs where cur_inode was once located. We
4587  	 * now go through all these dirs and check if they are pending for
4588  	 * deletion and if it's finally possible to perform the rmdir now.
4589  	 * We also update the inode stats of the parent dirs here.
4590  	 */
4591  	list_for_each_entry(cur, &check_dirs, list) {
4592  		/*
4593  		 * In case we had refs into dirs that were not processed yet,
4594  		 * we don't need to do the utime and rmdir logic for these dirs.
4595  		 * The dir will be processed later.
4596  		 */
4597  		if (cur->dir > sctx->cur_ino)
4598  			continue;
4599  
4600  		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4601  		if (ret < 0)
4602  			goto out;
4603  
4604  		if (ret == inode_state_did_create ||
4605  		    ret == inode_state_no_change) {
4606  			ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4607  			if (ret < 0)
4608  				goto out;
4609  		} else if (ret == inode_state_did_delete &&
4610  			   cur->dir != last_dir_ino_rm) {
4611  			ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4612  			if (ret < 0)
4613  				goto out;
4614  			if (ret) {
4615  				ret = get_cur_path(sctx, cur->dir,
4616  						   cur->dir_gen, valid_path);
4617  				if (ret < 0)
4618  					goto out;
4619  				ret = send_rmdir(sctx, valid_path);
4620  				if (ret < 0)
4621  					goto out;
4622  				last_dir_ino_rm = cur->dir;
4623  			}
4624  		}
4625  	}
4626  
4627  	ret = 0;
4628  
4629  out:
4630  	__free_recorded_refs(&check_dirs);
4631  	free_recorded_refs(sctx);
4632  	fs_path_free(valid_path);
4633  	return ret;
4634  }
4635  
rbtree_ref_comp(const void * k,const struct rb_node * node)4636  static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4637  {
4638  	const struct recorded_ref *data = k;
4639  	const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4640  	int result;
4641  
4642  	if (data->dir > ref->dir)
4643  		return 1;
4644  	if (data->dir < ref->dir)
4645  		return -1;
4646  	if (data->dir_gen > ref->dir_gen)
4647  		return 1;
4648  	if (data->dir_gen < ref->dir_gen)
4649  		return -1;
4650  	if (data->name_len > ref->name_len)
4651  		return 1;
4652  	if (data->name_len < ref->name_len)
4653  		return -1;
4654  	result = strcmp(data->name, ref->name);
4655  	if (result > 0)
4656  		return 1;
4657  	if (result < 0)
4658  		return -1;
4659  	return 0;
4660  }
4661  
rbtree_ref_less(struct rb_node * node,const struct rb_node * parent)4662  static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4663  {
4664  	const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4665  
4666  	return rbtree_ref_comp(entry, parent) < 0;
4667  }
4668  
record_ref_in_tree(struct rb_root * root,struct list_head * refs,struct fs_path * name,u64 dir,u64 dir_gen,struct send_ctx * sctx)4669  static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4670  			      struct fs_path *name, u64 dir, u64 dir_gen,
4671  			      struct send_ctx *sctx)
4672  {
4673  	int ret = 0;
4674  	struct fs_path *path = NULL;
4675  	struct recorded_ref *ref = NULL;
4676  
4677  	path = fs_path_alloc();
4678  	if (!path) {
4679  		ret = -ENOMEM;
4680  		goto out;
4681  	}
4682  
4683  	ref = recorded_ref_alloc();
4684  	if (!ref) {
4685  		ret = -ENOMEM;
4686  		goto out;
4687  	}
4688  
4689  	ret = get_cur_path(sctx, dir, dir_gen, path);
4690  	if (ret < 0)
4691  		goto out;
4692  	ret = fs_path_add_path(path, name);
4693  	if (ret < 0)
4694  		goto out;
4695  
4696  	ref->dir = dir;
4697  	ref->dir_gen = dir_gen;
4698  	set_ref_path(ref, path);
4699  	list_add_tail(&ref->list, refs);
4700  	rb_add(&ref->node, root, rbtree_ref_less);
4701  	ref->root = root;
4702  out:
4703  	if (ret) {
4704  		if (path && (!ref || !ref->full_path))
4705  			fs_path_free(path);
4706  		recorded_ref_free(ref);
4707  	}
4708  	return ret;
4709  }
4710  
record_new_ref_if_needed(int num,u64 dir,int index,struct fs_path * name,void * ctx)4711  static int record_new_ref_if_needed(int num, u64 dir, int index,
4712  				    struct fs_path *name, void *ctx)
4713  {
4714  	int ret = 0;
4715  	struct send_ctx *sctx = ctx;
4716  	struct rb_node *node = NULL;
4717  	struct recorded_ref data;
4718  	struct recorded_ref *ref;
4719  	u64 dir_gen;
4720  
4721  	ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4722  	if (ret < 0)
4723  		goto out;
4724  
4725  	data.dir = dir;
4726  	data.dir_gen = dir_gen;
4727  	set_ref_path(&data, name);
4728  	node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4729  	if (node) {
4730  		ref = rb_entry(node, struct recorded_ref, node);
4731  		recorded_ref_free(ref);
4732  	} else {
4733  		ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4734  					 &sctx->new_refs, name, dir, dir_gen,
4735  					 sctx);
4736  	}
4737  out:
4738  	return ret;
4739  }
4740  
record_deleted_ref_if_needed(int num,u64 dir,int index,struct fs_path * name,void * ctx)4741  static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4742  					struct fs_path *name, void *ctx)
4743  {
4744  	int ret = 0;
4745  	struct send_ctx *sctx = ctx;
4746  	struct rb_node *node = NULL;
4747  	struct recorded_ref data;
4748  	struct recorded_ref *ref;
4749  	u64 dir_gen;
4750  
4751  	ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4752  	if (ret < 0)
4753  		goto out;
4754  
4755  	data.dir = dir;
4756  	data.dir_gen = dir_gen;
4757  	set_ref_path(&data, name);
4758  	node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4759  	if (node) {
4760  		ref = rb_entry(node, struct recorded_ref, node);
4761  		recorded_ref_free(ref);
4762  	} else {
4763  		ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4764  					 &sctx->deleted_refs, name, dir,
4765  					 dir_gen, sctx);
4766  	}
4767  out:
4768  	return ret;
4769  }
4770  
record_new_ref(struct send_ctx * sctx)4771  static int record_new_ref(struct send_ctx *sctx)
4772  {
4773  	int ret;
4774  
4775  	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4776  				sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4777  	if (ret < 0)
4778  		goto out;
4779  	ret = 0;
4780  
4781  out:
4782  	return ret;
4783  }
4784  
record_deleted_ref(struct send_ctx * sctx)4785  static int record_deleted_ref(struct send_ctx *sctx)
4786  {
4787  	int ret;
4788  
4789  	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4790  				sctx->cmp_key, 0, record_deleted_ref_if_needed,
4791  				sctx);
4792  	if (ret < 0)
4793  		goto out;
4794  	ret = 0;
4795  
4796  out:
4797  	return ret;
4798  }
4799  
record_changed_ref(struct send_ctx * sctx)4800  static int record_changed_ref(struct send_ctx *sctx)
4801  {
4802  	int ret = 0;
4803  
4804  	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4805  			sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4806  	if (ret < 0)
4807  		goto out;
4808  	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4809  			sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4810  	if (ret < 0)
4811  		goto out;
4812  	ret = 0;
4813  
4814  out:
4815  	return ret;
4816  }
4817  
4818  /*
4819   * Record and process all refs at once. Needed when an inode changes the
4820   * generation number, which means that it was deleted and recreated.
4821   */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4822  static int process_all_refs(struct send_ctx *sctx,
4823  			    enum btrfs_compare_tree_result cmd)
4824  {
4825  	int ret = 0;
4826  	int iter_ret = 0;
4827  	struct btrfs_root *root;
4828  	struct btrfs_path *path;
4829  	struct btrfs_key key;
4830  	struct btrfs_key found_key;
4831  	iterate_inode_ref_t cb;
4832  	int pending_move = 0;
4833  
4834  	path = alloc_path_for_send();
4835  	if (!path)
4836  		return -ENOMEM;
4837  
4838  	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4839  		root = sctx->send_root;
4840  		cb = record_new_ref_if_needed;
4841  	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4842  		root = sctx->parent_root;
4843  		cb = record_deleted_ref_if_needed;
4844  	} else {
4845  		btrfs_err(sctx->send_root->fs_info,
4846  				"Wrong command %d in process_all_refs", cmd);
4847  		ret = -EINVAL;
4848  		goto out;
4849  	}
4850  
4851  	key.objectid = sctx->cmp_key->objectid;
4852  	key.type = BTRFS_INODE_REF_KEY;
4853  	key.offset = 0;
4854  	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4855  		if (found_key.objectid != key.objectid ||
4856  		    (found_key.type != BTRFS_INODE_REF_KEY &&
4857  		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4858  			break;
4859  
4860  		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4861  		if (ret < 0)
4862  			goto out;
4863  	}
4864  	/* Catch error found during iteration */
4865  	if (iter_ret < 0) {
4866  		ret = iter_ret;
4867  		goto out;
4868  	}
4869  	btrfs_release_path(path);
4870  
4871  	/*
4872  	 * We don't actually care about pending_move as we are simply
4873  	 * re-creating this inode and will be rename'ing it into place once we
4874  	 * rename the parent directory.
4875  	 */
4876  	ret = process_recorded_refs(sctx, &pending_move);
4877  out:
4878  	btrfs_free_path(path);
4879  	return ret;
4880  }
4881  
send_set_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len,const char * data,int data_len)4882  static int send_set_xattr(struct send_ctx *sctx,
4883  			  struct fs_path *path,
4884  			  const char *name, int name_len,
4885  			  const char *data, int data_len)
4886  {
4887  	int ret = 0;
4888  
4889  	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4890  	if (ret < 0)
4891  		goto out;
4892  
4893  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4894  	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4895  	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4896  
4897  	ret = send_cmd(sctx);
4898  
4899  tlv_put_failure:
4900  out:
4901  	return ret;
4902  }
4903  
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4904  static int send_remove_xattr(struct send_ctx *sctx,
4905  			  struct fs_path *path,
4906  			  const char *name, int name_len)
4907  {
4908  	int ret = 0;
4909  
4910  	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4911  	if (ret < 0)
4912  		goto out;
4913  
4914  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4915  	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4916  
4917  	ret = send_cmd(sctx);
4918  
4919  tlv_put_failure:
4920  out:
4921  	return ret;
4922  }
4923  
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4924  static int __process_new_xattr(int num, struct btrfs_key *di_key,
4925  			       const char *name, int name_len, const char *data,
4926  			       int data_len, void *ctx)
4927  {
4928  	int ret;
4929  	struct send_ctx *sctx = ctx;
4930  	struct fs_path *p;
4931  	struct posix_acl_xattr_header dummy_acl;
4932  
4933  	/* Capabilities are emitted by finish_inode_if_needed */
4934  	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4935  		return 0;
4936  
4937  	p = fs_path_alloc();
4938  	if (!p)
4939  		return -ENOMEM;
4940  
4941  	/*
4942  	 * This hack is needed because empty acls are stored as zero byte
4943  	 * data in xattrs. Problem with that is, that receiving these zero byte
4944  	 * acls will fail later. To fix this, we send a dummy acl list that
4945  	 * only contains the version number and no entries.
4946  	 */
4947  	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4948  	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4949  		if (data_len == 0) {
4950  			dummy_acl.a_version =
4951  					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4952  			data = (char *)&dummy_acl;
4953  			data_len = sizeof(dummy_acl);
4954  		}
4955  	}
4956  
4957  	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4958  	if (ret < 0)
4959  		goto out;
4960  
4961  	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4962  
4963  out:
4964  	fs_path_free(p);
4965  	return ret;
4966  }
4967  
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4968  static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4969  				   const char *name, int name_len,
4970  				   const char *data, int data_len, void *ctx)
4971  {
4972  	int ret;
4973  	struct send_ctx *sctx = ctx;
4974  	struct fs_path *p;
4975  
4976  	p = fs_path_alloc();
4977  	if (!p)
4978  		return -ENOMEM;
4979  
4980  	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4981  	if (ret < 0)
4982  		goto out;
4983  
4984  	ret = send_remove_xattr(sctx, p, name, name_len);
4985  
4986  out:
4987  	fs_path_free(p);
4988  	return ret;
4989  }
4990  
process_new_xattr(struct send_ctx * sctx)4991  static int process_new_xattr(struct send_ctx *sctx)
4992  {
4993  	int ret = 0;
4994  
4995  	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4996  			       __process_new_xattr, sctx);
4997  
4998  	return ret;
4999  }
5000  
process_deleted_xattr(struct send_ctx * sctx)5001  static int process_deleted_xattr(struct send_ctx *sctx)
5002  {
5003  	return iterate_dir_item(sctx->parent_root, sctx->right_path,
5004  				__process_deleted_xattr, sctx);
5005  }
5006  
5007  struct find_xattr_ctx {
5008  	const char *name;
5009  	int name_len;
5010  	int found_idx;
5011  	char *found_data;
5012  	int found_data_len;
5013  };
5014  
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * vctx)5015  static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5016  			int name_len, const char *data, int data_len, void *vctx)
5017  {
5018  	struct find_xattr_ctx *ctx = vctx;
5019  
5020  	if (name_len == ctx->name_len &&
5021  	    strncmp(name, ctx->name, name_len) == 0) {
5022  		ctx->found_idx = num;
5023  		ctx->found_data_len = data_len;
5024  		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5025  		if (!ctx->found_data)
5026  			return -ENOMEM;
5027  		return 1;
5028  	}
5029  	return 0;
5030  }
5031  
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)5032  static int find_xattr(struct btrfs_root *root,
5033  		      struct btrfs_path *path,
5034  		      struct btrfs_key *key,
5035  		      const char *name, int name_len,
5036  		      char **data, int *data_len)
5037  {
5038  	int ret;
5039  	struct find_xattr_ctx ctx;
5040  
5041  	ctx.name = name;
5042  	ctx.name_len = name_len;
5043  	ctx.found_idx = -1;
5044  	ctx.found_data = NULL;
5045  	ctx.found_data_len = 0;
5046  
5047  	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5048  	if (ret < 0)
5049  		return ret;
5050  
5051  	if (ctx.found_idx == -1)
5052  		return -ENOENT;
5053  	if (data) {
5054  		*data = ctx.found_data;
5055  		*data_len = ctx.found_data_len;
5056  	} else {
5057  		kfree(ctx.found_data);
5058  	}
5059  	return ctx.found_idx;
5060  }
5061  
5062  
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5063  static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5064  				       const char *name, int name_len,
5065  				       const char *data, int data_len,
5066  				       void *ctx)
5067  {
5068  	int ret;
5069  	struct send_ctx *sctx = ctx;
5070  	char *found_data = NULL;
5071  	int found_data_len  = 0;
5072  
5073  	ret = find_xattr(sctx->parent_root, sctx->right_path,
5074  			 sctx->cmp_key, name, name_len, &found_data,
5075  			 &found_data_len);
5076  	if (ret == -ENOENT) {
5077  		ret = __process_new_xattr(num, di_key, name, name_len, data,
5078  					  data_len, ctx);
5079  	} else if (ret >= 0) {
5080  		if (data_len != found_data_len ||
5081  		    memcmp(data, found_data, data_len)) {
5082  			ret = __process_new_xattr(num, di_key, name, name_len,
5083  						  data, data_len, ctx);
5084  		} else {
5085  			ret = 0;
5086  		}
5087  	}
5088  
5089  	kfree(found_data);
5090  	return ret;
5091  }
5092  
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5093  static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5094  					   const char *name, int name_len,
5095  					   const char *data, int data_len,
5096  					   void *ctx)
5097  {
5098  	int ret;
5099  	struct send_ctx *sctx = ctx;
5100  
5101  	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5102  			 name, name_len, NULL, NULL);
5103  	if (ret == -ENOENT)
5104  		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5105  					      data_len, ctx);
5106  	else if (ret >= 0)
5107  		ret = 0;
5108  
5109  	return ret;
5110  }
5111  
process_changed_xattr(struct send_ctx * sctx)5112  static int process_changed_xattr(struct send_ctx *sctx)
5113  {
5114  	int ret = 0;
5115  
5116  	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5117  			__process_changed_new_xattr, sctx);
5118  	if (ret < 0)
5119  		goto out;
5120  	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5121  			__process_changed_deleted_xattr, sctx);
5122  
5123  out:
5124  	return ret;
5125  }
5126  
process_all_new_xattrs(struct send_ctx * sctx)5127  static int process_all_new_xattrs(struct send_ctx *sctx)
5128  {
5129  	int ret = 0;
5130  	int iter_ret = 0;
5131  	struct btrfs_root *root;
5132  	struct btrfs_path *path;
5133  	struct btrfs_key key;
5134  	struct btrfs_key found_key;
5135  
5136  	path = alloc_path_for_send();
5137  	if (!path)
5138  		return -ENOMEM;
5139  
5140  	root = sctx->send_root;
5141  
5142  	key.objectid = sctx->cmp_key->objectid;
5143  	key.type = BTRFS_XATTR_ITEM_KEY;
5144  	key.offset = 0;
5145  	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5146  		if (found_key.objectid != key.objectid ||
5147  		    found_key.type != key.type) {
5148  			ret = 0;
5149  			break;
5150  		}
5151  
5152  		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5153  		if (ret < 0)
5154  			break;
5155  	}
5156  	/* Catch error found during iteration */
5157  	if (iter_ret < 0)
5158  		ret = iter_ret;
5159  
5160  	btrfs_free_path(path);
5161  	return ret;
5162  }
5163  
send_verity(struct send_ctx * sctx,struct fs_path * path,struct fsverity_descriptor * desc)5164  static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5165  		       struct fsverity_descriptor *desc)
5166  {
5167  	int ret;
5168  
5169  	ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5170  	if (ret < 0)
5171  		goto out;
5172  
5173  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5174  	TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5175  			le8_to_cpu(desc->hash_algorithm));
5176  	TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5177  			1U << le8_to_cpu(desc->log_blocksize));
5178  	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5179  			le8_to_cpu(desc->salt_size));
5180  	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5181  			le32_to_cpu(desc->sig_size));
5182  
5183  	ret = send_cmd(sctx);
5184  
5185  tlv_put_failure:
5186  out:
5187  	return ret;
5188  }
5189  
process_verity(struct send_ctx * sctx)5190  static int process_verity(struct send_ctx *sctx)
5191  {
5192  	int ret = 0;
5193  	struct inode *inode;
5194  	struct fs_path *p;
5195  
5196  	inode = btrfs_iget(sctx->cur_ino, sctx->send_root);
5197  	if (IS_ERR(inode))
5198  		return PTR_ERR(inode);
5199  
5200  	ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5201  	if (ret < 0)
5202  		goto iput;
5203  
5204  	if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5205  		ret = -EMSGSIZE;
5206  		goto iput;
5207  	}
5208  	if (!sctx->verity_descriptor) {
5209  		sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5210  						   GFP_KERNEL);
5211  		if (!sctx->verity_descriptor) {
5212  			ret = -ENOMEM;
5213  			goto iput;
5214  		}
5215  	}
5216  
5217  	ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5218  	if (ret < 0)
5219  		goto iput;
5220  
5221  	p = fs_path_alloc();
5222  	if (!p) {
5223  		ret = -ENOMEM;
5224  		goto iput;
5225  	}
5226  	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5227  	if (ret < 0)
5228  		goto free_path;
5229  
5230  	ret = send_verity(sctx, p, sctx->verity_descriptor);
5231  	if (ret < 0)
5232  		goto free_path;
5233  
5234  free_path:
5235  	fs_path_free(p);
5236  iput:
5237  	iput(inode);
5238  	return ret;
5239  }
5240  
max_send_read_size(const struct send_ctx * sctx)5241  static inline u64 max_send_read_size(const struct send_ctx *sctx)
5242  {
5243  	return sctx->send_max_size - SZ_16K;
5244  }
5245  
put_data_header(struct send_ctx * sctx,u32 len)5246  static int put_data_header(struct send_ctx *sctx, u32 len)
5247  {
5248  	if (WARN_ON_ONCE(sctx->put_data))
5249  		return -EINVAL;
5250  	sctx->put_data = true;
5251  	if (sctx->proto >= 2) {
5252  		/*
5253  		 * Since v2, the data attribute header doesn't include a length,
5254  		 * it is implicitly to the end of the command.
