1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 #include <linux/fsverity.h>
19 
20 #include "send.h"
21 #include "ctree.h"
22 #include "backref.h"
23 #include "locking.h"
24 #include "disk-io.h"
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "print-tree.h"
29 #include "accessors.h"
30 #include "dir-item.h"
31 #include "file-item.h"
32 #include "ioctl.h"
33 #include "verity.h"
34 #include "lru_cache.h"
35 
36 /*
37  * Maximum number of references an extent can have in order for us to attempt to
38  * issue clone operations instead of write operations. This currently exists to
39  * avoid hitting limitations of the backreference walking code (taking a lot of
40  * time and using too much memory for extents with large number of references).
41  */
42 #define SEND_MAX_EXTENT_REFS	1024
43 
44 /*
45  * A fs_path is a helper to dynamically build path names with unknown size.
46  * It reallocates the internal buffer on demand.
47  * It allows fast adding of path elements on the right side (normal path) and
48  * fast adding to the left side (reversed path). A reversed path can also be
49  * unreversed if needed.
50  */
51 struct fs_path {
52 	union {
53 		struct {
54 			char *start;
55 			char *end;
56 
57 			char *buf;
58 			unsigned short buf_len:15;
59 			unsigned short reversed:1;
60 			char inline_buf[];
61 		};
62 		/*
63 		 * Average path length does not exceed 200 bytes, we'll have
64 		 * better packing in the slab and higher chance to satisfy
65 		 * an allocation later during send.
66 		 */
67 		char pad[256];
68 	};
69 };
70 #define FS_PATH_INLINE_SIZE \
71 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72 
73 
74 /* reused for each extent */
75 struct clone_root {
76 	struct btrfs_root *root;
77 	u64 ino;
78 	u64 offset;
79 	u64 num_bytes;
80 	bool found_ref;
81 };
82 
83 #define SEND_MAX_NAME_CACHE_SIZE			256
84 
85 /*
86  * Limit the root_ids array of struct backref_cache_entry to 17 elements.
87  * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
88  * can be satisfied from the kmalloc-192 slab, without wasting any space.
89  * The most common case is to have a single root for cloning, which corresponds
90  * to the send root. Having the user specify more than 16 clone roots is not
91  * common, and in such rare cases we simply don't use caching if the number of
92  * cloning roots that lead down to a leaf is more than 17.
93  */
94 #define SEND_MAX_BACKREF_CACHE_ROOTS			17
95 
96 /*
97  * Max number of entries in the cache.
98  * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
99  * maple tree's internal nodes, is 24K.
100  */
101 #define SEND_MAX_BACKREF_CACHE_SIZE 128
102 
103 /*
104  * A backref cache entry maps a leaf to a list of IDs of roots from which the
105  * leaf is accessible and we can use for clone operations.
106  * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
107  * x86_64).
108  */
109 struct backref_cache_entry {
110 	struct btrfs_lru_cache_entry entry;
111 	u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
112 	/* Number of valid elements in the root_ids array. */
113 	int num_roots;
114 };
115 
116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
117 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
118 
119 /*
120  * Max number of entries in the cache that stores directories that were already
121  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
122  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
123  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
124  */
125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE			64
126 
127 /*
128  * Max number of entries in the cache that stores directories that were already
129  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
130  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
131  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
132  */
133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE			64
134 
135 struct send_ctx {
136 	struct file *send_filp;
137 	loff_t send_off;
138 	char *send_buf;
139 	u32 send_size;
140 	u32 send_max_size;
141 	/*
142 	 * Whether BTRFS_SEND_A_DATA attribute was already added to current
143 	 * command (since protocol v2, data must be the last attribute).
144 	 */
145 	bool put_data;
146 	struct page **send_buf_pages;
147 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
148 	/* Protocol version compatibility requested */
149 	u32 proto;
150 
151 	struct btrfs_root *send_root;
152 	struct btrfs_root *parent_root;
153 	struct clone_root *clone_roots;
154 	int clone_roots_cnt;
155 
156 	/* current state of the compare_tree call */
157 	struct btrfs_path *left_path;
158 	struct btrfs_path *right_path;
159 	struct btrfs_key *cmp_key;
160 
161 	/*
162 	 * Keep track of the generation of the last transaction that was used
163 	 * for relocating a block group. This is periodically checked in order
164 	 * to detect if a relocation happened since the last check, so that we
165 	 * don't operate on stale extent buffers for nodes (level >= 1) or on
166 	 * stale disk_bytenr values of file extent items.
167 	 */
168 	u64 last_reloc_trans;
169 
170 	/*
171 	 * infos of the currently processed inode. In case of deleted inodes,
172 	 * these are the values from the deleted inode.
173 	 */
174 	u64 cur_ino;
175 	u64 cur_inode_gen;
176 	u64 cur_inode_size;
177 	u64 cur_inode_mode;
178 	u64 cur_inode_rdev;
179 	u64 cur_inode_last_extent;
180 	u64 cur_inode_next_write_offset;
181 	bool cur_inode_new;
182 	bool cur_inode_new_gen;
183 	bool cur_inode_deleted;
184 	bool ignore_cur_inode;
185 	bool cur_inode_needs_verity;
186 	void *verity_descriptor;
187 
188 	u64 send_progress;
189 
190 	struct list_head new_refs;
191 	struct list_head deleted_refs;
192 
193 	struct btrfs_lru_cache name_cache;
194 
195 	/*
196 	 * The inode we are currently processing. It's not NULL only when we
197 	 * need to issue write commands for data extents from this inode.
198 	 */
199 	struct inode *cur_inode;
200 	struct file_ra_state ra;
201 	u64 page_cache_clear_start;
202 	bool clean_page_cache;
203 
204 	/*
205 	 * We process inodes by their increasing order, so if before an
206 	 * incremental send we reverse the parent/child relationship of
207 	 * directories such that a directory with a lower inode number was
208 	 * the parent of a directory with a higher inode number, and the one
209 	 * becoming the new parent got renamed too, we can't rename/move the
210 	 * directory with lower inode number when we finish processing it - we
211 	 * must process the directory with higher inode number first, then
212 	 * rename/move it and then rename/move the directory with lower inode
213 	 * number. Example follows.
214 	 *
215 	 * Tree state when the first send was performed:
216 	 *
217 	 * .
218 	 * |-- a                   (ino 257)
219 	 *     |-- b               (ino 258)
220 	 *         |
221 	 *         |
222 	 *         |-- c           (ino 259)
223 	 *         |   |-- d       (ino 260)
224 	 *         |
225 	 *         |-- c2          (ino 261)
226 	 *
227 	 * Tree state when the second (incremental) send is performed:
228 	 *
229 	 * .
230 	 * |-- a                   (ino 257)
231 	 *     |-- b               (ino 258)
232 	 *         |-- c2          (ino 261)
233 	 *             |-- d2      (ino 260)
234 	 *                 |-- cc  (ino 259)
235 	 *
236 	 * The sequence of steps that lead to the second state was:
237 	 *
238 	 * mv /a/b/c/d /a/b/c2/d2
239 	 * mv /a/b/c /a/b/c2/d2/cc
240 	 *
241 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
242 	 * before we move "d", which has higher inode number.
243 	 *
244 	 * So we just memorize which move/rename operations must be performed
245 	 * later when their respective parent is processed and moved/renamed.
246 	 */
247 
248 	/* Indexed by parent directory inode number. */
249 	struct rb_root pending_dir_moves;
250 
251 	/*
252 	 * Reverse index, indexed by the inode number of a directory that
253 	 * is waiting for the move/rename of its immediate parent before its
254 	 * own move/rename can be performed.
255 	 */
256 	struct rb_root waiting_dir_moves;
257 
258 	/*
259 	 * A directory that is going to be rm'ed might have a child directory
260 	 * which is in the pending directory moves index above. In this case,
261 	 * the directory can only be removed after the move/rename of its child
262 	 * is performed. Example:
263 	 *
264 	 * Parent snapshot:
265 	 *
266 	 * .                        (ino 256)
267 	 * |-- a/                   (ino 257)
268 	 *     |-- b/               (ino 258)
269 	 *         |-- c/           (ino 259)
270 	 *         |   |-- x/       (ino 260)
271 	 *         |
272 	 *         |-- y/           (ino 261)
273 	 *
274 	 * Send snapshot:
275 	 *
276 	 * .                        (ino 256)
277 	 * |-- a/                   (ino 257)
278 	 *     |-- b/               (ino 258)
279 	 *         |-- YY/          (ino 261)
280 	 *              |-- x/      (ino 260)
281 	 *
282 	 * Sequence of steps that lead to the send snapshot:
283 	 * rm -f /a/b/c/foo.txt
284 	 * mv /a/b/y /a/b/YY
285 	 * mv /a/b/c/x /a/b/YY
286 	 * rmdir /a/b/c
287 	 *
288 	 * When the child is processed, its move/rename is delayed until its
289 	 * parent is processed (as explained above), but all other operations
290 	 * like update utimes, chown, chgrp, etc, are performed and the paths
291 	 * that it uses for those operations must use the orphanized name of
292 	 * its parent (the directory we're going to rm later), so we need to
293 	 * memorize that name.
294 	 *
295 	 * Indexed by the inode number of the directory to be deleted.
296 	 */
297 	struct rb_root orphan_dirs;
298 
299 	struct rb_root rbtree_new_refs;
300 	struct rb_root rbtree_deleted_refs;
301 
302 	struct btrfs_lru_cache backref_cache;
303 	u64 backref_cache_last_reloc_trans;
304 
305 	struct btrfs_lru_cache dir_created_cache;
306 	struct btrfs_lru_cache dir_utimes_cache;
307 };
308 
309 struct pending_dir_move {
310 	struct rb_node node;
311 	struct list_head list;
312 	u64 parent_ino;
313 	u64 ino;
314 	u64 gen;
315 	struct list_head update_refs;
316 };
317 
318 struct waiting_dir_move {
319 	struct rb_node node;
320 	u64 ino;
321 	/*
322 	 * There might be some directory that could not be removed because it
323 	 * was waiting for this directory inode to be moved first. Therefore
324 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
325 	 */
326 	u64 rmdir_ino;
327 	u64 rmdir_gen;
328 	bool orphanized;
329 };
330 
331 struct orphan_dir_info {
332 	struct rb_node node;
333 	u64 ino;
334 	u64 gen;
335 	u64 last_dir_index_offset;
336 	u64 dir_high_seq_ino;
337 };
338 
339 struct name_cache_entry {
340 	/*
341 	 * The key in the entry is an inode number, and the generation matches
342 	 * the inode's generation.
343 	 */
344 	struct btrfs_lru_cache_entry entry;
345 	u64 parent_ino;
346 	u64 parent_gen;
347 	int ret;
348 	int need_later_update;
349 	/* Name length without NUL terminator. */
350 	int name_len;
351 	/* Not NUL terminated. */
352 	char name[] __counted_by(name_len) __nonstring;
353 };
354 
355 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
356 static_assert(offsetof(struct name_cache_entry, entry) == 0);
357 
358 #define ADVANCE							1
359 #define ADVANCE_ONLY_NEXT					-1
360 
361 enum btrfs_compare_tree_result {
362 	BTRFS_COMPARE_TREE_NEW,
363 	BTRFS_COMPARE_TREE_DELETED,
364 	BTRFS_COMPARE_TREE_CHANGED,
365 	BTRFS_COMPARE_TREE_SAME,
366 };
367 
368 __cold
inconsistent_snapshot_error(struct send_ctx * sctx,enum btrfs_compare_tree_result result,const char * what)369 static void inconsistent_snapshot_error(struct send_ctx *sctx,
370 					enum btrfs_compare_tree_result result,
371 					const char *what)
372 {
373 	const char *result_string;
374 
375 	switch (result) {
376 	case BTRFS_COMPARE_TREE_NEW:
377 		result_string = "new";
378 		break;
379 	case BTRFS_COMPARE_TREE_DELETED:
380 		result_string = "deleted";
381 		break;
382 	case BTRFS_COMPARE_TREE_CHANGED:
383 		result_string = "updated";
384 		break;
385 	case BTRFS_COMPARE_TREE_SAME:
386 		ASSERT(0);
387 		result_string = "unchanged";
388 		break;
389 	default:
390 		ASSERT(0);
391 		result_string = "unexpected";
392 	}
393 
394 	btrfs_err(sctx->send_root->fs_info,
395 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
396 		  result_string, what, sctx->cmp_key->objectid,
397 		  btrfs_root_id(sctx->send_root),
398 		  (sctx->parent_root ?  btrfs_root_id(sctx->parent_root) : 0));
399 }
400 
401 __maybe_unused
proto_cmd_ok(const struct send_ctx * sctx,int cmd)402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
403 {
404 	switch (sctx->proto) {
405 	case 1:	 return cmd <= BTRFS_SEND_C_MAX_V1;
406 	case 2:	 return cmd <= BTRFS_SEND_C_MAX_V2;
407 	case 3:	 return cmd <= BTRFS_SEND_C_MAX_V3;
408 	default: return false;
409 	}
410 }
411 
412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
413 
414 static struct waiting_dir_move *
415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
416 
417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
418 
need_send_hole(struct send_ctx * sctx)419 static int need_send_hole(struct send_ctx *sctx)
420 {
421 	return (sctx->parent_root && !sctx->cur_inode_new &&
422 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
423 		S_ISREG(sctx->cur_inode_mode));
424 }
425 
fs_path_reset(struct fs_path * p)426 static void fs_path_reset(struct fs_path *p)
427 {
428 	if (p->reversed) {
429 		p->start = p->buf + p->buf_len - 1;
430 		p->end = p->start;
431 		*p->start = 0;
432 	} else {
433 		p->start = p->buf;
434 		p->end = p->start;
435 		*p->start = 0;
436 	}
437 }
438 
fs_path_alloc(void)439 static struct fs_path *fs_path_alloc(void)
440 {
441 	struct fs_path *p;
442 
443 	p = kmalloc(sizeof(*p), GFP_KERNEL);
444 	if (!p)
445 		return NULL;
446 	p->reversed = 0;
447 	p->buf = p->inline_buf;
448 	p->buf_len = FS_PATH_INLINE_SIZE;
449 	fs_path_reset(p);
450 	return p;
451 }
452 
fs_path_alloc_reversed(void)453 static struct fs_path *fs_path_alloc_reversed(void)
454 {
455 	struct fs_path *p;
456 
457 	p = fs_path_alloc();
458 	if (!p)
459 		return NULL;
460 	p->reversed = 1;
461 	fs_path_reset(p);
462 	return p;
463 }
464 
fs_path_free(struct fs_path * p)465 static void fs_path_free(struct fs_path *p)
466 {
467 	if (!p)
468 		return;
469 	if (p->buf != p->inline_buf)
470 		kfree(p->buf);
471 	kfree(p);
472 }
473 
fs_path_len(struct fs_path * p)474 static int fs_path_len(struct fs_path *p)
475 {
476 	return p->end - p->start;
477 }
478 
fs_path_ensure_buf(struct fs_path * p,int len)479 static int fs_path_ensure_buf(struct fs_path *p, int len)
480 {
481 	char *tmp_buf;
482 	int path_len;
483 	int old_buf_len;
484 
485 	len++;
486 
487 	if (p->buf_len >= len)
488 		return 0;
489 
490 	if (len > PATH_MAX) {
491 		WARN_ON(1);
492 		return -ENOMEM;
493 	}
494 
495 	path_len = p->end - p->start;
496 	old_buf_len = p->buf_len;
497 
498 	/*
499 	 * Allocate to the next largest kmalloc bucket size, to let
500 	 * the fast path happen most of the time.
501 	 */
502 	len = kmalloc_size_roundup(len);
503 	/*
504 	 * First time the inline_buf does not suffice
505 	 */
506 	if (p->buf == p->inline_buf) {
507 		tmp_buf = kmalloc(len, GFP_KERNEL);
508 		if (tmp_buf)
509 			memcpy(tmp_buf, p->buf, old_buf_len);
510 	} else {
511 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
512 	}
513 	if (!tmp_buf)
514 		return -ENOMEM;
515 	p->buf = tmp_buf;
516 	p->buf_len = len;
517 
518 	if (p->reversed) {
519 		tmp_buf = p->buf + old_buf_len - path_len - 1;
520 		p->end = p->buf + p->buf_len - 1;
521 		p->start = p->end - path_len;
522 		memmove(p->start, tmp_buf, path_len + 1);
523 	} else {
524 		p->start = p->buf;
525 		p->end = p->start + path_len;
526 	}
527 	return 0;
528 }
529 
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)530 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
531 				   char **prepared)
532 {
533 	int ret;
534 	int new_len;
535 
536 	new_len = p->end - p->start + name_len;
537 	if (p->start != p->end)
538 		new_len++;
539 	ret = fs_path_ensure_buf(p, new_len);
540 	if (ret < 0)
541 		goto out;
542 
543 	if (p->reversed) {
544 		if (p->start != p->end)
545 			*--p->start = '/';
546 		p->start -= name_len;
547 		*prepared = p->start;
548 	} else {
549 		if (p->start != p->end)
550 			*p->end++ = '/';
551 		*prepared = p->end;
552 		p->end += name_len;
553 		*p->end = 0;
554 	}
555 
556 out:
557 	return ret;
558 }
559 
fs_path_add(struct fs_path * p,const char * name,int name_len)560 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
561 {
562 	int ret;
563 	char *prepared;
564 
565 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
566 	if (ret < 0)
567 		goto out;
568 	memcpy(prepared, name, name_len);
569 
570 out:
571 	return ret;
572 }
573 
fs_path_add_path(struct fs_path * p,struct fs_path * p2)574 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
575 {
576 	int ret;
577 	char *prepared;
578 
579 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
580 	if (ret < 0)
581 		goto out;
582 	memcpy(prepared, p2->start, p2->end - p2->start);
583 
584 out:
585 	return ret;
586 }
587 
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)588 static int fs_path_add_from_extent_buffer(struct fs_path *p,
589 					  struct extent_buffer *eb,
590 					  unsigned long off, int len)
591 {
592 	int ret;
593 	char *prepared;
594 
595 	ret = fs_path_prepare_for_add(p, len, &prepared);
596 	if (ret < 0)
597 		goto out;
598 
599 	read_extent_buffer(eb, prepared, off, len);
600 
601 out:
602 	return ret;
603 }
604 
fs_path_copy(struct fs_path * p,struct fs_path * from)605 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
606 {
607 	p->reversed = from->reversed;
608 	fs_path_reset(p);
609 
610 	return fs_path_add_path(p, from);
611 }
612 
fs_path_unreverse(struct fs_path * p)613 static void fs_path_unreverse(struct fs_path *p)
614 {
615 	char *tmp;
616 	int len;
617 
618 	if (!p->reversed)
619 		return;
620 
621 	tmp = p->start;
622 	len = p->end - p->start;
623 	p->start = p->buf;
624 	p->end = p->start + len;
625 	memmove(p->start, tmp, len + 1);
626 	p->reversed = 0;
627 }
628 
alloc_path_for_send(void)629 static struct btrfs_path *alloc_path_for_send(void)
630 {
631 	struct btrfs_path *path;
632 
633 	path = btrfs_alloc_path();
634 	if (!path)
635 		return NULL;
636 	path->search_commit_root = 1;
637 	path->skip_locking = 1;
638 	path->need_commit_sem = 1;
639 	return path;
640 }
641 
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
643 {
644 	int ret;
645 	u32 pos = 0;
646 
647 	while (pos < len) {
648 		ret = kernel_write(filp, buf + pos, len - pos, off);
649 		if (ret < 0)
650 			return ret;
651 		if (ret == 0)
652 			return -EIO;
653 		pos += ret;
654 	}
655 
656 	return 0;
657 }
658 
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
660 {
661 	struct btrfs_tlv_header *hdr;
662 	int total_len = sizeof(*hdr) + len;
663 	int left = sctx->send_max_size - sctx->send_size;
664 
665 	if (WARN_ON_ONCE(sctx->put_data))
666 		return -EINVAL;
667 
668 	if (unlikely(left < total_len))
669 		return -EOVERFLOW;
670 
671 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
672 	put_unaligned_le16(attr, &hdr->tlv_type);
673 	put_unaligned_le16(len, &hdr->tlv_len);
674 	memcpy(hdr + 1, data, len);
675 	sctx->send_size += total_len;
676 
677 	return 0;
678 }
679 
680 #define TLV_PUT_DEFINE_INT(bits) \
681 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
682 			u##bits attr, u##bits value)			\
683 	{								\
684 		__le##bits __tmp = cpu_to_le##bits(value);		\
685 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
686 	}
687 
688 TLV_PUT_DEFINE_INT(8)
689 TLV_PUT_DEFINE_INT(32)
690 TLV_PUT_DEFINE_INT(64)
691 
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)692 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
693 			  const char *str, int len)
694 {
695 	if (len == -1)
696 		len = strlen(str);
697 	return tlv_put(sctx, attr, str, len);
698 }
699 
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
701 			const u8 *uuid)
702 {
703 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
704 }
705 
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
707 				  struct extent_buffer *eb,
708 				  struct btrfs_timespec *ts)
709 {
710 	struct btrfs_timespec bts;
711 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
712 	return tlv_put(sctx, attr, &bts, sizeof(bts));
713 }
714 
715 
716 #define TLV_PUT(sctx, attrtype, data, attrlen) \
717 	do { \
718 		ret = tlv_put(sctx, attrtype, data, attrlen); \
719 		if (ret < 0) \
720 			goto tlv_put_failure; \
721 	} while (0)
722 
723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
724 	do { \
725 		ret = tlv_put_u##bits(sctx, attrtype, value); \
726 		if (ret < 0) \
727 			goto tlv_put_failure; \
728 	} while (0)
729 
730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
735 	do { \
736 		ret = tlv_put_string(sctx, attrtype, str, len); \
737 		if (ret < 0) \
738 			goto tlv_put_failure; \
739 	} while (0)
740 #define TLV_PUT_PATH(sctx, attrtype, p) \
741 	do { \
742 		ret = tlv_put_string(sctx, attrtype, p->start, \
743 			p->end - p->start); \
744 		if (ret < 0) \
745 			goto tlv_put_failure; \
746 	} while(0)
747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
748 	do { \
749 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
750 		if (ret < 0) \
751 			goto tlv_put_failure; \
752 	} while (0)
753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
754 	do { \
755 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
756 		if (ret < 0) \
757 			goto tlv_put_failure; \
758 	} while (0)
759 
send_header(struct send_ctx * sctx)760 static int send_header(struct send_ctx *sctx)
761 {
762 	struct btrfs_stream_header hdr;
763 
764 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
765 	hdr.version = cpu_to_le32(sctx->proto);
766 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
767 					&sctx->send_off);
768 }
769 
770 /*
771  * For each command/item we want to send to userspace, we call this function.
772  */
begin_cmd(struct send_ctx * sctx,int cmd)773 static int begin_cmd(struct send_ctx *sctx, int cmd)
774 {
775 	struct btrfs_cmd_header *hdr;
776 
777 	if (WARN_ON(!sctx->send_buf))
778 		return -EINVAL;
779 
780 	if (unlikely(sctx->send_size != 0)) {
781 		btrfs_err(sctx->send_root->fs_info,
782 			  "send: command header buffer not empty cmd %d offset %llu",
783 			  cmd, sctx->send_off);
784 		return -EINVAL;
785 	}
786 
787 	sctx->send_size += sizeof(*hdr);
788 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
789 	put_unaligned_le16(cmd, &hdr->cmd);
790 
791 	return 0;
792 }
793 
send_cmd(struct send_ctx * sctx)794 static int send_cmd(struct send_ctx *sctx)
795 {
796 	int ret;
797 	struct btrfs_cmd_header *hdr;
798 	u32 crc;
799 
800 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
801 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
802 	put_unaligned_le32(0, &hdr->crc);
803 
804 	crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
805 	put_unaligned_le32(crc, &hdr->crc);
806 
807 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
808 					&sctx->send_off);
809 
810 	sctx->send_size = 0;
811 	sctx->put_data = false;
812 
813 	return ret;
814 }
815 
816 /*
817  * Sends a move instruction to user space
818  */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)819 static int send_rename(struct send_ctx *sctx,
820 		     struct fs_path *from, struct fs_path *to)
821 {
822 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
823 	int ret;
824 
825 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
826 
827 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
828 	if (ret < 0)
829 		goto out;
830 
831 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
832 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
833 
834 	ret = send_cmd(sctx);
835 
836 tlv_put_failure:
837 out:
838 	return ret;
839 }
840 
841 /*
842  * Sends a link instruction to user space
843  */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)844 static int send_link(struct send_ctx *sctx,
845 		     struct fs_path *path, struct fs_path *lnk)
846 {
847 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
848 	int ret;
849 
850 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
851 
852 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
853 	if (ret < 0)
854 		goto out;
855 
856 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
857 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
858 
859 	ret = send_cmd(sctx);
860 
861 tlv_put_failure:
862 out:
863 	return ret;
864 }
865 
866 /*
867  * Sends an unlink instruction to user space
868  */
send_unlink(struct send_ctx * sctx,struct fs_path * path)869 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
870 {
871 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
872 	int ret;
873 
874 	btrfs_debug(fs_info, "send_unlink %s", path->start);
875 
876 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
877 	if (ret < 0)
878 		goto out;
879 
880 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
881 
882 	ret = send_cmd(sctx);
883 
884 tlv_put_failure:
885 out:
886 	return ret;
887 }
888 
889 /*
890  * Sends a rmdir instruction to user space
891  */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)892 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
893 {
894 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
895 	int ret;
896 
897 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
898 
899 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
900 	if (ret < 0)
901 		goto out;
902 
903 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
904 
905 	ret = send_cmd(sctx);
906 
907 tlv_put_failure:
908 out:
909 	return ret;
910 }
911 
912 struct btrfs_inode_info {
913 	u64 size;
914 	u64 gen;
915 	u64 mode;
916 	u64 uid;
917 	u64 gid;
918 	u64 rdev;
919 	u64 fileattr;
920 	u64 nlink;
921 };
922 
923 /*
924  * Helper function to retrieve some fields from an inode item.
925  */
get_inode_info(struct btrfs_root * root,u64 ino,struct btrfs_inode_info * info)926 static int get_inode_info(struct btrfs_root *root, u64 ino,
927 			  struct btrfs_inode_info *info)
928 {
929 	int ret;
930 	struct btrfs_path *path;
931 	struct btrfs_inode_item *ii;
932 	struct btrfs_key key;
933 
934 	path = alloc_path_for_send();
935 	if (!path)
936 		return -ENOMEM;
937 
938 	key.objectid = ino;
939 	key.type = BTRFS_INODE_ITEM_KEY;
940 	key.offset = 0;
941 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
942 	if (ret) {
943 		if (ret > 0)
944 			ret = -ENOENT;
945 		goto out;
946 	}
947 
948 	if (!info)
949 		goto out;
950 
951 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
952 			struct btrfs_inode_item);
953 	info->size = btrfs_inode_size(path->nodes[0], ii);
954 	info->gen = btrfs_inode_generation(path->nodes[0], ii);
955 	info->mode = btrfs_inode_mode(path->nodes[0], ii);
956 	info->uid = btrfs_inode_uid(path->nodes[0], ii);
957 	info->gid = btrfs_inode_gid(path->nodes[0], ii);
958 	info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
959 	info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
960 	/*
961 	 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
962 	 * otherwise logically split to 32/32 parts.