5255  		 */
5256  		if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5257  			return -EOVERFLOW;
5258  		put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5259  		sctx->send_size += sizeof(__le16);
5260  	} else {
5261  		struct btrfs_tlv_header *hdr;
5262  
5263  		if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5264  			return -EOVERFLOW;
5265  		hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5266  		put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5267  		put_unaligned_le16(len, &hdr->tlv_len);
5268  		sctx->send_size += sizeof(*hdr);
5269  	}
5270  	return 0;
5271  }
5272  
put_file_data(struct send_ctx * sctx,u64 offset,u32 len)5273  static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5274  {
5275  	struct btrfs_root *root = sctx->send_root;
5276  	struct btrfs_fs_info *fs_info = root->fs_info;
5277  	struct folio *folio;
5278  	pgoff_t index = offset >> PAGE_SHIFT;
5279  	pgoff_t last_index;
5280  	unsigned pg_offset = offset_in_page(offset);
5281  	struct address_space *mapping = sctx->cur_inode->i_mapping;
5282  	int ret;
5283  
5284  	ret = put_data_header(sctx, len);
5285  	if (ret)
5286  		return ret;
5287  
5288  	last_index = (offset + len - 1) >> PAGE_SHIFT;
5289  
5290  	while (index <= last_index) {
5291  		unsigned cur_len = min_t(unsigned, len,
5292  					 PAGE_SIZE - pg_offset);
5293  
5294  		folio = filemap_lock_folio(mapping, index);
5295  		if (IS_ERR(folio)) {
5296  			page_cache_sync_readahead(mapping,
5297  						  &sctx->ra, NULL, index,
5298  						  last_index + 1 - index);
5299  
5300  	                folio = filemap_grab_folio(mapping, index);
5301  			if (IS_ERR(folio)) {
5302  				ret = PTR_ERR(folio);
5303  				break;
5304  			}
5305  		}
5306  
5307  		WARN_ON(folio_order(folio));
5308  
5309  		if (folio_test_readahead(folio))
5310  			page_cache_async_readahead(mapping, &sctx->ra, NULL, folio,
5311  						   last_index + 1 - index);
5312  
5313  		if (!folio_test_uptodate(folio)) {
5314  			btrfs_read_folio(NULL, folio);
5315  			folio_lock(folio);
5316  			if (!folio_test_uptodate(folio)) {
5317  				folio_unlock(folio);
5318  				btrfs_err(fs_info,
5319  			"send: IO error at offset %llu for inode %llu root %llu",
5320  					folio_pos(folio), sctx->cur_ino,
5321  					btrfs_root_id(sctx->send_root));
5322  				folio_put(folio);
5323  				ret = -EIO;
5324  				break;
5325  			}
5326  		}
5327  
5328  		memcpy_from_folio(sctx->send_buf + sctx->send_size, folio,
5329  				  pg_offset, cur_len);
5330  		folio_unlock(folio);
5331  		folio_put(folio);
5332  		index++;
5333  		pg_offset = 0;
5334  		len -= cur_len;
5335  		sctx->send_size += cur_len;
5336  	}
5337  
5338  	return ret;
5339  }
5340  
5341  /*
5342   * Read some bytes from the current inode/file and send a write command to
5343   * user space.
5344   */
send_write(struct send_ctx * sctx,u64 offset,u32 len)5345  static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5346  {
5347  	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5348  	int ret = 0;
5349  	struct fs_path *p;
5350  
5351  	p = fs_path_alloc();
5352  	if (!p)
5353  		return -ENOMEM;
5354  
5355  	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5356  
5357  	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5358  	if (ret < 0)
5359  		goto out;
5360  
5361  	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5362  	if (ret < 0)
5363  		goto out;
5364  
5365  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5366  	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5367  	ret = put_file_data(sctx, offset, len);
5368  	if (ret < 0)
5369  		goto out;
5370  
5371  	ret = send_cmd(sctx);
5372  
5373  tlv_put_failure:
5374  out:
5375  	fs_path_free(p);
5376  	return ret;
5377  }
5378  
5379  /*
5380   * Send a clone command to user space.
5381   */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)5382  static int send_clone(struct send_ctx *sctx,
5383  		      u64 offset, u32 len,
5384  		      struct clone_root *clone_root)
5385  {
5386  	int ret = 0;
5387  	struct fs_path *p;
5388  	u64 gen;
5389  
5390  	btrfs_debug(sctx->send_root->fs_info,
5391  		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5392  		    offset, len, btrfs_root_id(clone_root->root),
5393  		    clone_root->ino, clone_root->offset);
5394  
5395  	p = fs_path_alloc();
5396  	if (!p)
5397  		return -ENOMEM;
5398  
5399  	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5400  	if (ret < 0)
5401  		goto out;
5402  
5403  	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5404  	if (ret < 0)
5405  		goto out;
5406  
5407  	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5408  	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5409  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5410  
5411  	if (clone_root->root == sctx->send_root) {
5412  		ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5413  		if (ret < 0)
5414  			goto out;
5415  		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5416  	} else {
5417  		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5418  	}
5419  	if (ret < 0)
5420  		goto out;
5421  
5422  	/*
5423  	 * If the parent we're using has a received_uuid set then use that as
5424  	 * our clone source as that is what we will look for when doing a
5425  	 * receive.
5426  	 *
5427  	 * This covers the case that we create a snapshot off of a received
5428  	 * subvolume and then use that as the parent and try to receive on a
5429  	 * different host.
5430  	 */
5431  	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5432  		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5433  			     clone_root->root->root_item.received_uuid);
5434  	else
5435  		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5436  			     clone_root->root->root_item.uuid);
5437  	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5438  		    btrfs_root_ctransid(&clone_root->root->root_item));
5439  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5440  	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5441  			clone_root->offset);
5442  
5443  	ret = send_cmd(sctx);
5444  
5445  tlv_put_failure:
5446  out:
5447  	fs_path_free(p);
5448  	return ret;
5449  }
5450  
5451  /*
5452   * Send an update extent command to user space.
5453   */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)5454  static int send_update_extent(struct send_ctx *sctx,
5455  			      u64 offset, u32 len)
5456  {
5457  	int ret = 0;
5458  	struct fs_path *p;
5459  
5460  	p = fs_path_alloc();
5461  	if (!p)
5462  		return -ENOMEM;
5463  
5464  	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5465  	if (ret < 0)
5466  		goto out;
5467  
5468  	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5469  	if (ret < 0)
5470  		goto out;
5471  
5472  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5473  	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5474  	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5475  
5476  	ret = send_cmd(sctx);
5477  
5478  tlv_put_failure:
5479  out:
5480  	fs_path_free(p);
5481  	return ret;
5482  }
5483  
send_hole(struct send_ctx * sctx,u64 end)5484  static int send_hole(struct send_ctx *sctx, u64 end)
5485  {
5486  	struct fs_path *p = NULL;
5487  	u64 read_size = max_send_read_size(sctx);
5488  	u64 offset = sctx->cur_inode_last_extent;
5489  	int ret = 0;
5490  
5491  	/*
5492  	 * A hole that starts at EOF or beyond it. Since we do not yet support
5493  	 * fallocate (for extent preallocation and hole punching), sending a
5494  	 * write of zeroes starting at EOF or beyond would later require issuing
5495  	 * a truncate operation which would undo the write and achieve nothing.
5496  	 */
5497  	if (offset >= sctx->cur_inode_size)
5498  		return 0;
5499  
5500  	/*
5501  	 * Don't go beyond the inode's i_size due to prealloc extents that start
5502  	 * after the i_size.
5503  	 */
5504  	end = min_t(u64, end, sctx->cur_inode_size);
5505  
5506  	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5507  		return send_update_extent(sctx, offset, end - offset);
5508  
5509  	p = fs_path_alloc();
5510  	if (!p)
5511  		return -ENOMEM;
5512  	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5513  	if (ret < 0)
5514  		goto tlv_put_failure;
5515  	while (offset < end) {
5516  		u64 len = min(end - offset, read_size);
5517  
5518  		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5519  		if (ret < 0)
5520  			break;
5521  		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5522  		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5523  		ret = put_data_header(sctx, len);
5524  		if (ret < 0)
5525  			break;
5526  		memset(sctx->send_buf + sctx->send_size, 0, len);
5527  		sctx->send_size += len;
5528  		ret = send_cmd(sctx);
5529  		if (ret < 0)
5530  			break;
5531  		offset += len;
5532  	}
5533  	sctx->cur_inode_next_write_offset = offset;
5534  tlv_put_failure:
5535  	fs_path_free(p);
5536  	return ret;
5537  }
5538  
send_encoded_inline_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5539  static int send_encoded_inline_extent(struct send_ctx *sctx,
5540  				      struct btrfs_path *path, u64 offset,
5541  				      u64 len)
5542  {
5543  	struct btrfs_root *root = sctx->send_root;
5544  	struct btrfs_fs_info *fs_info = root->fs_info;
5545  	struct inode *inode;
5546  	struct fs_path *fspath;
5547  	struct extent_buffer *leaf = path->nodes[0];
5548  	struct btrfs_key key;
5549  	struct btrfs_file_extent_item *ei;
5550  	u64 ram_bytes;
5551  	size_t inline_size;
5552  	int ret;
5553  
5554  	inode = btrfs_iget(sctx->cur_ino, root);
5555  	if (IS_ERR(inode))
5556  		return PTR_ERR(inode);
5557  
5558  	fspath = fs_path_alloc();
5559  	if (!fspath) {
5560  		ret = -ENOMEM;
5561  		goto out;
5562  	}
5563  
5564  	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5565  	if (ret < 0)
5566  		goto out;
5567  
5568  	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5569  	if (ret < 0)
5570  		goto out;
5571  
5572  	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5573  	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5574  	ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5575  	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5576  
5577  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5578  	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5579  	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5580  		    min(key.offset + ram_bytes - offset, len));
5581  	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5582  	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5583  	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5584  				btrfs_file_extent_compression(leaf, ei));
5585  	if (ret < 0)
5586  		goto out;
5587  	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5588  
5589  	ret = put_data_header(sctx, inline_size);
5590  	if (ret < 0)
5591  		goto out;
5592  	read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5593  			   btrfs_file_extent_inline_start(ei), inline_size);
5594  	sctx->send_size += inline_size;
5595  
5596  	ret = send_cmd(sctx);
5597  
5598  tlv_put_failure:
5599  out:
5600  	fs_path_free(fspath);
5601  	iput(inode);
5602  	return ret;
5603  }
5604  
send_encoded_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5605  static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5606  			       u64 offset, u64 len)
5607  {
5608  	struct btrfs_root *root = sctx->send_root;
5609  	struct btrfs_fs_info *fs_info = root->fs_info;
5610  	struct inode *inode;
5611  	struct fs_path *fspath;
5612  	struct extent_buffer *leaf = path->nodes[0];
5613  	struct btrfs_key key;
5614  	struct btrfs_file_extent_item *ei;
5615  	u64 disk_bytenr, disk_num_bytes;
5616  	u32 data_offset;
5617  	struct btrfs_cmd_header *hdr;
5618  	u32 crc;
5619  	int ret;
5620  
5621  	inode = btrfs_iget(sctx->cur_ino, root);
5622  	if (IS_ERR(inode))
5623  		return PTR_ERR(inode);
5624  
5625  	fspath = fs_path_alloc();
5626  	if (!fspath) {
5627  		ret = -ENOMEM;
5628  		goto out;
5629  	}
5630  
5631  	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5632  	if (ret < 0)
5633  		goto out;
5634  
5635  	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5636  	if (ret < 0)
5637  		goto out;
5638  
5639  	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5640  	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5641  	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5642  	disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5643  
5644  	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5645  	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5646  	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5647  		    min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5648  			len));
5649  	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5650  		    btrfs_file_extent_ram_bytes(leaf, ei));
5651  	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5652  		    offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5653  	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5654  				btrfs_file_extent_compression(leaf, ei));
5655  	if (ret < 0)
5656  		goto out;
5657  	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5658  	TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5659  
5660  	ret = put_data_header(sctx, disk_num_bytes);
5661  	if (ret < 0)
5662  		goto out;
5663  
5664  	/*
5665  	 * We want to do I/O directly into the send buffer, so get the next page
5666  	 * boundary in the send buffer. This means that there may be a gap
5667  	 * between the beginning of the command and the file data.
5668  	 */
5669  	data_offset = PAGE_ALIGN(sctx->send_size);
5670  	if (data_offset > sctx->send_max_size ||
5671  	    sctx->send_max_size - data_offset < disk_num_bytes) {
5672  		ret = -EOVERFLOW;
5673  		goto out;
5674  	}
5675  
5676  	/*
5677  	 * Note that send_buf is a mapping of send_buf_pages, so this is really
5678  	 * reading into send_buf.