963 	 */
964 	info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
965 
966 out:
967 	btrfs_free_path(path);
968 	return ret;
969 }
970 
get_inode_gen(struct btrfs_root * root,u64 ino,u64 * gen)971 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
972 {
973 	int ret;
974 	struct btrfs_inode_info info = { 0 };
975 
976 	ASSERT(gen);
977 
978 	ret = get_inode_info(root, ino, &info);
979 	*gen = info.gen;
980 	return ret;
981 }
982 
983 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
984 				   struct fs_path *p,
985 				   void *ctx);
986 
987 /*
988  * Helper function to iterate the entries in ONE btrfs_inode_ref or
989  * btrfs_inode_extref.
990  * The iterate callback may return a non zero value to stop iteration. This can
991  * be a negative value for error codes or 1 to simply stop it.
992  *
993  * path must point to the INODE_REF or INODE_EXTREF when called.
994  */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,int resolve,iterate_inode_ref_t iterate,void * ctx)995 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
996 			     struct btrfs_key *found_key, int resolve,
997 			     iterate_inode_ref_t iterate, void *ctx)
998 {
999 	struct extent_buffer *eb = path->nodes[0];
1000 	struct btrfs_inode_ref *iref;
1001 	struct btrfs_inode_extref *extref;
1002 	struct btrfs_path *tmp_path;
1003 	struct fs_path *p;
1004 	u32 cur = 0;
1005 	u32 total;
1006 	int slot = path->slots[0];
1007 	u32 name_len;
1008 	char *start;
1009 	int ret = 0;
1010 	int num = 0;
1011 	int index;
1012 	u64 dir;
1013 	unsigned long name_off;
1014 	unsigned long elem_size;
1015 	unsigned long ptr;
1016 
1017 	p = fs_path_alloc_reversed();
1018 	if (!p)
1019 		return -ENOMEM;
1020 
1021 	tmp_path = alloc_path_for_send();
1022 	if (!tmp_path) {
1023 		fs_path_free(p);
1024 		return -ENOMEM;
1025 	}
1026 
1027 
1028 	if (found_key->type == BTRFS_INODE_REF_KEY) {
1029 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1030 						    struct btrfs_inode_ref);
1031 		total = btrfs_item_size(eb, slot);
1032 		elem_size = sizeof(*iref);
1033 	} else {
1034 		ptr = btrfs_item_ptr_offset(eb, slot);
1035 		total = btrfs_item_size(eb, slot);
1036 		elem_size = sizeof(*extref);
1037 	}
1038 
1039 	while (cur < total) {
1040 		fs_path_reset(p);
1041 
1042 		if (found_key->type == BTRFS_INODE_REF_KEY) {
1043 			iref = (struct btrfs_inode_ref *)(ptr + cur);
1044 			name_len = btrfs_inode_ref_name_len(eb, iref);
1045 			name_off = (unsigned long)(iref + 1);
1046 			index = btrfs_inode_ref_index(eb, iref);
1047 			dir = found_key->offset;
1048 		} else {
1049 			extref = (struct btrfs_inode_extref *)(ptr + cur);
1050 			name_len = btrfs_inode_extref_name_len(eb, extref);
1051 			name_off = (unsigned long)&extref->name;
1052 			index = btrfs_inode_extref_index(eb, extref);
1053 			dir = btrfs_inode_extref_parent(eb, extref);
1054 		}
1055 
1056 		if (resolve) {
1057 			start = btrfs_ref_to_path(root, tmp_path, name_len,
1058 						  name_off, eb, dir,
1059 						  p->buf, p->buf_len);
1060 			if (IS_ERR(start)) {
1061 				ret = PTR_ERR(start);
1062 				goto out;
1063 			}
1064 			if (start < p->buf) {
1065 				/* overflow , try again with larger buffer */
1066 				ret = fs_path_ensure_buf(p,
1067 						p->buf_len + p->buf - start);
1068 				if (ret < 0)
1069 					goto out;
1070 				start = btrfs_ref_to_path(root, tmp_path,
1071 							  name_len, name_off,
1072 							  eb, dir,
1073 							  p->buf, p->buf_len);
1074 				if (IS_ERR(start)) {
1075 					ret = PTR_ERR(start);
1076 					goto out;
1077 				}
1078 				if (unlikely(start < p->buf)) {
1079 					btrfs_err(root->fs_info,
1080 			"send: path ref buffer underflow for key (%llu %u %llu)",
1081 						  found_key->objectid,
1082 						  found_key->type,
1083 						  found_key->offset);
1084 					ret = -EINVAL;
1085 					goto out;
1086 				}
1087 			}
1088 			p->start = start;
1089 		} else {
1090 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1091 							     name_len);
1092 			if (ret < 0)
1093 				goto out;
1094 		}
1095 
1096 		cur += elem_size + name_len;
1097 		ret = iterate(num, dir, index, p, ctx);
1098 		if (ret)
1099 			goto out;
1100 		num++;
1101 	}
1102 
1103 out:
1104 	btrfs_free_path(tmp_path);
1105 	fs_path_free(p);
1106 	return ret;
1107 }
1108 
1109 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1110 				  const char *name, int name_len,
1111 				  const char *data, int data_len,
1112 				  void *ctx);
1113 
1114 /*
1115  * Helper function to iterate the entries in ONE btrfs_dir_item.
1116  * The iterate callback may return a non zero value to stop iteration. This can
1117  * be a negative value for error codes or 1 to simply stop it.
1118  *
1119  * path must point to the dir item when called.
1120  */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,iterate_dir_item_t iterate,void * ctx)1121 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1122 			    iterate_dir_item_t iterate, void *ctx)
1123 {
1124 	int ret = 0;
1125 	struct extent_buffer *eb;
1126 	struct btrfs_dir_item *di;
1127 	struct btrfs_key di_key;
1128 	char *buf = NULL;
1129 	int buf_len;
1130 	u32 name_len;
1131 	u32 data_len;
1132 	u32 cur;
1133 	u32 len;
1134 	u32 total;
1135 	int slot;
1136 	int num;
1137 
1138 	/*
1139 	 * Start with a small buffer (1 page). If later we end up needing more
1140 	 * space, which can happen for xattrs on a fs with a leaf size greater
1141 	 * than the page size, attempt to increase the buffer. Typically xattr
1142 	 * values are small.
1143 	 */
1144 	buf_len = PATH_MAX;
1145 	buf = kmalloc(buf_len, GFP_KERNEL);
1146 	if (!buf) {
1147 		ret = -ENOMEM;
1148 		goto out;
1149 	}
1150 
1151 	eb = path->nodes[0];
1152 	slot = path->slots[0];
1153 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1154 	cur = 0;
1155 	len = 0;
1156 	total = btrfs_item_size(eb, slot);
1157 
1158 	num = 0;
1159 	while (cur < total) {
1160 		name_len = btrfs_dir_name_len(eb, di);
1161 		data_len = btrfs_dir_data_len(eb, di);
1162 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1163 
1164 		if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1165 			if (name_len > XATTR_NAME_MAX) {
1166 				ret = -ENAMETOOLONG;
1167 				goto out;
1168 			}
1169 			if (name_len + data_len >
1170 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1171 				ret = -E2BIG;
1172 				goto out;
1173 			}
1174 		} else {
1175 			/*
1176 			 * Path too long
1177 			 */
1178 			if (name_len + data_len > PATH_MAX) {
1179 				ret = -ENAMETOOLONG;
1180 				goto out;
1181 			}
1182 		}
1183 
1184 		if (name_len + data_len > buf_len) {
1185 			buf_len = name_len + data_len;
1186 			if (is_vmalloc_addr(buf)) {
1187 				vfree(buf);
1188 				buf = NULL;
1189 			} else {
1190 				char *tmp = krealloc(buf, buf_len,
1191 						GFP_KERNEL | __GFP_NOWARN);
1192 
1193 				if (!tmp)
1194 					kfree(buf);
1195 				buf = tmp;
1196 			}
1197 			if (!buf) {
1198 				buf = kvmalloc(buf_len, GFP_KERNEL);
1199 				if (!buf) {
1200 					ret = -ENOMEM;
1201 					goto out;
1202 				}
1203 			}
1204 		}
1205 
1206 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1207 				name_len + data_len);
1208 
1209 		len = sizeof(*di) + name_len + data_len;
1210 		di = (struct btrfs_dir_item *)((char *)di + len);
1211 		cur += len;
1212 
1213 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1214 			      data_len, ctx);
1215 		if (ret < 0)
1216 			goto out;
1217 		if (ret) {
1218 			ret = 0;
1219 			goto out;
1220 		}
1221 
1222 		num++;
1223 	}
1224 
1225 out:
1226 	kvfree(buf);
1227 	return ret;
1228 }
1229 
__copy_first_ref(int num,u64 dir,int index,struct fs_path * p,void * ctx)1230 static int __copy_first_ref(int num, u64 dir, int index,
1231 			    struct fs_path *p, void *ctx)
1232 {
1233 	int ret;
1234 	struct fs_path *pt = ctx;
1235 
1236 	ret = fs_path_copy(pt, p);
1237 	if (ret < 0)
1238 		return ret;
1239 
1240 	/* we want the first only */
1241 	return 1;
1242 }
1243 
1244 /*
1245  * Retrieve the first path of an inode. If an inode has more then one
1246  * ref/hardlink, this is ignored.
1247  */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1248 static int get_inode_path(struct btrfs_root *root,
1249 			  u64 ino, struct fs_path *path)
1250 {
1251 	int ret;
1252 	struct btrfs_key key, found_key;
1253 	struct btrfs_path *p;
1254 
1255 	p = alloc_path_for_send();
1256 	if (!p)
1257 		return -ENOMEM;
1258 
1259 	fs_path_reset(path);
1260 
1261 	key.objectid = ino;
1262 	key.type = BTRFS_INODE_REF_KEY;
1263 	key.offset = 0;
1264 
1265 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1266 	if (ret < 0)
1267 		goto out;
1268 	if (ret) {
1269 		ret = 1;
1270 		goto out;
1271 	}
1272 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1273 	if (found_key.objectid != ino ||
1274 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1275 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1276 		ret = -ENOENT;
1277 		goto out;
1278 	}
1279 
1280 	ret = iterate_inode_ref(root, p, &found_key, 1,
1281 				__copy_first_ref, path);
1282 	if (ret < 0)
1283 		goto out;
1284 	ret = 0;
1285 
1286 out:
1287 	btrfs_free_path(p);
1288 	return ret;
1289 }
1290 
1291 struct backref_ctx {
1292 	struct send_ctx *sctx;
1293 
1294 	/* number of total found references */
1295 	u64 found;
1296 
1297 	/*
1298 	 * used for clones found in send_root. clones found behind cur_objectid
1299 	 * and cur_offset are not considered as allowed clones.
1300 	 */
1301 	u64 cur_objectid;
1302 	u64 cur_offset;
1303 
1304 	/* may be truncated in case it's the last extent in a file */
1305 	u64 extent_len;
1306 
1307 	/* The bytenr the file extent item we are processing refers to. */
1308 	u64 bytenr;
1309 	/* The owner (root id) of the data backref for the current extent. */
1310 	u64 backref_owner;
1311 	/* The offset of the data backref for the current extent. */
1312 	u64 backref_offset;
1313 };
1314 
__clone_root_cmp_bsearch(const void * key,const void * elt)1315 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1316 {
1317 	u64 root = (u64)(uintptr_t)key;
1318 	const struct clone_root *cr = elt;
1319 
1320 	if (root < btrfs_root_id(cr->root))
1321 		return -1;
1322 	if (root > btrfs_root_id(cr->root))
1323 		return 1;
1324 	return 0;
1325 }
1326 
__clone_root_cmp_sort(const void * e1,const void * e2)1327 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1328 {
1329 	const struct clone_root *cr1 = e1;
1330 	const struct clone_root *cr2 = e2;
1331 
1332 	if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root))
1333 		return -1;
1334 	if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root))
1335 		return 1;
1336 	return 0;
1337 }
1338 
1339 /*
1340  * Called for every backref that is found for the current extent.
1341  * Results are collected in sctx->clone_roots->ino/offset.
1342  */
iterate_backrefs(u64 ino,u64 offset,u64 num_bytes,u64 root_id,void * ctx_)1343 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1344 			    void *ctx_)
1345 {
1346 	struct backref_ctx *bctx = ctx_;
1347 	struct clone_root *clone_root;
1348 
1349 	/* First check if the root is in the list of accepted clone sources */
1350 	clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1351 			     bctx->sctx->clone_roots_cnt,
1352 			     sizeof(struct clone_root),
1353 			     __clone_root_cmp_bsearch);
1354 	if (!clone_root)
1355 		return 0;
1356 
1357 	/* This is our own reference, bail out as we can't clone from it. */
1358 	if (clone_root->root == bctx->sctx->send_root &&
1359 	    ino == bctx->cur_objectid &&
1360 	    offset == bctx->cur_offset)
1361 		return 0;
1362 
1363 	/*
1364 	 * Make sure we don't consider clones from send_root that are
1365 	 * behind the current inode/offset.
1366 	 */
1367 	if (clone_root->root == bctx->sctx->send_root) {
1368 		/*
1369 		 * If the source inode was not yet processed we can't issue a
1370 		 * clone operation, as the source extent does not exist yet at
1371 		 * the destination of the stream.
1372 		 */
1373 		if (ino > bctx->cur_objectid)
1374 			return 0;
1375 		/*
1376 		 * We clone from the inode currently being sent as long as the
1377 		 * source extent is already processed, otherwise we could try
1378 		 * to clone from an extent that does not exist yet at the
1379 		 * destination of the stream.
1380 		 */
1381 		if (ino == bctx->cur_objectid &&
1382 		    offset + bctx->extent_len >
1383 		    bctx->sctx->cur_inode_next_write_offset)
1384 			return 0;
1385 	}
1386 
1387 	bctx->found++;
1388 	clone_root->found_ref = true;
1389 
1390 	/*
1391 	 * If the given backref refers to a file extent item with a larger
1392 	 * number of bytes than what we found before, use the new one so that
1393 	 * we clone more optimally and end up doing less writes and getting
1394 	 * less exclusive, non-shared extents at the destination.
1395 	 */
1396 	if (num_bytes > clone_root->num_bytes) {
1397 		clone_root->ino = ino;
1398 		clone_root->offset = offset;
1399 		clone_root->num_bytes = num_bytes;
1400 
1401 		/*
1402 		 * Found a perfect candidate, so there's no need to continue
1403 		 * backref walking.
1404 		 */
1405 		if (num_bytes >= bctx->extent_len)
1406 			return BTRFS_ITERATE_EXTENT_INODES_STOP;
1407 	}
1408 
1409 	return 0;
1410 }
1411 
lookup_backref_cache(u64 leaf_bytenr,void * ctx,const u64 ** root_ids_ret,int * root_count_ret)1412 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1413 				 const u64 **root_ids_ret, int *root_count_ret)
1414 {
1415 	struct backref_ctx *bctx = ctx;
1416 	struct send_ctx *sctx = bctx->sctx;
1417 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1418 	const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1419 	struct btrfs_lru_cache_entry *raw_entry;
1420 	struct backref_cache_entry *entry;
1421 
1422 	if (sctx->backref_cache.size == 0)
1423 		return false;
1424 
1425 	/*
1426 	 * If relocation happened since we first filled the cache, then we must
1427 	 * empty the cache and can not use it, because even though we operate on
1428 	 * read-only roots, their leaves and nodes may have been reallocated and
1429 	 * now be used for different nodes/leaves of the same tree or some other
1430 	 * tree.
1431 	 *
1432 	 * We are called from iterate_extent_inodes() while either holding a
1433 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1434 	 * to take any lock here.
1435 	 */
1436 	if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1437 		btrfs_lru_cache_clear(&sctx->backref_cache);
1438 		return false;
1439 	}
1440 
1441 	raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1442 	if (!raw_entry)
1443 		return false;
1444 
1445 	entry = container_of(raw_entry, struct backref_cache_entry, entry);
1446 	*root_ids_ret = entry->root_ids;
1447 	*root_count_ret = entry->num_roots;
1448 
1449 	return true;
1450 }
1451 
store_backref_cache(u64 leaf_bytenr,const struct ulist * root_ids,void * ctx)1452 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1453 				void *ctx)
1454 {
1455 	struct backref_ctx *bctx = ctx;
1456 	struct send_ctx *sctx = bctx->sctx;
1457 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1458 	struct backref_cache_entry *new_entry;
1459 	struct ulist_iterator uiter;
1460 	struct ulist_node *node;
1461 	int ret;
1462 
1463 	/*
1464 	 * We're called while holding a transaction handle or while holding
1465 	 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1466 	 * NOFS allocation.
1467 	 */
1468 	new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1469 	/* No worries, cache is optional. */
1470 	if (!new_entry)
1471 		return;
1472 
1473 	new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1474 	new_entry->entry.gen = 0;
1475 	new_entry->num_roots = 0;
1476 	ULIST_ITER_INIT(&uiter);
1477 	while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1478 		const u64 root_id = node->val;
1479 		struct clone_root *root;
1480 
1481 		root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1482 			       sctx->clone_roots_cnt, sizeof(struct clone_root),
1483 			       __clone_root_cmp_bsearch);
1484 		if (!root)
1485 			continue;
1486 
1487 		/* Too many roots, just exit, no worries as caching is optional. */
1488 		if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1489 			kfree(new_entry);
1490 			return;
1491 		}
1492 
1493 		new_entry->root_ids[new_entry->num_roots] = root_id;
1494 		new_entry->num_roots++;
1495 	}
1496 
1497 	/*
1498 	 * We may have not added any roots to the new cache entry, which means
1499 	 * none of the roots is part of the list of roots from which we are
1500 	 * allowed to clone. Cache the new entry as it's still useful to avoid
1501 	 * backref walking to determine which roots have a path to the leaf.
1502 	 *
1503 	 * Also use GFP_NOFS because we're called while holding a transaction
1504 	 * handle or while holding fs_info->commit_root_sem.
1505 	 */
1506 	ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1507 				    GFP_NOFS);
1508 	ASSERT(ret == 0 || ret == -ENOMEM);
1509 	if (ret) {
1510 		/* Caching is optional, no worries. */
1511 		kfree(new_entry);
1512 		return;
1513 	}
1514 
1515 	/*
1516 	 * We are called from iterate_extent_inodes() while either holding a
1517 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1518 	 * to take any lock here.
1519 	 */
1520 	if (sctx->backref_cache.size == 1)
1521 		sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1522 }
1523 
check_extent_item(u64 bytenr,const struct btrfs_extent_item * ei,const struct extent_buffer * leaf,void * ctx)1524 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1525 			     const struct extent_buffer *leaf, void *ctx)
1526 {
1527 	const u64 refs = btrfs_extent_refs(leaf, ei);
1528 	const struct backref_ctx *bctx = ctx;
1529 	const struct send_ctx *sctx = bctx->sctx;
1530 
1531 	if (bytenr == bctx->bytenr) {
1532 		const u64 flags = btrfs_extent_flags(leaf, ei);
1533 
1534 		if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1535 			return -EUCLEAN;
1536 
1537 		/*
1538 		 * If we have only one reference and only the send root as a
1539 		 * clone source - meaning no clone roots were given in the
1540 		 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1541 		 * it's our reference and there's no point in doing backref
1542 		 * walking which is expensive, so exit early.
1543 		 */
1544 		if (refs == 1 && sctx->clone_roots_cnt == 1)
1545 			return -ENOENT;
1546 	}
1547 
1548 	/*
1549 	 * Backreference walking (iterate_extent_inodes() below) is currently
1550 	 * too expensive when an extent has a large number of references, both
1551 	 * in time spent and used memory. So for now just fallback to write
1552 	 * operations instead of clone operations when an extent has more than
1553 	 * a certain amount of references.
1554 	 */
1555 	if (refs > SEND_MAX_EXTENT_REFS)
1556 		return -ENOENT;
1557 
1558 	return 0;
1559 }
1560 
skip_self_data_ref(u64 root,u64 ino,u64 offset,void * ctx)1561 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1562 {
1563 	const struct backref_ctx *bctx = ctx;
1564 
1565 	if (ino == bctx->cur_objectid &&
1566 	    root == bctx->backref_owner &&
1567 	    offset == bctx->backref_offset)
1568 		return true;
1569 
1570 	return false;
1571 }
1572 
1573 /*
1574  * Given an inode, offset and extent item, it finds a good clone for a clone
1575  * instruction. Returns -ENOENT when none could be found. The function makes
1576  * sure that the returned clone is usable at the point where sending is at the
1577  * moment. This means, that no clones are accepted which lie behind the current
1578  * inode+offset.
1579  *
1580  * path must point to the extent item when called.
1581  */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1582 static int find_extent_clone(struct send_ctx *sctx,
1583 			     struct btrfs_path *path,
1584 			     u64 ino, u64 data_offset,
1585 			     u64 ino_size,
1586 			     struct clone_root **found)
1587 {
1588 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1589 	int ret;
1590 	int extent_type;
1591 	u64 logical;
1592 	u64 disk_byte;
1593 	u64 num_bytes;
1594 	struct btrfs_file_extent_item *fi;
1595 	struct extent_buffer *eb = path->nodes[0];
1596 	struct backref_ctx backref_ctx = { 0 };
1597 	struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1598 	struct clone_root *cur_clone_root;
1599 	int compressed;
1600 	u32 i;
1601 
1602 	/*
1603 	 * With fallocate we can get prealloc extents beyond the inode's i_size,
1604 	 * so we don't do anything here because clone operations can not clone
1605 	 * to a range beyond i_size without increasing the i_size of the
1606 	 * destination inode.
1607 	 */
1608 	if (data_offset >= ino_size)
1609 		return 0;
1610 
1611 	fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1612 	extent_type = btrfs_file_extent_type(eb, fi);
1613 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1614 		return -ENOENT;
1615 
1616 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1617 	if (disk_byte == 0)
1618 		return -ENOENT;
1619 
1620 	compressed = btrfs_file_extent_compression(eb, fi);
1621 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1622 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1623 
1624 	/*
1625 	 * Setup the clone roots.
1626 	 */
1627 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1628 		cur_clone_root = sctx->clone_roots + i;
1629 		cur_clone_root->ino = (u64)-1;
1630 		cur_clone_root->offset = 0;
1631 		cur_clone_root->num_bytes = 0;
1632 		cur_clone_root->found_ref = false;
1633 	}
1634 
1635 	backref_ctx.sctx = sctx;
1636 	backref_ctx.cur_objectid = ino;
1637 	backref_ctx.cur_offset = data_offset;
1638 	backref_ctx.bytenr = disk_byte;
1639 	/*
1640 	 * Use the header owner and not the send root's id, because in case of a
1641 	 * snapshot we can have shared subtrees.
1642 	 */
1643 	backref_ctx.backref_owner = btrfs_header_owner(eb);
1644 	backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1645 
1646 	/*
1647 	 * The last extent of a file may be too large due to page alignment.
1648 	 * We need to adjust extent_len in this case so that the checks in
1649 	 * iterate_backrefs() work.
1650 	 */
1651 	if (data_offset + num_bytes >= ino_size)
1652 		backref_ctx.extent_len = ino_size - data_offset;
1653 	else
1654 		backref_ctx.extent_len = num_bytes;
1655 
1656 	/*
1657 	 * Now collect all backrefs.
1658 	 */
1659 	backref_walk_ctx.bytenr = disk_byte;
1660 	if (compressed == BTRFS_COMPRESS_NONE)
1661 		backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1662 	backref_walk_ctx.fs_info = fs_info;
1663 	backref_walk_ctx.cache_lookup = lookup_backref_cache;
1664 	backref_walk_ctx.cache_store = store_backref_cache;
1665 	backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1666 	backref_walk_ctx.check_extent_item = check_extent_item;
1667 	backref_walk_ctx.user_ctx = &backref_ctx;
1668 
1669 	/*
1670 	 * If have a single clone root, then it's the send root and we can tell
1671 	 * the backref walking code to skip our own backref and not resolve it,
1672 	 * since we can not use it for cloning - the source and destination
1673 	 * ranges can't overlap and in case the leaf is shared through a subtree
1674 	 * due to snapshots, we can't use those other roots since they are not
1675 	 * in the list of clone roots.
1676 	 */
1677 	if (sctx->clone_roots_cnt == 1)
1678 		backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1679 
1680 	ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1681 				    &backref_ctx);
1682 	if (ret < 0)
1683 		return ret;
1684 
1685 	down_read(&fs_info->commit_root_sem);
1686 	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1687 		/*
1688 		 * A transaction commit for a transaction in which block group
1689 		 * relocation was done just happened.
1690 		 * The disk_bytenr of the file extent item we processed is
1691 		 * possibly stale, referring to the extent's location before
1692 		 * relocation. So act as if we haven't found any clone sources
1693 		 * and fallback to write commands, which will read the correct
1694 		 * data from the new extent location. Otherwise we will fail
1695 		 * below because we haven't found our own back reference or we
1696 		 * could be getting incorrect sources in case the old extent
1697 		 * was already reallocated after the relocation.
1698 		 */
1699 		up_read(&fs_info->commit_root_sem);
1700 		return -ENOENT;
1701 	}
1702 	up_read(&fs_info->commit_root_sem);
1703 
1704 	btrfs_debug(fs_info,
1705 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1706 		    data_offset, ino, num_bytes, logical);
1707 
1708 	if (!backref_ctx.found) {
1709 		btrfs_debug(fs_info, "no clones found");
1710 		return -ENOENT;
1711 	}
1712 
1713 	cur_clone_root = NULL;
1714 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1715 		struct clone_root *clone_root = &sctx->clone_roots[i];
1716 
1717 		if (!clone_root->found_ref)
1718 			continue;
1719 
1720 		/*
1721 		 * Choose the root from which we can clone more bytes, to
1722 		 * minimize write operations and therefore have more extent
1723 		 * sharing at the destination (the same as in the source).
1724 		 */
1725 		if (!cur_clone_root ||
1726 		    clone_root->num_bytes > cur_clone_root->num_bytes) {
1727 			cur_clone_root = clone_root;
1728 
1729 			/*
1730 			 * We found an optimal clone candidate (any inode from
1731 			 * any root is fine), so we're done.
1732 			 */
1733 			if (clone_root->num_bytes >= backref_ctx.extent_len)
1734 				break;
1735 		}
1736 	}
1737 
1738 	if (cur_clone_root) {
1739 		*found = cur_clone_root;
1740 		ret = 0;
1741 	} else {
1742 		ret = -ENOENT;
1743 	}
1744 
1745 	return ret;
1746 }
1747 
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1748 static int read_symlink(struct btrfs_root *root,
1749 			u64 ino,
1750 			struct fs_path *dest)
1751 {
1752 	int ret;
1753 	struct btrfs_path *path;
1754 	struct btrfs_key key;
1755 	struct btrfs_file_extent_item *ei;
1756 	u8 type;
1757 	u8 compression;
1758 	unsigned long off;
1759 	int len;
1760 
1761 	path = alloc_path_for_send();
1762 	if (!path)
1763 		return -ENOMEM;
1764 
1765 	key.objectid = ino;
1766 	key.type = BTRFS_EXTENT_DATA_KEY;
1767 	key.offset = 0;
1768 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1769 	if (ret < 0)
1770 		goto out;
1771 	if (ret) {
1772 		/*
1773 		 * An empty symlink inode. Can happen in rare error paths when
1774 		 * creating a symlink (transaction committed before the inode
1775 		 * eviction handler removed the symlink inode items and a crash
1776 		 * happened in between or the subvol was snapshoted in between).