5679  	 */
5680  	ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5681  						    disk_bytenr, disk_num_bytes,
5682  						    sctx->send_buf_pages +
5683  						    (data_offset >> PAGE_SHIFT));
5684  	if (ret)
5685  		goto out;
5686  
5687  	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5688  	hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5689  	hdr->crc = 0;
5690  	crc = crc32c(0, sctx->send_buf, sctx->send_size);
5691  	crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5692  	hdr->crc = cpu_to_le32(crc);
5693  
5694  	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5695  			&sctx->send_off);
5696  	if (!ret) {
5697  		ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5698  				disk_num_bytes, &sctx->send_off);
5699  	}
5700  	sctx->send_size = 0;
5701  	sctx->put_data = false;
5702  
5703  tlv_put_failure:
5704  out:
5705  	fs_path_free(fspath);
5706  	iput(inode);
5707  	return ret;
5708  }
5709  
send_extent_data(struct send_ctx * sctx,struct btrfs_path * path,const u64 offset,const u64 len)5710  static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5711  			    const u64 offset, const u64 len)
5712  {
5713  	const u64 end = offset + len;
5714  	struct extent_buffer *leaf = path->nodes[0];
5715  	struct btrfs_file_extent_item *ei;
5716  	u64 read_size = max_send_read_size(sctx);
5717  	u64 sent = 0;
5718  
5719  	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5720  		return send_update_extent(sctx, offset, len);
5721  
5722  	ei = btrfs_item_ptr(leaf, path->slots[0],
5723  			    struct btrfs_file_extent_item);
5724  	if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5725  	    btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5726  		bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5727  				  BTRFS_FILE_EXTENT_INLINE);
5728  
5729  		/*
5730  		 * Send the compressed extent unless the compressed data is
5731  		 * larger than the decompressed data. This can happen if we're
5732  		 * not sending the entire extent, either because it has been
5733  		 * partially overwritten/truncated or because this is a part of
5734  		 * the extent that we couldn't clone in clone_range().
5735  		 */
5736  		if (is_inline &&
5737  		    btrfs_file_extent_inline_item_len(leaf,
5738  						      path->slots[0]) <= len) {
5739  			return send_encoded_inline_extent(sctx, path, offset,
5740  							  len);
5741  		} else if (!is_inline &&
5742  			   btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5743  			return send_encoded_extent(sctx, path, offset, len);
5744  		}
5745  	}
5746  
5747  	if (sctx->cur_inode == NULL) {
5748  		struct btrfs_root *root = sctx->send_root;
5749  
5750  		sctx->cur_inode = btrfs_iget(sctx->cur_ino, root);
5751  		if (IS_ERR(sctx->cur_inode)) {
5752  			int err = PTR_ERR(sctx->cur_inode);
5753  
5754  			sctx->cur_inode = NULL;
5755  			return err;
5756  		}
5757  		memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5758  		file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5759  
5760  		/*
5761  		 * It's very likely there are no pages from this inode in the page
5762  		 * cache, so after reading extents and sending their data, we clean
5763  		 * the page cache to avoid trashing the page cache (adding pressure
5764  		 * to the page cache and forcing eviction of other data more useful
5765  		 * for applications).
5766  		 *
5767  		 * We decide if we should clean the page cache simply by checking
5768  		 * if the inode's mapping nrpages is 0 when we first open it, and
5769  		 * not by using something like filemap_range_has_page() before
5770  		 * reading an extent because when we ask the readahead code to
5771  		 * read a given file range, it may (and almost always does) read
5772  		 * pages from beyond that range (see the documentation for
5773  		 * page_cache_sync_readahead()), so it would not be reliable,
5774  		 * because after reading the first extent future calls to
5775  		 * filemap_range_has_page() would return true because the readahead
5776  		 * on the previous extent resulted in reading pages of the current
5777  		 * extent as well.
5778  		 */
5779  		sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5780  		sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5781  	}
5782  
5783  	while (sent < len) {
5784  		u64 size = min(len - sent, read_size);
5785  		int ret;
5786  
5787  		ret = send_write(sctx, offset + sent, size);
5788  		if (ret < 0)
5789  			return ret;
5790  		sent += size;
5791  	}
5792  
5793  	if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5794  		/*
5795  		 * Always operate only on ranges that are a multiple of the page
5796  		 * size. This is not only to prevent zeroing parts of a page in
5797  		 * the case of subpage sector size, but also to guarantee we evict
5798  		 * pages, as passing a range that is smaller than page size does
5799  		 * not evict the respective page (only zeroes part of its content).
5800  		 *
5801  		 * Always start from the end offset of the last range cleared.
5802  		 * This is because the readahead code may (and very often does)
5803  		 * reads pages beyond the range we request for readahead. So if
5804  		 * we have an extent layout like this:
5805  		 *
5806  		 *            [ extent A ] [ extent B ] [ extent C ]
5807  		 *
5808  		 * When we ask page_cache_sync_readahead() to read extent A, it
5809  		 * may also trigger reads for pages of extent B. If we are doing
5810  		 * an incremental send and extent B has not changed between the
5811  		 * parent and send snapshots, some or all of its pages may end
5812  		 * up being read and placed in the page cache. So when truncating
5813  		 * the page cache we always start from the end offset of the
5814  		 * previously processed extent up to the end of the current
5815  		 * extent.
5816  		 */
5817  		truncate_inode_pages_range(&sctx->cur_inode->i_data,
5818  					   sctx->page_cache_clear_start,
5819  					   end - 1);
5820  		sctx->page_cache_clear_start = end;
5821  	}
5822  
5823  	return 0;
5824  }
5825  
5826  /*
5827   * Search for a capability xattr related to sctx->cur_ino. If the capability is
5828   * found, call send_set_xattr function to emit it.
5829   *
5830   * Return 0 if there isn't a capability, or when the capability was emitted
5831   * successfully, or < 0 if an error occurred.
5832   */
send_capabilities(struct send_ctx * sctx)5833  static int send_capabilities(struct send_ctx *sctx)
5834  {
5835  	struct fs_path *fspath = NULL;
5836  	struct btrfs_path *path;
5837  	struct btrfs_dir_item *di;
5838  	struct extent_buffer *leaf;
5839  	unsigned long data_ptr;
5840  	char *buf = NULL;
5841  	int buf_len;
5842  	int ret = 0;
5843  
5844  	path = alloc_path_for_send();
5845  	if (!path)
5846  		return -ENOMEM;
5847  
5848  	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5849  				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5850  	if (!di) {
5851  		/* There is no xattr for this inode */
5852  		goto out;
5853  	} else if (IS_ERR(di)) {
5854  		ret = PTR_ERR(di);
5855  		goto out;
5856  	}
5857  
5858  	leaf = path->nodes[0];
5859  	buf_len = btrfs_dir_data_len(leaf, di);
5860  
5861  	fspath = fs_path_alloc();
5862  	buf = kmalloc(buf_len, GFP_KERNEL);
5863  	if (!fspath || !buf) {
5864  		ret = -ENOMEM;
5865  		goto out;
5866  	}
5867  
5868  	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5869  	if (ret < 0)
5870  		goto out;
5871  
5872  	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5873  	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5874  
5875  	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5876  			strlen(XATTR_NAME_CAPS), buf, buf_len);
5877  out:
5878  	kfree(buf);
5879  	fs_path_free(fspath);
5880  	btrfs_free_path(path);
5881  	return ret;
5882  }
5883  
clone_range(struct send_ctx * sctx,struct btrfs_path * dst_path,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)5884  static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5885  		       struct clone_root *clone_root, const u64 disk_byte,
5886  		       u64 data_offset, u64 offset, u64 len)
5887  {
5888  	struct btrfs_path *path;
5889  	struct btrfs_key key;
5890  	int ret;
5891  	struct btrfs_inode_info info;
5892  	u64 clone_src_i_size = 0;
5893  
5894  	/*
5895  	 * Prevent cloning from a zero offset with a length matching the sector
5896  	 * size because in some scenarios this will make the receiver fail.
5897  	 *
5898  	 * For example, if in the source filesystem the extent at offset 0
5899  	 * has a length of sectorsize and it was written using direct IO, then
5900  	 * it can never be an inline extent (even if compression is enabled).
5901  	 * Then this extent can be cloned in the original filesystem to a non
5902  	 * zero file offset, but it may not be possible to clone in the
5903  	 * destination filesystem because it can be inlined due to compression
5904  	 * on the destination filesystem (as the receiver's write operations are
5905  	 * always done using buffered IO). The same happens when the original
5906  	 * filesystem does not have compression enabled but the destination
5907  	 * filesystem has.
5908  	 */
5909  	if (clone_root->offset == 0 &&
5910  	    len == sctx->send_root->fs_info->sectorsize)
5911  		return send_extent_data(sctx, dst_path, offset, len);
5912  
5913  	path = alloc_path_for_send();
5914  	if (!path)
5915  		return -ENOMEM;
5916  
5917  	/*
5918  	 * There are inodes that have extents that lie behind its i_size. Don't
5919  	 * accept clones from these extents.
5920  	 */
5921  	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5922  	btrfs_release_path(path);
5923  	if (ret < 0)
5924  		goto out;
5925  	clone_src_i_size = info.size;
5926  
5927  	/*
5928  	 * We can't send a clone operation for the entire range if we find
5929  	 * extent items in the respective range in the source file that
5930  	 * refer to different extents or if we find holes.
5931  	 * So check for that and do a mix of clone and regular write/copy
5932  	 * operations if needed.
5933  	 *
5934  	 * Example:
5935  	 *
5936  	 * mkfs.btrfs -f /dev/sda
5937  	 * mount /dev/sda /mnt
5938  	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5939  	 * cp --reflink=always /mnt/foo /mnt/bar
5940  	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5941  	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5942  	 *
5943  	 * If when we send the snapshot and we are processing file bar (which
5944  	 * has a higher inode number than foo) we blindly send a clone operation
5945  	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5946  	 * a file bar that matches the content of file foo - iow, doesn't match
5947  	 * the content from bar in the original filesystem.
5948  	 */
5949  	key.objectid = clone_root->ino;
5950  	key.type = BTRFS_EXTENT_DATA_KEY;
5951  	key.offset = clone_root->offset;
5952  	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5953  	if (ret < 0)
5954  		goto out;
5955  	if (ret > 0 && path->slots[0] > 0) {
5956  		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5957  		if (key.objectid == clone_root->ino &&
5958  		    key.type == BTRFS_EXTENT_DATA_KEY)
5959  			path->slots[0]--;
5960  	}
5961  
5962  	while (true) {
5963  		struct extent_buffer *leaf = path->nodes[0];
5964  		int slot = path->slots[0];
5965  		struct btrfs_file_extent_item *ei;
5966  		u8 type;
5967  		u64 ext_len;
5968  		u64 clone_len;
5969  		u64 clone_data_offset;
5970  		bool crossed_src_i_size = false;
5971  
5972  		if (slot >= btrfs_header_nritems(leaf)) {
5973  			ret = btrfs_next_leaf(clone_root->root, path);
5974  			if (ret < 0)
5975  				goto out;
5976  			else if (ret > 0)
5977  				break;
5978  			continue;
5979  		}
5980  
5981  		btrfs_item_key_to_cpu(leaf, &key, slot);
5982  
5983  		/*
5984  		 * We might have an implicit trailing hole (NO_HOLES feature
5985  		 * enabled). We deal with it after leaving this loop.
5986  		 */
5987  		if (key.objectid != clone_root->ino ||
5988  		    key.type != BTRFS_EXTENT_DATA_KEY)
5989  			break;
5990  
5991  		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5992  		type = btrfs_file_extent_type(leaf, ei);
5993  		if (type == BTRFS_FILE_EXTENT_INLINE) {
5994  			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5995  			ext_len = PAGE_ALIGN(ext_len);
5996  		} else {
5997  			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5998  		}
5999  
6000  		if (key.offset + ext_len <= clone_root->offset)
6001  			goto next;
6002  
6003  		if (key.offset > clone_root->offset) {
6004  			/* Implicit hole, NO_HOLES feature enabled. */
6005  			u64 hole_len = key.offset - clone_root->offset;
6006  
6007  			if (hole_len > len)
6008  				hole_len = len;
6009  			ret = send_extent_data(sctx, dst_path, offset,
6010  					       hole_len);
6011  			if (ret < 0)
6012  				goto out;
6013  
6014  			len -= hole_len;
6015  			if (len == 0)
6016  				break;
6017  			offset += hole_len;
6018  			clone_root->offset += hole_len;
6019  			data_offset += hole_len;
6020  		}
6021  
6022  		if (key.offset >= clone_root->offset + len)
6023  			break;
6024  
6025  		if (key.offset >= clone_src_i_size)
6026  			break;
6027  
6028  		if (key.offset + ext_len > clone_src_i_size) {
6029  			ext_len = clone_src_i_size - key.offset;
6030  			crossed_src_i_size = true;
6031  		}
6032  
6033  		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6034  		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6035  			clone_root->offset = key.offset;
6036  			if (clone_data_offset < data_offset &&
6037  				clone_data_offset + ext_len > data_offset) {
6038  				u64 extent_offset;
6039  
6040  				extent_offset = data_offset - clone_data_offset;
6041  				ext_len -= extent_offset;
6042  				clone_data_offset += extent_offset;
6043  				clone_root->offset += extent_offset;
6044  			}
6045  		}
6046  
6047  		clone_len = min_t(u64, ext_len, len);
6048  
6049  		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6050  		    clone_data_offset == data_offset) {
6051  			const u64 src_end = clone_root->offset + clone_len;
6052  			const u64 sectorsize = SZ_64K;
6053  
6054  			/*
6055  			 * We can't clone the last block, when its size is not
6056  			 * sector size aligned, into the middle of a file. If we
6057  			 * do so, the receiver will get a failure (-EINVAL) when
6058  			 * trying to clone or will silently corrupt the data in
6059  			 * the destination file if it's on a kernel without the
6060  			 * fix introduced by commit ac765f83f1397646
6061  			 * ("Btrfs: fix data corruption due to cloning of eof
6062  			 * block).
6063  			 *
6064  			 * So issue a clone of the aligned down range plus a
6065  			 * regular write for the eof block, if we hit that case.
6066  			 *
6067  			 * Also, we use the maximum possible sector size, 64K,
6068  			 * because we don't know what's the sector size of the
6069  			 * filesystem that receives the stream, so we have to
6070  			 * assume the largest possible sector size.
6071  			 */
6072  			if (src_end == clone_src_i_size &&
6073  			    !IS_ALIGNED(src_end, sectorsize) &&
6074  			    offset + clone_len < sctx->cur_inode_size) {
6075  				u64 slen;
6076  
6077  				slen = ALIGN_DOWN(src_end - clone_root->offset,
6078  						  sectorsize);
6079  				if (slen > 0) {
6080  					ret = send_clone(sctx, offset, slen,
6081  							 clone_root);
6082  					if (ret < 0)
6083  						goto out;
6084  				}
6085  				ret = send_extent_data(sctx, dst_path,
6086  						       offset + slen,
6087  						       clone_len - slen);
6088  			} else {
6089  				ret = send_clone(sctx, offset, clone_len,
6090  						 clone_root);
6091  			}
6092  		} else if (crossed_src_i_size && clone_len < len) {
6093  			/*
6094  			 * If we are at i_size of the clone source inode and we
6095  			 * can not clone from it, terminate the loop. This is
6096  			 * to avoid sending two write operations, one with a
6097  			 * length matching clone_len and the final one after
6098  			 * this loop with a length of len - clone_len.
6099  			 *
6100  			 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6101  			 * was passed to the send ioctl), this helps avoid
6102  			 * sending an encoded write for an offset that is not
6103  			 * sector size aligned, in case the i_size of the source
6104  			 * inode is not sector size aligned. That will make the
6105  			 * receiver fallback to decompression of the data and
6106  			 * writing it using regular buffered IO, therefore while
6107  			 * not incorrect, it's not optimal due decompression and
6108  			 * possible re-compression at the receiver.
6109  			 */
6110  			break;
6111  		} else {
6112  			ret = send_extent_data(sctx, dst_path, offset,
6113  					       clone_len);
6114  		}
6115  
6116  		if (ret < 0)
6117  			goto out;
6118  
6119  		len -= clone_len;
6120  		if (len == 0)
6121  			break;
6122  		offset += clone_len;
6123  		clone_root->offset += clone_len;
6124  
6125  		/*
6126  		 * If we are cloning from the file we are currently processing,
6127  		 * and using the send root as the clone root, we must stop once
6128  		 * the current clone offset reaches the current eof of the file
6129  		 * at the receiver, otherwise we would issue an invalid clone
6130  		 * operation (source range going beyond eof) and cause the
6131  		 * receiver to fail. So if we reach the current eof, bail out
6132  		 * and fallback to a regular write.
6133  		 */
6134  		if (clone_root->root == sctx->send_root &&
6135  		    clone_root->ino == sctx->cur_ino &&
6136  		    clone_root->offset >= sctx->cur_inode_next_write_offset)
6137  			break;
6138  
6139  		data_offset += clone_len;
6140  next:
6141  		path->slots[0]++;
6142  	}
6143  
6144  	if (len > 0)
6145  		ret = send_extent_data(sctx, dst_path, offset, len);
6146  	else
6147  		ret = 0;
6148  out:
6149  	btrfs_free_path(path);
6150  	return ret;
6151  }
6152  
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)6153  static int send_write_or_clone(struct send_ctx *sctx,
6154  			       struct btrfs_path *path,
6155  			       struct btrfs_key *key,
6156  			       struct clone_root *clone_root)
6157  {
6158  	int ret = 0;
6159  	u64 offset = key->offset;
6160  	u64 end;
6161  	u64 bs = sctx->send_root->fs_info->sectorsize;
6162  	struct btrfs_file_extent_item *ei;
6163  	u64 disk_byte;
6164  	u64 data_offset;
6165  	u64 num_bytes;
6166  	struct btrfs_inode_info info = { 0 };
6167  
6168  	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6169  	if (offset >= end)
6170  		return 0;
6171  
6172  	num_bytes = end - offset;
6173  
6174  	if (!clone_root)
6175  		goto write_data;
6176  
6177  	if (IS_ALIGNED(end, bs))
6178  		goto clone_data;
6179  
6180  	/*
6181  	 * If the extent end is not aligned, we can clone if the extent ends at
6182  	 * the i_size of the inode and the clone range ends at the i_size of the
6183  	 * source inode, otherwise the clone operation fails with -EINVAL.
6184  	 */
6185  	if (end != sctx->cur_inode_size)
6186  		goto write_data;
6187  
6188  	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
6189  	if (ret < 0)
6190  		return ret;
6191  
6192  	if (clone_root->offset + num_bytes == info.size) {
6193  		/*
6194  		 * The final size of our file matches the end offset, but it may
6195  		 * be that its current size is larger, so we have to truncate it
6196  		 * to any value between the start offset of the range and the
6197  		 * final i_size, otherwise the clone operation is invalid
6198  		 * because it's unaligned and it ends before the current EOF.
6199  		 * We do this truncate to the final i_size when we finish
6200  		 * processing the inode, but it's too late by then. And here we
6201  		 * truncate to the start offset of the range because it's always
6202  		 * sector size aligned while if it were the final i_size it
6203  		 * would result in dirtying part of a page, filling part of a
6204  		 * page with zeroes and then having the clone operation at the
6205  		 * receiver trigger IO and wait for it due to the dirty page.
6206  		 */
6207  		if (sctx->parent_root != NULL) {
6208  			ret = send_truncate(sctx, sctx->cur_ino,
6209  					    sctx->cur_inode_gen, offset);
6210  			if (ret < 0)
6211  				return ret;
6212  		}
6213  		goto clone_data;
6214  	}
6215  
6216  write_data:
6217  	ret = send_extent_data(sctx, path, offset, num_bytes);
6218  	sctx->cur_inode_next_write_offset = end;
6219  	return ret;
6220  
6221  clone_data:
6222  	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6223  			    struct btrfs_file_extent_item);
6224  	disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6225  	data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6226  	ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset,
6227  			  num_bytes);
6228  	sctx->cur_inode_next_write_offset = end;
6229  	return ret;
6230  }
6231  
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)6232  static int is_extent_unchanged(struct send_ctx *sctx,
6233  			       struct btrfs_path *left_path,
6234  			       struct btrfs_key *ekey)
6235  {
6236  	int ret = 0;
6237  	struct btrfs_key key;
6238  	struct btrfs_path *path = NULL;
6239  	struct extent_buffer *eb;
6240  	int slot;
6241  	struct btrfs_key found_key;
6242  	struct btrfs_file_extent_item *ei;
6243  	u64 left_disknr;
6244  	u64 right_disknr;
6245  	u64 left_offset;
6246  	u64 right_offset;
6247  	u64 left_offset_fixed;
6248  	u64 left_len;
6249  	u64 right_len;
6250  	u64 left_gen;
6251  	u64 right_gen;
6252  	u8 left_type;
6253  	u8 right_type;
6254  
6255  	path = alloc_path_for_send();
6256  	if (!path)
6257  		return -ENOMEM;
6258  
6259  	eb = left_path->nodes[0];
6260  	slot = left_path->slots[0];
6261  	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6262  	left_type = btrfs_file_extent_type(eb, ei);
6263  
6264  	if (left_type != BTRFS_FILE_EXTENT_REG) {
6265  		ret = 0;
6266  		goto out;
6267  	}
6268  	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6269  	left_len = btrfs_file_extent_num_bytes(eb, ei);
6270  	left_offset = btrfs_file_extent_offset(eb, ei);
6271  	left_gen = btrfs_file_extent_generation(eb, ei);
6272  
6273  	/*
6274  	 * Following comments will refer to these graphics. L is the left
6275  	 * extents which we are checking at the moment. 1-8 are the right
6276  	 * extents that we iterate.
6277  	 *
6278  	 *       |-----L-----|
6279  	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6280  	 *
6281  	 *       |-----L-----|
6282  	 * |--1--|-2b-|...(same as above)
6283  	 *
6284  	 * Alternative situation. Happens on files where extents got split.
6285  	 *       |-----L-----|
6286  	 * |-----------7-----------|-6-|
6287  	 *
6288  	 * Alternative situation. Happens on files which got larger.
6289  	 *       |-----L-----|
6290  	 * |-8-|
6291  	 * Nothing follows after 8.
6292  	 */
6293  
6294  	key.objectid = ekey->objectid;
6295  	key.type = BTRFS_EXTENT_DATA_KEY;
6296  	key.offset = ekey->offset;
6297  	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6298  	if (ret < 0)
6299  		goto out;
6300  	if (ret) {
6301  		ret = 0;
6302  		goto out;
6303  	}
6304  
6305  	/*
6306  	 * Handle special case where the right side has no extents at all.
6307  	 */
6308  	eb = path->nodes[0];
6309  	slot = path->slots[0];
6310  	btrfs_item_key_to_cpu(eb, &found_key, slot);
6311  	if (found_key.objectid != key.objectid ||
6312  	    found_key.type != key.type) {
6313  		/* If we're a hole then just pretend nothing changed */
6314  		ret = (left_disknr) ? 0 : 1;
6315  		goto out;
6316  	}
6317  
6318  	/*
6319  	 * We're now on 2a, 2b or 7.
6320  	 */
6321  	key = found_key;
6322  	while (key.offset < ekey->offset + left_len) {
6323  		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6324  		right_type = btrfs_file_extent_type(eb, ei);
6325  		if (right_type != BTRFS_FILE_EXTENT_REG &&
6326  		    right_type != BTRFS_FILE_EXTENT_INLINE) {
6327  			ret = 0;
6328  			goto out;
6329  		}
6330  
6331  		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6332  			right_len = btrfs_file_extent_ram_bytes(eb, ei);
6333  			right_len = PAGE_ALIGN(right_len);
6334  		} else {
6335  			right_len = btrfs_file_extent_num_bytes(eb, ei);
6336  		}
6337  
6338  		/*
6339  		 * Are we at extent 8? If yes, we know the extent is changed.
6340  		 * This may only happen on the first iteration.
6341  		 */
6342  		if (found_key.offset + right_len <= ekey->offset) {
6343  			/* If we're a hole just pretend nothing changed */
6344  			ret = (left_disknr) ? 0 : 1;
6345  			goto out;
6346  		}
6347  
6348  		/*
6349  		 * We just wanted to see if when we have an inline extent, what
6350  		 * follows it is a regular extent (wanted to check the above
6351  		 * condition for inline extents too). This should normally not
6352  		 * happen but it's possible for example when we have an inline
6353  		 * compressed extent representing data with a size matching
6354  		 * the page size (currently the same as sector size).
6355  		 */
6356  		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6357  			ret = 0;
6358  			goto out;
6359  		}
6360  
6361  		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6362  		right_offset = btrfs_file_extent_offset(eb, ei);
6363  		right_gen = btrfs_file_extent_generation(eb, ei);
6364  
6365  		left_offset_fixed = left_offset;
6366  		if (key.offset < ekey->offset) {
6367  			/* Fix the right offset for 2a and 7. */
6368  			right_offset += ekey->offset - key.offset;
6369  		} else {
6370  			/* Fix the left offset for all behind 2a and 2b */
6371  			left_offset_fixed += key.offset - ekey->offset;
6372  		}
6373  
6374  		/*
6375  		 * Check if we have the same extent.
6376  		 */
6377  		if (left_disknr != right_disknr ||
6378  		    left_offset_fixed != right_offset ||
6379  		    left_gen != right_gen) {
6380  			ret = 0;
6381  			goto out;
6382  		}
6383  
6384  		/*
6385  		 * Go to the next extent.
6386  		 */
6387  		ret = btrfs_next_item(sctx->parent_root, path);
6388  		if (ret < 0)
6389  			goto out;
6390  		if (!ret) {
6391  			eb = path->nodes[0];
6392  			slot = path->slots[0];
6393  			btrfs_item_key_to_cpu(eb, &found_key, slot);
6394  		}
6395  		if (ret || found_key.objectid != key.objectid ||
6396  		    found_key.type != key.type) {
6397  			key.offset += right_len;
6398  			break;
6399  		}
6400  		if (found_key.offset != key.offset + right_len) {
6401  			ret = 0;
6402  			goto out;
6403  		}
6404  		key = found_key;
6405  	}
6406  
6407  	/*
6408  	 * We're now behind the left extent (treat as unchanged) or at the end
6409  	 * of the right side (treat as changed).
6410  	 */
6411  	if (key.offset >= ekey->offset + left_len)
6412  		ret = 1;
6413  	else
6414  		ret = 0;
6415  
6416  
6417  out:
6418  	btrfs_free_path(path);
6419  	return ret;
6420  }
6421  
get_last_extent(struct send_ctx * sctx,u64 offset)6422  static int get_last_extent(struct send_ctx *sctx, u64 offset)
6423  {
6424  	struct btrfs_path *path;
6425  	struct btrfs_root *root = sctx->send_root;
6426  	struct btrfs_key key;
6427  	int ret;
6428  
6429  	path = alloc_path_for_send();
6430  	if (!path)
6431  		return -ENOMEM;
6432  
6433  	sctx->cur_inode_last_extent = 0;
6434  
6435  	key.objectid = sctx->cur_ino;
6436  	key.type = BTRFS_EXTENT_DATA_KEY;
6437  	key.offset = offset;
6438  	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6439  	if (ret < 0)
6440  		goto out;
6441  	ret = 0;
6442  	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6443  	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6444  		goto out;
6445  
6446  	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6447  out:
6448  	btrfs_free_path(path);
6449  	return ret;
6450  }
6451  
range_is_hole_in_parent(struct send_ctx * sctx,const u64 start,const u64 end)6452  static int range_is_hole_in_parent(struct send_ctx *sctx,
6453  				   const u64 start,
6454  				   const u64 end)
6455  {
6456  	struct btrfs_path *path;
6457  	struct btrfs_key key;
6458  	struct btrfs_root *root = sctx->parent_root;
6459  	u64 search_start = start;
6460  	int ret;
6461  
6462  	path = alloc_path_for_send();
6463  	if (!path)
6464  		return -ENOMEM;
6465  
6466  	key.objectid = sctx->cur_ino;
6467  	key.type = BTRFS_EXTENT_DATA_KEY;
6468  	key.offset = search_start;
6469  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6470  	if (ret < 0)
6471  		goto out;
6472  	if (ret > 0 && path->slots[0] > 0)
6473  		path->slots[0]--;
6474  
6475  	while (search_start < end) {
6476  		struct extent_buffer *leaf = path->nodes[0];
6477  		int slot = path->slots[0];
6478  		struct btrfs_file_extent_item *fi;
6479  		u64 extent_end;
6480  
6481  		if (slot >= btrfs_header_nritems(leaf)) {
6482  			ret = btrfs_next_leaf(root, path);
6483  			if (ret < 0)
6484  				goto out;
6485  			else if (ret > 0)
6486  				break;
6487  			continue;
6488  		}
6489  
6490  		btrfs_item_key_to_cpu(leaf, &key, slot);
6491  		if (key.objectid < sctx->cur_ino ||
6492  		    key.type < BTRFS_EXTENT_DATA_KEY)
6493  			goto next;
6494  		if (key.objectid > sctx->cur_ino ||
6495  		    key.type > BTRFS_EXTENT_DATA_KEY ||
6496  		    key.offset >= end)
6497  			break;
6498  
6499  		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6500  		extent_end = btrfs_file_extent_end(path);
6501  		if (extent_end <= start)
6502  			goto next;
6503  		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6504  			search_start = extent_end;
6505  			goto next;
6506  		}
6507  		ret = 0;
6508  		goto out;
6509  next:
6510  		path->slots[0]++;
6511  	}
6512  	ret = 1;
6513  out:
6514  	btrfs_free_path(path);
6515  	return ret;
6516  }
6517  
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6518  static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6519  			   struct btrfs_key *key)
6520  {
6521  	int ret = 0;
6522  
6523  	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6524  		return 0;
6525  
6526  	/*
6527  	 * Get last extent's end offset (exclusive) if we haven't determined it
6528  	 * yet (we're processing the first file extent item that is new), or if
6529  	 * we're at the first slot of a leaf and the last extent's end is less
6530  	 * than the current extent's offset, because we might have skipped
6531  	 * entire leaves that contained only file extent items for our current
6532  	 * inode. These leaves have a generation number smaller (older) than the
6533  	 * one in the current leaf and the leaf our last extent came from, and
6534  	 * are located between these 2 leaves.
6535  	 */
6536  	if ((sctx->cur_inode_last_extent == (u64)-1) ||
6537  	    (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6538  		ret = get_last_extent(sctx, key->offset - 1);
6539  		if (ret)
6540  			return ret;
6541  	}
6542  
6543  	if (sctx->cur_inode_last_extent < key->offset) {
6544  		ret = range_is_hole_in_parent(sctx,
6545  					      sctx->cur_inode_last_extent,
6546  					      key->offset);
6547  		if (ret < 0)
6548  			return ret;
6549  		else if (ret == 0)
6550  			ret = send_hole(sctx, key->offset);
6551  		else
6552  			ret = 0;
6553  	}
6554  	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6555  	return ret;
6556  }
6557  
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6558  static int process_extent(struct send_ctx *sctx,
6559  			  struct btrfs_path *path,
6560  			  struct btrfs_key *key)
6561  {
6562  	struct clone_root *found_clone = NULL;
6563  	int ret = 0;
6564  
6565  	if (S_ISLNK(sctx->cur_inode_mode))
6566  		return 0;
6567  
6568  	if (sctx->parent_root && !sctx->cur_inode_new) {
6569  		ret = is_extent_unchanged(sctx, path, key);
6570  		if (ret < 0)
6571  			goto out;
6572  		if (ret) {
6573  			ret = 0;
6574  			goto out_hole;
6575  		}
6576  	} else {
6577  		struct btrfs_file_extent_item *ei;
6578  		u8 type;
6579  
6580  		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6581  				    struct btrfs_file_extent_item);
6582  		type = btrfs_file_extent_type(path->nodes[0], ei);
6583  		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6584  		    type == BTRFS_FILE_EXTENT_REG) {
6585  			/*
6586  			 * The send spec does not have a prealloc command yet,
6587  			 * so just leave a hole for prealloc'ed extents until
6588  			 * we have enough commands queued up to justify rev'ing
6589  			 * the send spec.