1777 		 * Print an informative message to dmesg/syslog so that the user
1778 		 * can delete the symlink.
1779 		 */
1780 		btrfs_err(root->fs_info,
1781 			  "Found empty symlink inode %llu at root %llu",
1782 			  ino, btrfs_root_id(root));
1783 		ret = -EIO;
1784 		goto out;
1785 	}
1786 
1787 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1788 			struct btrfs_file_extent_item);
1789 	type = btrfs_file_extent_type(path->nodes[0], ei);
1790 	if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1791 		ret = -EUCLEAN;
1792 		btrfs_crit(root->fs_info,
1793 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1794 			   ino, btrfs_root_id(root), type);
1795 		goto out;
1796 	}
1797 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1798 	if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1799 		ret = -EUCLEAN;
1800 		btrfs_crit(root->fs_info,
1801 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1802 			   ino, btrfs_root_id(root), compression);
1803 		goto out;
1804 	}
1805 
1806 	off = btrfs_file_extent_inline_start(ei);
1807 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1808 
1809 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1810 
1811 out:
1812 	btrfs_free_path(path);
1813 	return ret;
1814 }
1815 
1816 /*
1817  * Helper function to generate a file name that is unique in the root of
1818  * send_root and parent_root. This is used to generate names for orphan inodes.
1819  */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1820 static int gen_unique_name(struct send_ctx *sctx,
1821 			   u64 ino, u64 gen,
1822 			   struct fs_path *dest)
1823 {
1824 	int ret = 0;
1825 	struct btrfs_path *path;
1826 	struct btrfs_dir_item *di;
1827 	char tmp[64];
1828 	int len;
1829 	u64 idx = 0;
1830 
1831 	path = alloc_path_for_send();
1832 	if (!path)
1833 		return -ENOMEM;
1834 
1835 	while (1) {
1836 		struct fscrypt_str tmp_name;
1837 
1838 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1839 				ino, gen, idx);
1840 		ASSERT(len < sizeof(tmp));
1841 		tmp_name.name = tmp;
1842 		tmp_name.len = strlen(tmp);
1843 
1844 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1845 				path, BTRFS_FIRST_FREE_OBJECTID,
1846 				&tmp_name, 0);
1847 		btrfs_release_path(path);
1848 		if (IS_ERR(di)) {
1849 			ret = PTR_ERR(di);
1850 			goto out;
1851 		}
1852 		if (di) {
1853 			/* not unique, try again */
1854 			idx++;
1855 			continue;
1856 		}
1857 
1858 		if (!sctx->parent_root) {
1859 			/* unique */
1860 			ret = 0;
1861 			break;
1862 		}
1863 
1864 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1865 				path, BTRFS_FIRST_FREE_OBJECTID,
1866 				&tmp_name, 0);
1867 		btrfs_release_path(path);
1868 		if (IS_ERR(di)) {
1869 			ret = PTR_ERR(di);
1870 			goto out;
1871 		}
1872 		if (di) {
1873 			/* not unique, try again */
1874 			idx++;
1875 			continue;
1876 		}
1877 		/* unique */
1878 		break;
1879 	}
1880 
1881 	ret = fs_path_add(dest, tmp, strlen(tmp));
1882 
1883 out:
1884 	btrfs_free_path(path);
1885 	return ret;
1886 }
1887 
1888 enum inode_state {
1889 	inode_state_no_change,
1890 	inode_state_will_create,
1891 	inode_state_did_create,
1892 	inode_state_will_delete,
1893 	inode_state_did_delete,
1894 };
1895 
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1896 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1897 			       u64 *send_gen, u64 *parent_gen)
1898 {
1899 	int ret;
1900 	int left_ret;
1901 	int right_ret;
1902 	u64 left_gen;
1903 	u64 right_gen = 0;
1904 	struct btrfs_inode_info info;
1905 
1906 	ret = get_inode_info(sctx->send_root, ino, &info);
1907 	if (ret < 0 && ret != -ENOENT)
1908 		goto out;
1909 	left_ret = (info.nlink == 0) ? -ENOENT : ret;
1910 	left_gen = info.gen;
1911 	if (send_gen)
1912 		*send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1913 
1914 	if (!sctx->parent_root) {
1915 		right_ret = -ENOENT;
1916 	} else {
1917 		ret = get_inode_info(sctx->parent_root, ino, &info);
1918 		if (ret < 0 && ret != -ENOENT)
1919 			goto out;
1920 		right_ret = (info.nlink == 0) ? -ENOENT : ret;
1921 		right_gen = info.gen;
1922 		if (parent_gen)
1923 			*parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1924 	}
1925 
1926 	if (!left_ret && !right_ret) {
1927 		if (left_gen == gen && right_gen == gen) {
1928 			ret = inode_state_no_change;
1929 		} else if (left_gen == gen) {
1930 			if (ino < sctx->send_progress)
1931 				ret = inode_state_did_create;
1932 			else
1933 				ret = inode_state_will_create;
1934 		} else if (right_gen == gen) {
1935 			if (ino < sctx->send_progress)
1936 				ret = inode_state_did_delete;
1937 			else
1938 				ret = inode_state_will_delete;
1939 		} else  {
1940 			ret = -ENOENT;
1941 		}
1942 	} else if (!left_ret) {
1943 		if (left_gen == gen) {
1944 			if (ino < sctx->send_progress)
1945 				ret = inode_state_did_create;
1946 			else
1947 				ret = inode_state_will_create;
1948 		} else {
1949 			ret = -ENOENT;
1950 		}
1951 	} else if (!right_ret) {
1952 		if (right_gen == gen) {
1953 			if (ino < sctx->send_progress)
1954 				ret = inode_state_did_delete;
1955 			else
1956 				ret = inode_state_will_delete;
1957 		} else {
1958 			ret = -ENOENT;
1959 		}
1960 	} else {
1961 		ret = -ENOENT;
1962 	}
1963 
1964 out:
1965 	return ret;
1966 }
1967 
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1968 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1969 			     u64 *send_gen, u64 *parent_gen)
1970 {
1971 	int ret;
1972 
1973 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1974 		return 1;
1975 
1976 	ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1977 	if (ret < 0)
1978 		goto out;
1979 
1980 	if (ret == inode_state_no_change ||
1981 	    ret == inode_state_did_create ||
1982 	    ret == inode_state_will_delete)
1983 		ret = 1;
1984 	else
1985 		ret = 0;
1986 
1987 out:
1988 	return ret;
1989 }
1990 
1991 /*
1992  * Helper function to lookup a dir item in a dir.
1993  */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode)1994 static int lookup_dir_item_inode(struct btrfs_root *root,
1995 				 u64 dir, const char *name, int name_len,
1996 				 u64 *found_inode)
1997 {
1998 	int ret = 0;
1999 	struct btrfs_dir_item *di;
2000 	struct btrfs_key key;
2001 	struct btrfs_path *path;
2002 	struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
2003 
2004 	path = alloc_path_for_send();
2005 	if (!path)
2006 		return -ENOMEM;
2007 
2008 	di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
2009 	if (IS_ERR_OR_NULL(di)) {
2010 		ret = di ? PTR_ERR(di) : -ENOENT;
2011 		goto out;
2012 	}
2013 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2014 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
2015 		ret = -ENOENT;
2016 		goto out;
2017 	}
2018 	*found_inode = key.objectid;
2019 
2020 out:
2021 	btrfs_free_path(path);
2022 	return ret;
2023 }
2024 
2025 /*
2026  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2027  * generation of the parent dir and the name of the dir entry.
2028  */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)2029 static int get_first_ref(struct btrfs_root *root, u64 ino,
2030 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
2031 {
2032 	int ret;
2033 	struct btrfs_key key;
2034 	struct btrfs_key found_key;
2035 	struct btrfs_path *path;
2036 	int len;
2037 	u64 parent_dir;
2038 
2039 	path = alloc_path_for_send();
2040 	if (!path)
2041 		return -ENOMEM;
2042 
2043 	key.objectid = ino;
2044 	key.type = BTRFS_INODE_REF_KEY;
2045 	key.offset = 0;
2046 
2047 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2048 	if (ret < 0)
2049 		goto out;
2050 	if (!ret)
2051 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2052 				path->slots[0]);
2053 	if (ret || found_key.objectid != ino ||
2054 	    (found_key.type != BTRFS_INODE_REF_KEY &&
2055 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2056 		ret = -ENOENT;
2057 		goto out;
2058 	}
2059 
2060 	if (found_key.type == BTRFS_INODE_REF_KEY) {
2061 		struct btrfs_inode_ref *iref;
2062 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2063 				      struct btrfs_inode_ref);
2064 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2065 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2066 						     (unsigned long)(iref + 1),
2067 						     len);
2068 		parent_dir = found_key.offset;
2069 	} else {
2070 		struct btrfs_inode_extref *extref;
2071 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2072 					struct btrfs_inode_extref);
2073 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2074 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2075 					(unsigned long)&extref->name, len);
2076 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2077 	}
2078 	if (ret < 0)
2079 		goto out;
2080 	btrfs_release_path(path);
2081 
2082 	if (dir_gen) {
2083 		ret = get_inode_gen(root, parent_dir, dir_gen);
2084 		if (ret < 0)
2085 			goto out;
2086 	}
2087 
2088 	*dir = parent_dir;
2089 
2090 out:
2091 	btrfs_free_path(path);
2092 	return ret;
2093 }
2094 
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)2095 static int is_first_ref(struct btrfs_root *root,
2096 			u64 ino, u64 dir,
2097 			const char *name, int name_len)
2098 {
2099 	int ret;
2100 	struct fs_path *tmp_name;
2101 	u64 tmp_dir;
2102 
2103 	tmp_name = fs_path_alloc();
2104 	if (!tmp_name)
2105 		return -ENOMEM;
2106 
2107 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2108 	if (ret < 0)
2109 		goto out;
2110 
2111 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2112 		ret = 0;
2113 		goto out;
2114 	}
2115 
2116 	ret = !memcmp(tmp_name->start, name, name_len);
2117 
2118 out:
2119 	fs_path_free(tmp_name);
2120 	return ret;
2121 }
2122 
2123 /*
2124  * Used by process_recorded_refs to determine if a new ref would overwrite an
2125  * already existing ref. In case it detects an overwrite, it returns the
2126  * inode/gen in who_ino/who_gen.
2127  * When an overwrite is detected, process_recorded_refs does proper orphanizing
2128  * to make sure later references to the overwritten inode are possible.
2129  * Orphanizing is however only required for the first ref of an inode.
2130  * process_recorded_refs does an additional is_first_ref check to see if
2131  * orphanizing is really required.
2132  */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen,u64 * who_mode)2133 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2134 			      const char *name, int name_len,
2135 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
2136 {
2137 	int ret;
2138 	u64 parent_root_dir_gen;
2139 	u64 other_inode = 0;
2140 	struct btrfs_inode_info info;
2141 
2142 	if (!sctx->parent_root)
2143 		return 0;
2144 
2145 	ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2146 	if (ret <= 0)
2147 		return 0;
2148 
2149 	/*
2150 	 * If we have a parent root we need to verify that the parent dir was
2151 	 * not deleted and then re-created, if it was then we have no overwrite
2152 	 * and we can just unlink this entry.
2153 	 *
2154 	 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2155 	 * parent root.
2156 	 */
2157 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2158 	    parent_root_dir_gen != dir_gen)
2159 		return 0;
2160 
2161 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2162 				    &other_inode);
2163 	if (ret == -ENOENT)
2164 		return 0;
2165 	else if (ret < 0)
2166 		return ret;
2167 
2168 	/*
2169 	 * Check if the overwritten ref was already processed. If yes, the ref
2170 	 * was already unlinked/moved, so we can safely assume that we will not
2171 	 * overwrite anything at this point in time.
2172 	 */
2173 	if (other_inode > sctx->send_progress ||
2174 	    is_waiting_for_move(sctx, other_inode)) {
2175 		ret = get_inode_info(sctx->parent_root, other_inode, &info);
2176 		if (ret < 0)
2177 			return ret;
2178 
2179 		*who_ino = other_inode;
2180 		*who_gen = info.gen;
2181 		*who_mode = info.mode;
2182 		return 1;
2183 	}
2184 
2185 	return 0;
2186 }
2187 
2188 /*
2189  * Checks if the ref was overwritten by an already processed inode. This is
2190  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2191  * thus the orphan name needs be used.
2192  * process_recorded_refs also uses it to avoid unlinking of refs that were
2193  * overwritten.
2194  */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)2195 static int did_overwrite_ref(struct send_ctx *sctx,
2196 			    u64 dir, u64 dir_gen,
2197 			    u64 ino, u64 ino_gen,
2198 			    const char *name, int name_len)
2199 {
2200 	int ret;
2201 	u64 ow_inode;
2202 	u64 ow_gen = 0;
2203 	u64 send_root_dir_gen;
2204 
2205 	if (!sctx->parent_root)
2206 		return 0;
2207 
2208 	ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2209 	if (ret <= 0)
2210 		return ret;
2211 
2212 	/*
2213 	 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2214 	 * send root.
2215 	 */
2216 	if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2217 		return 0;
2218 
2219 	/* check if the ref was overwritten by another ref */
2220 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2221 				    &ow_inode);
2222 	if (ret == -ENOENT) {
2223 		/* was never and will never be overwritten */
2224 		return 0;
2225 	} else if (ret < 0) {
2226 		return ret;
2227 	}
2228 
2229 	if (ow_inode == ino) {
2230 		ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2231 		if (ret < 0)
2232 			return ret;
2233 
2234 		/* It's the same inode, so no overwrite happened. */
2235 		if (ow_gen == ino_gen)
2236 			return 0;
2237 	}
2238 
2239 	/*
2240 	 * We know that it is or will be overwritten. Check this now.
2241 	 * The current inode being processed might have been the one that caused
2242 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2243 	 * the current inode being processed.
2244 	 */
2245 	if (ow_inode < sctx->send_progress)
2246 		return 1;
2247 
2248 	if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2249 		if (ow_gen == 0) {
2250 			ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2251 			if (ret < 0)
2252 				return ret;
2253 		}
2254 		if (ow_gen == sctx->cur_inode_gen)
2255 			return 1;
2256 	}
2257 
2258 	return 0;
2259 }
2260 
2261 /*
2262  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2263  * that got overwritten. This is used by process_recorded_refs to determine
2264  * if it has to use the path as returned by get_cur_path or the orphan name.
2265  */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)2266 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2267 {
2268 	int ret = 0;
2269 	struct fs_path *name = NULL;
2270 	u64 dir;
2271 	u64 dir_gen;
2272 
2273 	if (!sctx->parent_root)
2274 		goto out;
2275 
2276 	name = fs_path_alloc();
2277 	if (!name)
2278 		return -ENOMEM;
2279 
2280 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2281 	if (ret < 0)
2282 		goto out;
2283 
2284 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2285 			name->start, fs_path_len(name));
2286 
2287 out:
2288 	fs_path_free(name);
2289 	return ret;
2290 }
2291 
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2292 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2293 							 u64 ino, u64 gen)
2294 {
2295 	struct btrfs_lru_cache_entry *entry;
2296 
2297 	entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2298 	if (!entry)
2299 		return NULL;
2300 
2301 	return container_of(entry, struct name_cache_entry, entry);
2302 }
2303 
2304 /*
2305  * Used by get_cur_path for each ref up to the root.
2306  * Returns 0 if it succeeded.
2307  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2308  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2309  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2310  * Returns <0 in case of error.
2311  */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2312 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2313 				     u64 ino, u64 gen,
2314 				     u64 *parent_ino,
2315 				     u64 *parent_gen,
2316 				     struct fs_path *dest)
2317 {
2318 	int ret;
2319 	int nce_ret;
2320 	struct name_cache_entry *nce;
2321 
2322 	/*
2323 	 * First check if we already did a call to this function with the same
2324 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2325 	 * return the cached result.
2326 	 */
2327 	nce = name_cache_search(sctx, ino, gen);
2328 	if (nce) {
2329 		if (ino < sctx->send_progress && nce->need_later_update) {
2330 			btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2331 			nce = NULL;
2332 		} else {
2333 			*parent_ino = nce->parent_ino;
2334 			*parent_gen = nce->parent_gen;
2335 			ret = fs_path_add(dest, nce->name, nce->name_len);
2336 			if (ret < 0)
2337 				goto out;
2338 			ret = nce->ret;
2339 			goto out;
2340 		}
2341 	}
2342 
2343 	/*
2344 	 * If the inode is not existent yet, add the orphan name and return 1.
2345 	 * This should only happen for the parent dir that we determine in
2346 	 * record_new_ref_if_needed().
2347 	 */
2348 	ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2349 	if (ret < 0)
2350 		goto out;
2351 
2352 	if (!ret) {
2353 		ret = gen_unique_name(sctx, ino, gen, dest);
2354 		if (ret < 0)
2355 			goto out;
2356 		ret = 1;
2357 		goto out_cache;
2358 	}
2359 
2360 	/*
2361 	 * Depending on whether the inode was already processed or not, use
2362 	 * send_root or parent_root for ref lookup.
2363 	 */
2364 	if (ino < sctx->send_progress)
2365 		ret = get_first_ref(sctx->send_root, ino,
2366 				    parent_ino, parent_gen, dest);
2367 	else
2368 		ret = get_first_ref(sctx->parent_root, ino,
2369 				    parent_ino, parent_gen, dest);
2370 	if (ret < 0)
2371 		goto out;
2372 
2373 	/*
2374 	 * Check if the ref was overwritten by an inode's ref that was processed
2375 	 * earlier. If yes, treat as orphan and return 1.
2376 	 */
2377 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2378 			dest->start, dest->end - dest->start);
2379 	if (ret < 0)
2380 		goto out;
2381 	if (ret) {
2382 		fs_path_reset(dest);
2383 		ret = gen_unique_name(sctx, ino, gen, dest);
2384 		if (ret < 0)
2385 			goto out;
2386 		ret = 1;
2387 	}
2388 
2389 out_cache:
2390 	/*
2391 	 * Store the result of the lookup in the name cache.
2392 	 */
2393 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL);
2394 	if (!nce) {
2395 		ret = -ENOMEM;
2396 		goto out;
2397 	}
2398 
2399 	nce->entry.key = ino;
2400 	nce->entry.gen = gen;
2401 	nce->parent_ino = *parent_ino;
2402 	nce->parent_gen = *parent_gen;
2403 	nce->name_len = fs_path_len(dest);
2404 	nce->ret = ret;
2405 	memcpy(nce->name, dest->start, nce->name_len);
2406 
2407 	if (ino < sctx->send_progress)
2408 		nce->need_later_update = 0;
2409 	else
2410 		nce->need_later_update = 1;
2411 
2412 	nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2413 	if (nce_ret < 0) {
2414 		kfree(nce);
2415 		ret = nce_ret;
2416 	}
2417 
2418 out:
2419 	return ret;
2420 }
2421 
2422 /*
2423  * Magic happens here. This function returns the first ref to an inode as it
2424  * would look like while receiving the stream at this point in time.
2425  * We walk the path up to the root. For every inode in between, we check if it
2426  * was already processed/sent. If yes, we continue with the parent as found
2427  * in send_root. If not, we continue with the parent as found in parent_root.
2428  * If we encounter an inode that was deleted at this point in time, we use the
2429  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2430  * that were not created yet and overwritten inodes/refs.
2431  *
2432  * When do we have orphan inodes:
2433  * 1. When an inode is freshly created and thus no valid refs are available yet
2434  * 2. When a directory lost all it's refs (deleted) but still has dir items
2435  *    inside which were not processed yet (pending for move/delete). If anyone
2436  *    tried to get the path to the dir items, it would get a path inside that
2437  *    orphan directory.
2438  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2439  *    of an unprocessed inode. If in that case the first ref would be
2440  *    overwritten, the overwritten inode gets "orphanized". Later when we
2441  *    process this overwritten inode, it is restored at a new place by moving
2442  *    the orphan inode.
2443  *
2444  * sctx->send_progress tells this function at which point in time receiving
2445  * would be.
2446  */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2447 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2448 			struct fs_path *dest)
2449 {
2450 	int ret = 0;
2451 	struct fs_path *name = NULL;
2452 	u64 parent_inode = 0;
2453 	u64 parent_gen = 0;
2454 	int stop = 0;
2455 
2456 	name = fs_path_alloc();
2457 	if (!name) {
2458 		ret = -ENOMEM;
2459 		goto out;
2460 	}
2461 
2462 	dest->reversed = 1;
2463 	fs_path_reset(dest);
2464 
2465 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2466 		struct waiting_dir_move *wdm;
2467 
2468 		fs_path_reset(name);
2469 
2470 		if (is_waiting_for_rm(sctx, ino, gen)) {
2471 			ret = gen_unique_name(sctx, ino, gen, name);
2472 			if (ret < 0)
2473 				goto out;
2474 			ret = fs_path_add_path(dest, name);
2475 			break;
2476 		}
2477 
2478 		wdm = get_waiting_dir_move(sctx, ino);
2479 		if (wdm && wdm->orphanized) {
2480 			ret = gen_unique_name(sctx, ino, gen, name);
2481 			stop = 1;
2482 		} else if (wdm) {
2483 			ret = get_first_ref(sctx->parent_root, ino,
2484 					    &parent_inode, &parent_gen, name);
2485 		} else {
2486 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2487 							&parent_inode,
2488 							&parent_gen, name);
2489 			if (ret)
2490 				stop = 1;
2491 		}
2492 
2493 		if (ret < 0)
2494 			goto out;
2495 
2496 		ret = fs_path_add_path(dest, name);
2497 		if (ret < 0)
2498 			goto out;
2499 
2500 		ino = parent_inode;
2501 		gen = parent_gen;
2502 	}
2503 
2504 out:
2505 	fs_path_free(name);
2506 	if (!ret)
2507 		fs_path_unreverse(dest);
2508 	return ret;
2509 }
2510 
2511 /*
2512  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2513  */
send_subvol_begin(struct send_ctx * sctx)2514 static int send_subvol_begin(struct send_ctx *sctx)
2515 {
2516 	int ret;
2517 	struct btrfs_root *send_root = sctx->send_root;
2518 	struct btrfs_root *parent_root = sctx->parent_root;
2519 	struct btrfs_path *path;
2520 	struct btrfs_key key;
2521 	struct btrfs_root_ref *ref;
2522 	struct extent_buffer *leaf;
2523 	char *name = NULL;
2524 	int namelen;
2525 
2526 	path = btrfs_alloc_path();
2527 	if (!path)
2528 		return -ENOMEM;
2529 
2530 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2531 	if (!name) {
2532 		btrfs_free_path(path);
2533 		return -ENOMEM;
2534 	}
2535 
2536 	key.objectid = btrfs_root_id(send_root);
2537 	key.type = BTRFS_ROOT_BACKREF_KEY;
2538 	key.offset = 0;
2539 
2540 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2541 				&key, path, 1, 0);
2542 	if (ret < 0)
2543 		goto out;
2544 	if (ret) {
2545 		ret = -ENOENT;
2546 		goto out;
2547 	}
2548 
2549 	leaf = path->nodes[0];
2550 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2551 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2552 	    key.objectid != btrfs_root_id(send_root)) {
2553 		ret = -ENOENT;
2554 		goto out;
2555 	}
2556 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2557 	namelen = btrfs_root_ref_name_len(leaf, ref);
2558 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2559 	btrfs_release_path(path);
2560 
2561 	if (parent_root) {
2562 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2563 		if (ret < 0)
2564 			goto out;
2565 	} else {
2566 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2567 		if (ret < 0)
2568 			goto out;
2569 	}
2570 
2571 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2572 
2573 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2574 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2575 			    sctx->send_root->root_item.received_uuid);
2576 	else
2577 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2578 			    sctx->send_root->root_item.uuid);
2579 
2580 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2581 		    btrfs_root_ctransid(&sctx->send_root->root_item));
2582 	if (parent_root) {
2583 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2584 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2585 				     parent_root->root_item.received_uuid);
2586 		else
2587 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2588 				     parent_root->root_item.uuid);
2589 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2590 			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2591 	}
2592 
2593 	ret = send_cmd(sctx);
2594 
2595 tlv_put_failure:
2596 out:
2597 	btrfs_free_path(path);
2598 	kfree(name);
2599 	return ret;
2600 }
2601 
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2602 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2603 {
2604 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2605 	int ret = 0;
2606 	struct fs_path *p;
2607 
2608 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2609 
2610 	p = fs_path_alloc();
2611 	if (!p)
2612 		return -ENOMEM;
2613 
2614 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2615 	if (ret < 0)
2616 		goto out;
2617 
2618 	ret = get_cur_path(sctx, ino, gen, p);
2619 	if (ret < 0)
2620 		goto out;
2621 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2622 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2623 
2624 	ret = send_cmd(sctx);
2625 
2626 tlv_put_failure:
2627 out:
2628 	fs_path_free(p);
2629 	return ret;
2630 }
2631 
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2632 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2633 {
2634 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2635 	int ret = 0;
2636 	struct fs_path *p;
2637 
2638 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2639 
2640 	p = fs_path_alloc();
2641 	if (!p)
2642 		return -ENOMEM;
2643 
2644 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2645 	if (ret < 0)
2646 		goto out;
2647 
2648 	ret = get_cur_path(sctx, ino, gen, p);
2649 	if (ret < 0)
2650 		goto out;
2651 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2652 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2653 
2654 	ret = send_cmd(sctx);
2655 
2656 tlv_put_failure:
2657 out:
2658 	fs_path_free(p);
2659 	return ret;
2660 }
2661 
send_fileattr(struct send_ctx * sctx,u64 ino,u64 gen,u64 fileattr)2662 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2663 {
2664 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2665 	int ret = 0;
2666 	struct fs_path *p;
2667 
2668 	if (sctx->proto < 2)
2669 		return 0;
2670 
2671 	btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2672 
2673 	p = fs_path_alloc();
2674 	if (!p)
2675 		return -ENOMEM;
2676 
2677 	ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2678 	if (ret < 0)
2679 		goto out;
2680 
2681 	ret = get_cur_path(sctx, ino, gen, p);
2682 	if (ret < 0)
2683 		goto out;
2684 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2685 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2686 
2687 	ret = send_cmd(sctx);
2688 
2689 tlv_put_failure:
2690 out:
2691 	fs_path_free(p);
2692 	return ret;
2693 }
2694 
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2695 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2696 {
2697 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2698 	int ret = 0;
2699 	struct fs_path *p;
2700 
2701 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2702 		    ino, uid, gid);
2703 
2704 	p = fs_path_alloc();
2705 	if (!p)
2706 		return -ENOMEM;
2707 
2708 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2709 	if (ret < 0)
2710 		goto out;
2711 
2712 	ret = get_cur_path(sctx, ino, gen, p);
2713 	if (ret < 0)
2714 		goto out;
2715 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2716 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2717 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2718 
2719 	ret = send_cmd(sctx);
2720 
2721 tlv_put_failure:
2722 out:
2723 	fs_path_free(p);
2724 	return ret;
2725 }
2726 
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2727 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2728 {
2729 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2730 	int ret = 0;
2731 	struct fs_path *p = NULL;
2732 	struct btrfs_inode_item *ii;
2733 	struct btrfs_path *path = NULL;
2734 	struct extent_buffer *eb;
2735 	struct btrfs_key key;
2736 	int slot;
2737 
2738 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2739 
2740 	p = fs_path_alloc();
2741 	if (!p)
2742 		return -ENOMEM;
2743 
2744 	path = alloc_path_for_send();
2745 	if (!path) {
2746 		ret = -ENOMEM;
2747 		goto out;
2748 	}
2749 
2750 	key.objectid = ino;
2751 	key.type = BTRFS_INODE_ITEM_KEY;
2752 	key.offset = 0;
2753 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2754 	if (ret > 0)
2755 		ret = -ENOENT;
2756 	if (ret < 0)
2757 		goto out;
2758 
2759 	eb = path->nodes[0];
2760 	slot = path->slots[0];
2761 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2762 
2763 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2764 	if (ret < 0)
2765 		goto out;
2766 
2767 	ret = get_cur_path(sctx, ino, gen, p);
2768 	if (ret < 0)
2769 		goto out;
2770 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2771 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2772 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2773 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2774 	if (sctx->proto >= 2)
2775 		TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2776 
2777 	ret = send_cmd(sctx);
2778 
2779 tlv_put_failure:
2780 out:
2781 	fs_path_free(p);
2782 	btrfs_free_path(path);
2783 	return ret;
2784 }
2785 
2786 /*
2787  * If the cache is full, we can't remove entries from it and do a call to
2788  * send_utimes() for each respective inode, because we might be finishing
2789  * processing an inode that is a directory and it just got renamed, and existing
2790  * entries in the cache may refer to inodes that have the directory in their
2791  * full path - in which case we would generate outdated paths (pre-rename)
2792  * for the inodes that the cache entries point to. Instead of prunning the
2793  * cache when inserting, do it after we finish processing each inode at
2794  * finish_inode_if_needed().
2795  */
cache_dir_utimes(struct send_ctx * sctx,u64 dir,u64 gen)2796 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2797 {
2798 	struct btrfs_lru_cache_entry *entry;
2799 	int ret;
2800 
2801 	entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2802 	if (entry != NULL)
2803 		return 0;
2804 
2805 	/* Caching is optional, don't fail if we can't allocate memory. */
2806 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2807 	if (!entry)
2808 		return send_utimes(sctx, dir, gen);
2809 
2810 	entry->key = dir;
2811 	entry->gen = gen;
2812 
2813 	ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2814 	ASSERT(ret != -EEXIST);
2815 	if (ret) {
2816 		kfree(entry);
2817 		return send_utimes(sctx, dir, gen);
2818 	}
2819 
2820 	return 0;
2821 }
2822 
trim_dir_utimes_cache(struct send_ctx * sctx)2823 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2824 {
2825 	while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2826 		struct btrfs_lru_cache_entry *lru;
2827 		int ret;
2828 
2829 		lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2830 		ASSERT(lru != NULL);
2831 
2832 		ret = send_utimes(sctx, lru->key, lru->gen);
2833 		if (ret)
2834 			return ret;
2835 
2836 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2837 	}
2838 
2839 	return 0;
2840 }
2841 
2842 /*
2843  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2844  * a valid path yet because we did not process the refs yet. So, the inode
2845  * is created as orphan.
2846  */
send_create_inode(struct send_ctx * sctx,u64 ino)2847 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2848 {
2849 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2850 	int ret = 0;
2851 	struct fs_path *p;
2852 	int cmd;
2853 	struct btrfs_inode_info info;
2854 	u64 gen;
2855 	u64 mode;
2856 	u64 rdev;
2857 
2858 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2859 
2860 	p = fs_path_alloc();
2861 	if (!p)
2862 		return -ENOMEM;
2863 
2864 	if (ino != sctx->cur_ino) {
2865 		ret = get_inode_info(sctx->send_root, ino, &info);
2866 		if (ret < 0)
2867 			goto out;
2868 		gen = info.gen;
2869 		mode = info.mode;
2870 		rdev = info.rdev;
2871 	} else {
2872 		gen = sctx->cur_inode_gen;
2873 		mode = sctx->cur_inode_mode;
2874 		rdev = sctx->cur_inode_rdev;
2875 	}
2876 
2877 	if (S_ISREG(mode)) {
2878 		cmd = BTRFS_SEND_C_MKFILE;
2879 	} else if (S_ISDIR(mode)) {
2880 		cmd = BTRFS_SEND_C_MKDIR;
2881 	} else if (S_ISLNK(mode)) {
2882 		cmd = BTRFS_SEND_C_SYMLINK;
2883 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2884 		cmd = BTRFS_SEND_C_MKNOD;
2885 	} else if (S_ISFIFO(mode)) {
2886 		cmd = BTRFS_SEND_C_MKFIFO;
2887 	} else if (S_ISSOCK(mode)) {
2888 		cmd = BTRFS_SEND_C_MKSOCK;
2889 	} else {
2890 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2891 				(int)(mode & S_IFMT));
2892 		ret = -EOPNOTSUPP;
2893 		goto out;
2894 	}
2895 
2896 	ret = begin_cmd(sctx, cmd);
2897 	if (ret < 0)
2898 		goto out;
2899 
2900 	ret = gen_unique_name(sctx, ino, gen, p);
2901 	if (ret < 0)
2902 		goto out;
2903 
2904 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2905 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2906 
2907 	if (S_ISLNK(mode)) {
2908 		fs_path_reset(p);
2909 		ret = read_symlink(sctx->send_root, ino, p);
2910 		if (ret < 0)
2911 			goto out;
2912 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2913 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2914 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2915 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2916 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2917 	}
2918 
2919 	ret = send_cmd(sctx);
2920 	if (ret < 0)
2921 		goto out;
2922 
2923 
2924 tlv_put_failure:
2925 out:
2926 	fs_path_free(p);
2927 	return ret;
2928 }
2929 
cache_dir_created(struct send_ctx * sctx,u64 dir)2930 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2931 {
2932 	struct btrfs_lru_cache_entry *entry;
2933 	int ret;
2934 
2935 	/* Caching is optional, ignore any failures. */
2936 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2937 	if (!entry)
2938 		return;
2939 
2940 	entry->key = dir;
2941 	entry->gen = 0;
2942 	ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2943 	if (ret < 0)
2944 		kfree(entry);
2945 }
2946 
2947 /*
2948  * We need some special handling for inodes that get processed before the parent
2949  * directory got created. See process_recorded_refs for details.
2950  * This function does the check if we already created the dir out of order.
2951  */
did_create_dir(struct send_ctx * sctx,u64 dir)2952 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2953 {
2954 	int ret = 0;
2955 	int iter_ret = 0;
2956 	struct btrfs_path *path = NULL;
2957 	struct btrfs_key key;
2958 	struct btrfs_key found_key;
2959 	struct btrfs_key di_key;
2960 	struct btrfs_dir_item *di;
2961 
2962 	if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2963 		return 1;
2964 
2965 	path = alloc_path_for_send();
2966 	if (!path)
2967 		return -ENOMEM;
2968 
2969 	key.objectid = dir;
2970 	key.type = BTRFS_DIR_INDEX_KEY;
2971 	key.offset = 0;
2972 
2973 	btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2974 		struct extent_buffer *eb = path->nodes[0];
2975 
2976 		if (found_key.objectid != key.objectid ||
2977 		    found_key.type != key.type) {
2978 			ret = 0;
2979 			break;
2980 		}
2981 
2982 		di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2983 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2984 
2985 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2986 		    di_key.objectid < sctx->send_progress) {
2987 			ret = 1;
2988 			cache_dir_created(sctx, dir);
2989 			break;
2990 		}
2991 	}
2992 	/* Catch error found during iteration */
2993 	if (iter_ret < 0)
2994 		ret = iter_ret;
2995 
2996 	btrfs_free_path(path);
2997 	return ret;
2998 }
2999 
3000 /*
3001  * Only creates the inode if it is:
3002  * 1. Not a directory
3003  * 2. Or a directory which was not created already due to out of order
3004  *    directories. See did_create_dir and process_recorded_refs for details.
3005  */
send_create_inode_if_needed(struct send_ctx * sctx)3006 static int send_create_inode_if_needed(struct send_ctx *sctx)
3007 {
3008 	int ret;
3009 
3010 	if (S_ISDIR(sctx->cur_inode_mode)) {
3011 		ret = did_create_dir(sctx, sctx->cur_ino);
3012 		if (ret < 0)
3013 			return ret;
3014 		else if (ret > 0)
3015 			return 0;
3016 	}
3017 
3018 	ret = send_create_inode(sctx, sctx->cur_ino);
3019 
3020 	if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3021 		cache_dir_created(sctx, sctx->cur_ino);
3022 
3023 	return ret;
3024 }
3025 
3026 struct recorded_ref {
3027 	struct list_head list;
3028 	char *name;
3029 	struct fs_path *full_path;
3030 	u64 dir;
3031 	u64 dir_gen;
3032 	int name_len;
3033 	struct rb_node node;
3034 	struct rb_root *root;
3035 };
3036 
recorded_ref_alloc(void)3037 static struct recorded_ref *recorded_ref_alloc(void)
3038 {
3039 	struct recorded_ref *ref;
3040 
3041 	ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3042 	if (!ref)
3043 		return NULL;
3044 	RB_CLEAR_NODE(&ref->node);
3045 	INIT_LIST_HEAD(&ref->list);
3046 	return ref;
3047 }
3048 
recorded_ref_free(struct recorded_ref * ref)3049 static void recorded_ref_free(struct recorded_ref *ref)
3050 {
3051 	if (!ref)
3052 		return;
3053 	if (!RB_EMPTY_NODE(&ref->node))
3054 		rb_erase(&ref->node, ref->root);
3055 	list_del(&ref->list);
3056 	fs_path_free(ref->full_path);
3057 	kfree(ref);
3058 }
3059 
set_ref_path(struct recorded_ref * ref,struct fs_path * path)3060 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3061 {
3062 	ref->full_path = path;
3063 	ref->name = (char *)kbasename(ref->full_path->start);
3064 	ref->name_len = ref->full_path->end - ref->name;
3065 }
3066 
dup_ref(struct recorded_ref * ref,struct list_head * list)3067 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3068 {
3069 	struct recorded_ref *new;
3070 
3071 	new = recorded_ref_alloc();
3072 	if (!new)
3073 		return -ENOMEM;
3074 
3075 	new->dir = ref->dir;
3076 	new->dir_gen = ref->dir_gen;
3077 	list_add_tail(&new->list, list);
3078 	return 0;
3079 }
3080 
__free_recorded_refs(struct list_head * head)3081 static void __free_recorded_refs(struct list_head *head)
3082 {
3083 	struct recorded_ref *cur;
3084 
3085 	while (!list_empty(head)) {
3086 		cur = list_entry(head->next, struct recorded_ref, list);
3087 		recorded_ref_free(cur);
3088 	}
3089 }
3090 
free_recorded_refs(struct send_ctx * sctx)3091 static void free_recorded_refs(struct send_ctx *sctx)
3092 {
3093 	__free_recorded_refs(&sctx->new_refs);
3094 	__free_recorded_refs(&sctx->deleted_refs);
3095 }
3096 
3097 /*
3098  * Renames/moves a file/dir to its orphan name. Used when the first
3099  * ref of an unprocessed inode gets overwritten and for all non empty
3100  * directories.
3101  */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)3102 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3103 			  struct fs_path *path)
3104 {
3105 	int ret;
3106 	struct fs_path *orphan;
3107 
3108 	orphan = fs_path_alloc();
3109 	if (!orphan)
3110 		return -ENOMEM;
3111 
3112 	ret = gen_unique_name(sctx, ino, gen, orphan);
3113 	if (ret < 0)
3114 		goto out;
3115 
3116 	ret = send_rename(sctx, path, orphan);
3117 
3118 out:
3119 	fs_path_free(orphan);
3120 	return ret;
3121 }
3122 
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 dir_gen)3123 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3124 						   u64 dir_ino, u64 dir_gen)
3125 {
3126 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
3127 	struct rb_node *parent = NULL;
3128 	struct orphan_dir_info *entry, *odi;
3129 
3130 	while (*p) {
3131 		parent = *p;
3132 		entry = rb_entry(parent, struct orphan_dir_info, node);
3133 		if (dir_ino < entry->ino)
3134 			p = &(*p)->rb_left;
3135 		else if (dir_ino > entry->ino)
3136 			p = &(*p)->rb_right;
3137 		else if (dir_gen < entry->gen)
3138 			p = &(*p)->rb_left;
3139 		else if (dir_gen > entry->gen)
3140 			p = &(*p)->rb_right;
3141 		else
3142 			return entry;
3143 	}
3144 
3145 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3146 	if (!odi)
3147 		return ERR_PTR(-ENOMEM);
3148 	odi->ino = dir_ino;
3149 	odi->gen = dir_gen;
3150 	odi->last_dir_index_offset = 0;
3151 	odi->dir_high_seq_ino = 0;
3152 
3153 	rb_link_node(&odi->node, parent, p);
3154 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
3155 	return odi;
3156 }
3157 
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 gen)3158 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3159 						   u64 dir_ino, u64 gen)
3160 {
3161 	struct rb_node *n = sctx->orphan_dirs.rb_node;
3162 	struct orphan_dir_info *entry;
3163 
3164 	while (n) {
3165 		entry = rb_entry(n, struct orphan_dir_info, node);
3166 		if (dir_ino < entry->ino)
3167 			n = n->rb_left;
3168 		else if (dir_ino > entry->ino)
3169 			n = n->rb_right;
3170 		else if (gen < entry->gen)
3171 			n = n->rb_left;
3172 		else if (gen > entry->gen)
3173 			n = n->rb_right;
3174 		else
3175 			return entry;
3176 	}
3177 	return NULL;
3178 }
3179 
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino,u64 gen)3180 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3181 {
3182 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3183 
3184 	return odi != NULL;
3185 }
3186 
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)3187 static void free_orphan_dir_info(struct send_ctx *sctx,
3188 				 struct orphan_dir_info *odi)
3189 {
3190 	if (!odi)
3191 		return;
3192 	rb_erase(&odi->node, &sctx->orphan_dirs);
3193 	kfree(odi);
3194 }
3195 
3196 /*
3197  * Returns 1 if a directory can be removed at this point in time.
3198  * We check this by iterating all dir items and checking if the inode behind
3199  * the dir item was already processed.
3200  */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen)3201 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3202 {
3203 	int ret = 0;
3204 	int iter_ret = 0;
3205 	struct btrfs_root *root = sctx->parent_root;
3206 	struct btrfs_path *path;
3207 	struct btrfs_key key;
3208 	struct btrfs_key found_key;
3209 	struct btrfs_key loc;
3210 	struct btrfs_dir_item *di;
3211 	struct orphan_dir_info *odi = NULL;
3212 	u64 dir_high_seq_ino = 0;
3213 	u64 last_dir_index_offset = 0;
3214 
3215 	/*
3216 	 * Don't try to rmdir the top/root subvolume dir.
3217 	 */
3218 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
3219 		return 0;
3220 
3221 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
3222 	if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3223 		return 0;
3224 
3225 	path = alloc_path_for_send();
3226 	if (!path)
3227 		return -ENOMEM;
3228 
3229 	if (!odi) {
3230 		/*
3231 		 * Find the inode number associated with the last dir index
3232 		 * entry. This is very likely the inode with the highest number
3233 		 * of all inodes that have an entry in the directory. We can
3234 		 * then use it to avoid future calls to can_rmdir(), when
3235 		 * processing inodes with a lower number, from having to search
3236 		 * the parent root b+tree for dir index keys.
3237 		 */
3238 		key.objectid = dir;
3239 		key.type = BTRFS_DIR_INDEX_KEY;
3240 		key.offset = (u64)-1;
3241 
3242 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3243 		if (ret < 0) {
3244 			goto out;
3245 		} else if (ret > 0) {
3246 			/* Can't happen, the root is never empty. */
3247 			ASSERT(path->slots[0] > 0);
3248 			if (WARN_ON(path->slots[0] == 0)) {
3249 				ret = -EUCLEAN;
3250 				goto out;
3251 			}
3252 			path->slots[0]--;
3253 		}
3254 
3255 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3256 		if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3257 			/* No index keys, dir can be removed. */
3258 			ret = 1;
3259 			goto out;
3260 		}
3261 
3262 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3263 				    struct btrfs_dir_item);
3264 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3265 		dir_high_seq_ino = loc.objectid;
3266 		if (sctx->cur_ino < dir_high_seq_ino) {
3267 			ret = 0;
3268 			goto out;
3269 		}
3270 
3271 		btrfs_release_path(path);
3272 	}
3273 
3274 	key.objectid = dir;
3275 	key.type = BTRFS_DIR_INDEX_KEY;
3276 	key.offset = (odi ? odi->last_dir_index_offset : 0);
3277 
3278 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3279 		struct waiting_dir_move *dm;
3280 
3281 		if (found_key.objectid != key.objectid ||
3282 		    found_key.type != key.type)
3283 			break;
3284 
3285 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3286 				struct btrfs_dir_item);
3287 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3288 
3289 		dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3290 		last_dir_index_offset = found_key.offset;
3291 
3292 		dm = get_waiting_dir_move(sctx, loc.objectid);
3293 		if (dm) {
3294 			dm->rmdir_ino = dir;
3295 			dm->rmdir_gen = dir_gen;
3296 			ret = 0;
3297 			goto out;
3298 		}
3299 
3300 		if (loc.objectid > sctx->cur_ino) {
3301 			ret = 0;
3302 			goto out;
3303 		}
3304 	}
3305 	if (iter_ret < 0) {
3306 		ret = iter_ret;
3307 		goto out;
3308 	}
3309 	free_orphan_dir_info(sctx, odi);
3310 
3311 	ret = 1;
3312 
3313 out:
3314 	btrfs_free_path(path);
3315 
3316 	if (ret)
3317 		return ret;
3318 
3319 	if (!odi) {
3320 		odi = add_orphan_dir_info(sctx, dir, dir_gen);
3321 		if (IS_ERR(odi))
3322 			return PTR_ERR(odi);
3323 
3324 		odi->gen = dir_gen;
3325 	}
3326 
3327 	odi->last_dir_index_offset = last_dir_index_offset;
3328 	odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3329 
3330 	return 0;
3331 }
3332 
is_waiting_for_move(struct send_ctx * sctx,u64 ino)3333 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3334 {
3335 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3336 
3337 	return entry != NULL;
3338 }
3339 
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)3340 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3341 {
3342 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3343 	struct rb_node *parent = NULL;
3344 	struct waiting_dir_move *entry, *dm;
3345 
3346 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3347 	if (!dm)
3348 		return -ENOMEM;
3349 	dm->ino = ino;
3350 	dm->rmdir_ino = 0;
3351 	dm->rmdir_gen = 0;
3352 	dm->orphanized = orphanized;
3353 
3354 	while (*p) {
3355 		parent = *p;
3356 		entry = rb_entry(parent, struct waiting_dir_move, node);
3357 		if (ino < entry->ino) {
3358 			p = &(*p)->rb_left;
3359 		} else if (ino > entry->ino) {
3360 			p = &(*p)->rb_right;
3361 		} else {
3362 			kfree(dm);
3363 			return -EEXIST;
3364 		}
3365 	}
3366 
3367 	rb_link_node(&dm->node, parent, p);
3368 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3369 	return 0;
3370 }
3371 
3372 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3373 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3374 {
3375 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3376 	struct waiting_dir_move *entry;
3377 
3378 	while (n) {
3379 		entry = rb_entry(n, struct waiting_dir_move, node);
3380 		if (ino < entry->ino)
3381 			n = n->rb_left;
3382 		else if (ino > entry->ino)
3383 			n = n->rb_right;
3384 		else
3385 			return entry;
3386 	}
3387 	return NULL;
3388 }
3389 
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3390 static void free_waiting_dir_move(struct send_ctx *sctx,
3391 				  struct waiting_dir_move *dm)
3392 {
3393 	if (!dm)
3394 		return;
3395 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3396 	kfree(dm);
3397 }
3398 
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3399 static int add_pending_dir_move(struct send_ctx *sctx,
3400 				u64 ino,
3401 				u64 ino_gen,
3402 				u64 parent_ino,
3403 				struct list_head *new_refs,
3404 				struct list_head *deleted_refs,
3405 				const bool is_orphan)
3406 {
3407 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3408 	struct rb_node *parent = NULL;
3409 	struct pending_dir_move *entry = NULL, *pm;
3410 	struct recorded_ref *cur;
3411 	int exists = 0;
3412 	int ret;
3413 
3414 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3415 	if (!pm)
3416 		return -ENOMEM;
3417 	pm->parent_ino = parent_ino;
3418 	pm->ino = ino;
3419 	pm->gen = ino_gen;
3420 	INIT_LIST_HEAD(&pm->list);
3421 	INIT_LIST_HEAD(&pm->update_refs);
3422 	RB_CLEAR_NODE(&pm->node);
3423 
3424 	while (*p) {
3425 		parent = *p;
3426 		entry = rb_entry(parent, struct pending_dir_move, node);
3427 		if (parent_ino < entry->parent_ino) {
3428 			p = &(*p)->rb_left;
3429 		} else if (parent_ino > entry->parent_ino) {
3430 			p = &(*p)->rb_right;
3431 		} else {
3432 			exists = 1;
3433 			break;
3434 		}
3435 	}
3436 
3437 	list_for_each_entry(cur, deleted_refs, list) {
3438 		ret = dup_ref(cur, &pm->update_refs);
3439 		if (ret < 0)
3440 			goto out;
3441 	}
3442 	list_for_each_entry(cur, new_refs, list) {
3443 		ret = dup_ref(cur, &pm->update_refs);
3444 		if (ret < 0)
3445 			goto out;
3446 	}
3447 
3448 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3449 	if (ret)
3450 		goto out;
3451 
3452 	if (exists) {
3453 		list_add_tail(&pm->list, &entry->list);
3454 	} else {
3455 		rb_link_node(&pm->node, parent, p);
3456 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3457 	}
3458 	ret = 0;
3459 out:
3460 	if (ret) {
3461 		__free_recorded_refs(&pm->update_refs);
3462 		kfree(pm);
3463 	}
3464 	return ret;
3465 }
3466 
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3467 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3468 						      u64 parent_ino)
3469 {
3470 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3471 	struct pending_dir_move *entry;
3472 
3473 	while (n) {
3474 		entry = rb_entry(n, struct pending_dir_move, node);
3475 		if (parent_ino < entry->parent_ino)
3476 			n = n->rb_left;
3477 		else if (parent_ino > entry->parent_ino)
3478 			n = n->rb_right;
3479 		else
3480 			return entry;
3481 	}
3482 	return NULL;
3483 }
3484 
path_loop(struct send_ctx * sctx,struct fs_path * name,u64 ino,u64 gen,u64 * ancestor_ino)3485 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3486 		     u64 ino, u64 gen, u64 *ancestor_ino)
3487 {
3488 	int ret = 0;
3489 	u64 parent_inode = 0;
3490 	u64 parent_gen = 0;
3491 	u64 start_ino = ino;
3492 
3493 	*ancestor_ino = 0;
3494 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3495 		fs_path_reset(name);
3496 
3497 		if (is_waiting_for_rm(sctx, ino, gen))
3498 			break;
3499 		if (is_waiting_for_move(sctx, ino)) {
3500 			if (*ancestor_ino == 0)
3501 				*ancestor_ino = ino;
3502 			ret = get_first_ref(sctx->parent_root, ino,
3503 					    &parent_inode, &parent_gen, name);
3504 		} else {
3505 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3506 							&parent_inode,
3507 							&parent_gen, name);
3508 			if (ret > 0) {
3509 				ret = 0;
3510 				break;
3511 			}
3512 		}
3513 		if (ret < 0)
3514 			break;
3515 		if (parent_inode == start_ino) {
3516 			ret = 1;
3517 			if (*ancestor_ino == 0)
3518 				*ancestor_ino = ino;
3519 			break;
3520 		}
3521 		ino = parent_inode;
3522 		gen = parent_gen;
3523 	}
3524 	return ret;
3525 }
3526 
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3527 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3528 {
3529 	struct fs_path *from_path = NULL;
3530 	struct fs_path *to_path = NULL;
3531 	struct fs_path *name = NULL;
3532 	u64 orig_progress = sctx->send_progress;
3533 	struct recorded_ref *cur;
3534 	u64 parent_ino, parent_gen;
3535 	struct waiting_dir_move *dm = NULL;
3536 	u64 rmdir_ino = 0;
3537 	u64 rmdir_gen;
3538 	u64 ancestor;
3539 	bool is_orphan;
3540 	int ret;
3541 
3542 	name = fs_path_alloc();
3543 	from_path = fs_path_alloc();
3544 	if (!name || !from_path) {
3545 		ret = -ENOMEM;
3546 		goto out;
3547 	}
3548 
3549 	dm = get_waiting_dir_move(sctx, pm->ino);
3550 	ASSERT(dm);
3551 	rmdir_ino = dm->rmdir_ino;
3552 	rmdir_gen = dm->rmdir_gen;
3553 	is_orphan = dm->orphanized;
3554 	free_waiting_dir_move(sctx, dm);
3555 
3556 	if (is_orphan) {
3557 		ret = gen_unique_name(sctx, pm->ino,
3558 				      pm->gen, from_path);
3559 	} else {
3560 		ret = get_first_ref(sctx->parent_root, pm->ino,
3561 				    &parent_ino, &parent_gen, name);
3562 		if (ret < 0)
3563 			goto out;
3564 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3565 				   from_path);
3566 		if (ret < 0)
3567 			goto out;
3568 		ret = fs_path_add_path(from_path, name);
3569 	}
3570 	if (ret < 0)
3571 		goto out;
3572 
3573 	sctx->send_progress = sctx->cur_ino + 1;
3574 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3575 	if (ret < 0)
3576 		goto out;
3577 	if (ret) {
3578 		LIST_HEAD(deleted_refs);
3579 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3580 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3581 					   &pm->update_refs, &deleted_refs,
3582 					   is_orphan);
3583 		if (ret < 0)
3584 			goto out;
3585 		if (rmdir_ino) {
3586 			dm = get_waiting_dir_move(sctx, pm->ino);
3587 			ASSERT(dm);
3588 			dm->rmdir_ino = rmdir_ino;
3589 			dm->rmdir_gen = rmdir_gen;
3590 		}
3591 		goto out;
3592 	}
3593 	fs_path_reset(name);
3594 	to_path = name;
3595 	name = NULL;
3596 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3597 	if (ret < 0)
3598 		goto out;
3599 
3600 	ret = send_rename(sctx, from_path, to_path);
3601 	if (ret < 0)
3602 		goto out;
3603 
3604 	if (rmdir_ino) {
3605 		struct orphan_dir_info *odi;
3606 		u64 gen;
3607 
3608 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3609 		if (!odi) {
3610 			/* already deleted */
3611 			goto finish;
3612 		}
3613 		gen = odi->gen;
3614 
3615 		ret = can_rmdir(sctx, rmdir_ino, gen);
3616 		if (ret < 0)
3617 			goto out;
3618 		if (!ret)
3619 			goto finish;
3620 
3621 		name = fs_path_alloc();
3622 		if (!name) {
3623 			ret = -ENOMEM;
3624 			goto out;
3625 		}
3626 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3627 		if (ret < 0)
3628 			goto out;
3629 		ret = send_rmdir(sctx, name);
3630 		if (ret < 0)
3631 			goto out;
3632 	}
3633 
3634 finish:
3635 	ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3636 	if (ret < 0)
3637 		goto out;
3638 
3639 	/*
3640 	 * After rename/move, need to update the utimes of both new parent(s)
3641 	 * and old parent(s).