6590  			 */
6591  			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6592  				ret = 0;
6593  				goto out;
6594  			}
6595  
6596  			/* Have a hole, just skip it. */
6597  			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6598  				ret = 0;
6599  				goto out;
6600  			}
6601  		}
6602  	}
6603  
6604  	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6605  			sctx->cur_inode_size, &found_clone);
6606  	if (ret != -ENOENT && ret < 0)
6607  		goto out;
6608  
6609  	ret = send_write_or_clone(sctx, path, key, found_clone);
6610  	if (ret)
6611  		goto out;
6612  out_hole:
6613  	ret = maybe_send_hole(sctx, path, key);
6614  out:
6615  	return ret;
6616  }
6617  
process_all_extents(struct send_ctx * sctx)6618  static int process_all_extents(struct send_ctx *sctx)
6619  {
6620  	int ret = 0;
6621  	int iter_ret = 0;
6622  	struct btrfs_root *root;
6623  	struct btrfs_path *path;
6624  	struct btrfs_key key;
6625  	struct btrfs_key found_key;
6626  
6627  	root = sctx->send_root;
6628  	path = alloc_path_for_send();
6629  	if (!path)
6630  		return -ENOMEM;
6631  
6632  	key.objectid = sctx->cmp_key->objectid;
6633  	key.type = BTRFS_EXTENT_DATA_KEY;
6634  	key.offset = 0;
6635  	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6636  		if (found_key.objectid != key.objectid ||
6637  		    found_key.type != key.type) {
6638  			ret = 0;
6639  			break;
6640  		}
6641  
6642  		ret = process_extent(sctx, path, &found_key);
6643  		if (ret < 0)
6644  			break;
6645  	}
6646  	/* Catch error found during iteration */
6647  	if (iter_ret < 0)
6648  		ret = iter_ret;
6649  
6650  	btrfs_free_path(path);
6651  	return ret;
6652  }
6653  
process_recorded_refs_if_needed(struct send_ctx * sctx,int at_end,int * pending_move,int * refs_processed)6654  static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6655  					   int *pending_move,
6656  					   int *refs_processed)
6657  {
6658  	int ret = 0;
6659  
6660  	if (sctx->cur_ino == 0)
6661  		goto out;
6662  	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6663  	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6664  		goto out;
6665  	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6666  		goto out;
6667  
6668  	ret = process_recorded_refs(sctx, pending_move);
6669  	if (ret < 0)
6670  		goto out;
6671  
6672  	*refs_processed = 1;
6673  out:
6674  	return ret;
6675  }
6676  
finish_inode_if_needed(struct send_ctx * sctx,int at_end)6677  static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6678  {
6679  	int ret = 0;
6680  	struct btrfs_inode_info info;
6681  	u64 left_mode;
6682  	u64 left_uid;
6683  	u64 left_gid;
6684  	u64 left_fileattr;
6685  	u64 right_mode;
6686  	u64 right_uid;
6687  	u64 right_gid;
6688  	u64 right_fileattr;
6689  	int need_chmod = 0;
6690  	int need_chown = 0;
6691  	bool need_fileattr = false;
6692  	int need_truncate = 1;
6693  	int pending_move = 0;
6694  	int refs_processed = 0;
6695  
6696  	if (sctx->ignore_cur_inode)
6697  		return 0;
6698  
6699  	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6700  					      &refs_processed);
6701  	if (ret < 0)
6702  		goto out;
6703  
6704  	/*
6705  	 * We have processed the refs and thus need to advance send_progress.
6706  	 * Now, calls to get_cur_xxx will take the updated refs of the current
6707  	 * inode into account.
6708  	 *
6709  	 * On the other hand, if our current inode is a directory and couldn't
6710  	 * be moved/renamed because its parent was renamed/moved too and it has
6711  	 * a higher inode number, we can only move/rename our current inode
6712  	 * after we moved/renamed its parent. Therefore in this case operate on
6713  	 * the old path (pre move/rename) of our current inode, and the
6714  	 * move/rename will be performed later.
6715  	 */
6716  	if (refs_processed && !pending_move)
6717  		sctx->send_progress = sctx->cur_ino + 1;
6718  
6719  	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6720  		goto out;
6721  	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6722  		goto out;
6723  	ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6724  	if (ret < 0)
6725  		goto out;
6726  	left_mode = info.mode;
6727  	left_uid = info.uid;
6728  	left_gid = info.gid;
6729  	left_fileattr = info.fileattr;
6730  
6731  	if (!sctx->parent_root || sctx->cur_inode_new) {
6732  		need_chown = 1;
6733  		if (!S_ISLNK(sctx->cur_inode_mode))
6734  			need_chmod = 1;
6735  		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6736  			need_truncate = 0;
6737  	} else {
6738  		u64 old_size;
6739  
6740  		ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6741  		if (ret < 0)
6742  			goto out;
6743  		old_size = info.size;
6744  		right_mode = info.mode;
6745  		right_uid = info.uid;
6746  		right_gid = info.gid;
6747  		right_fileattr = info.fileattr;
6748  
6749  		if (left_uid != right_uid || left_gid != right_gid)
6750  			need_chown = 1;
6751  		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6752  			need_chmod = 1;
6753  		if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6754  			need_fileattr = true;
6755  		if ((old_size == sctx->cur_inode_size) ||
6756  		    (sctx->cur_inode_size > old_size &&
6757  		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6758  			need_truncate = 0;
6759  	}
6760  
6761  	if (S_ISREG(sctx->cur_inode_mode)) {
6762  		if (need_send_hole(sctx)) {
6763  			if (sctx->cur_inode_last_extent == (u64)-1 ||
6764  			    sctx->cur_inode_last_extent <
6765  			    sctx->cur_inode_size) {
6766  				ret = get_last_extent(sctx, (u64)-1);
6767  				if (ret)
6768  					goto out;
6769  			}
6770  			if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6771  				ret = range_is_hole_in_parent(sctx,
6772  						      sctx->cur_inode_last_extent,
6773  						      sctx->cur_inode_size);
6774  				if (ret < 0) {
6775  					goto out;
6776  				} else if (ret == 0) {
6777  					ret = send_hole(sctx, sctx->cur_inode_size);
6778  					if (ret < 0)
6779  						goto out;
6780  				} else {
6781  					/* Range is already a hole, skip. */
6782  					ret = 0;
6783  				}
6784  			}
6785  		}
6786  		if (need_truncate) {
6787  			ret = send_truncate(sctx, sctx->cur_ino,
6788  					    sctx->cur_inode_gen,
6789  					    sctx->cur_inode_size);
6790  			if (ret < 0)
6791  				goto out;
6792  		}
6793  	}
6794  
6795  	if (need_chown) {
6796  		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6797  				left_uid, left_gid);
6798  		if (ret < 0)
6799  			goto out;
6800  	}
6801  	if (need_chmod) {
6802  		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6803  				left_mode);
6804  		if (ret < 0)
6805  			goto out;
6806  	}
6807  	if (need_fileattr) {
6808  		ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6809  				    left_fileattr);
6810  		if (ret < 0)
6811  			goto out;
6812  	}
6813  
6814  	if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6815  	    && sctx->cur_inode_needs_verity) {
6816  		ret = process_verity(sctx);
6817  		if (ret < 0)
6818  			goto out;
6819  	}
6820  
6821  	ret = send_capabilities(sctx);
6822  	if (ret < 0)
6823  		goto out;
6824  
6825  	/*
6826  	 * If other directory inodes depended on our current directory
6827  	 * inode's move/rename, now do their move/rename operations.
6828  	 */
6829  	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6830  		ret = apply_children_dir_moves(sctx);
6831  		if (ret)
6832  			goto out;
6833  		/*
6834  		 * Need to send that every time, no matter if it actually
6835  		 * changed between the two trees as we have done changes to
6836  		 * the inode before. If our inode is a directory and it's
6837  		 * waiting to be moved/renamed, we will send its utimes when
6838  		 * it's moved/renamed, therefore we don't need to do it here.
6839  		 */
6840  		sctx->send_progress = sctx->cur_ino + 1;
6841  
6842  		/*
6843  		 * If the current inode is a non-empty directory, delay issuing
6844  		 * the utimes command for it, as it's very likely we have inodes
6845  		 * with an higher number inside it. We want to issue the utimes
6846  		 * command only after adding all dentries to it.
6847  		 */
6848  		if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6849  			ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6850  		else
6851  			ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6852  
6853  		if (ret < 0)
6854  			goto out;
6855  	}
6856  
6857  out:
6858  	if (!ret)
6859  		ret = trim_dir_utimes_cache(sctx);
6860  
6861  	return ret;
6862  }
6863  
close_current_inode(struct send_ctx * sctx)6864  static void close_current_inode(struct send_ctx *sctx)
6865  {
6866  	u64 i_size;
6867  
6868  	if (sctx->cur_inode == NULL)
6869  		return;
6870  
6871  	i_size = i_size_read(sctx->cur_inode);
6872  
6873  	/*
6874  	 * If we are doing an incremental send, we may have extents between the
6875  	 * last processed extent and the i_size that have not been processed
6876  	 * because they haven't changed but we may have read some of their pages
6877  	 * through readahead, see the comments at send_extent_data().
6878  	 */
6879  	if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6880  		truncate_inode_pages_range(&sctx->cur_inode->i_data,
6881  					   sctx->page_cache_clear_start,
6882  					   round_up(i_size, PAGE_SIZE) - 1);
6883  
6884  	iput(sctx->cur_inode);
6885  	sctx->cur_inode = NULL;
6886  }
6887  
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6888  static int changed_inode(struct send_ctx *sctx,
6889  			 enum btrfs_compare_tree_result result)
6890  {
6891  	int ret = 0;
6892  	struct btrfs_key *key = sctx->cmp_key;
6893  	struct btrfs_inode_item *left_ii = NULL;
6894  	struct btrfs_inode_item *right_ii = NULL;
6895  	u64 left_gen = 0;
6896  	u64 right_gen = 0;
6897  
6898  	close_current_inode(sctx);
6899  
6900  	sctx->cur_ino = key->objectid;
6901  	sctx->cur_inode_new_gen = false;
6902  	sctx->cur_inode_last_extent = (u64)-1;
6903  	sctx->cur_inode_next_write_offset = 0;
6904  	sctx->ignore_cur_inode = false;
6905  
6906  	/*
6907  	 * Set send_progress to current inode. This will tell all get_cur_xxx
6908  	 * functions that the current inode's refs are not updated yet. Later,
6909  	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6910  	 */
6911  	sctx->send_progress = sctx->cur_ino;
6912  
6913  	if (result == BTRFS_COMPARE_TREE_NEW ||
6914  	    result == BTRFS_COMPARE_TREE_CHANGED) {
6915  		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6916  				sctx->left_path->slots[0],
6917  				struct btrfs_inode_item);
6918  		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6919  				left_ii);
6920  	} else {
6921  		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6922  				sctx->right_path->slots[0],
6923  				struct btrfs_inode_item);
6924  		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6925  				right_ii);
6926  	}
6927  	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6928  		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6929  				sctx->right_path->slots[0],
6930  				struct btrfs_inode_item);
6931  
6932  		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6933  				right_ii);
6934  
6935  		/*
6936  		 * The cur_ino = root dir case is special here. We can't treat
6937  		 * the inode as deleted+reused because it would generate a
6938  		 * stream that tries to delete/mkdir the root dir.
6939  		 */
6940  		if (left_gen != right_gen &&
6941  		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6942  			sctx->cur_inode_new_gen = true;
6943  	}
6944  
6945  	/*
6946  	 * Normally we do not find inodes with a link count of zero (orphans)
6947  	 * because the most common case is to create a snapshot and use it
6948  	 * for a send operation. However other less common use cases involve
6949  	 * using a subvolume and send it after turning it to RO mode just
6950  	 * after deleting all hard links of a file while holding an open
6951  	 * file descriptor against it or turning a RO snapshot into RW mode,
6952  	 * keep an open file descriptor against a file, delete it and then
6953  	 * turn the snapshot back to RO mode before using it for a send
6954  	 * operation. The former is what the receiver operation does.
6955  	 * Therefore, if we want to send these snapshots soon after they're
6956  	 * received, we need to handle orphan inodes as well. Moreover, orphans
6957  	 * can appear not only in the send snapshot but also in the parent
6958  	 * snapshot. Here are several cases:
6959  	 *
6960  	 * Case 1: BTRFS_COMPARE_TREE_NEW
6961  	 *       |  send snapshot  | action
6962  	 * --------------------------------
6963  	 * nlink |        0        | ignore
6964  	 *
6965  	 * Case 2: BTRFS_COMPARE_TREE_DELETED
6966  	 *       | parent snapshot | action
6967  	 * ----------------------------------
6968  	 * nlink |        0        | as usual
6969  	 * Note: No unlinks will be sent because there're no paths for it.
6970  	 *
6971  	 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6972  	 *           |       | parent snapshot | send snapshot | action
6973  	 * -----------------------------------------------------------------------
6974  	 * subcase 1 | nlink |        0        |       0       | ignore
6975  	 * subcase 2 | nlink |       >0        |       0       | new_gen(deletion)
6976  	 * subcase 3 | nlink |        0        |      >0       | new_gen(creation)
6977  	 *
6978  	 */
6979  	if (result == BTRFS_COMPARE_TREE_NEW) {
6980  		if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6981  			sctx->ignore_cur_inode = true;
6982  			goto out;
6983  		}
6984  		sctx->cur_inode_gen = left_gen;
6985  		sctx->cur_inode_new = true;
6986  		sctx->cur_inode_deleted = false;
6987  		sctx->cur_inode_size = btrfs_inode_size(
6988  				sctx->left_path->nodes[0], left_ii);
6989  		sctx->cur_inode_mode = btrfs_inode_mode(
6990  				sctx->left_path->nodes[0], left_ii);
6991  		sctx->cur_inode_rdev = btrfs_inode_rdev(
6992  				sctx->left_path->nodes[0], left_ii);
6993  		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6994  			ret = send_create_inode_if_needed(sctx);
6995  	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6996  		sctx->cur_inode_gen = right_gen;
6997  		sctx->cur_inode_new = false;
6998  		sctx->cur_inode_deleted = true;
6999  		sctx->cur_inode_size = btrfs_inode_size(
7000  				sctx->right_path->nodes[0], right_ii);
7001  		sctx->cur_inode_mode = btrfs_inode_mode(
7002  				sctx->right_path->nodes[0], right_ii);
7003  	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
7004  		u32 new_nlinks, old_nlinks;
7005  
7006  		new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
7007  		old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
7008  		if (new_nlinks == 0 && old_nlinks == 0) {
7009  			sctx->ignore_cur_inode = true;
7010  			goto out;
7011  		} else if (new_nlinks == 0 || old_nlinks == 0) {
7012  			sctx->cur_inode_new_gen = 1;
7013  		}
7014  		/*
7015  		 * We need to do some special handling in case the inode was
7016  		 * reported as changed with a changed generation number. This
7017  		 * means that the original inode was deleted and new inode
7018  		 * reused the same inum. So we have to treat the old inode as
7019  		 * deleted and the new one as new.
7020  		 */
7021  		if (sctx->cur_inode_new_gen) {
7022  			/*
7023  			 * First, process the inode as if it was deleted.
7024  			 */
7025  			if (old_nlinks > 0) {
7026  				sctx->cur_inode_gen = right_gen;
7027  				sctx->cur_inode_new = false;
7028  				sctx->cur_inode_deleted = true;
7029  				sctx->cur_inode_size = btrfs_inode_size(
7030  						sctx->right_path->nodes[0], right_ii);
7031  				sctx->cur_inode_mode = btrfs_inode_mode(
7032  						sctx->right_path->nodes[0], right_ii);
7033  				ret = process_all_refs(sctx,
7034  						BTRFS_COMPARE_TREE_DELETED);
7035  				if (ret < 0)
7036  					goto out;
7037  			}
7038  
7039  			/*
7040  			 * Now process the inode as if it was new.
7041  			 */
7042  			if (new_nlinks > 0) {
7043  				sctx->cur_inode_gen = left_gen;
7044  				sctx->cur_inode_new = true;
7045  				sctx->cur_inode_deleted = false;
7046  				sctx->cur_inode_size = btrfs_inode_size(
7047  						sctx->left_path->nodes[0],
7048  						left_ii);
7049  				sctx->cur_inode_mode = btrfs_inode_mode(
7050  						sctx->left_path->nodes[0],
7051  						left_ii);
7052  				sctx->cur_inode_rdev = btrfs_inode_rdev(
7053  						sctx->left_path->nodes[0],
7054  						left_ii);
7055  				ret = send_create_inode_if_needed(sctx);
7056  				if (ret < 0)
7057  					goto out;
7058  
7059  				ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
7060  				if (ret < 0)
7061  					goto out;
7062  				/*
7063  				 * Advance send_progress now as we did not get
7064  				 * into process_recorded_refs_if_needed in the
7065  				 * new_gen case.
7066  				 */
7067  				sctx->send_progress = sctx->cur_ino + 1;
7068  
7069  				/*
7070  				 * Now process all extents and xattrs of the
7071  				 * inode as if they were all new.