3642 	 */
3643 	list_for_each_entry(cur, &pm->update_refs, list) {
3644 		/*
3645 		 * The parent inode might have been deleted in the send snapshot
3646 		 */
3647 		ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3648 		if (ret == -ENOENT) {
3649 			ret = 0;
3650 			continue;
3651 		}
3652 		if (ret < 0)
3653 			goto out;
3654 
3655 		ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3656 		if (ret < 0)
3657 			goto out;
3658 	}
3659 
3660 out:
3661 	fs_path_free(name);
3662 	fs_path_free(from_path);
3663 	fs_path_free(to_path);
3664 	sctx->send_progress = orig_progress;
3665 
3666 	return ret;
3667 }
3668 
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3669 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3670 {
3671 	if (!list_empty(&m->list))
3672 		list_del(&m->list);
3673 	if (!RB_EMPTY_NODE(&m->node))
3674 		rb_erase(&m->node, &sctx->pending_dir_moves);
3675 	__free_recorded_refs(&m->update_refs);
3676 	kfree(m);
3677 }
3678 
tail_append_pending_moves(struct send_ctx * sctx,struct pending_dir_move * moves,struct list_head * stack)3679 static void tail_append_pending_moves(struct send_ctx *sctx,
3680 				      struct pending_dir_move *moves,
3681 				      struct list_head *stack)
3682 {
3683 	if (list_empty(&moves->list)) {
3684 		list_add_tail(&moves->list, stack);
3685 	} else {
3686 		LIST_HEAD(list);
3687 		list_splice_init(&moves->list, &list);
3688 		list_add_tail(&moves->list, stack);
3689 		list_splice_tail(&list, stack);
3690 	}
3691 	if (!RB_EMPTY_NODE(&moves->node)) {
3692 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3693 		RB_CLEAR_NODE(&moves->node);
3694 	}
3695 }
3696 
apply_children_dir_moves(struct send_ctx * sctx)3697 static int apply_children_dir_moves(struct send_ctx *sctx)
3698 {
3699 	struct pending_dir_move *pm;
3700 	LIST_HEAD(stack);
3701 	u64 parent_ino = sctx->cur_ino;
3702 	int ret = 0;
3703 
3704 	pm = get_pending_dir_moves(sctx, parent_ino);
3705 	if (!pm)
3706 		return 0;
3707 
3708 	tail_append_pending_moves(sctx, pm, &stack);
3709 
3710 	while (!list_empty(&stack)) {
3711 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3712 		parent_ino = pm->ino;
3713 		ret = apply_dir_move(sctx, pm);
3714 		free_pending_move(sctx, pm);
3715 		if (ret)
3716 			goto out;
3717 		pm = get_pending_dir_moves(sctx, parent_ino);
3718 		if (pm)
3719 			tail_append_pending_moves(sctx, pm, &stack);
3720 	}
3721 	return 0;
3722 
3723 out:
3724 	while (!list_empty(&stack)) {
3725 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3726 		free_pending_move(sctx, pm);
3727 	}
3728 	return ret;
3729 }
3730 
3731 /*
3732  * We might need to delay a directory rename even when no ancestor directory
3733  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3734  * renamed. This happens when we rename a directory to the old name (the name
3735  * in the parent root) of some other unrelated directory that got its rename
3736  * delayed due to some ancestor with higher number that got renamed.
3737  *
3738  * Example:
3739  *
3740  * Parent snapshot:
3741  * .                                       (ino 256)
3742  * |---- a/                                (ino 257)
3743  * |     |---- file                        (ino 260)
3744  * |
3745  * |---- b/                                (ino 258)
3746  * |---- c/                                (ino 259)
3747  *
3748  * Send snapshot:
3749  * .                                       (ino 256)
3750  * |---- a/                                (ino 258)
3751  * |---- x/                                (ino 259)
3752  *       |---- y/                          (ino 257)
3753  *             |----- file                 (ino 260)
3754  *
3755  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3756  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3757  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3758  * must issue is:
3759  *
3760  * 1 - rename 259 from 'c' to 'x'
3761  * 2 - rename 257 from 'a' to 'x/y'
3762  * 3 - rename 258 from 'b' to 'a'
3763  *
3764  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3765  * be done right away and < 0 on error.
3766  */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3767 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3768 				  struct recorded_ref *parent_ref,
3769 				  const bool is_orphan)
3770 {
3771 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3772 	struct btrfs_path *path;
3773 	struct btrfs_key key;
3774 	struct btrfs_key di_key;
3775 	struct btrfs_dir_item *di;
3776 	u64 left_gen;
3777 	u64 right_gen;
3778 	int ret = 0;
3779 	struct waiting_dir_move *wdm;
3780 
3781 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3782 		return 0;
3783 
3784 	path = alloc_path_for_send();
3785 	if (!path)
3786 		return -ENOMEM;
3787 
3788 	key.objectid = parent_ref->dir;
3789 	key.type = BTRFS_DIR_ITEM_KEY;
3790 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3791 
3792 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3793 	if (ret < 0) {
3794 		goto out;
3795 	} else if (ret > 0) {
3796 		ret = 0;
3797 		goto out;
3798 	}
3799 
3800 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3801 				       parent_ref->name_len);
3802 	if (!di) {
3803 		ret = 0;
3804 		goto out;
3805 	}
3806 	/*
3807 	 * di_key.objectid has the number of the inode that has a dentry in the
3808 	 * parent directory with the same name that sctx->cur_ino is being
3809 	 * renamed to. We need to check if that inode is in the send root as
3810 	 * well and if it is currently marked as an inode with a pending rename,
3811 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3812 	 * that it happens after that other inode is renamed.
3813 	 */
3814 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3815 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3816 		ret = 0;
3817 		goto out;
3818 	}
3819 
3820 	ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3821 	if (ret < 0)
3822 		goto out;
3823 	ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3824 	if (ret < 0) {
3825 		if (ret == -ENOENT)
3826 			ret = 0;
3827 		goto out;
3828 	}
3829 
3830 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3831 	if (right_gen != left_gen) {
3832 		ret = 0;
3833 		goto out;
3834 	}
3835 
3836 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3837 	if (wdm && !wdm->orphanized) {
3838 		ret = add_pending_dir_move(sctx,
3839 					   sctx->cur_ino,
3840 					   sctx->cur_inode_gen,
3841 					   di_key.objectid,
3842 					   &sctx->new_refs,
3843 					   &sctx->deleted_refs,
3844 					   is_orphan);
3845 		if (!ret)
3846 			ret = 1;
3847 	}
3848 out:
3849 	btrfs_free_path(path);
3850 	return ret;
3851 }
3852 
3853 /*
3854  * Check if inode ino2, or any of its ancestors, is inode ino1.
3855  * Return 1 if true, 0 if false and < 0 on error.
3856  */
check_ino_in_path(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,const u64 ino2_gen,struct fs_path * fs_path)3857 static int check_ino_in_path(struct btrfs_root *root,
3858 			     const u64 ino1,
3859 			     const u64 ino1_gen,
3860 			     const u64 ino2,
3861 			     const u64 ino2_gen,
3862 			     struct fs_path *fs_path)
3863 {
3864 	u64 ino = ino2;
3865 
3866 	if (ino1 == ino2)
3867 		return ino1_gen == ino2_gen;
3868 
3869 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3870 		u64 parent;
3871 		u64 parent_gen;
3872 		int ret;
3873 
3874 		fs_path_reset(fs_path);
3875 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3876 		if (ret < 0)
3877 			return ret;
3878 		if (parent == ino1)
3879 			return parent_gen == ino1_gen;
3880 		ino = parent;
3881 	}
3882 	return 0;
3883 }
3884 
3885 /*
3886  * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3887  * possible path (in case ino2 is not a directory and has multiple hard links).
3888  * Return 1 if true, 0 if false and < 0 on error.
3889  */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3890 static int is_ancestor(struct btrfs_root *root,
3891 		       const u64 ino1,
3892 		       const u64 ino1_gen,
3893 		       const u64 ino2,
3894 		       struct fs_path *fs_path)
3895 {
3896 	bool free_fs_path = false;
3897 	int ret = 0;
3898 	int iter_ret = 0;
3899 	struct btrfs_path *path = NULL;
3900 	struct btrfs_key key;
3901 
3902 	if (!fs_path) {
3903 		fs_path = fs_path_alloc();
3904 		if (!fs_path)
3905 			return -ENOMEM;
3906 		free_fs_path = true;
3907 	}
3908 
3909 	path = alloc_path_for_send();
3910 	if (!path) {
3911 		ret = -ENOMEM;
3912 		goto out;
3913 	}
3914 
3915 	key.objectid = ino2;
3916 	key.type = BTRFS_INODE_REF_KEY;
3917 	key.offset = 0;
3918 
3919 	btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3920 		struct extent_buffer *leaf = path->nodes[0];
3921 		int slot = path->slots[0];
3922 		u32 cur_offset = 0;
3923 		u32 item_size;
3924 
3925 		if (key.objectid != ino2)
3926 			break;
3927 		if (key.type != BTRFS_INODE_REF_KEY &&
3928 		    key.type != BTRFS_INODE_EXTREF_KEY)
3929 			break;
3930 
3931 		item_size = btrfs_item_size(leaf, slot);
3932 		while (cur_offset < item_size) {
3933 			u64 parent;
3934 			u64 parent_gen;
3935 
3936 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3937 				unsigned long ptr;
3938 				struct btrfs_inode_extref *extref;
3939 
3940 				ptr = btrfs_item_ptr_offset(leaf, slot);
3941 				extref = (struct btrfs_inode_extref *)
3942 					(ptr + cur_offset);
3943 				parent = btrfs_inode_extref_parent(leaf,
3944 								   extref);
3945 				cur_offset += sizeof(*extref);
3946 				cur_offset += btrfs_inode_extref_name_len(leaf,
3947 								  extref);
3948 			} else {
3949 				parent = key.offset;
3950 				cur_offset = item_size;
3951 			}
3952 
3953 			ret = get_inode_gen(root, parent, &parent_gen);
3954 			if (ret < 0)
3955 				goto out;
3956 			ret = check_ino_in_path(root, ino1, ino1_gen,
3957 						parent, parent_gen, fs_path);
3958 			if (ret)
3959 				goto out;
3960 		}
3961 	}
3962 	ret = 0;
3963 	if (iter_ret < 0)
3964 		ret = iter_ret;
3965 
3966 out:
3967 	btrfs_free_path(path);
3968 	if (free_fs_path)
3969 		fs_path_free(fs_path);
3970 	return ret;
3971 }
3972 
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3973 static int wait_for_parent_move(struct send_ctx *sctx,
3974 				struct recorded_ref *parent_ref,
3975 				const bool is_orphan)
3976 {
3977 	int ret = 0;
3978 	u64 ino = parent_ref->dir;
3979 	u64 ino_gen = parent_ref->dir_gen;
3980 	u64 parent_ino_before, parent_ino_after;
3981 	struct fs_path *path_before = NULL;
3982 	struct fs_path *path_after = NULL;
3983 	int len1, len2;
3984 
3985 	path_after = fs_path_alloc();
3986 	path_before = fs_path_alloc();
3987 	if (!path_after || !path_before) {
3988 		ret = -ENOMEM;
3989 		goto out;
3990 	}
3991 
3992 	/*
3993 	 * Our current directory inode may not yet be renamed/moved because some
3994 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3995 	 * such ancestor exists and make sure our own rename/move happens after
3996 	 * that ancestor is processed to avoid path build infinite loops (done
3997 	 * at get_cur_path()).
3998 	 */
3999 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
4000 		u64 parent_ino_after_gen;
4001 
4002 		if (is_waiting_for_move(sctx, ino)) {
4003 			/*
4004 			 * If the current inode is an ancestor of ino in the
4005 			 * parent root, we need to delay the rename of the
4006 			 * current inode, otherwise don't delayed the rename
4007 			 * because we can end up with a circular dependency
4008 			 * of renames, resulting in some directories never
4009 			 * getting the respective rename operations issued in
4010 			 * the send stream or getting into infinite path build
4011 			 * loops.
4012 			 */
4013 			ret = is_ancestor(sctx->parent_root,
4014 					  sctx->cur_ino, sctx->cur_inode_gen,
4015 					  ino, path_before);
4016 			if (ret)
4017 				break;
4018 		}
4019 
4020 		fs_path_reset(path_before);
4021 		fs_path_reset(path_after);
4022 
4023 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4024 				    &parent_ino_after_gen, path_after);
4025 		if (ret < 0)
4026 			goto out;
4027 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4028 				    NULL, path_before);
4029 		if (ret < 0 && ret != -ENOENT) {
4030 			goto out;
4031 		} else if (ret == -ENOENT) {
4032 			ret = 0;
4033 			break;
4034 		}
4035 
4036 		len1 = fs_path_len(path_before);
4037 		len2 = fs_path_len(path_after);
4038 		if (ino > sctx->cur_ino &&
4039 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
4040 		     memcmp(path_before->start, path_after->start, len1))) {
4041 			u64 parent_ino_gen;
4042 
4043 			ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4044 			if (ret < 0)
4045 				goto out;
4046 			if (ino_gen == parent_ino_gen) {
4047 				ret = 1;
4048 				break;
4049 			}
4050 		}
4051 		ino = parent_ino_after;
4052 		ino_gen = parent_ino_after_gen;
4053 	}
4054 
4055 out:
4056 	fs_path_free(path_before);
4057 	fs_path_free(path_after);
4058 
4059 	if (ret == 1) {
4060 		ret = add_pending_dir_move(sctx,
4061 					   sctx->cur_ino,
4062 					   sctx->cur_inode_gen,
4063 					   ino,
4064 					   &sctx->new_refs,
4065 					   &sctx->deleted_refs,
4066 					   is_orphan);
4067 		if (!ret)
4068 			ret = 1;
4069 	}
4070 
4071 	return ret;
4072 }
4073 
update_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4074 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4075 {
4076 	int ret;
4077 	struct fs_path *new_path;
4078 
4079 	/*
4080 	 * Our reference's name member points to its full_path member string, so
4081 	 * we use here a new path.
4082 	 */
4083 	new_path = fs_path_alloc();
4084 	if (!new_path)
4085 		return -ENOMEM;
4086 
4087 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4088 	if (ret < 0) {
4089 		fs_path_free(new_path);
4090 		return ret;
4091 	}
4092 	ret = fs_path_add(new_path, ref->name, ref->name_len);
4093 	if (ret < 0) {
4094 		fs_path_free(new_path);
4095 		return ret;
4096 	}
4097 
4098 	fs_path_free(ref->full_path);
4099 	set_ref_path(ref, new_path);
4100 
4101 	return 0;
4102 }
4103 
4104 /*
4105  * When processing the new references for an inode we may orphanize an existing
4106  * directory inode because its old name conflicts with one of the new references
4107  * of the current inode. Later, when processing another new reference of our
4108  * inode, we might need to orphanize another inode, but the path we have in the
4109  * reference reflects the pre-orphanization name of the directory we previously
4110  * orphanized. For example:
4111  *
4112  * parent snapshot looks like:
4113  *
4114  * .                                     (ino 256)
4115  * |----- f1                             (ino 257)
4116  * |----- f2                             (ino 258)
4117  * |----- d1/                            (ino 259)
4118  *        |----- d2/                     (ino 260)
4119  *
4120  * send snapshot looks like:
4121  *
4122  * .                                     (ino 256)
4123  * |----- d1                             (ino 258)
4124  * |----- f2/                            (ino 259)
4125  *        |----- f2_link/                (ino 260)
4126  *        |       |----- f1              (ino 257)
4127  *        |
4128  *        |----- d2                      (ino 258)
4129  *
4130  * When processing inode 257 we compute the name for inode 259 as "d1", and we
4131  * cache it in the name cache. Later when we start processing inode 258, when
4132  * collecting all its new references we set a full path of "d1/d2" for its new
4133  * reference with name "d2". When we start processing the new references we
4134  * start by processing the new reference with name "d1", and this results in
4135  * orphanizing inode 259, since its old reference causes a conflict. Then we
4136  * move on the next new reference, with name "d2", and we find out we must
4137  * orphanize inode 260, as its old reference conflicts with ours - but for the
4138  * orphanization we use a source path corresponding to the path we stored in the
4139  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4140  * receiver fail since the path component "d1/" no longer exists, it was renamed
4141  * to "o259-6-0/" when processing the previous new reference. So in this case we
4142  * must recompute the path in the new reference and use it for the new
4143  * orphanization operation.
4144  */
refresh_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4145 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4146 {
4147 	char *name;
4148 	int ret;
4149 
4150 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4151 	if (!name)
4152 		return -ENOMEM;
4153 
4154 	fs_path_reset(ref->full_path);
4155 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4156 	if (ret < 0)
4157 		goto out;
4158 
4159 	ret = fs_path_add(ref->full_path, name, ref->name_len);
4160 	if (ret < 0)
4161 		goto out;
4162 
4163 	/* Update the reference's base name pointer. */
4164 	set_ref_path(ref, ref->full_path);
4165 out:
4166 	kfree(name);
4167 	return ret;
4168 }
4169 
4170 /*
4171  * This does all the move/link/unlink/rmdir magic.
4172  */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)4173 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4174 {
4175 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4176 	int ret = 0;
4177 	struct recorded_ref *cur;
4178 	struct recorded_ref *cur2;
4179 	LIST_HEAD(check_dirs);
4180 	struct fs_path *valid_path = NULL;
4181 	u64 ow_inode = 0;
4182 	u64 ow_gen;
4183 	u64 ow_mode;
4184 	int did_overwrite = 0;
4185 	int is_orphan = 0;
4186 	u64 last_dir_ino_rm = 0;
4187 	bool can_rename = true;
4188 	bool orphanized_dir = false;
4189 	bool orphanized_ancestor = false;
4190 
4191 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4192 
4193 	/*
4194 	 * This should never happen as the root dir always has the same ref
4195 	 * which is always '..'
4196 	 */
4197 	if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4198 		btrfs_err(fs_info,
4199 			  "send: unexpected inode %llu in process_recorded_refs()",
4200 			  sctx->cur_ino);
4201 		ret = -EINVAL;
4202 		goto out;
4203 	}
4204 
4205 	valid_path = fs_path_alloc();
4206 	if (!valid_path) {
4207 		ret = -ENOMEM;
4208 		goto out;
4209 	}
4210 
4211 	/*
4212 	 * First, check if the first ref of the current inode was overwritten
4213 	 * before. If yes, we know that the current inode was already orphanized
4214 	 * and thus use the orphan name. If not, we can use get_cur_path to
4215 	 * get the path of the first ref as it would like while receiving at
4216 	 * this point in time.
4217 	 * New inodes are always orphan at the beginning, so force to use the
4218 	 * orphan name in this case.
4219 	 * The first ref is stored in valid_path and will be updated if it
4220 	 * gets moved around.
4221 	 */
4222 	if (!sctx->cur_inode_new) {
4223 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4224 				sctx->cur_inode_gen);
4225 		if (ret < 0)
4226 			goto out;
4227 		if (ret)
4228 			did_overwrite = 1;
4229 	}
4230 	if (sctx->cur_inode_new || did_overwrite) {
4231 		ret = gen_unique_name(sctx, sctx->cur_ino,
4232 				sctx->cur_inode_gen, valid_path);
4233 		if (ret < 0)
4234 			goto out;
4235 		is_orphan = 1;
4236 	} else {
4237 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4238 				valid_path);
4239 		if (ret < 0)
4240 			goto out;
4241 	}
4242 
4243 	/*
4244 	 * Before doing any rename and link operations, do a first pass on the
4245 	 * new references to orphanize any unprocessed inodes that may have a
4246 	 * reference that conflicts with one of the new references of the current
4247 	 * inode. This needs to happen first because a new reference may conflict
4248 	 * with the old reference of a parent directory, so we must make sure
4249 	 * that the path used for link and rename commands don't use an
4250 	 * orphanized name when an ancestor was not yet orphanized.
4251 	 *
4252 	 * Example:
4253 	 *
4254 	 * Parent snapshot:
4255 	 *
4256 	 * .                                                      (ino 256)
4257 	 * |----- testdir/                                        (ino 259)
4258 	 * |          |----- a                                    (ino 257)
4259 	 * |
4260 	 * |----- b                                               (ino 258)
4261 	 *
4262 	 * Send snapshot:
4263 	 *
4264 	 * .                                                      (ino 256)
4265 	 * |----- testdir_2/                                      (ino 259)
4266 	 * |          |----- a                                    (ino 260)
4267 	 * |
4268 	 * |----- testdir                                         (ino 257)
4269 	 * |----- b                                               (ino 257)
4270 	 * |----- b2                                              (ino 258)
4271 	 *
4272 	 * Processing the new reference for inode 257 with name "b" may happen
4273 	 * before processing the new reference with name "testdir". If so, we
4274 	 * must make sure that by the time we send a link command to create the
4275 	 * hard link "b", inode 259 was already orphanized, since the generated
4276 	 * path in "valid_path" already contains the orphanized name for 259.
4277 	 * We are processing inode 257, so only later when processing 259 we do
4278 	 * the rename operation to change its temporary (orphanized) name to
4279 	 * "testdir_2".
4280 	 */
4281 	list_for_each_entry(cur, &sctx->new_refs, list) {
4282 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4283 		if (ret < 0)
4284 			goto out;
4285 		if (ret == inode_state_will_create)
4286 			continue;
4287 
4288 		/*
4289 		 * Check if this new ref would overwrite the first ref of another
4290 		 * unprocessed inode. If yes, orphanize the overwritten inode.
4291 		 * If we find an overwritten ref that is not the first ref,
4292 		 * simply unlink it.
4293 		 */
4294 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4295 				cur->name, cur->name_len,
4296 				&ow_inode, &ow_gen, &ow_mode);
4297 		if (ret < 0)
4298 			goto out;
4299 		if (ret) {
4300 			ret = is_first_ref(sctx->parent_root,
4301 					   ow_inode, cur->dir, cur->name,
4302 					   cur->name_len);
4303 			if (ret < 0)
4304 				goto out;
4305 			if (ret) {
4306 				struct name_cache_entry *nce;
4307 				struct waiting_dir_move *wdm;
4308 
4309 				if (orphanized_dir) {
4310 					ret = refresh_ref_path(sctx, cur);
4311 					if (ret < 0)
4312 						goto out;
4313 				}
4314 
4315 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4316 						cur->full_path);
4317 				if (ret < 0)
4318 					goto out;
4319 				if (S_ISDIR(ow_mode))
4320 					orphanized_dir = true;
4321 
4322 				/*
4323 				 * If ow_inode has its rename operation delayed
4324 				 * make sure that its orphanized name is used in
4325 				 * the source path when performing its rename
4326 				 * operation.
4327 				 */
4328 				wdm = get_waiting_dir_move(sctx, ow_inode);
4329 				if (wdm)
4330 					wdm->orphanized = true;
4331 
4332 				/*
4333 				 * Make sure we clear our orphanized inode's
4334 				 * name from the name cache. This is because the
4335 				 * inode ow_inode might be an ancestor of some
4336 				 * other inode that will be orphanized as well
4337 				 * later and has an inode number greater than
4338 				 * sctx->send_progress. We need to prevent
4339 				 * future name lookups from using the old name
4340 				 * and get instead the orphan name.
4341 				 */
4342 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4343 				if (nce)
4344 					btrfs_lru_cache_remove(&sctx->name_cache,
4345 							       &nce->entry);
4346 
4347 				/*
4348 				 * ow_inode might currently be an ancestor of
4349 				 * cur_ino, therefore compute valid_path (the
4350 				 * current path of cur_ino) again because it
4351 				 * might contain the pre-orphanization name of
4352 				 * ow_inode, which is no longer valid.
4353 				 */
4354 				ret = is_ancestor(sctx->parent_root,
4355 						  ow_inode, ow_gen,
4356 						  sctx->cur_ino, NULL);
4357 				if (ret > 0) {
4358 					orphanized_ancestor = true;
4359 					fs_path_reset(valid_path);
4360 					ret = get_cur_path(sctx, sctx->cur_ino,
4361 							   sctx->cur_inode_gen,
4362 							   valid_path);
4363 				}
4364 				if (ret < 0)
4365 					goto out;
4366 			} else {
4367 				/*
4368 				 * If we previously orphanized a directory that
4369 				 * collided with a new reference that we already
4370 				 * processed, recompute the current path because
4371 				 * that directory may be part of the path.
4372 				 */
4373 				if (orphanized_dir) {
4374 					ret = refresh_ref_path(sctx, cur);
4375 					if (ret < 0)
4376 						goto out;
4377 				}
4378 				ret = send_unlink(sctx, cur->full_path);
4379 				if (ret < 0)
4380 					goto out;
4381 			}
4382 		}
4383 
4384 	}
4385 
4386 	list_for_each_entry(cur, &sctx->new_refs, list) {
4387 		/*
4388 		 * We may have refs where the parent directory does not exist
4389 		 * yet. This happens if the parent directories inum is higher
4390 		 * than the current inum. To handle this case, we create the
4391 		 * parent directory out of order. But we need to check if this
4392 		 * did already happen before due to other refs in the same dir.
4393 		 */
4394 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4395 		if (ret < 0)
4396 			goto out;
4397 		if (ret == inode_state_will_create) {
4398 			ret = 0;
4399 			/*
4400 			 * First check if any of the current inodes refs did
4401 			 * already create the dir.
4402 			 */
4403 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4404 				if (cur == cur2)
4405 					break;
4406 				if (cur2->dir == cur->dir) {
4407 					ret = 1;
4408 					break;
4409 				}
4410 			}
4411 
4412 			/*
4413 			 * If that did not happen, check if a previous inode
4414 			 * did already create the dir.
4415 			 */
4416 			if (!ret)
4417 				ret = did_create_dir(sctx, cur->dir);
4418 			if (ret < 0)
4419 				goto out;
4420 			if (!ret) {
4421 				ret = send_create_inode(sctx, cur->dir);
4422 				if (ret < 0)
4423 					goto out;
4424 				cache_dir_created(sctx, cur->dir);
4425 			}
4426 		}
4427 
4428 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4429 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4430 			if (ret < 0)
4431 				goto out;
4432 			if (ret == 1) {
4433 				can_rename = false;
4434 				*pending_move = 1;
4435 			}
4436 		}
4437 
4438 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4439 		    can_rename) {
4440 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4441 			if (ret < 0)
4442 				goto out;
4443 			if (ret == 1) {
4444 				can_rename = false;
4445 				*pending_move = 1;
4446 			}
4447 		}
4448 
4449 		/*
4450 		 * link/move the ref to the new place. If we have an orphan
4451 		 * inode, move it and update valid_path. If not, link or move
4452 		 * it depending on the inode mode.
4453 		 */
4454 		if (is_orphan && can_rename) {
4455 			ret = send_rename(sctx, valid_path, cur->full_path);
4456 			if (ret < 0)
4457 				goto out;
4458 			is_orphan = 0;
4459 			ret = fs_path_copy(valid_path, cur->full_path);
4460 			if (ret < 0)
4461 				goto out;
4462 		} else if (can_rename) {
4463 			if (S_ISDIR(sctx->cur_inode_mode)) {
4464 				/*
4465 				 * Dirs can't be linked, so move it. For moved
4466 				 * dirs, we always have one new and one deleted
4467 				 * ref. The deleted ref is ignored later.
4468 				 */
4469 				ret = send_rename(sctx, valid_path,
4470 						  cur->full_path);
4471 				if (!ret)
4472 					ret = fs_path_copy(valid_path,
4473 							   cur->full_path);
4474 				if (ret < 0)
4475 					goto out;
4476 			} else {
4477 				/*
4478 				 * We might have previously orphanized an inode
4479 				 * which is an ancestor of our current inode,
4480 				 * so our reference's full path, which was
4481 				 * computed before any such orphanizations, must
4482 				 * be updated.
4483 				 */
4484 				if (orphanized_dir) {
4485 					ret = update_ref_path(sctx, cur);
4486 					if (ret < 0)
4487 						goto out;
4488 				}
4489 				ret = send_link(sctx, cur->full_path,
4490 						valid_path);
4491 				if (ret < 0)
4492 					goto out;
4493 			}
4494 		}
4495 		ret = dup_ref(cur, &check_dirs);
4496 		if (ret < 0)
4497 			goto out;
4498 	}
4499 
4500 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4501 		/*
4502 		 * Check if we can already rmdir the directory. If not,
4503 		 * orphanize it. For every dir item inside that gets deleted
4504 		 * later, we do this check again and rmdir it then if possible.
4505 		 * See the use of check_dirs for more details.
4506 		 */
4507 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4508 		if (ret < 0)
4509 			goto out;
4510 		if (ret) {
4511 			ret = send_rmdir(sctx, valid_path);
4512 			if (ret < 0)
4513 				goto out;
4514 		} else if (!is_orphan) {
4515 			ret = orphanize_inode(sctx, sctx->cur_ino,
4516 					sctx->cur_inode_gen, valid_path);
4517 			if (ret < 0)
4518 				goto out;
4519 			is_orphan = 1;
4520 		}
4521 
4522 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4523 			ret = dup_ref(cur, &check_dirs);
4524 			if (ret < 0)
4525 				goto out;
4526 		}
4527 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4528 		   !list_empty(&sctx->deleted_refs)) {
4529 		/*
4530 		 * We have a moved dir. Add the old parent to check_dirs
4531 		 */
4532 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4533 				list);
4534 		ret = dup_ref(cur, &check_dirs);
4535 		if (ret < 0)
4536 			goto out;
4537 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4538 		/*
4539 		 * We have a non dir inode. Go through all deleted refs and
4540 		 * unlink them if they were not already overwritten by other
4541 		 * inodes.
4542 		 */
4543 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4544 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4545 					sctx->cur_ino, sctx->cur_inode_gen,
4546 					cur->name, cur->name_len);
4547 			if (ret < 0)
4548 				goto out;
4549 			if (!ret) {
4550 				/*
4551 				 * If we orphanized any ancestor before, we need
4552 				 * to recompute the full path for deleted names,
4553 				 * since any such path was computed before we
4554 				 * processed any references and orphanized any
4555 				 * ancestor inode.
4556 				 */
4557 				if (orphanized_ancestor) {
4558 					ret = update_ref_path(sctx, cur);
4559 					if (ret < 0)
4560 						goto out;
4561 				}
4562 				ret = send_unlink(sctx, cur->full_path);
4563 				if (ret < 0)
4564 					goto out;
4565 			}
4566 			ret = dup_ref(cur, &check_dirs);
4567 			if (ret < 0)
4568 				goto out;
4569 		}
4570 		/*
4571 		 * If the inode is still orphan, unlink the orphan. This may
4572 		 * happen when a previous inode did overwrite the first ref
4573 		 * of this inode and no new refs were added for the current
4574 		 * inode. Unlinking does not mean that the inode is deleted in
4575 		 * all cases. There may still be links to this inode in other
4576 		 * places.
4577 		 */
4578 		if (is_orphan) {
4579 			ret = send_unlink(sctx, valid_path);
4580 			if (ret < 0)
4581 				goto out;
4582 		}
4583 	}
4584 
4585 	/*
4586 	 * We did collect all parent dirs where cur_inode was once located. We
4587 	 * now go through all these dirs and check if they are pending for
4588 	 * deletion and if it's finally possible to perform the rmdir now.
4589 	 * We also update the inode stats of the parent dirs here.
4590 	 */
4591 	list_for_each_entry(cur, &check_dirs, list) {
4592 		/*
4593 		 * In case we had refs into dirs that were not processed yet,
4594 		 * we don't need to do the utime and rmdir logic for these dirs.
4595 		 * The dir will be processed later.
4596 		 */
4597 		if (cur->dir > sctx->cur_ino)
4598 			continue;
4599 
4600 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4601 		if (ret < 0)
4602 			goto out;
4603 
4604 		if (ret == inode_state_did_create ||
4605 		    ret == inode_state_no_change) {
4606 			ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4607 			if (ret < 0)
4608 				goto out;
4609 		} else if (ret == inode_state_did_delete &&
4610 			   cur->dir != last_dir_ino_rm) {
4611 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4612 			if (ret < 0)
4613 				goto out;
4614 			if (ret) {
4615 				ret = get_cur_path(sctx, cur->dir,
4616 						   cur->dir_gen, valid_path);
4617 				if (ret < 0)
4618 					goto out;
4619 				ret = send_rmdir(sctx, valid_path);
4620 				if (ret < 0)
4621 					goto out;
4622 				last_dir_ino_rm = cur->dir;
4623 			}
4624 		}
4625 	}
4626 
4627 	ret = 0;
4628 
4629 out:
4630 	__free_recorded_refs(&check_dirs);
4631 	free_recorded_refs(sctx);
4632 	fs_path_free(valid_path);
4633 	return ret;
4634 }
4635 
rbtree_ref_comp(const void * k,const struct rb_node * node)4636 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4637 {
4638 	const struct recorded_ref *data = k;
4639 	const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4640 	int result;
4641 
4642 	if (data->dir > ref->dir)
4643 		return 1;
4644 	if (data->dir < ref->dir)
4645 		return -1;
4646 	if (data->dir_gen > ref->dir_gen)
4647 		return 1;
4648 	if (data->dir_gen < ref->dir_gen)
4649 		return -1;
4650 	if (data->name_len > ref->name_len)
4651 		return 1;
4652 	if (data->name_len < ref->name_len)
4653 		return -1;
4654 	result = strcmp(data->name, ref->name);
4655 	if (result > 0)
4656 		return 1;
4657 	if (result < 0)
4658 		return -1;
4659 	return 0;
4660 }
4661 
rbtree_ref_less(struct rb_node * node,const struct rb_node * parent)4662 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4663 {
4664 	const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4665 
4666 	return rbtree_ref_comp(entry, parent) < 0;
4667 }
4668 
record_ref_in_tree(struct rb_root * root,struct list_head * refs,struct fs_path * name,u64 dir,u64 dir_gen,struct send_ctx * sctx)4669 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4670 			      struct fs_path *name, u64 dir, u64 dir_gen,
4671 			      struct send_ctx *sctx)
4672 {
4673 	int ret = 0;
4674 	struct fs_path *path = NULL;
4675 	struct recorded_ref *ref = NULL;
4676 
4677 	path = fs_path_alloc();
4678 	if (!path) {
4679 		ret = -ENOMEM;
4680 		goto out;
4681 	}
4682 
4683 	ref = recorded_ref_alloc();
4684 	if (!ref) {
4685 		ret = -ENOMEM;
4686 		goto out;
4687 	}
4688 
4689 	ret = get_cur_path(sctx, dir, dir_gen, path);
4690 	if (ret < 0)
4691 		goto out;
4692 	ret = fs_path_add_path(path, name);
4693 	if (ret < 0)
4694 		goto out;
4695 
4696 	ref->dir = dir;
4697 	ref->dir_gen = dir_gen;
4698 	set_ref_path(ref, path);
4699 	list_add_tail(&ref->list, refs);
4700 	rb_add(&ref->node, root, rbtree_ref_less);
4701 	ref->root = root;
4702 out:
4703 	if (ret) {
4704 		if (path && (!ref || !ref->full_path))
4705 			fs_path_free(path);
4706 		recorded_ref_free(ref);
4707 	}
4708 	return ret;
4709 }
4710 
record_new_ref_if_needed(int num,u64 dir,int index,struct fs_path * name,void * ctx)4711 static int record_new_ref_if_needed(int num, u64 dir, int index,
4712 				    struct fs_path *name, void *ctx)
4713 {
4714 	int ret = 0;
4715 	struct send_ctx *sctx = ctx;
4716 	struct rb_node *node = NULL;
4717 	struct recorded_ref data;
4718 	struct recorded_ref *ref;
4719 	u64 dir_gen;
4720 
4721 	ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4722 	if (ret < 0)
4723 		goto out;
4724 
4725 	data.dir = dir;
4726 	data.dir_gen = dir_gen;
4727 	set_ref_path(&data, name);
4728 	node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4729 	if (node) {
4730 		ref = rb_entry(node, struct recorded_ref, node);
4731 		recorded_ref_free(ref);
4732 	} else {
4733 		ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4734 					 &sctx->new_refs, name, dir, dir_gen,
4735 					 sctx);
4736 	}
4737 out:
4738 	return ret;
4739 }
4740 
record_deleted_ref_if_needed(int num,u64 dir,int index,struct fs_path * name,void * ctx)4741 static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4742 					struct fs_path *name, void *ctx)
4743 {
4744 	int ret = 0;
4745 	struct send_ctx *sctx = ctx;
4746 	struct rb_node *node = NULL;
4747 	struct recorded_ref data;
4748 	struct recorded_ref *ref;
4749 	u64 dir_gen;
4750 
4751 	ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4752 	if (ret < 0)
4753 		goto out;
4754 
4755 	data.dir = dir;
4756 	data.dir_gen = dir_gen;
4757 	set_ref_path(&data, name);
4758 	node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4759 	if (node) {
4760 		ref = rb_entry(node, struct recorded_ref, node);
4761 		recorded_ref_free(ref);
4762 	} else {
4763 		ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4764 					 &sctx->deleted_refs, name, dir,
4765 					 dir_gen, sctx);
4766 	}
4767 out:
4768 	return ret;
4769 }
4770 
record_new_ref(struct send_ctx * sctx)4771 static int record_new_ref(struct send_ctx *sctx)
4772 {
4773 	int ret;
4774 
4775 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4776 				sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4777 	if (ret < 0)
4778 		goto out;
4779 	ret = 0;
4780 
4781 out:
4782 	return ret;
4783 }
4784 
record_deleted_ref(struct send_ctx * sctx)4785 static int record_deleted_ref(struct send_ctx *sctx)
4786 {
4787 	int ret;
4788 
4789 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4790 				sctx->cmp_key, 0, record_deleted_ref_if_needed,
4791 				sctx);
4792 	if (ret < 0)
4793 		goto out;
4794 	ret = 0;
4795 
4796 out:
4797 	return ret;
4798 }
4799 
record_changed_ref(struct send_ctx * sctx)4800 static int record_changed_ref(struct send_ctx *sctx)
4801 {
4802 	int ret = 0;
4803 
4804 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4805 			sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4806 	if (ret < 0)
4807 		goto out;
4808 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4809 			sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4810 	if (ret < 0)
4811 		goto out;
4812 	ret = 0;
4813 
4814 out:
4815 	return ret;
4816 }
4817 
4818 /*
4819  * Record and process all refs at once. Needed when an inode changes the
4820  * generation number, which means that it was deleted and recreated.
4821  */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4822 static int process_all_refs(struct send_ctx *sctx,
4823 			    enum btrfs_compare_tree_result cmd)
4824 {
4825 	int ret = 0;
4826 	int iter_ret = 0;
4827 	struct btrfs_root *root;
4828 	struct btrfs_path *path;
4829 	struct btrfs_key key;
4830 	struct btrfs_key found_key;
4831 	iterate_inode_ref_t cb;
4832 	int pending_move = 0;
4833 
4834 	path = alloc_path_for_send();
4835 	if (!path)
4836 		return -ENOMEM;
4837 
4838 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4839 		root = sctx->send_root;
4840 		cb = record_new_ref_if_needed;
4841 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4842 		root = sctx->parent_root;
4843 		cb = record_deleted_ref_if_needed;
4844 	} else {
4845 		btrfs_err(sctx->send_root->fs_info,
4846 				"Wrong command %d in process_all_refs", cmd);
4847 		ret = -EINVAL;
4848 		goto out;
4849 	}
4850 
4851 	key.objectid = sctx->cmp_key->objectid;
4852 	key.type = BTRFS_INODE_REF_KEY;
4853 	key.offset = 0;
4854 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4855 		if (found_key.objectid != key.objectid ||
4856 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4857 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4858 			break;
4859 
4860 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4861 		if (ret < 0)
4862 			goto out;
4863 	}
4864 	/* Catch error found during iteration */
4865 	if (iter_ret < 0) {
4866 		ret = iter_ret;
4867 		goto out;
4868 	}
4869 	btrfs_release_path(path);
4870 
4871 	/*
4872 	 * We don't actually care about pending_move as we are simply
4873 	 * re-creating this inode and will be rename'ing it into place once we
4874 	 * rename the parent directory.
4875 	 */
4876 	ret = process_recorded_refs(sctx, &pending_move);
4877 out:
4878 	btrfs_free_path(path);
4879 	return ret;
4880 }
4881 
send_set_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len,const char * data,int data_len)4882 static int send_set_xattr(struct send_ctx *sctx,
4883 			  struct fs_path *path,
4884 			  const char *name, int name_len,
4885 			  const char *data, int data_len)
4886 {
4887 	int ret = 0;
4888 
4889 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4890 	if (ret < 0)
4891 		goto out;
4892 
4893 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4894 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4895 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4896 
4897 	ret = send_cmd(sctx);
4898 
4899 tlv_put_failure:
4900 out:
4901 	return ret;
4902 }
4903 
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4904 static int send_remove_xattr(struct send_ctx *sctx,
4905 			  struct fs_path *path,
4906 			  const char *name, int name_len)
4907 {
4908 	int ret = 0;
4909 
4910 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4911 	if (ret < 0)
4912 		goto out;
4913 
4914 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4915 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4916 
4917 	ret = send_cmd(sctx);
4918 
4919 tlv_put_failure:
4920 out:
4921 	return ret;
4922 }
4923 
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4924 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4925 			       const char *name, int name_len, const char *data,
4926 			       int data_len, void *ctx)
4927 {
4928 	int ret;
4929 	struct send_ctx *sctx = ctx;
4930 	struct fs_path *p;
4931 	struct posix_acl_xattr_header dummy_acl;
4932 
4933 	/* Capabilities are emitted by finish_inode_if_needed */
4934 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4935 		return 0;
4936 
4937 	p = fs_path_alloc();
4938 	if (!p)
4939 		return -ENOMEM;
4940 
4941 	/*
4942 	 * This hack is needed because empty acls are stored as zero byte
4943 	 * data in xattrs. Problem with that is, that receiving these zero byte
4944 	 * acls will fail later. To fix this, we send a dummy acl list that
4945 	 * only contains the version number and no entries.
4946 	 */
4947 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4948 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4949 		if (data_len == 0) {
4950 			dummy_acl.a_version =
4951 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4952 			data = (char *)&dummy_acl;
4953 			data_len = sizeof(dummy_acl);
4954 		}
4955 	}
4956 
4957 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4958 	if (ret < 0)
4959 		goto out;
4960 
4961 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4962 
4963 out:
4964 	fs_path_free(p);
4965 	return ret;
4966 }
4967 
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4968 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4969 				   const char *name, int name_len,
4970 				   const char *data, int data_len, void *ctx)
4971 {
4972 	int ret;
4973 	struct send_ctx *sctx = ctx;
4974 	struct fs_path *p;
4975 
4976 	p = fs_path_alloc();
4977 	if (!p)
4978 		return -ENOMEM;
4979 
4980 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4981 	if (ret < 0)
4982 		goto out;
4983 
4984 	ret = send_remove_xattr(sctx, p, name, name_len);
4985 
4986 out:
4987 	fs_path_free(p);
4988 	return ret;
4989 }
4990 
process_new_xattr(struct send_ctx * sctx)4991 static int process_new_xattr(struct send_ctx *sctx)
4992 {
4993 	int ret = 0;
4994 
4995 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4996 			       __process_new_xattr, sctx);
4997 
4998 	return ret;
4999 }
5000 
process_deleted_xattr(struct send_ctx * sctx)5001 static int process_deleted_xattr(struct send_ctx *sctx)
5002 {
5003 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
5004 				__process_deleted_xattr, sctx);
5005 }
5006 
5007 struct find_xattr_ctx {
5008 	const char *name;
5009 	int name_len;
5010 	int found_idx;
5011 	char *found_data;
5012 	int found_data_len;
5013 };
5014 
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * vctx)5015 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5016 			int name_len, const char *data, int data_len, void *vctx)
5017 {
5018 	struct find_xattr_ctx *ctx = vctx;
5019 
5020 	if (name_len == ctx->name_len &&
5021 	    strncmp(name, ctx->name, name_len) == 0) {
5022 		ctx->found_idx = num;
5023 		ctx->found_data_len = data_len;
5024 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5025 		if (!ctx->found_data)
5026 			return -ENOMEM;
5027 		return 1;
5028 	}
5029 	return 0;
5030 }
5031 
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)5032 static int find_xattr(struct btrfs_root *root,
5033 		      struct btrfs_path *path,
5034 		      struct btrfs_key *key,
5035 		      const char *name, int name_len,
5036 		      char **data, int *data_len)
5037 {
5038 	int ret;
5039 	struct find_xattr_ctx ctx;
5040 
5041 	ctx.name = name;
5042 	ctx.name_len = name_len;
5043 	ctx.found_idx = -1;
5044 	ctx.found_data = NULL;
5045 	ctx.found_data_len = 0;
5046 
5047 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5048 	if (ret < 0)
5049 		return ret;
5050 
5051 	if (ctx.found_idx == -1)
5052 		return -ENOENT;
5053 	if (data) {
5054 		*data = ctx.found_data;
5055 		*data_len = ctx.found_data_len;
5056 	} else {
5057 		kfree(ctx.found_data);
5058 	}
5059 	return ctx.found_idx;
5060 }
5061 
5062 
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5063 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5064 				       const char *name, int name_len,
5065 				       const char *data, int data_len,
5066 				       void *ctx)
5067 {
5068 	int ret;
5069 	struct send_ctx *sctx = ctx;
5070 	char *found_data = NULL;
5071 	int found_data_len  = 0;
5072 
5073 	ret = find_xattr(sctx->parent_root, sctx->right_path,
5074 			 sctx->cmp_key, name, name_len, &found_data,
5075 			 &found_data_len);
5076 	if (ret == -ENOENT) {
5077 		ret = __process_new_xattr(num, di_key, name, name_len, data,
5078 					  data_len, ctx);
5079 	} else if (ret >= 0) {
5080 		if (data_len != found_data_len ||
5081 		    memcmp(data, found_data, data_len)) {
5082 			ret = __process_new_xattr(num, di_key, name, name_len,
5083 						  data, data_len, ctx);
5084 		} else {
5085 			ret = 0;
5086 		}
5087 	}
5088 
5089 	kfree(found_data);
5090 	return ret;
5091 }
5092 
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5093 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5094 					   const char *name, int name_len,
5095 					   const char *data, int data_len,
5096 					   void *ctx)
5097 {
5098 	int ret;
5099 	struct send_ctx *sctx = ctx;
5100 
5101 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5102 			 name, name_len, NULL, NULL);
5103 	if (ret == -ENOENT)
5104 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5105 					      data_len, ctx);
5106 	else if (ret >= 0)
5107 		ret = 0;
5108 
5109 	return ret;
5110 }
5111 
process_changed_xattr(struct send_ctx * sctx)5112 static int process_changed_xattr(struct send_ctx *sctx)
5113 {
5114 	int ret = 0;
5115 
5116 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5117 			__process_changed_new_xattr, sctx);
5118 	if (ret < 0)
5119 		goto out;
5120 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5121 			__process_changed_deleted_xattr, sctx);
5122 
5123 out:
5124 	return ret;
5125 }
5126 
process_all_new_xattrs(struct send_ctx * sctx)5127 static int process_all_new_xattrs(struct send_ctx *sctx)
5128 {
5129 	int ret = 0;
5130 	int iter_ret = 0;
5131 	struct btrfs_root *root;
5132 	struct btrfs_path *path;
5133 	struct btrfs_key key;
5134 	struct btrfs_key found_key;
5135 
5136 	path = alloc_path_for_send();
5137 	if (!path)
5138 		return -ENOMEM;
5139 
5140 	root = sctx->send_root;
5141 
5142 	key.objectid = sctx->cmp_key->objectid;
5143 	key.type = BTRFS_XATTR_ITEM_KEY;
5144 	key.offset = 0;
5145 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5146 		if (found_key.objectid != key.objectid ||
5147 		    found_key.type != key.type) {
5148 			ret = 0;
5149 			break;
5150 		}
5151 
5152 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5153 		if (ret < 0)
5154 			break;
5155 	}
5156 	/* Catch error found during iteration */
5157 	if (iter_ret < 0)
5158 		ret = iter_ret;
5159 
5160 	btrfs_free_path(path);
5161 	return ret;
5162 }
5163 
send_verity(struct send_ctx * sctx,struct fs_path * path,struct fsverity_descriptor * desc)5164 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5165 		       struct fsverity_descriptor *desc)
5166 {
5167 	int ret;
5168 
5169 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5170 	if (ret < 0)
5171 		goto out;
5172 
5173 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5174 	TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5175 			le8_to_cpu(desc->hash_algorithm));
5176 	TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5177 			1U << le8_to_cpu(desc->log_blocksize));
5178 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5179 			le8_to_cpu(desc->salt_size));
5180 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5181 			le32_to_cpu(desc->sig_size));
5182 
5183 	ret = send_cmd(sctx);
5184 
5185 tlv_put_failure:
5186 out:
5187 	return ret;
5188 }
5189 
process_verity(struct send_ctx * sctx)5190 static int process_verity(struct send_ctx *sctx)
5191 {
5192 	int ret = 0;
5193 	struct inode *inode;
5194 	struct fs_path *p;
5195 
5196 	inode = btrfs_iget(sctx->cur_ino, sctx->send_root);
5197 	if (IS_ERR(inode))
5198 		return PTR_ERR(inode);
5199 
5200 	ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5201 	if (ret < 0)
5202 		goto iput;
5203 
5204 	if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5205 		ret = -EMSGSIZE;
5206 		goto iput;
5207 	}
5208 	if (!sctx->verity_descriptor) {
5209 		sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5210 						   GFP_KERNEL);
5211 		if (!sctx->verity_descriptor) {
5212 			ret = -ENOMEM;
5213 			goto iput;
5214 		}
5215 	}
5216 
5217 	ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5218 	if (ret < 0)
5219 		goto iput;
5220 
5221 	p = fs_path_alloc();
5222 	if (!p) {
5223 		ret = -ENOMEM;
5224 		goto iput;
5225 	}
5226 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5227 	if (ret < 0)
5228 		goto free_path;
5229 
5230 	ret = send_verity(sctx, p, sctx->verity_descriptor);
5231 	if (ret < 0)
5232 		goto free_path;
5233 
5234 free_path:
5235 	fs_path_free(p);
5236 iput:
5237 	iput(inode);
5238 	return ret;
5239 }
5240 
max_send_read_size(const struct send_ctx * sctx)5241 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5242 {
5243 	return sctx->send_max_size - SZ_16K;
5244 }
5245 
put_data_header(struct send_ctx * sctx,u32 len)5246 static int put_data_header(struct send_ctx *sctx, u32 len)
5247 {
5248 	if (WARN_ON_ONCE(sctx->put_data))
5249 		return -EINVAL;
5250 	sctx->put_data = true;
5251 	if (sctx->proto >= 2) {
5252 		/*
5253 		 * Since v2, the data attribute header doesn't include a length,
5254 		 * it is implicitly to the end of the command.
5255 		 */
5256 		if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5257 			return -EOVERFLOW;
5258 		put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5259 		sctx->send_size += sizeof(__le16);
5260 	} else {
5261 		struct btrfs_tlv_header *hdr;
5262 
5263 		if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5264 			return -EOVERFLOW;
5265 		hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5266 		put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5267 		put_unaligned_le16(len, &hdr->tlv_len);
5268 		sctx->send_size += sizeof(*hdr);
5269 	}
5270 	return 0;
5271 }
5272 
put_file_data(struct send_ctx * sctx,u64 offset,u32 len)5273 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5274 {
5275 	struct btrfs_root *root = sctx->send_root;
5276 	struct btrfs_fs_info *fs_info = root->fs_info;
5277 	struct folio *folio;
5278 	pgoff_t index = offset >> PAGE_SHIFT;
5279 	pgoff_t last_index;
5280 	unsigned pg_offset = offset_in_page(offset);
5281 	struct address_space *mapping = sctx->cur_inode->i_mapping;
5282 	int ret;
5283 
5284 	ret = put_data_header(sctx, len);
5285 	if (ret)
5286 		return ret;
5287 
5288 	last_index = (offset + len - 1) >> PAGE_SHIFT;
5289 
5290 	while (index <= last_index) {
5291 		unsigned cur_len = min_t(unsigned, len,
5292 					 PAGE_SIZE - pg_offset);
5293 
5294 		folio = filemap_lock_folio(mapping, index);
5295 		if (IS_ERR(folio)) {
5296 			page_cache_sync_readahead(mapping,
5297 						  &sctx->ra, NULL, index,
5298 						  last_index + 1 - index);
5299 
5300 	                folio = filemap_grab_folio(mapping, index);
5301 			if (IS_ERR(folio)) {
5302 				ret = PTR_ERR(folio);
5303 				break;
5304 			}
5305 		}
5306 
5307 		WARN_ON(folio_order(folio));
5308 
5309 		if (folio_test_readahead(folio))
5310 			page_cache_async_readahead(mapping, &sctx->ra, NULL, folio,
5311 						   last_index + 1 - index);
5312 
5313 		if (!folio_test_uptodate(folio)) {
5314 			btrfs_read_folio(NULL, folio);
5315 			folio_lock(folio);
5316 			if (!folio_test_uptodate(folio)) {
5317 				folio_unlock(folio);
5318 				btrfs_err(fs_info,
5319 			"send: IO error at offset %llu for inode %llu root %llu",
5320 					folio_pos(folio), sctx->cur_ino,
5321 					btrfs_root_id(sctx->send_root));
5322 				folio_put(folio);
5323 				ret = -EIO;
5324 				break;
5325 			}
5326 		}
5327 
5328 		memcpy_from_folio(sctx->send_buf + sctx->send_size, folio,
5329 				  pg_offset, cur_len);
5330 		folio_unlock(folio);
5331 		folio_put(folio);
5332 		index++;
5333 		pg_offset = 0;
5334 		len -= cur_len;
5335 		sctx->send_size += cur_len;
5336 	}
5337 
5338 	return ret;
5339 }
5340 
5341 /*
5342  * Read some bytes from the current inode/file and send a write command to
5343  * user space.