7072  				 */
7073  				ret = process_all_extents(sctx);
7074  				if (ret < 0)
7075  					goto out;
7076  				ret = process_all_new_xattrs(sctx);
7077  				if (ret < 0)
7078  					goto out;
7079  			}
7080  		} else {
7081  			sctx->cur_inode_gen = left_gen;
7082  			sctx->cur_inode_new = false;
7083  			sctx->cur_inode_new_gen = false;
7084  			sctx->cur_inode_deleted = false;
7085  			sctx->cur_inode_size = btrfs_inode_size(
7086  					sctx->left_path->nodes[0], left_ii);
7087  			sctx->cur_inode_mode = btrfs_inode_mode(
7088  					sctx->left_path->nodes[0], left_ii);
7089  		}
7090  	}
7091  
7092  out:
7093  	return ret;
7094  }
7095  
7096  /*
7097   * We have to process new refs before deleted refs, but compare_trees gives us
7098   * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7099   * first and later process them in process_recorded_refs.
7100   * For the cur_inode_new_gen case, we skip recording completely because
7101   * changed_inode did already initiate processing of refs. The reason for this is
7102   * that in this case, compare_tree actually compares the refs of 2 different
7103   * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7104   * refs of the right tree as deleted and all refs of the left tree as new.
7105   */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7106  static int changed_ref(struct send_ctx *sctx,
7107  		       enum btrfs_compare_tree_result result)
7108  {
7109  	int ret = 0;
7110  
7111  	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7112  		inconsistent_snapshot_error(sctx, result, "reference");
7113  		return -EIO;
7114  	}
7115  
7116  	if (!sctx->cur_inode_new_gen &&
7117  	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7118  		if (result == BTRFS_COMPARE_TREE_NEW)
7119  			ret = record_new_ref(sctx);
7120  		else if (result == BTRFS_COMPARE_TREE_DELETED)
7121  			ret = record_deleted_ref(sctx);
7122  		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7123  			ret = record_changed_ref(sctx);
7124  	}
7125  
7126  	return ret;
7127  }
7128  
7129  /*
7130   * Process new/deleted/changed xattrs. We skip processing in the
7131   * cur_inode_new_gen case because changed_inode did already initiate processing
7132   * of xattrs. The reason is the same as in changed_ref
7133   */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7134  static int changed_xattr(struct send_ctx *sctx,
7135  			 enum btrfs_compare_tree_result result)
7136  {
7137  	int ret = 0;
7138  
7139  	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7140  		inconsistent_snapshot_error(sctx, result, "xattr");
7141  		return -EIO;
7142  	}
7143  
7144  	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7145  		if (result == BTRFS_COMPARE_TREE_NEW)
7146  			ret = process_new_xattr(sctx);
7147  		else if (result == BTRFS_COMPARE_TREE_DELETED)
7148  			ret = process_deleted_xattr(sctx);
7149  		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7150  			ret = process_changed_xattr(sctx);
7151  	}
7152  
7153  	return ret;
7154  }
7155  
7156  /*
7157   * Process new/deleted/changed extents. We skip processing in the
7158   * cur_inode_new_gen case because changed_inode did already initiate processing
7159   * of extents. The reason is the same as in changed_ref
7160   */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7161  static int changed_extent(struct send_ctx *sctx,
7162  			  enum btrfs_compare_tree_result result)
7163  {
7164  	int ret = 0;
7165  
7166  	/*
7167  	 * We have found an extent item that changed without the inode item
7168  	 * having changed. This can happen either after relocation (where the
7169  	 * disk_bytenr of an extent item is replaced at
7170  	 * relocation.c:replace_file_extents()) or after deduplication into a
7171  	 * file in both the parent and send snapshots (where an extent item can
7172  	 * get modified or replaced with a new one). Note that deduplication
7173  	 * updates the inode item, but it only changes the iversion (sequence
7174  	 * field in the inode item) of the inode, so if a file is deduplicated
7175  	 * the same amount of times in both the parent and send snapshots, its
7176  	 * iversion becomes the same in both snapshots, whence the inode item is
7177  	 * the same on both snapshots.
7178  	 */
7179  	if (sctx->cur_ino != sctx->cmp_key->objectid)
7180  		return 0;
7181  
7182  	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7183  		if (result != BTRFS_COMPARE_TREE_DELETED)
7184  			ret = process_extent(sctx, sctx->left_path,
7185  					sctx->cmp_key);
7186  	}
7187  
7188  	return ret;
7189  }
7190  
changed_verity(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7191  static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7192  {
7193  	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7194  		if (result == BTRFS_COMPARE_TREE_NEW)
7195  			sctx->cur_inode_needs_verity = true;
7196  	}
7197  	return 0;
7198  }
7199  
dir_changed(struct send_ctx * sctx,u64 dir)7200  static int dir_changed(struct send_ctx *sctx, u64 dir)
7201  {
7202  	u64 orig_gen, new_gen;
7203  	int ret;
7204  
7205  	ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7206  	if (ret)
7207  		return ret;
7208  
7209  	ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7210  	if (ret)
7211  		return ret;
7212  
7213  	return (orig_gen != new_gen) ? 1 : 0;
7214  }
7215  
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)7216  static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7217  			struct btrfs_key *key)
7218  {
7219  	struct btrfs_inode_extref *extref;
7220  	struct extent_buffer *leaf;
7221  	u64 dirid = 0, last_dirid = 0;
7222  	unsigned long ptr;
7223  	u32 item_size;
7224  	u32 cur_offset = 0;
7225  	int ref_name_len;
7226  	int ret = 0;
7227  
7228  	/* Easy case, just check this one dirid */
7229  	if (key->type == BTRFS_INODE_REF_KEY) {
7230  		dirid = key->offset;
7231  
7232  		ret = dir_changed(sctx, dirid);
7233  		goto out;
7234  	}
7235  
7236  	leaf = path->nodes[0];
7237  	item_size = btrfs_item_size(leaf, path->slots[0]);
7238  	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7239  	while (cur_offset < item_size) {
7240  		extref = (struct btrfs_inode_extref *)(ptr +
7241  						       cur_offset);
7242  		dirid = btrfs_inode_extref_parent(leaf, extref);
7243  		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7244  		cur_offset += ref_name_len + sizeof(*extref);
7245  		if (dirid == last_dirid)
7246  			continue;
7247  		ret = dir_changed(sctx, dirid);
7248  		if (ret)
7249  			break;
7250  		last_dirid = dirid;
7251  	}
7252  out:
7253  	return ret;
7254  }
7255  
7256  /*
7257   * Updates compare related fields in sctx and simply forwards to the actual
7258   * changed_xxx functions.
7259   */
changed_cb(struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,struct send_ctx * sctx)7260  static int changed_cb(struct btrfs_path *left_path,
7261  		      struct btrfs_path *right_path,
7262  		      struct btrfs_key *key,
7263  		      enum btrfs_compare_tree_result result,
7264  		      struct send_ctx *sctx)
7265  {
7266  	int ret = 0;
7267  
7268  	/*
7269  	 * We can not hold the commit root semaphore here. This is because in
7270  	 * the case of sending and receiving to the same filesystem, using a
7271  	 * pipe, could result in a deadlock:
7272  	 *
7273  	 * 1) The task running send blocks on the pipe because it's full;
7274  	 *
7275  	 * 2) The task running receive, which is the only consumer of the pipe,
7276  	 *    is waiting for a transaction commit (for example due to a space
7277  	 *    reservation when doing a write or triggering a transaction commit
7278  	 *    when creating a subvolume);
7279  	 *
7280  	 * 3) The transaction is waiting to write lock the commit root semaphore,
7281  	 *    but can not acquire it since it's being held at 1).
7282  	 *
7283  	 * Down this call chain we write to the pipe through kernel_write().
7284  	 * The same type of problem can also happen when sending to a file that
7285  	 * is stored in the same filesystem - when reserving space for a write
7286  	 * into the file, we can trigger a transaction commit.
7287  	 *
7288  	 * Our caller has supplied us with clones of leaves from the send and
7289  	 * parent roots, so we're safe here from a concurrent relocation and
7290  	 * further reallocation of metadata extents while we are here. Below we
7291  	 * also assert that the leaves are clones.
7292  	 */
7293  	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7294  
7295  	/*
7296  	 * We always have a send root, so left_path is never NULL. We will not
7297  	 * have a leaf when we have reached the end of the send root but have
7298  	 * not yet reached the end of the parent root.
7299  	 */
7300  	if (left_path->nodes[0])
7301  		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7302  				&left_path->nodes[0]->bflags));
7303  	/*
7304  	 * When doing a full send we don't have a parent root, so right_path is
7305  	 * NULL. When doing an incremental send, we may have reached the end of
7306  	 * the parent root already, so we don't have a leaf at right_path.
7307  	 */
7308  	if (right_path && right_path->nodes[0])
7309  		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7310  				&right_path->nodes[0]->bflags));
7311  
7312  	if (result == BTRFS_COMPARE_TREE_SAME) {
7313  		if (key->type == BTRFS_INODE_REF_KEY ||
7314  		    key->type == BTRFS_INODE_EXTREF_KEY) {
7315  			ret = compare_refs(sctx, left_path, key);
7316  			if (!ret)
7317  				return 0;
7318  			if (ret < 0)
7319  				return ret;
7320  		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7321  			return maybe_send_hole(sctx, left_path, key);
7322  		} else {
7323  			return 0;
7324  		}
7325  		result = BTRFS_COMPARE_TREE_CHANGED;
7326  		ret = 0;
7327  	}
7328  
7329  	sctx->left_path = left_path;
7330  	sctx->right_path = right_path;
7331  	sctx->cmp_key = key;
7332  
7333  	ret = finish_inode_if_needed(sctx, 0);
7334  	if (ret < 0)
7335  		goto out;
7336  
7337  	/* Ignore non-FS objects */
7338  	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7339  	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7340  		goto out;
7341  
7342  	if (key->type == BTRFS_INODE_ITEM_KEY) {
7343  		ret = changed_inode(sctx, result);
7344  	} else if (!sctx->ignore_cur_inode) {
7345  		if (key->type == BTRFS_INODE_REF_KEY ||
7346  		    key->type == BTRFS_INODE_EXTREF_KEY)
7347  			ret = changed_ref(sctx, result);
7348  		else if (key->type == BTRFS_XATTR_ITEM_KEY)
7349  			ret = changed_xattr(sctx, result);
7350  		else if (key->type == BTRFS_EXTENT_DATA_KEY)
7351  			ret = changed_extent(sctx, result);
7352  		else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7353  			 key->offset == 0)
7354  			ret = changed_verity(sctx, result);
7355  	}
7356  
7357  out:
7358  	return ret;
7359  }
7360  
search_key_again(const struct send_ctx * sctx,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key)7361  static int search_key_again(const struct send_ctx *sctx,
7362  			    struct btrfs_root *root,
7363  			    struct btrfs_path *path,
7364  			    const struct btrfs_key *key)
7365  {
7366  	int ret;
7367  
7368  	if (!path->need_commit_sem)
7369  		lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7370  
7371  	/*
7372  	 * Roots used for send operations are readonly and no one can add,
7373  	 * update or remove keys from them, so we should be able to find our
7374  	 * key again. The only exception is deduplication, which can operate on
7375  	 * readonly roots and add, update or remove keys to/from them - but at
7376  	 * the moment we don't allow it to run in parallel with send.
7377  	 */
7378  	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7379  	ASSERT(ret <= 0);
7380  	if (ret > 0) {
7381  		btrfs_print_tree(path->nodes[path->lowest_level], false);
7382  		btrfs_err(root->fs_info,
7383  "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7384  			  key->objectid, key->type, key->offset,
7385  			  (root == sctx->parent_root ? "parent" : "send"),
7386  			  btrfs_root_id(root), path->lowest_level,
7387  			  path->slots[path->lowest_level]);
7388  		return -EUCLEAN;
7389  	}
7390  
7391  	return ret;
7392  }
7393  
full_send_tree(struct send_ctx * sctx)7394  static int full_send_tree(struct send_ctx *sctx)
7395  {
7396  	int ret;
7397  	struct btrfs_root *send_root = sctx->send_root;
7398  	struct btrfs_key key;
7399  	struct btrfs_fs_info *fs_info = send_root->fs_info;
7400  	struct btrfs_path *path;
7401  
7402  	path = alloc_path_for_send();
7403  	if (!path)
7404  		return -ENOMEM;
7405  	path->reada = READA_FORWARD_ALWAYS;
7406  
7407  	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7408  	key.type = BTRFS_INODE_ITEM_KEY;
7409  	key.offset = 0;
7410  
7411  	down_read(&fs_info->commit_root_sem);
7412  	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7413  	up_read(&fs_info->commit_root_sem);
7414  
7415  	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7416  	if (ret < 0)
7417  		goto out;
7418  	if (ret)
7419  		goto out_finish;
7420  
7421  	while (1) {
7422  		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7423  
7424  		ret = changed_cb(path, NULL, &key,
7425  				 BTRFS_COMPARE_TREE_NEW, sctx);
7426  		if (ret < 0)
7427  			goto out;
7428  
7429  		down_read(&fs_info->commit_root_sem);
7430  		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7431  			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7432  			up_read(&fs_info->commit_root_sem);
7433  			/*
7434  			 * A transaction used for relocating a block group was
7435  			 * committed or is about to finish its commit. Release
7436  			 * our path (leaf) and restart the search, so that we
7437  			 * avoid operating on any file extent items that are
7438  			 * stale, with a disk_bytenr that reflects a pre
7439  			 * relocation value. This way we avoid as much as
7440  			 * possible to fallback to regular writes when checking
7441  			 * if we can clone file ranges.
7442  			 */
7443  			btrfs_release_path(path);
7444  			ret = search_key_again(sctx, send_root, path, &key);
7445  			if (ret < 0)
7446  				goto out;
7447  		} else {
7448  			up_read(&fs_info->commit_root_sem);
7449  		}
7450  
7451  		ret = btrfs_next_item(send_root, path);
7452  		if (ret < 0)
7453  			goto out;
7454  		if (ret) {
7455  			ret  = 0;
7456  			break;
7457  		}
7458  	}
7459  
7460  out_finish:
7461  	ret = finish_inode_if_needed(sctx, 1);
7462  
7463  out:
7464  	btrfs_free_path(path);
7465  	return ret;
7466  }
7467  
replace_node_with_clone(struct btrfs_path * path,int level)7468  static int replace_node_with_clone(struct btrfs_path *path, int level)
7469  {
7470  	struct extent_buffer *clone;
7471  
7472  	clone = btrfs_clone_extent_buffer(path->nodes[level]);
7473  	if (!clone)
7474  		return -ENOMEM;
7475  
7476  	free_extent_buffer(path->nodes[level]);
7477  	path->nodes[level] = clone;
7478  
7479  	return 0;
7480  }
7481  
tree_move_down(struct btrfs_path * path,int * level,u64 reada_min_gen)7482  static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7483  {
7484  	struct extent_buffer *eb;
7485  	struct extent_buffer *parent = path->nodes[*level];
7486  	int slot = path->slots[*level];
7487  	const int nritems = btrfs_header_nritems(parent);
7488  	u64 reada_max;
7489  	u64 reada_done = 0;
7490  
7491  	lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7492  	ASSERT(*level != 0);
7493  
7494  	eb = btrfs_read_node_slot(parent, slot);
7495  	if (IS_ERR(eb))
7496  		return PTR_ERR(eb);
7497  
7498  	/*
7499  	 * Trigger readahead for the next leaves we will process, so that it is
7500  	 * very likely that when we need them they are already in memory and we
7501  	 * will not block on disk IO. For nodes we only do readahead for one,
7502  	 * since the time window between processing nodes is typically larger.
7503  	 */
7504  	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7505  
7506  	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7507  		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7508  			btrfs_readahead_node_child(parent, slot);
7509  			reada_done += eb->fs_info->nodesize;
7510  		}
7511  	}
7512  
7513  	path->nodes[*level - 1] = eb;
7514  	path->slots[*level - 1] = 0;
7515  	(*level)--;
7516  
7517  	if (*level == 0)
7518  		return replace_node_with_clone(path, 0);
7519  
7520  	return 0;
7521  }
7522  
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)7523  static int tree_move_next_or_upnext(struct btrfs_path *path,
7524  				    int *level, int root_level)
7525  {
7526  	int ret = 0;
7527  	int nritems;
7528  	nritems = btrfs_header_nritems(path->nodes[*level]);
7529  
7530  	path->slots[*level]++;
7531  
7532  	while (path->slots[*level] >= nritems) {
7533  		if (*level == root_level) {
7534  			path->slots[*level] = nritems - 1;
7535  			return -1;
7536  		}
7537  
7538  		/* move upnext */
7539  		path->slots[*level] = 0;
7540  		free_extent_buffer(path->nodes[*level]);
7541  		path->nodes[*level] = NULL;
7542  		(*level)++;
7543  		path->slots[*level]++;
7544  
7545  		nritems = btrfs_header_nritems(path->nodes[*level]);
7546  		ret = 1;
7547  	}
7548  	return ret;
7549  }
7550  
7551  /*
7552   * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7553   * or down.