5344  */
send_write(struct send_ctx * sctx,u64 offset,u32 len)5345 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5346 {
5347 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5348 	int ret = 0;
5349 	struct fs_path *p;
5350 
5351 	p = fs_path_alloc();
5352 	if (!p)
5353 		return -ENOMEM;
5354 
5355 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5356 
5357 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5358 	if (ret < 0)
5359 		goto out;
5360 
5361 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5362 	if (ret < 0)
5363 		goto out;
5364 
5365 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5366 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5367 	ret = put_file_data(sctx, offset, len);
5368 	if (ret < 0)
5369 		goto out;
5370 
5371 	ret = send_cmd(sctx);
5372 
5373 tlv_put_failure:
5374 out:
5375 	fs_path_free(p);
5376 	return ret;
5377 }
5378 
5379 /*
5380  * Send a clone command to user space.
5381  */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)5382 static int send_clone(struct send_ctx *sctx,
5383 		      u64 offset, u32 len,
5384 		      struct clone_root *clone_root)
5385 {
5386 	int ret = 0;
5387 	struct fs_path *p;
5388 	u64 gen;
5389 
5390 	btrfs_debug(sctx->send_root->fs_info,
5391 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5392 		    offset, len, btrfs_root_id(clone_root->root),
5393 		    clone_root->ino, clone_root->offset);
5394 
5395 	p = fs_path_alloc();
5396 	if (!p)
5397 		return -ENOMEM;
5398 
5399 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5400 	if (ret < 0)
5401 		goto out;
5402 
5403 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5404 	if (ret < 0)
5405 		goto out;
5406 
5407 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5408 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5409 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5410 
5411 	if (clone_root->root == sctx->send_root) {
5412 		ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5413 		if (ret < 0)
5414 			goto out;
5415 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5416 	} else {
5417 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5418 	}
5419 	if (ret < 0)
5420 		goto out;
5421 
5422 	/*
5423 	 * If the parent we're using has a received_uuid set then use that as
5424 	 * our clone source as that is what we will look for when doing a
5425 	 * receive.
5426 	 *
5427 	 * This covers the case that we create a snapshot off of a received
5428 	 * subvolume and then use that as the parent and try to receive on a
5429 	 * different host.
5430 	 */
5431 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5432 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5433 			     clone_root->root->root_item.received_uuid);
5434 	else
5435 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5436 			     clone_root->root->root_item.uuid);
5437 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5438 		    btrfs_root_ctransid(&clone_root->root->root_item));
5439 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5440 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5441 			clone_root->offset);
5442 
5443 	ret = send_cmd(sctx);
5444 
5445 tlv_put_failure:
5446 out:
5447 	fs_path_free(p);
5448 	return ret;
5449 }
5450 
5451 /*
5452  * Send an update extent command to user space.
5453  */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)5454 static int send_update_extent(struct send_ctx *sctx,
5455 			      u64 offset, u32 len)
5456 {
5457 	int ret = 0;
5458 	struct fs_path *p;
5459 
5460 	p = fs_path_alloc();
5461 	if (!p)
5462 		return -ENOMEM;
5463 
5464 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5465 	if (ret < 0)
5466 		goto out;
5467 
5468 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5469 	if (ret < 0)
5470 		goto out;
5471 
5472 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5473 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5474 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5475 
5476 	ret = send_cmd(sctx);
5477 
5478 tlv_put_failure:
5479 out:
5480 	fs_path_free(p);
5481 	return ret;
5482 }
5483 
send_hole(struct send_ctx * sctx,u64 end)5484 static int send_hole(struct send_ctx *sctx, u64 end)
5485 {
5486 	struct fs_path *p = NULL;
5487 	u64 read_size = max_send_read_size(sctx);
5488 	u64 offset = sctx->cur_inode_last_extent;
5489 	int ret = 0;
5490 
5491 	/*
5492 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5493 	 * fallocate (for extent preallocation and hole punching), sending a
5494 	 * write of zeroes starting at EOF or beyond would later require issuing
5495 	 * a truncate operation which would undo the write and achieve nothing.
5496 	 */
5497 	if (offset >= sctx->cur_inode_size)
5498 		return 0;
5499 
5500 	/*
5501 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5502 	 * after the i_size.
5503 	 */
5504 	end = min_t(u64, end, sctx->cur_inode_size);
5505 
5506 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5507 		return send_update_extent(sctx, offset, end - offset);
5508 
5509 	p = fs_path_alloc();
5510 	if (!p)
5511 		return -ENOMEM;
5512 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5513 	if (ret < 0)
5514 		goto tlv_put_failure;
5515 	while (offset < end) {
5516 		u64 len = min(end - offset, read_size);
5517 
5518 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5519 		if (ret < 0)
5520 			break;
5521 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5522 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5523 		ret = put_data_header(sctx, len);
5524 		if (ret < 0)
5525 			break;
5526 		memset(sctx->send_buf + sctx->send_size, 0, len);
5527 		sctx->send_size += len;
5528 		ret = send_cmd(sctx);
5529 		if (ret < 0)
5530 			break;
5531 		offset += len;
5532 	}
5533 	sctx->cur_inode_next_write_offset = offset;
5534 tlv_put_failure:
5535 	fs_path_free(p);
5536 	return ret;
5537 }
5538 
send_encoded_inline_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5539 static int send_encoded_inline_extent(struct send_ctx *sctx,
5540 				      struct btrfs_path *path, u64 offset,
5541 				      u64 len)
5542 {
5543 	struct btrfs_root *root = sctx->send_root;
5544 	struct btrfs_fs_info *fs_info = root->fs_info;
5545 	struct inode *inode;
5546 	struct fs_path *fspath;
5547 	struct extent_buffer *leaf = path->nodes[0];
5548 	struct btrfs_key key;
5549 	struct btrfs_file_extent_item *ei;
5550 	u64 ram_bytes;
5551 	size_t inline_size;
5552 	int ret;
5553 
5554 	inode = btrfs_iget(sctx->cur_ino, root);
5555 	if (IS_ERR(inode))
5556 		return PTR_ERR(inode);
5557 
5558 	fspath = fs_path_alloc();
5559 	if (!fspath) {
5560 		ret = -ENOMEM;
5561 		goto out;
5562 	}
5563 
5564 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5565 	if (ret < 0)
5566 		goto out;
5567 
5568 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5569 	if (ret < 0)
5570 		goto out;
5571 
5572 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5573 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5574 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5575 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5576 
5577 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5578 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5579 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5580 		    min(key.offset + ram_bytes - offset, len));
5581 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5582 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5583 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5584 				btrfs_file_extent_compression(leaf, ei));
5585 	if (ret < 0)
5586 		goto out;
5587 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5588 
5589 	ret = put_data_header(sctx, inline_size);
5590 	if (ret < 0)
5591 		goto out;
5592 	read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5593 			   btrfs_file_extent_inline_start(ei), inline_size);
5594 	sctx->send_size += inline_size;
5595 
5596 	ret = send_cmd(sctx);
5597 
5598 tlv_put_failure:
5599 out:
5600 	fs_path_free(fspath);
5601 	iput(inode);
5602 	return ret;
5603 }
5604 
send_encoded_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5605 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5606 			       u64 offset, u64 len)
5607 {
5608 	struct btrfs_root *root = sctx->send_root;
5609 	struct btrfs_fs_info *fs_info = root->fs_info;
5610 	struct inode *inode;
5611 	struct fs_path *fspath;
5612 	struct extent_buffer *leaf = path->nodes[0];
5613 	struct btrfs_key key;
5614 	struct btrfs_file_extent_item *ei;
5615 	u64 disk_bytenr, disk_num_bytes;
5616 	u32 data_offset;
5617 	struct btrfs_cmd_header *hdr;
5618 	u32 crc;
5619 	int ret;
5620 
5621 	inode = btrfs_iget(sctx->cur_ino, root);
5622 	if (IS_ERR(inode))
5623 		return PTR_ERR(inode);
5624 
5625 	fspath = fs_path_alloc();
5626 	if (!fspath) {
5627 		ret = -ENOMEM;
5628 		goto out;
5629 	}
5630 
5631 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5632 	if (ret < 0)
5633 		goto out;
5634 
5635 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5636 	if (ret < 0)
5637 		goto out;
5638 
5639 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5640 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5641 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5642 	disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5643 
5644 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5645 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5646 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5647 		    min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5648 			len));
5649 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5650 		    btrfs_file_extent_ram_bytes(leaf, ei));
5651 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5652 		    offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5653 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5654 				btrfs_file_extent_compression(leaf, ei));
5655 	if (ret < 0)
5656 		goto out;
5657 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5658 	TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5659 
5660 	ret = put_data_header(sctx, disk_num_bytes);
5661 	if (ret < 0)
5662 		goto out;
5663 
5664 	/*
5665 	 * We want to do I/O directly into the send buffer, so get the next page
5666 	 * boundary in the send buffer. This means that there may be a gap
5667 	 * between the beginning of the command and the file data.
5668 	 */
5669 	data_offset = PAGE_ALIGN(sctx->send_size);
5670 	if (data_offset > sctx->send_max_size ||
5671 	    sctx->send_max_size - data_offset < disk_num_bytes) {
5672 		ret = -EOVERFLOW;
5673 		goto out;
5674 	}
5675 
5676 	/*
5677 	 * Note that send_buf is a mapping of send_buf_pages, so this is really
5678 	 * reading into send_buf.
5679 	 */
5680 	ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5681 						    disk_bytenr, disk_num_bytes,
5682 						    sctx->send_buf_pages +
5683 						    (data_offset >> PAGE_SHIFT));
5684 	if (ret)
5685 		goto out;
5686 
5687 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5688 	hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5689 	hdr->crc = 0;
5690 	crc = crc32c(0, sctx->send_buf, sctx->send_size);
5691 	crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5692 	hdr->crc = cpu_to_le32(crc);
5693 
5694 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5695 			&sctx->send_off);
5696 	if (!ret) {
5697 		ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5698 				disk_num_bytes, &sctx->send_off);
5699 	}
5700 	sctx->send_size = 0;
5701 	sctx->put_data = false;
5702 
5703 tlv_put_failure:
5704 out:
5705 	fs_path_free(fspath);
5706 	iput(inode);
5707 	return ret;
5708 }
5709 
send_extent_data(struct send_ctx * sctx,struct btrfs_path * path,const u64 offset,const u64 len)5710 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5711 			    const u64 offset, const u64 len)
5712 {
5713 	const u64 end = offset + len;
5714 	struct extent_buffer *leaf = path->nodes[0];
5715 	struct btrfs_file_extent_item *ei;
5716 	u64 read_size = max_send_read_size(sctx);
5717 	u64 sent = 0;
5718 
5719 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5720 		return send_update_extent(sctx, offset, len);
5721 
5722 	ei = btrfs_item_ptr(leaf, path->slots[0],
5723 			    struct btrfs_file_extent_item);
5724 	if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5725 	    btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5726 		bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5727 				  BTRFS_FILE_EXTENT_INLINE);
5728 
5729 		/*
5730 		 * Send the compressed extent unless the compressed data is
5731 		 * larger than the decompressed data. This can happen if we're
5732 		 * not sending the entire extent, either because it has been
5733 		 * partially overwritten/truncated or because this is a part of
5734 		 * the extent that we couldn't clone in clone_range().
5735 		 */
5736 		if (is_inline &&
5737 		    btrfs_file_extent_inline_item_len(leaf,
5738 						      path->slots[0]) <= len) {
5739 			return send_encoded_inline_extent(sctx, path, offset,
5740 							  len);
5741 		} else if (!is_inline &&
5742 			   btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5743 			return send_encoded_extent(sctx, path, offset, len);
5744 		}
5745 	}
5746 
5747 	if (sctx->cur_inode == NULL) {
5748 		struct btrfs_root *root = sctx->send_root;
5749 
5750 		sctx->cur_inode = btrfs_iget(sctx->cur_ino, root);
5751 		if (IS_ERR(sctx->cur_inode)) {
5752 			int err = PTR_ERR(sctx->cur_inode);
5753 
5754 			sctx->cur_inode = NULL;
5755 			return err;
5756 		}
5757 		memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5758 		file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5759 
5760 		/*
5761 		 * It's very likely there are no pages from this inode in the page
5762 		 * cache, so after reading extents and sending their data, we clean
5763 		 * the page cache to avoid trashing the page cache (adding pressure
5764 		 * to the page cache and forcing eviction of other data more useful
5765 		 * for applications).
5766 		 *
5767 		 * We decide if we should clean the page cache simply by checking
5768 		 * if the inode's mapping nrpages is 0 when we first open it, and
5769 		 * not by using something like filemap_range_has_page() before
5770 		 * reading an extent because when we ask the readahead code to
5771 		 * read a given file range, it may (and almost always does) read
5772 		 * pages from beyond that range (see the documentation for
5773 		 * page_cache_sync_readahead()), so it would not be reliable,
5774 		 * because after reading the first extent future calls to
5775 		 * filemap_range_has_page() would return true because the readahead
5776 		 * on the previous extent resulted in reading pages of the current
5777 		 * extent as well.
5778 		 */
5779 		sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5780 		sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5781 	}
5782 
5783 	while (sent < len) {
5784 		u64 size = min(len - sent, read_size);
5785 		int ret;
5786 
5787 		ret = send_write(sctx, offset + sent, size);
5788 		if (ret < 0)
5789 			return ret;
5790 		sent += size;
5791 	}
5792 
5793 	if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5794 		/*
5795 		 * Always operate only on ranges that are a multiple of the page
5796 		 * size. This is not only to prevent zeroing parts of a page in
5797 		 * the case of subpage sector size, but also to guarantee we evict
5798 		 * pages, as passing a range that is smaller than page size does
5799 		 * not evict the respective page (only zeroes part of its content).
5800 		 *
5801 		 * Always start from the end offset of the last range cleared.
5802 		 * This is because the readahead code may (and very often does)
5803 		 * reads pages beyond the range we request for readahead. So if
5804 		 * we have an extent layout like this:
5805 		 *
5806 		 *            [ extent A ] [ extent B ] [ extent C ]
5807 		 *
5808 		 * When we ask page_cache_sync_readahead() to read extent A, it
5809 		 * may also trigger reads for pages of extent B. If we are doing
5810 		 * an incremental send and extent B has not changed between the
5811 		 * parent and send snapshots, some or all of its pages may end
5812 		 * up being read and placed in the page cache. So when truncating
5813 		 * the page cache we always start from the end offset of the
5814 		 * previously processed extent up to the end of the current
5815 		 * extent.
5816 		 */
5817 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
5818 					   sctx->page_cache_clear_start,
5819 					   end - 1);
5820 		sctx->page_cache_clear_start = end;
5821 	}
5822 
5823 	return 0;
5824 }
5825 
5826 /*
5827  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5828  * found, call send_set_xattr function to emit it.
5829  *
5830  * Return 0 if there isn't a capability, or when the capability was emitted
5831  * successfully, or < 0 if an error occurred.
5832  */
send_capabilities(struct send_ctx * sctx)5833 static int send_capabilities(struct send_ctx *sctx)
5834 {
5835 	struct fs_path *fspath = NULL;
5836 	struct btrfs_path *path;
5837 	struct btrfs_dir_item *di;
5838 	struct extent_buffer *leaf;
5839 	unsigned long data_ptr;
5840 	char *buf = NULL;
5841 	int buf_len;
5842 	int ret = 0;
5843 
5844 	path = alloc_path_for_send();
5845 	if (!path)
5846 		return -ENOMEM;
5847 
5848 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5849 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5850 	if (!di) {
5851 		/* There is no xattr for this inode */
5852 		goto out;
5853 	} else if (IS_ERR(di)) {
5854 		ret = PTR_ERR(di);
5855 		goto out;
5856 	}
5857 
5858 	leaf = path->nodes[0];
5859 	buf_len = btrfs_dir_data_len(leaf, di);
5860 
5861 	fspath = fs_path_alloc();
5862 	buf = kmalloc(buf_len, GFP_KERNEL);
5863 	if (!fspath || !buf) {
5864 		ret = -ENOMEM;
5865 		goto out;
5866 	}
5867 
5868 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5869 	if (ret < 0)
5870 		goto out;
5871 
5872 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5873 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5874 
5875 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5876 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5877 out:
5878 	kfree(buf);
5879 	fs_path_free(fspath);
5880 	btrfs_free_path(path);
5881 	return ret;
5882 }
5883 
clone_range(struct send_ctx * sctx,struct btrfs_path * dst_path,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)5884 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5885 		       struct clone_root *clone_root, const u64 disk_byte,
5886 		       u64 data_offset, u64 offset, u64 len)
5887 {
5888 	struct btrfs_path *path;
5889 	struct btrfs_key key;
5890 	int ret;
5891 	struct btrfs_inode_info info;
5892 	u64 clone_src_i_size = 0;
5893 
5894 	/*
5895 	 * Prevent cloning from a zero offset with a length matching the sector
5896 	 * size because in some scenarios this will make the receiver fail.
5897 	 *
5898 	 * For example, if in the source filesystem the extent at offset 0
5899 	 * has a length of sectorsize and it was written using direct IO, then
5900 	 * it can never be an inline extent (even if compression is enabled).
5901 	 * Then this extent can be cloned in the original filesystem to a non
5902 	 * zero file offset, but it may not be possible to clone in the
5903 	 * destination filesystem because it can be inlined due to compression
5904 	 * on the destination filesystem (as the receiver's write operations are
5905 	 * always done using buffered IO). The same happens when the original
5906 	 * filesystem does not have compression enabled but the destination
5907 	 * filesystem has.
5908 	 */
5909 	if (clone_root->offset == 0 &&
5910 	    len == sctx->send_root->fs_info->sectorsize)
5911 		return send_extent_data(sctx, dst_path, offset, len);
5912 
5913 	path = alloc_path_for_send();
5914 	if (!path)
5915 		return -ENOMEM;
5916 
5917 	/*
5918 	 * There are inodes that have extents that lie behind its i_size. Don't
5919 	 * accept clones from these extents.
5920 	 */
5921 	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5922 	btrfs_release_path(path);
5923 	if (ret < 0)
5924 		goto out;
5925 	clone_src_i_size = info.size;
5926 
5927 	/*
5928 	 * We can't send a clone operation for the entire range if we find
5929 	 * extent items in the respective range in the source file that
5930 	 * refer to different extents or if we find holes.
5931 	 * So check for that and do a mix of clone and regular write/copy
5932 	 * operations if needed.
5933 	 *
5934 	 * Example:
5935 	 *
5936 	 * mkfs.btrfs -f /dev/sda
5937 	 * mount /dev/sda /mnt
5938 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5939 	 * cp --reflink=always /mnt/foo /mnt/bar
5940 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5941 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5942 	 *
5943 	 * If when we send the snapshot and we are processing file bar (which
5944 	 * has a higher inode number than foo) we blindly send a clone operation
5945 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5946 	 * a file bar that matches the content of file foo - iow, doesn't match
5947 	 * the content from bar in the original filesystem.
5948 	 */
5949 	key.objectid = clone_root->ino;
5950 	key.type = BTRFS_EXTENT_DATA_KEY;
5951 	key.offset = clone_root->offset;
5952 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5953 	if (ret < 0)
5954 		goto out;
5955 	if (ret > 0 && path->slots[0] > 0) {
5956 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5957 		if (key.objectid == clone_root->ino &&
5958 		    key.type == BTRFS_EXTENT_DATA_KEY)
5959 			path->slots[0]--;
5960 	}
5961 
5962 	while (true) {
5963 		struct extent_buffer *leaf = path->nodes[0];
5964 		int slot = path->slots[0];
5965 		struct btrfs_file_extent_item *ei;
5966 		u8 type;
5967 		u64 ext_len;
5968 		u64 clone_len;
5969 		u64 clone_data_offset;
5970 		bool crossed_src_i_size = false;
5971 
5972 		if (slot >= btrfs_header_nritems(leaf)) {
5973 			ret = btrfs_next_leaf(clone_root->root, path);
5974 			if (ret < 0)
5975 				goto out;
5976 			else if (ret > 0)
5977 				break;
5978 			continue;
5979 		}
5980 
5981 		btrfs_item_key_to_cpu(leaf, &key, slot);
5982 
5983 		/*
5984 		 * We might have an implicit trailing hole (NO_HOLES feature
5985 		 * enabled). We deal with it after leaving this loop.
5986 		 */
5987 		if (key.objectid != clone_root->ino ||
5988 		    key.type != BTRFS_EXTENT_DATA_KEY)
5989 			break;
5990 
5991 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5992 		type = btrfs_file_extent_type(leaf, ei);
5993 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5994 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5995 			ext_len = PAGE_ALIGN(ext_len);
5996 		} else {
5997 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5998 		}
5999 
6000 		if (key.offset + ext_len <= clone_root->offset)
6001 			goto next;
6002 
6003 		if (key.offset > clone_root->offset) {
6004 			/* Implicit hole, NO_HOLES feature enabled. */
6005 			u64 hole_len = key.offset - clone_root->offset;
6006 
6007 			if (hole_len > len)
6008 				hole_len = len;
6009 			ret = send_extent_data(sctx, dst_path, offset,
6010 					       hole_len);
6011 			if (ret < 0)
6012 				goto out;
6013 
6014 			len -= hole_len;
6015 			if (len == 0)
6016 				break;
6017 			offset += hole_len;
6018 			clone_root->offset += hole_len;
6019 			data_offset += hole_len;
6020 		}
6021 
6022 		if (key.offset >= clone_root->offset + len)
6023 			break;
6024 
6025 		if (key.offset >= clone_src_i_size)
6026 			break;
6027 
6028 		if (key.offset + ext_len > clone_src_i_size) {
6029 			ext_len = clone_src_i_size - key.offset;
6030 			crossed_src_i_size = true;
6031 		}
6032 
6033 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6034 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6035 			clone_root->offset = key.offset;
6036 			if (clone_data_offset < data_offset &&
6037 				clone_data_offset + ext_len > data_offset) {
6038 				u64 extent_offset;
6039 
6040 				extent_offset = data_offset - clone_data_offset;
6041 				ext_len -= extent_offset;
6042 				clone_data_offset += extent_offset;
6043 				clone_root->offset += extent_offset;
6044 			}
6045 		}
6046 
6047 		clone_len = min_t(u64, ext_len, len);
6048 
6049 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6050 		    clone_data_offset == data_offset) {
6051 			const u64 src_end = clone_root->offset + clone_len;
6052 			const u64 sectorsize = SZ_64K;
6053 
6054 			/*
6055 			 * We can't clone the last block, when its size is not
6056 			 * sector size aligned, into the middle of a file. If we
6057 			 * do so, the receiver will get a failure (-EINVAL) when
6058 			 * trying to clone or will silently corrupt the data in
6059 			 * the destination file if it's on a kernel without the
6060 			 * fix introduced by commit ac765f83f1397646
6061 			 * ("Btrfs: fix data corruption due to cloning of eof
6062 			 * block).
6063 			 *
6064 			 * So issue a clone of the aligned down range plus a
6065 			 * regular write for the eof block, if we hit that case.
6066 			 *
6067 			 * Also, we use the maximum possible sector size, 64K,
6068 			 * because we don't know what's the sector size of the
6069 			 * filesystem that receives the stream, so we have to
6070 			 * assume the largest possible sector size.
6071 			 */
6072 			if (src_end == clone_src_i_size &&
6073 			    !IS_ALIGNED(src_end, sectorsize) &&
6074 			    offset + clone_len < sctx->cur_inode_size) {
6075 				u64 slen;
6076 
6077 				slen = ALIGN_DOWN(src_end - clone_root->offset,
6078 						  sectorsize);
6079 				if (slen > 0) {
6080 					ret = send_clone(sctx, offset, slen,
6081 							 clone_root);
6082 					if (ret < 0)
6083 						goto out;
6084 				}
6085 				ret = send_extent_data(sctx, dst_path,
6086 						       offset + slen,
6087 						       clone_len - slen);
6088 			} else {
6089 				ret = send_clone(sctx, offset, clone_len,
6090 						 clone_root);
6091 			}
6092 		} else if (crossed_src_i_size && clone_len < len) {
6093 			/*
6094 			 * If we are at i_size of the clone source inode and we
6095 			 * can not clone from it, terminate the loop. This is
6096 			 * to avoid sending two write operations, one with a
6097 			 * length matching clone_len and the final one after
6098 			 * this loop with a length of len - clone_len.
6099 			 *
6100 			 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6101 			 * was passed to the send ioctl), this helps avoid
6102 			 * sending an encoded write for an offset that is not
6103 			 * sector size aligned, in case the i_size of the source
6104 			 * inode is not sector size aligned. That will make the
6105 			 * receiver fallback to decompression of the data and
6106 			 * writing it using regular buffered IO, therefore while
6107 			 * not incorrect, it's not optimal due decompression and
6108 			 * possible re-compression at the receiver.
6109 			 */
6110 			break;
6111 		} else {
6112 			ret = send_extent_data(sctx, dst_path, offset,
6113 					       clone_len);
6114 		}
6115 
6116 		if (ret < 0)
6117 			goto out;
6118 
6119 		len -= clone_len;
6120 		if (len == 0)
6121 			break;
6122 		offset += clone_len;
6123 		clone_root->offset += clone_len;
6124 
6125 		/*
6126 		 * If we are cloning from the file we are currently processing,
6127 		 * and using the send root as the clone root, we must stop once
6128 		 * the current clone offset reaches the current eof of the file
6129 		 * at the receiver, otherwise we would issue an invalid clone
6130 		 * operation (source range going beyond eof) and cause the
6131 		 * receiver to fail. So if we reach the current eof, bail out
6132 		 * and fallback to a regular write.