7554   */
tree_advance(struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key,u64 reada_min_gen)7555  static int tree_advance(struct btrfs_path *path,
7556  			int *level, int root_level,
7557  			int allow_down,
7558  			struct btrfs_key *key,
7559  			u64 reada_min_gen)
7560  {
7561  	int ret;
7562  
7563  	if (*level == 0 || !allow_down) {
7564  		ret = tree_move_next_or_upnext(path, level, root_level);
7565  	} else {
7566  		ret = tree_move_down(path, level, reada_min_gen);
7567  	}
7568  
7569  	/*
7570  	 * Even if we have reached the end of a tree, ret is -1, update the key
7571  	 * anyway, so that in case we need to restart due to a block group
7572  	 * relocation, we can assert that the last key of the root node still
7573  	 * exists in the tree.
7574  	 */
7575  	if (*level == 0)
7576  		btrfs_item_key_to_cpu(path->nodes[*level], key,
7577  				      path->slots[*level]);
7578  	else
7579  		btrfs_node_key_to_cpu(path->nodes[*level], key,
7580  				      path->slots[*level]);
7581  
7582  	return ret;
7583  }
7584  
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)7585  static int tree_compare_item(struct btrfs_path *left_path,
7586  			     struct btrfs_path *right_path,
7587  			     char *tmp_buf)
7588  {
7589  	int cmp;
7590  	int len1, len2;
7591  	unsigned long off1, off2;
7592  
7593  	len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7594  	len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7595  	if (len1 != len2)
7596  		return 1;
7597  
7598  	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7599  	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7600  				right_path->slots[0]);
7601  
7602  	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7603  
7604  	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7605  	if (cmp)
7606  		return 1;
7607  	return 0;
7608  }
7609  
7610  /*
7611   * A transaction used for relocating a block group was committed or is about to
7612   * finish its commit. Release our paths and restart the search, so that we are
7613   * not using stale extent buffers:
7614   *
7615   * 1) For levels > 0, we are only holding references of extent buffers, without
7616   *    any locks on them, which does not prevent them from having been relocated
7617   *    and reallocated after the last time we released the commit root semaphore.
7618   *    The exception are the root nodes, for which we always have a clone, see
7619   *    the comment at btrfs_compare_trees();
7620   *
7621   * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7622   *    we are safe from the concurrent relocation and reallocation. However they
7623   *    can have file extent items with a pre relocation disk_bytenr value, so we
7624   *    restart the start from the current commit roots and clone the new leaves so
7625   *    that we get the post relocation disk_bytenr values. Not doing so, could
7626   *    make us clone the wrong data in case there are new extents using the old
7627   *    disk_bytenr that happen to be shared.
7628   */
restart_after_relocation(struct btrfs_path * left_path,struct btrfs_path * right_path,const struct btrfs_key * left_key,const struct btrfs_key * right_key,int left_level,int right_level,const struct send_ctx * sctx)7629  static int restart_after_relocation(struct btrfs_path *left_path,
7630  				    struct btrfs_path *right_path,
7631  				    const struct btrfs_key *left_key,
7632  				    const struct btrfs_key *right_key,
7633  				    int left_level,
7634  				    int right_level,
7635  				    const struct send_ctx *sctx)
7636  {
7637  	int root_level;
7638  	int ret;
7639  
7640  	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7641  
7642  	btrfs_release_path(left_path);
7643  	btrfs_release_path(right_path);
7644  
7645  	/*
7646  	 * Since keys can not be added or removed to/from our roots because they
7647  	 * are readonly and we do not allow deduplication to run in parallel
7648  	 * (which can add, remove or change keys), the layout of the trees should
7649  	 * not change.
7650  	 */
7651  	left_path->lowest_level = left_level;
7652  	ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7653  	if (ret < 0)
7654  		return ret;
7655  
7656  	right_path->lowest_level = right_level;
7657  	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7658  	if (ret < 0)
7659  		return ret;
7660  
7661  	/*
7662  	 * If the lowest level nodes are leaves, clone them so that they can be
7663  	 * safely used by changed_cb() while not under the protection of the
7664  	 * commit root semaphore, even if relocation and reallocation happens in
7665  	 * parallel.
7666  	 */
7667  	if (left_level == 0) {
7668  		ret = replace_node_with_clone(left_path, 0);
7669  		if (ret < 0)
7670  			return ret;
7671  	}
7672  
7673  	if (right_level == 0) {
7674  		ret = replace_node_with_clone(right_path, 0);
7675  		if (ret < 0)
7676  			return ret;
7677  	}
7678  
7679  	/*
7680  	 * Now clone the root nodes (unless they happen to be the leaves we have
7681  	 * already cloned). This is to protect against concurrent snapshotting of
7682  	 * the send and parent roots (see the comment at btrfs_compare_trees()).
7683  	 */
7684  	root_level = btrfs_header_level(sctx->send_root->commit_root);
7685  	if (root_level > 0) {
7686  		ret = replace_node_with_clone(left_path, root_level);
7687  		if (ret < 0)
7688  			return ret;
7689  	}
7690  
7691  	root_level = btrfs_header_level(sctx->parent_root->commit_root);
7692  	if (root_level > 0) {
7693  		ret = replace_node_with_clone(right_path, root_level);
7694  		if (ret < 0)
7695  			return ret;
7696  	}
7697  
7698  	return 0;
7699  }
7700  
7701  /*
7702   * This function compares two trees and calls the provided callback for
7703   * every changed/new/deleted item it finds.
7704   * If shared tree blocks are encountered, whole subtrees are skipped, making
7705   * the compare pretty fast on snapshotted subvolumes.
7706   *
7707   * This currently works on commit roots only. As commit roots are read only,
7708   * we don't do any locking. The commit roots are protected with transactions.
7709   * Transactions are ended and rejoined when a commit is tried in between.
7710   *
7711   * This function checks for modifications done to the trees while comparing.
7712   * If it detects a change, it aborts immediately.
7713   */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,struct send_ctx * sctx)7714  static int btrfs_compare_trees(struct btrfs_root *left_root,
7715  			struct btrfs_root *right_root, struct send_ctx *sctx)
7716  {
7717  	struct btrfs_fs_info *fs_info = left_root->fs_info;
7718  	int ret;
7719  	int cmp;
7720  	struct btrfs_path *left_path = NULL;
7721  	struct btrfs_path *right_path = NULL;
7722  	struct btrfs_key left_key;
7723  	struct btrfs_key right_key;
7724  	char *tmp_buf = NULL;
7725  	int left_root_level;
7726  	int right_root_level;
7727  	int left_level;
7728  	int right_level;
7729  	int left_end_reached = 0;
7730  	int right_end_reached = 0;
7731  	int advance_left = 0;
7732  	int advance_right = 0;
7733  	u64 left_blockptr;
7734  	u64 right_blockptr;
7735  	u64 left_gen;
7736  	u64 right_gen;
7737  	u64 reada_min_gen;
7738  
7739  	left_path = btrfs_alloc_path();
7740  	if (!left_path) {
7741  		ret = -ENOMEM;
7742  		goto out;
7743  	}
7744  	right_path = btrfs_alloc_path();
7745  	if (!right_path) {
7746  		ret = -ENOMEM;
7747  		goto out;
7748  	}
7749  
7750  	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7751  	if (!tmp_buf) {
7752  		ret = -ENOMEM;
7753  		goto out;
7754  	}
7755  
7756  	left_path->search_commit_root = 1;
7757  	left_path->skip_locking = 1;
7758  	right_path->search_commit_root = 1;
7759  	right_path->skip_locking = 1;
7760  
7761  	/*
7762  	 * Strategy: Go to the first items of both trees. Then do
7763  	 *
7764  	 * If both trees are at level 0
7765  	 *   Compare keys of current items
7766  	 *     If left < right treat left item as new, advance left tree
7767  	 *       and repeat
7768  	 *     If left > right treat right item as deleted, advance right tree
7769  	 *       and repeat
7770  	 *     If left == right do deep compare of items, treat as changed if
7771  	 *       needed, advance both trees and repeat
7772  	 * If both trees are at the same level but not at level 0
7773  	 *   Compare keys of current nodes/leafs
7774  	 *     If left < right advance left tree and repeat
7775  	 *     If left > right advance right tree and repeat
7776  	 *     If left == right compare blockptrs of the next nodes/leafs
7777  	 *       If they match advance both trees but stay at the same level
7778  	 *         and repeat
7779  	 *       If they don't match advance both trees while allowing to go
7780  	 *         deeper and repeat
7781  	 * If tree levels are different
7782  	 *   Advance the tree that needs it and repeat
7783  	 *
7784  	 * Advancing a tree means:
7785  	 *   If we are at level 0, try to go to the next slot. If that's not
7786  	 *   possible, go one level up and repeat. Stop when we found a level
7787  	 *   where we could go to the next slot. We may at this point be on a
7788  	 *   node or a leaf.
7789  	 *
7790  	 *   If we are not at level 0 and not on shared tree blocks, go one
7791  	 *   level deeper.
7792  	 *
7793  	 *   If we are not at level 0 and on shared tree blocks, go one slot to
7794  	 *   the right if possible or go up and right.
7795  	 */
7796  
7797  	down_read(&fs_info->commit_root_sem);
7798  	left_level = btrfs_header_level(left_root->commit_root);
7799  	left_root_level = left_level;
7800  	/*
7801  	 * We clone the root node of the send and parent roots to prevent races
7802  	 * with snapshot creation of these roots. Snapshot creation COWs the
7803  	 * root node of a tree, so after the transaction is committed the old
7804  	 * extent can be reallocated while this send operation is still ongoing.
7805  	 * So we clone them, under the commit root semaphore, to be race free.
7806  	 */
7807  	left_path->nodes[left_level] =
7808  			btrfs_clone_extent_buffer(left_root->commit_root);
7809  	if (!left_path->nodes[left_level]) {
7810  		ret = -ENOMEM;
7811  		goto out_unlock;
7812  	}
7813  
7814  	right_level = btrfs_header_level(right_root->commit_root);
7815  	right_root_level = right_level;
7816  	right_path->nodes[right_level] =
7817  			btrfs_clone_extent_buffer(right_root->commit_root);
7818  	if (!right_path->nodes[right_level]) {
7819  		ret = -ENOMEM;
7820  		goto out_unlock;
7821  	}
7822  	/*
7823  	 * Our right root is the parent root, while the left root is the "send"
7824  	 * root. We know that all new nodes/leaves in the left root must have
7825  	 * a generation greater than the right root's generation, so we trigger
7826  	 * readahead for those nodes and leaves of the left root, as we know we
7827  	 * will need to read them at some point.
7828  	 */
7829  	reada_min_gen = btrfs_header_generation(right_root->commit_root);
7830  
7831  	if (left_level == 0)
7832  		btrfs_item_key_to_cpu(left_path->nodes[left_level],
7833  				&left_key, left_path->slots[left_level]);
7834  	else
7835  		btrfs_node_key_to_cpu(left_path->nodes[left_level],
7836  				&left_key, left_path->slots[left_level]);
7837  	if (right_level == 0)
7838  		btrfs_item_key_to_cpu(right_path->nodes[right_level],
7839  				&right_key, right_path->slots[right_level]);
7840  	else
7841  		btrfs_node_key_to_cpu(right_path->nodes[right_level],
7842  				&right_key, right_path->slots[right_level]);
7843  
7844  	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7845  
7846  	while (1) {
7847  		if (need_resched() ||
7848  		    rwsem_is_contended(&fs_info->commit_root_sem)) {
7849  			up_read(&fs_info->commit_root_sem);
7850  			cond_resched();
7851  			down_read(&fs_info->commit_root_sem);
7852  		}
7853  
7854  		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7855  			ret = restart_after_relocation(left_path, right_path,
7856  						       &left_key, &right_key,
7857  						       left_level, right_level,
7858  						       sctx);
7859  			if (ret < 0)
7860  				goto out_unlock;
7861  			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7862  		}
7863  
7864  		if (advance_left && !left_end_reached) {
7865  			ret = tree_advance(left_path, &left_level,
7866  					left_root_level,
7867  					advance_left != ADVANCE_ONLY_NEXT,
7868  					&left_key, reada_min_gen);
7869  			if (ret == -1)
7870  				left_end_reached = ADVANCE;
7871  			else if (ret < 0)
7872  				goto out_unlock;
7873  			advance_left = 0;
7874  		}
7875  		if (advance_right && !right_end_reached) {
7876  			ret = tree_advance(right_path, &right_level,
7877  					right_root_level,
7878  					advance_right != ADVANCE_ONLY_NEXT,
7879  					&right_key, reada_min_gen);
7880  			if (ret == -1)
7881  				right_end_reached = ADVANCE;
7882  			else if (ret < 0)
7883  				goto out_unlock;
7884  			advance_right = 0;
7885  		}
7886  
7887  		if (left_end_reached && right_end_reached) {
7888  			ret = 0;
7889  			goto out_unlock;
7890  		} else if (left_end_reached) {
7891  			if (right_level == 0) {
7892  				up_read(&fs_info->commit_root_sem);
7893  				ret = changed_cb(left_path, right_path,
7894  						&right_key,
7895  						BTRFS_COMPARE_TREE_DELETED,
7896  						sctx);
7897  				if (ret < 0)
7898  					goto out;
7899  				down_read(&fs_info->commit_root_sem);
7900  			}
7901  			advance_right = ADVANCE;
7902  			continue;
7903  		} else if (right_end_reached) {
7904  			if (left_level == 0) {
7905  				up_read(&fs_info->commit_root_sem);
7906  				ret = changed_cb(left_path, right_path,
7907  						&left_key,
7908  						BTRFS_COMPARE_TREE_NEW,
7909  						sctx);
7910  				if (ret < 0)
7911  					goto out;
7912  				down_read(&fs_info->commit_root_sem);
7913  			}
7914  			advance_left = ADVANCE;
7915  			continue;
7916  		}
7917  
7918  		if (left_level == 0 && right_level == 0) {
7919  			up_read(&fs_info->commit_root_sem);
7920  			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7921  			if (cmp < 0) {
7922  				ret = changed_cb(left_path, right_path,
7923  						&left_key,
7924  						BTRFS_COMPARE_TREE_NEW,
7925  						sctx);
7926  				advance_left = ADVANCE;
7927  			} else if (cmp > 0) {
7928  				ret = changed_cb(left_path, right_path,
7929  						&right_key,
7930  						BTRFS_COMPARE_TREE_DELETED,
7931  						sctx);
7932  				advance_right = ADVANCE;
7933  			} else {
7934  				enum btrfs_compare_tree_result result;
7935  
7936  				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7937  				ret = tree_compare_item(left_path, right_path,
7938  							tmp_buf);
7939  				if (ret)
7940  					result = BTRFS_COMPARE_TREE_CHANGED;
7941  				else
7942  					result = BTRFS_COMPARE_TREE_SAME;
7943  				ret = changed_cb(left_path, right_path,
7944  						 &left_key, result, sctx);
7945  				advance_left = ADVANCE;
7946  				advance_right = ADVANCE;
7947  			}
7948  
7949  			if (ret < 0)
7950  				goto out;
7951  			down_read(&fs_info->commit_root_sem);
7952  		} else if (left_level == right_level) {
7953  			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7954  			if (cmp < 0) {
7955  				advance_left = ADVANCE;
7956  			} else if (cmp > 0) {
7957  				advance_right = ADVANCE;
7958  			} else {
7959  				left_blockptr = btrfs_node_blockptr(
7960  						left_path->nodes[left_level],
7961  						left_path->slots[left_level]);
7962  				right_blockptr = btrfs_node_blockptr(
7963  						right_path->nodes[right_level],
7964  						right_path->slots[right_level]);
7965  				left_gen = btrfs_node_ptr_generation(
7966  						left_path->nodes[left_level],
7967  						left_path->slots[left_level]);
7968  				right_gen = btrfs_node_ptr_generation(
7969  						right_path->nodes[right_level],
7970  						right_path->slots[right_level]);
7971  				if (left_blockptr == right_blockptr &&
7972  				    left_gen == right_gen) {
7973  					/*
7974  					 * As we're on a shared block, don't
7975  					 * allow to go deeper.
7976  					 */
7977  					advance_left = ADVANCE_ONLY_NEXT;
7978  					advance_right = ADVANCE_ONLY_NEXT;
7979  				} else {
7980  					advance_left = ADVANCE;
7981  					advance_right = ADVANCE;
7982  				}
7983  			}
7984  		} else if (left_level < right_level) {
7985  			advance_right = ADVANCE;
7986  		} else {
7987  			advance_left = ADVANCE;
7988  		}
7989  	}
7990  
7991  out_unlock:
7992  	up_read(&fs_info->commit_root_sem);
7993  out:
7994  	btrfs_free_path(left_path);
7995  	btrfs_free_path(right_path);
7996  	kvfree(tmp_buf);
7997  	return ret;
7998  }
7999  
send_subvol(struct send_ctx * sctx)8000  static int send_subvol(struct send_ctx *sctx)
8001  {
8002  	int ret;
8003  
8004  	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
8005  		ret = send_header(sctx);
8006  		if (ret < 0)
8007  			goto out;
8008  	}
8009  
8010  	ret = send_subvol_begin(sctx);
8011  	if (ret < 0)
8012  		goto out;
8013  
8014  	if (sctx->parent_root) {
8015  		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
8016  		if (ret < 0)
8017  			goto out;
8018  		ret = finish_inode_if_needed(sctx, 1);
8019  		if (ret < 0)
8020  			goto out;
8021  	} else {
8022  		ret = full_send_tree(sctx);
8023  		if (ret < 0)
8024  			goto out;
8025  	}
8026  
8027  out:
8028  	free_recorded_refs(sctx);
8029  	return ret;
8030  }
8031  
8032  /*
8033   * If orphan cleanup did remove any orphans from a root, it means the tree
8034   * was modified and therefore the commit root is not the same as the current
8035   * root anymore. This is a problem, because send uses the commit root and
8036   * therefore can see inode items that don't exist in the current root anymore,
8037   * and for example make calls to btrfs_iget, which will do tree lookups based
8038   * on the current root and not on the commit root. Those lookups will fail,
8039   * returning a -ESTALE error, and making send fail with that error. So make
8040   * sure a send does not see any orphans we have just removed, and that it will
8041   * see the same inodes regardless of whether a transaction commit happened
8042   * before it started (meaning that the commit root will be the same as the
8043   * current root) or not.
8044   */
ensure_commit_roots_uptodate(struct send_ctx * sctx)8045  static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
8046  {
8047  	struct btrfs_root *root = sctx->parent_root;
8048  
8049  	if (root && root->node != root->commit_root)
8050  		return btrfs_commit_current_transaction(root);
8051  
8052  	for (int i = 0; i < sctx->clone_roots_cnt; i++) {
8053  		root = sctx->clone_roots[i].root;
8054  		if (root->node != root->commit_root)
8055  			return btrfs_commit_current_transaction(root);
8056  	}
8057  
8058  	return 0;
8059  }
8060  
8061  /*
8062   * Make sure any existing dellaloc is flushed for any root used by a send
8063   * operation so that we do not miss any data and we do not race with writeback
8064   * finishing and changing a tree while send is using the tree. This could
8065   * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8066   * a send operation then uses the subvolume.
8067   * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8068   */
flush_delalloc_roots(struct send_ctx * sctx)8069  static int flush_delalloc_roots(struct send_ctx *sctx)
8070  {
8071  	struct btrfs_root *root = sctx->parent_root;
8072  	int ret;
8073  	int i;
8074  
8075  	if (root) {
8076  		ret = btrfs_start_delalloc_snapshot(root, false);
8077  		if (ret)
8078  			return ret;
8079  		btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8080  	}
8081  
8082  	for (i = 0; i < sctx->clone_roots_cnt; i++) {
8083  		root = sctx->clone_roots[i].root;
8084  		ret = btrfs_start_delalloc_snapshot(root, false);
8085  		if (ret)
8086  			return ret;
8087  		btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8088  	}
8089  
8090  	return 0;
8091  }
8092  
btrfs_root_dec_send_in_progress(struct btrfs_root * root)8093  static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8094  {
8095  	spin_lock(&root->root_item_lock);
8096  	root->send_in_progress--;
8097  	/*
8098  	 * Not much left to do, we don't know why it's unbalanced and
8099  	 * can't blindly reset it to 0.
8100  	 */
8101  	if (root->send_in_progress < 0)
8102  		btrfs_err(root->fs_info,
8103  			  "send_in_progress unbalanced %d root %llu",
8104  			  root->send_in_progress, btrfs_root_id(root));
8105  	spin_unlock(&root->root_item_lock);
8106  }
8107  
dedupe_in_progress_warn(const struct btrfs_root * root)8108  static void dedupe_in_progress_warn(const struct btrfs_root *root)
8109  {
8110  	btrfs_warn_rl(root->fs_info,
8111  "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8112  		      btrfs_root_id(root), root->dedupe_in_progress);
8113  }
8114  
btrfs_ioctl_send(struct btrfs_inode * inode,const struct btrfs_ioctl_send_args * arg)8115  long btrfs_ioctl_send(struct btrfs_inode *inode, const struct btrfs_ioctl_send_args *arg)
8116  {
8117  	int ret = 0;
8118  	struct btrfs_root *send_root = inode->root;
8119  	struct btrfs_fs_info *fs_info = send_root->fs_info;
8120  	struct btrfs_root *clone_root;
8121  	struct send_ctx *sctx = NULL;
8122  	u32 i;
8123  	u64 *clone_sources_tmp = NULL;
8124  	int clone_sources_to_rollback = 0;
8125  	size_t alloc_size;
8126  	int sort_clone_roots = 0;
8127  	struct btrfs_lru_cache_entry *entry;
8128  	struct btrfs_lru_cache_entry *tmp;
8129  
8130  	if (!capable(CAP_SYS_ADMIN))
8131  		return -EPERM;
8132  
8133  	/*
8134  	 * The subvolume must remain read-only during send, protect against
8135  	 * making it RW. This also protects against deletion.
8136  	 */
8137  	spin_lock(&send_root->root_item_lock);
8138  	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8139  		dedupe_in_progress_warn(send_root);
8140  		spin_unlock(&send_root->root_item_lock);
8141  		return -EAGAIN;
8142  	}
8143  	send_root->send_in_progress++;
8144  	spin_unlock(&send_root->root_item_lock);
8145  
8146  	/*
8147  	 * Userspace tools do the checks and warn the user if it's
8148  	 * not RO.
8149  	 */
8150  	if (!btrfs_root_readonly(send_root)) {
8151  		ret = -EPERM;
8152  		goto out;
8153  	}
8154  
8155  	/*
8156  	 * Check that we don't overflow at later allocations, we request
8157  	 * clone_sources_count + 1 items, and compare to unsigned long inside
8158  	 * access_ok. Also set an upper limit for allocation size so this can't
8159  	 * easily exhaust memory. Max number of clone sources is about 200K.
8160  	 */
8161  	if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8162  		ret = -EINVAL;
8163  		goto out;
8164  	}
8165  
8166  	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8167  		ret = -EOPNOTSUPP;
8168  		goto out;
8169  	}
8170  
8171  	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8172  	if (!sctx) {
8173  		ret = -ENOMEM;
8174  		goto out;
8175  	}
8176  
8177  	INIT_LIST_HEAD(&sctx->new_refs);
8178  	INIT_LIST_HEAD(&sctx->deleted_refs);
8179  
8180  	btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8181  	btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8182  	btrfs_lru_cache_init(&sctx->dir_created_cache,
8183  			     SEND_MAX_DIR_CREATED_CACHE_SIZE);
8184  	/*
8185  	 * This cache is periodically trimmed to a fixed size elsewhere, see
8186  	 * cache_dir_utimes() and trim_dir_utimes_cache().
8187  	 */
8188  	btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8189  
8190  	sctx->pending_dir_moves = RB_ROOT;
8191  	sctx->waiting_dir_moves = RB_ROOT;
8192  	sctx->orphan_dirs = RB_ROOT;
8193  	sctx->rbtree_new_refs = RB_ROOT;
8194  	sctx->rbtree_deleted_refs = RB_ROOT;
8195  
8196  	sctx->flags = arg->flags;
8197  
8198  	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8199  		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8200  			ret = -EPROTO;
8201  			goto out;
8202  		}
8203  		/* Zero means "use the highest version" */
8204  		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8205  	} else {
8206  		sctx->proto = 1;
8207  	}
8208  	if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8209  		ret = -EINVAL;
8210  		goto out;
8211  	}
8212  
8213  	sctx->send_filp = fget(arg->send_fd);
8214  	if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8215  		ret = -EBADF;
8216  		goto out;
8217  	}
8218  
8219  	sctx->send_root = send_root;
8220  	/*
8221  	 * Unlikely but possible, if the subvolume is marked for deletion but
8222  	 * is slow to remove the directory entry, send can still be started
8223  	 */
8224  	if (btrfs_root_dead(sctx->send_root)) {
8225  		ret = -EPERM;
8226  		goto out;
8227  	}
8228  
8229  	sctx->clone_roots_cnt = arg->clone_sources_count;
8230  
8231  	if (sctx->proto >= 2) {
8232  		u32 send_buf_num_pages;
8233  
8234  		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8235  		sctx->send_buf = vmalloc(sctx->send_max_size);
8236  		if (!sctx->send_buf) {
8237  			ret = -ENOMEM;
8238  			goto out;
8239  		}
8240  		send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8241  		sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8242  					       sizeof(*sctx->send_buf_pages),
8243  					       GFP_KERNEL);
8244  		if (!sctx->send_buf_pages) {
8245  			ret = -ENOMEM;
8246  			goto out;
8247  		}
8248  		for (i = 0; i < send_buf_num_pages; i++) {
8249  			sctx->send_buf_pages[i] =
8250  				vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8251  		}
8252  	} else {
8253  		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8254  		sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8255  	}
8256  	if (!sctx->send_buf) {
8257  		ret = -ENOMEM;
8258  		goto out;
8259  	}
8260  
8261  	sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8262  				     sizeof(*sctx->clone_roots),
8263  				     GFP_KERNEL);
8264  	if (!sctx->clone_roots) {
8265  		ret = -ENOMEM;
8266  		goto out;
8267  	}
8268  
8269  	alloc_size = array_size(sizeof(*arg->clone_sources),
8270  				arg->clone_sources_count);
8271  
8272  	if (arg->clone_sources_count) {
8273  		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8274  		if (!clone_sources_tmp) {
8275  			ret = -ENOMEM;
8276  			goto out;
8277  		}
8278  
8279  		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8280  				alloc_size);
8281  		if (ret) {
8282  			ret = -EFAULT;
8283  			goto out;
8284  		}
8285  
8286  		for (i = 0; i < arg->clone_sources_count; i++) {
8287  			clone_root = btrfs_get_fs_root(fs_info,
8288  						clone_sources_tmp[i], true);
8289  			if (IS_ERR(clone_root)) {
8290  				ret = PTR_ERR(clone_root);
8291  				goto out;
8292  			}
8293  			spin_lock(&clone_root->root_item_lock);
8294  			if (!btrfs_root_readonly(clone_root) ||
8295  			    btrfs_root_dead(clone_root)) {
8296  				spin_unlock(&clone_root->root_item_lock);
8297  				btrfs_put_root(clone_root);
8298  				ret = -EPERM;
8299  				goto out;
8300  			}
8301  			if (clone_root->dedupe_in_progress) {
8302  				dedupe_in_progress_warn(clone_root);
8303  				spin_unlock(&clone_root->root_item_lock);
8304  				btrfs_put_root(clone_root);
8305  				ret = -EAGAIN;
8306  				goto out;
8307  			}
8308  			clone_root->send_in_progress++;
8309  			spin_unlock(&clone_root->root_item_lock);
8310  
8311  			sctx->clone_roots[i].root = clone_root;
8312  			clone_sources_to_rollback = i + 1;
8313  		}
8314  		kvfree(clone_sources_tmp);
8315  		clone_sources_tmp = NULL;
8316  	}
8317  
8318  	if (arg->parent_root) {
8319  		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8320  						      true);
8321  		if (IS_ERR(sctx->parent_root)) {
8322  			ret = PTR_ERR(sctx->parent_root);
8323  			goto out;
8324  		}
8325  
8326  		spin_lock(&sctx->parent_root->root_item_lock);
8327  		sctx->parent_root->send_in_progress++;
8328  		if (!btrfs_root_readonly(sctx->parent_root) ||
8329  				btrfs_root_dead(sctx->parent_root)) {
8330  			spin_unlock(&sctx->parent_root->root_item_lock);
8331  			ret = -EPERM;
8332  			goto out;
8333  		}
8334  		if (sctx->parent_root->dedupe_in_progress) {
8335  			dedupe_in_progress_warn(sctx->parent_root);
8336  			spin_unlock(&sctx->parent_root->root_item_lock);
8337  			ret = -EAGAIN;
8338  			goto out;
8339  		}
8340  		spin_unlock(&sctx->parent_root->root_item_lock);
8341  	}
8342  
8343  	/*
8344  	 * Clones from send_root are allowed, but only if the clone source
8345  	 * is behind the current send position. This is checked while searching
8346  	 * for possible clone sources.
8347  	 */
8348  	sctx->clone_roots[sctx->clone_roots_cnt++].root =
8349  		btrfs_grab_root(sctx->send_root);
8350  
8351  	/* We do a bsearch later */
8352  	sort(sctx->clone_roots, sctx->clone_roots_cnt,
8353  			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8354  			NULL);
8355  	sort_clone_roots = 1;
8356  
8357  	ret = flush_delalloc_roots(sctx);
8358  	if (ret)
8359  		goto out;
8360  
8361  	ret = ensure_commit_roots_uptodate(sctx);
8362  	if (ret)
8363  		goto out;
8364  
8365  	ret = send_subvol(sctx);
8366  	if (ret < 0)
8367  		goto out;
8368  
8369  	btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8370  		ret = send_utimes(sctx, entry->key, entry->gen);
8371  		if (ret < 0)
8372  			goto out;
8373  		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8374  	}
8375  
8376  	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8377  		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8378  		if (ret < 0)
8379  			goto out;
8380  		ret = send_cmd(sctx);
8381  		if (ret < 0)
8382  			goto out;
8383  	}
8384  
8385  out:
8386  	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8387  	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8388  		struct rb_node *n;
8389  		struct pending_dir_move *pm;
8390  
8391  		n = rb_first(&sctx->pending_dir_moves);
8392  		pm = rb_entry(n, struct pending_dir_move, node);
8393  		while (!list_empty(&pm->list)) {
8394  			struct pending_dir_move *pm2;
8395  
8396  			pm2 = list_first_entry(&pm->list,
8397  					       struct pending_dir_move, list);
8398  			free_pending_move(sctx, pm2);
8399  		}
8400  		free_pending_move(sctx, pm);
8401  	}
8402  
8403  	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8404  	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8405  		struct rb_node *n;
8406  		struct waiting_dir_move *dm;
8407  
8408  		n = rb_first(&sctx->waiting_dir_moves);
8409  		dm = rb_entry(n, struct waiting_dir_move, node);
8410  		rb_erase(&dm->node, &sctx->waiting_dir_moves);
8411  		kfree(dm);
8412  	}
8413  
8414  	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8415  	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8416  		struct rb_node *n;
8417  		struct orphan_dir_info *odi;
8418  
8419  		n = rb_first(&sctx->orphan_dirs);
8420  		odi = rb_entry(n, struct orphan_dir_info, node);
8421  		free_orphan_dir_info(sctx, odi);
8422  	}
8423  
8424  	if (sort_clone_roots) {
8425  		for (i = 0; i < sctx->clone_roots_cnt; i++) {
8426  			btrfs_root_dec_send_in_progress(
8427  					sctx->clone_roots[i].root);
8428  			btrfs_put_root(sctx->clone_roots[i].root);
8429  		}
8430  	} else {
8431  		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8432  			btrfs_root_dec_send_in_progress(
8433  					sctx->clone_roots[i].root);
8434  			btrfs_put_root(sctx->clone_roots[i].root);
8435  		}
8436  
8437  		btrfs_root_dec_send_in_progress(send_root);
8438  	}
8439  	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8440  		btrfs_root_dec_send_in_progress(sctx->parent_root);
8441  		btrfs_put_root(sctx->parent_root);
8442  	}
8443  
8444  	kvfree(clone_sources_tmp);
8445  
8446  	if (sctx) {
8447  		if (sctx->send_filp)
8448  			fput(sctx->send_filp);
8449  
8450  		kvfree(sctx->clone_roots);
8451  		kfree(sctx->send_buf_pages);
8452  		kvfree(sctx->send_buf);
8453  		kvfree(sctx->verity_descriptor);
8454  
8455  		close_current_inode(sctx);
8456  
8457  		btrfs_lru_cache_clear(&sctx->name_cache);
8458  		btrfs_lru_cache_clear(&sctx->backref_cache);
8459  		btrfs_lru_cache_clear(&sctx->dir_created_cache);
8460  		btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8461  
8462  		kfree(sctx);
8463  	}
8464  
8465  	return ret;
8466  }
8467