6133 		 */
6134 		if (clone_root->root == sctx->send_root &&
6135 		    clone_root->ino == sctx->cur_ino &&
6136 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
6137 			break;
6138 
6139 		data_offset += clone_len;
6140 next:
6141 		path->slots[0]++;
6142 	}
6143 
6144 	if (len > 0)
6145 		ret = send_extent_data(sctx, dst_path, offset, len);
6146 	else
6147 		ret = 0;
6148 out:
6149 	btrfs_free_path(path);
6150 	return ret;
6151 }
6152 
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)6153 static int send_write_or_clone(struct send_ctx *sctx,
6154 			       struct btrfs_path *path,
6155 			       struct btrfs_key *key,
6156 			       struct clone_root *clone_root)
6157 {
6158 	int ret = 0;
6159 	u64 offset = key->offset;
6160 	u64 end;
6161 	u64 bs = sctx->send_root->fs_info->sectorsize;
6162 	struct btrfs_file_extent_item *ei;
6163 	u64 disk_byte;
6164 	u64 data_offset;
6165 	u64 num_bytes;
6166 	struct btrfs_inode_info info = { 0 };
6167 
6168 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6169 	if (offset >= end)
6170 		return 0;
6171 
6172 	num_bytes = end - offset;
6173 
6174 	if (!clone_root)
6175 		goto write_data;
6176 
6177 	if (IS_ALIGNED(end, bs))
6178 		goto clone_data;
6179 
6180 	/*
6181 	 * If the extent end is not aligned, we can clone if the extent ends at
6182 	 * the i_size of the inode and the clone range ends at the i_size of the
6183 	 * source inode, otherwise the clone operation fails with -EINVAL.
6184 	 */
6185 	if (end != sctx->cur_inode_size)
6186 		goto write_data;
6187 
6188 	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
6189 	if (ret < 0)
6190 		return ret;
6191 
6192 	if (clone_root->offset + num_bytes == info.size) {
6193 		/*
6194 		 * The final size of our file matches the end offset, but it may
6195 		 * be that its current size is larger, so we have to truncate it
6196 		 * to any value between the start offset of the range and the
6197 		 * final i_size, otherwise the clone operation is invalid
6198 		 * because it's unaligned and it ends before the current EOF.
6199 		 * We do this truncate to the final i_size when we finish
6200 		 * processing the inode, but it's too late by then. And here we
6201 		 * truncate to the start offset of the range because it's always
6202 		 * sector size aligned while if it were the final i_size it
6203 		 * would result in dirtying part of a page, filling part of a
6204 		 * page with zeroes and then having the clone operation at the
6205 		 * receiver trigger IO and wait for it due to the dirty page.
6206 		 */
6207 		if (sctx->parent_root != NULL) {
6208 			ret = send_truncate(sctx, sctx->cur_ino,
6209 					    sctx->cur_inode_gen, offset);
6210 			if (ret < 0)
6211 				return ret;
6212 		}
6213 		goto clone_data;
6214 	}
6215 
6216 write_data:
6217 	ret = send_extent_data(sctx, path, offset, num_bytes);
6218 	sctx->cur_inode_next_write_offset = end;
6219 	return ret;
6220 
6221 clone_data:
6222 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6223 			    struct btrfs_file_extent_item);
6224 	disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6225 	data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6226 	ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset,
6227 			  num_bytes);
6228 	sctx->cur_inode_next_write_offset = end;
6229 	return ret;
6230 }
6231 
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)6232 static int is_extent_unchanged(struct send_ctx *sctx,
6233 			       struct btrfs_path *left_path,
6234 			       struct btrfs_key *ekey)
6235 {
6236 	int ret = 0;
6237 	struct btrfs_key key;
6238 	struct btrfs_path *path = NULL;
6239 	struct extent_buffer *eb;
6240 	int slot;
6241 	struct btrfs_key found_key;
6242 	struct btrfs_file_extent_item *ei;
6243 	u64 left_disknr;
6244 	u64 right_disknr;
6245 	u64 left_offset;
6246 	u64 right_offset;
6247 	u64 left_offset_fixed;
6248 	u64 left_len;
6249 	u64 right_len;
6250 	u64 left_gen;
6251 	u64 right_gen;
6252 	u8 left_type;
6253 	u8 right_type;
6254 
6255 	path = alloc_path_for_send();
6256 	if (!path)
6257 		return -ENOMEM;
6258 
6259 	eb = left_path->nodes[0];
6260 	slot = left_path->slots[0];
6261 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6262 	left_type = btrfs_file_extent_type(eb, ei);
6263 
6264 	if (left_type != BTRFS_FILE_EXTENT_REG) {
6265 		ret = 0;
6266 		goto out;
6267 	}
6268 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6269 	left_len = btrfs_file_extent_num_bytes(eb, ei);
6270 	left_offset = btrfs_file_extent_offset(eb, ei);
6271 	left_gen = btrfs_file_extent_generation(eb, ei);
6272 
6273 	/*
6274 	 * Following comments will refer to these graphics. L is the left
6275 	 * extents which we are checking at the moment. 1-8 are the right
6276 	 * extents that we iterate.
6277 	 *
6278 	 *       |-----L-----|
6279 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6280 	 *
6281 	 *       |-----L-----|
6282 	 * |--1--|-2b-|...(same as above)
6283 	 *
6284 	 * Alternative situation. Happens on files where extents got split.
6285 	 *       |-----L-----|
6286 	 * |-----------7-----------|-6-|
6287 	 *
6288 	 * Alternative situation. Happens on files which got larger.
6289 	 *       |-----L-----|
6290 	 * |-8-|
6291 	 * Nothing follows after 8.
6292 	 */
6293 
6294 	key.objectid = ekey->objectid;
6295 	key.type = BTRFS_EXTENT_DATA_KEY;
6296 	key.offset = ekey->offset;
6297 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6298 	if (ret < 0)
6299 		goto out;
6300 	if (ret) {
6301 		ret = 0;
6302 		goto out;
6303 	}
6304 
6305 	/*
6306 	 * Handle special case where the right side has no extents at all.
6307 	 */
6308 	eb = path->nodes[0];
6309 	slot = path->slots[0];
6310 	btrfs_item_key_to_cpu(eb, &found_key, slot);
6311 	if (found_key.objectid != key.objectid ||
6312 	    found_key.type != key.type) {
6313 		/* If we're a hole then just pretend nothing changed */
6314 		ret = (left_disknr) ? 0 : 1;
6315 		goto out;
6316 	}
6317 
6318 	/*
6319 	 * We're now on 2a, 2b or 7.
6320 	 */
6321 	key = found_key;
6322 	while (key.offset < ekey->offset + left_len) {
6323 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6324 		right_type = btrfs_file_extent_type(eb, ei);
6325 		if (right_type != BTRFS_FILE_EXTENT_REG &&
6326 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
6327 			ret = 0;
6328 			goto out;
6329 		}
6330 
6331 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6332 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
6333 			right_len = PAGE_ALIGN(right_len);
6334 		} else {
6335 			right_len = btrfs_file_extent_num_bytes(eb, ei);
6336 		}
6337 
6338 		/*
6339 		 * Are we at extent 8? If yes, we know the extent is changed.
6340 		 * This may only happen on the first iteration.
6341 		 */
6342 		if (found_key.offset + right_len <= ekey->offset) {
6343 			/* If we're a hole just pretend nothing changed */
6344 			ret = (left_disknr) ? 0 : 1;
6345 			goto out;
6346 		}
6347 
6348 		/*
6349 		 * We just wanted to see if when we have an inline extent, what
6350 		 * follows it is a regular extent (wanted to check the above
6351 		 * condition for inline extents too). This should normally not
6352 		 * happen but it's possible for example when we have an inline
6353 		 * compressed extent representing data with a size matching
6354 		 * the page size (currently the same as sector size).
6355 		 */
6356 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6357 			ret = 0;
6358 			goto out;
6359 		}
6360 
6361 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6362 		right_offset = btrfs_file_extent_offset(eb, ei);
6363 		right_gen = btrfs_file_extent_generation(eb, ei);
6364 
6365 		left_offset_fixed = left_offset;
6366 		if (key.offset < ekey->offset) {
6367 			/* Fix the right offset for 2a and 7. */
6368 			right_offset += ekey->offset - key.offset;
6369 		} else {
6370 			/* Fix the left offset for all behind 2a and 2b */
6371 			left_offset_fixed += key.offset - ekey->offset;
6372 		}
6373 
6374 		/*
6375 		 * Check if we have the same extent.
6376 		 */
6377 		if (left_disknr != right_disknr ||
6378 		    left_offset_fixed != right_offset ||
6379 		    left_gen != right_gen) {
6380 			ret = 0;
6381 			goto out;
6382 		}
6383 
6384 		/*
6385 		 * Go to the next extent.
6386 		 */
6387 		ret = btrfs_next_item(sctx->parent_root, path);
6388 		if (ret < 0)
6389 			goto out;
6390 		if (!ret) {
6391 			eb = path->nodes[0];
6392 			slot = path->slots[0];
6393 			btrfs_item_key_to_cpu(eb, &found_key, slot);
6394 		}
6395 		if (ret || found_key.objectid != key.objectid ||
6396 		    found_key.type != key.type) {
6397 			key.offset += right_len;
6398 			break;
6399 		}
6400 		if (found_key.offset != key.offset + right_len) {
6401 			ret = 0;
6402 			goto out;
6403 		}
6404 		key = found_key;
6405 	}
6406 
6407 	/*
6408 	 * We're now behind the left extent (treat as unchanged) or at the end
6409 	 * of the right side (treat as changed).
6410 	 */
6411 	if (key.offset >= ekey->offset + left_len)
6412 		ret = 1;
6413 	else
6414 		ret = 0;
6415 
6416 
6417 out:
6418 	btrfs_free_path(path);
6419 	return ret;
6420 }
6421 
get_last_extent(struct send_ctx * sctx,u64 offset)6422 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6423 {
6424 	struct btrfs_path *path;
6425 	struct btrfs_root *root = sctx->send_root;
6426 	struct btrfs_key key;
6427 	int ret;
6428 
6429 	path = alloc_path_for_send();
6430 	if (!path)
6431 		return -ENOMEM;
6432 
6433 	sctx->cur_inode_last_extent = 0;
6434 
6435 	key.objectid = sctx->cur_ino;
6436 	key.type = BTRFS_EXTENT_DATA_KEY;
6437 	key.offset = offset;
6438 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6439 	if (ret < 0)
6440 		goto out;
6441 	ret = 0;
6442 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6443 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6444 		goto out;
6445 
6446 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6447 out:
6448 	btrfs_free_path(path);
6449 	return ret;
6450 }
6451 
range_is_hole_in_parent(struct send_ctx * sctx,const u64 start,const u64 end)6452 static int range_is_hole_in_parent(struct send_ctx *sctx,
6453 				   const u64 start,
6454 				   const u64 end)
6455 {
6456 	struct btrfs_path *path;
6457 	struct btrfs_key key;
6458 	struct btrfs_root *root = sctx->parent_root;
6459 	u64 search_start = start;
6460 	int ret;
6461 
6462 	path = alloc_path_for_send();
6463 	if (!path)
6464 		return -ENOMEM;
6465 
6466 	key.objectid = sctx->cur_ino;
6467 	key.type = BTRFS_EXTENT_DATA_KEY;
6468 	key.offset = search_start;
6469 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6470 	if (ret < 0)
6471 		goto out;
6472 	if (ret > 0 && path->slots[0] > 0)
6473 		path->slots[0]--;
6474 
6475 	while (search_start < end) {
6476 		struct extent_buffer *leaf = path->nodes[0];
6477 		int slot = path->slots[0];
6478 		struct btrfs_file_extent_item *fi;
6479 		u64 extent_end;
6480 
6481 		if (slot >= btrfs_header_nritems(leaf)) {
6482 			ret = btrfs_next_leaf(root, path);
6483 			if (ret < 0)
6484 				goto out;
6485 			else if (ret > 0)
6486 				break;
6487 			continue;
6488 		}
6489 
6490 		btrfs_item_key_to_cpu(leaf, &key, slot);
6491 		if (key.objectid < sctx->cur_ino ||
6492 		    key.type < BTRFS_EXTENT_DATA_KEY)
6493 			goto next;
6494 		if (key.objectid > sctx->cur_ino ||
6495 		    key.type > BTRFS_EXTENT_DATA_KEY ||
6496 		    key.offset >= end)
6497 			break;
6498 
6499 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6500 		extent_end = btrfs_file_extent_end(path);
6501 		if (extent_end <= start)
6502 			goto next;
6503 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6504 			search_start = extent_end;
6505 			goto next;
6506 		}
6507 		ret = 0;
6508 		goto out;
6509 next:
6510 		path->slots[0]++;
6511 	}
6512 	ret = 1;
6513 out:
6514 	btrfs_free_path(path);
6515 	return ret;
6516 }
6517 
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6518 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6519 			   struct btrfs_key *key)
6520 {
6521 	int ret = 0;
6522 
6523 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6524 		return 0;
6525 
6526 	/*
6527 	 * Get last extent's end offset (exclusive) if we haven't determined it
6528 	 * yet (we're processing the first file extent item that is new), or if
6529 	 * we're at the first slot of a leaf and the last extent's end is less
6530 	 * than the current extent's offset, because we might have skipped
6531 	 * entire leaves that contained only file extent items for our current
6532 	 * inode. These leaves have a generation number smaller (older) than the
6533 	 * one in the current leaf and the leaf our last extent came from, and
6534 	 * are located between these 2 leaves.
6535 	 */
6536 	if ((sctx->cur_inode_last_extent == (u64)-1) ||
6537 	    (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6538 		ret = get_last_extent(sctx, key->offset - 1);
6539 		if (ret)
6540 			return ret;
6541 	}
6542 
6543 	if (sctx->cur_inode_last_extent < key->offset) {
6544 		ret = range_is_hole_in_parent(sctx,
6545 					      sctx->cur_inode_last_extent,
6546 					      key->offset);
6547 		if (ret < 0)
6548 			return ret;
6549 		else if (ret == 0)
6550 			ret = send_hole(sctx, key->offset);
6551 		else
6552 			ret = 0;
6553 	}
6554 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6555 	return ret;
6556 }
6557 
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6558 static int process_extent(struct send_ctx *sctx,
6559 			  struct btrfs_path *path,
6560 			  struct btrfs_key *key)
6561 {
6562 	struct clone_root *found_clone = NULL;
6563 	int ret = 0;
6564 
6565 	if (S_ISLNK(sctx->cur_inode_mode))
6566 		return 0;
6567 
6568 	if (sctx->parent_root && !sctx->cur_inode_new) {
6569 		ret = is_extent_unchanged(sctx, path, key);
6570 		if (ret < 0)
6571 			goto out;
6572 		if (ret) {
6573 			ret = 0;
6574 			goto out_hole;
6575 		}
6576 	} else {
6577 		struct btrfs_file_extent_item *ei;
6578 		u8 type;
6579 
6580 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6581 				    struct btrfs_file_extent_item);
6582 		type = btrfs_file_extent_type(path->nodes[0], ei);
6583 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6584 		    type == BTRFS_FILE_EXTENT_REG) {
6585 			/*
6586 			 * The send spec does not have a prealloc command yet,
6587 			 * so just leave a hole for prealloc'ed extents until
6588 			 * we have enough commands queued up to justify rev'ing
6589 			 * the send spec.
6590 			 */
6591 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6592 				ret = 0;
6593 				goto out;
6594 			}
6595 
6596 			/* Have a hole, just skip it. */
6597 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6598 				ret = 0;
6599 				goto out;
6600 			}
6601 		}
6602 	}
6603 
6604 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6605 			sctx->cur_inode_size, &found_clone);
6606 	if (ret != -ENOENT && ret < 0)
6607 		goto out;
6608 
6609 	ret = send_write_or_clone(sctx, path, key, found_clone);
6610 	if (ret)
6611 		goto out;
6612 out_hole:
6613 	ret = maybe_send_hole(sctx, path, key);
6614 out:
6615 	return ret;
6616 }
6617 
process_all_extents(struct send_ctx * sctx)6618 static int process_all_extents(struct send_ctx *sctx)
6619 {
6620 	int ret = 0;
6621 	int iter_ret = 0;
6622 	struct btrfs_root *root;
6623 	struct btrfs_path *path;
6624 	struct btrfs_key key;
6625 	struct btrfs_key found_key;
6626 
6627 	root = sctx->send_root;
6628 	path = alloc_path_for_send();
6629 	if (!path)
6630 		return -ENOMEM;
6631 
6632 	key.objectid = sctx->cmp_key->objectid;
6633 	key.type = BTRFS_EXTENT_DATA_KEY;
6634 	key.offset = 0;
6635 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6636 		if (found_key.objectid != key.objectid ||
6637 		    found_key.type != key.type) {
6638 			ret = 0;
6639 			break;
6640 		}
6641 
6642 		ret = process_extent(sctx, path, &found_key);
6643 		if (ret < 0)
6644 			break;
6645 	}
6646 	/* Catch error found during iteration */
6647 	if (iter_ret < 0)
6648 		ret = iter_ret;
6649 
6650 	btrfs_free_path(path);
6651 	return ret;
6652 }
6653 
process_recorded_refs_if_needed(struct send_ctx * sctx,int at_end,int * pending_move,int * refs_processed)6654 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6655 					   int *pending_move,
6656 					   int *refs_processed)
6657 {
6658 	int ret = 0;
6659 
6660 	if (sctx->cur_ino == 0)
6661 		goto out;
6662 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6663 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6664 		goto out;
6665 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6666 		goto out;
6667 
6668 	ret = process_recorded_refs(sctx, pending_move);
6669 	if (ret < 0)
6670 		goto out;
6671 
6672 	*refs_processed = 1;
6673 out:
6674 	return ret;
6675 }
6676 
finish_inode_if_needed(struct send_ctx * sctx,int at_end)6677 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6678 {
6679 	int ret = 0;
6680 	struct btrfs_inode_info info;
6681 	u64 left_mode;
6682 	u64 left_uid;
6683 	u64 left_gid;
6684 	u64 left_fileattr;
6685 	u64 right_mode;
6686 	u64 right_uid;
6687 	u64 right_gid;
6688 	u64 right_fileattr;
6689 	int need_chmod = 0;
6690 	int need_chown = 0;
6691 	bool need_fileattr = false;
6692 	int need_truncate = 1;
6693 	int pending_move = 0;
6694 	int refs_processed = 0;
6695 
6696 	if (sctx->ignore_cur_inode)
6697 		return 0;
6698 
6699 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6700 					      &refs_processed);
6701 	if (ret < 0)
6702 		goto out;
6703 
6704 	/*
6705 	 * We have processed the refs and thus need to advance send_progress.
6706 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6707 	 * inode into account.
6708 	 *
6709 	 * On the other hand, if our current inode is a directory and couldn't
6710 	 * be moved/renamed because its parent was renamed/moved too and it has
6711 	 * a higher inode number, we can only move/rename our current inode
6712 	 * after we moved/renamed its parent. Therefore in this case operate on
6713 	 * the old path (pre move/rename) of our current inode, and the
6714 	 * move/rename will be performed later.
6715 	 */
6716 	if (refs_processed && !pending_move)
6717 		sctx->send_progress = sctx->cur_ino + 1;
6718 
6719 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6720 		goto out;
6721 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6722 		goto out;
6723 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6724 	if (ret < 0)
6725 		goto out;
6726 	left_mode = info.mode;
6727 	left_uid = info.uid;
6728 	left_gid = info.gid;
6729 	left_fileattr = info.fileattr;
6730 
6731 	if (!sctx->parent_root || sctx->cur_inode_new) {
6732 		need_chown = 1;
6733 		if (!S_ISLNK(sctx->cur_inode_mode))
6734 			need_chmod = 1;
6735 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6736 			need_truncate = 0;
6737 	} else {
6738 		u64 old_size;
6739 
6740 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6741 		if (ret < 0)
6742 			goto out;
6743 		old_size = info.size;
6744 		right_mode = info.mode;
6745 		right_uid = info.uid;
6746 		right_gid = info.gid;
6747 		right_fileattr = info.fileattr;
6748 
6749 		if (left_uid != right_uid || left_gid != right_gid)
6750 			need_chown = 1;
6751 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6752 			need_chmod = 1;
6753 		if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6754 			need_fileattr = true;
6755 		if ((old_size == sctx->cur_inode_size) ||
6756 		    (sctx->cur_inode_size > old_size &&
6757 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6758 			need_truncate = 0;
6759 	}
6760 
6761 	if (S_ISREG(sctx->cur_inode_mode)) {
6762 		if (need_send_hole(sctx)) {
6763 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6764 			    sctx->cur_inode_last_extent <
6765 			    sctx->cur_inode_size) {
6766 				ret = get_last_extent(sctx, (u64)-1);
6767 				if (ret)
6768 					goto out;
6769 			}
6770 			if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6771 				ret = range_is_hole_in_parent(sctx,
6772 						      sctx->cur_inode_last_extent,
6773 						      sctx->cur_inode_size);
6774 				if (ret < 0) {
6775 					goto out;
6776 				} else if (ret == 0) {
6777 					ret = send_hole(sctx, sctx->cur_inode_size);
6778 					if (ret < 0)
6779 						goto out;
6780 				} else {
6781 					/* Range is already a hole, skip. */
6782 					ret = 0;
6783 				}
6784 			}
6785 		}
6786 		if (need_truncate) {
6787 			ret = send_truncate(sctx, sctx->cur_ino,
6788 					    sctx->cur_inode_gen,
6789 					    sctx->cur_inode_size);
6790 			if (ret < 0)
6791 				goto out;
6792 		}
6793 	}
6794 
6795 	if (need_chown) {
6796 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6797 				left_uid, left_gid);
6798 		if (ret < 0)
6799 			goto out;
6800 	}
6801 	if (need_chmod) {
6802 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6803 				left_mode);
6804 		if (ret < 0)
6805 			goto out;
6806 	}
6807 	if (need_fileattr) {
6808 		ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6809 				    left_fileattr);
6810 		if (ret < 0)
6811 			goto out;
6812 	}
6813 
6814 	if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6815 	    && sctx->cur_inode_needs_verity) {
6816 		ret = process_verity(sctx);
6817 		if (ret < 0)
6818 			goto out;
6819 	}
6820 
6821 	ret = send_capabilities(sctx);
6822 	if (ret < 0)
6823 		goto out;
6824 
6825 	/*
6826 	 * If other directory inodes depended on our current directory
6827 	 * inode's move/rename, now do their move/rename operations.
6828 	 */
6829 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6830 		ret = apply_children_dir_moves(sctx);
6831 		if (ret)
6832 			goto out;
6833 		/*
6834 		 * Need to send that every time, no matter if it actually
6835 		 * changed between the two trees as we have done changes to
6836 		 * the inode before. If our inode is a directory and it's
6837 		 * waiting to be moved/renamed, we will send its utimes when
6838 		 * it's moved/renamed, therefore we don't need to do it here.
6839 		 */
6840 		sctx->send_progress = sctx->cur_ino + 1;
6841 
6842 		/*
6843 		 * If the current inode is a non-empty directory, delay issuing
6844 		 * the utimes command for it, as it's very likely we have inodes
6845 		 * with an higher number inside it. We want to issue the utimes
6846 		 * command only after adding all dentries to it.
6847 		 */
6848 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6849 			ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6850 		else
6851 			ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6852 
6853 		if (ret < 0)
6854 			goto out;
6855 	}
6856 
6857 out:
6858 	if (!ret)
6859 		ret = trim_dir_utimes_cache(sctx);
6860 
6861 	return ret;
6862 }
6863 
close_current_inode(struct send_ctx * sctx)6864 static void close_current_inode(struct send_ctx *sctx)
6865 {
6866 	u64 i_size;
6867 
6868 	if (sctx->cur_inode == NULL)
6869 		return;
6870 
6871 	i_size = i_size_read(sctx->cur_inode);
6872 
6873 	/*
6874 	 * If we are doing an incremental send, we may have extents between the
6875 	 * last processed extent and the i_size that have not been processed
6876 	 * because they haven't changed but we may have read some of their pages
6877 	 * through readahead, see the comments at send_extent_data().
6878 	 */
6879 	if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6880 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
6881 					   sctx->page_cache_clear_start,
6882 					   round_up(i_size, PAGE_SIZE) - 1);
6883 
6884 	iput(sctx->cur_inode);
6885 	sctx->cur_inode = NULL;
6886 }
6887 
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6888 static int changed_inode(struct send_ctx *sctx,
6889 			 enum btrfs_compare_tree_result result)
6890 {
6891 	int ret = 0;
6892 	struct btrfs_key *key = sctx->cmp_key;
6893 	struct btrfs_inode_item *left_ii = NULL;
6894 	struct btrfs_inode_item *right_ii = NULL;
6895 	u64 left_gen = 0;
6896 	u64 right_gen = 0;
6897 
6898 	close_current_inode(sctx);
6899 
6900 	sctx->cur_ino = key->objectid;
6901 	sctx->cur_inode_new_gen = false;
6902 	sctx->cur_inode_last_extent = (u64)-1;
6903 	sctx->cur_inode_next_write_offset = 0;
6904 	sctx->ignore_cur_inode = false;
6905 
6906 	/*
6907 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6908 	 * functions that the current inode's refs are not updated yet. Later,
6909 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6910 	 */
6911 	sctx->send_progress = sctx->cur_ino;
6912 
6913 	if (result == BTRFS_COMPARE_TREE_NEW ||
6914 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6915 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6916 				sctx->left_path->slots[0],
6917 				struct btrfs_inode_item);
6918 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6919 				left_ii);
6920 	} else {
6921 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6922 				sctx->right_path->slots[0],
6923 				struct btrfs_inode_item);
6924 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6925 				right_ii);
6926 	}
6927 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6928 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6929 				sctx->right_path->slots[0],
6930 				struct btrfs_inode_item);
6931 
6932 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6933 				right_ii);
6934 
6935 		/*
6936 		 * The cur_ino = root dir case is special here. We can't treat
6937 		 * the inode as deleted+reused because it would generate a
6938 		 * stream that tries to delete/mkdir the root dir.
6939 		 */
6940 		if (left_gen != right_gen &&
6941 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6942 			sctx->cur_inode_new_gen = true;
6943 	}
6944 
6945 	/*
6946 	 * Normally we do not find inodes with a link count of zero (orphans)
6947 	 * because the most common case is to create a snapshot and use it
6948 	 * for a send operation. However other less common use cases involve
6949 	 * using a subvolume and send it after turning it to RO mode just
6950 	 * after deleting all hard links of a file while holding an open
6951 	 * file descriptor against it or turning a RO snapshot into RW mode,
6952 	 * keep an open file descriptor against a file, delete it and then
6953 	 * turn the snapshot back to RO mode before using it for a send
6954 	 * operation. The former is what the receiver operation does.
6955 	 * Therefore, if we want to send these snapshots soon after they're
6956 	 * received, we need to handle orphan inodes as well. Moreover, orphans
6957 	 * can appear not only in the send snapshot but also in the parent
6958 	 * snapshot. Here are several cases:
6959 	 *
6960 	 * Case 1: BTRFS_COMPARE_TREE_NEW
6961 	 *       |  send snapshot  | action
6962 	 * --------------------------------
6963 	 * nlink |        0        | ignore
6964 	 *
6965 	 * Case 2: BTRFS_COMPARE_TREE_DELETED
6966 	 *       | parent snapshot | action
6967 	 * ----------------------------------
6968 	 * nlink |        0        | as usual
6969 	 * Note: No unlinks will be sent because there're no paths for it.
6970 	 *
6971 	 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6972 	 *           |       | parent snapshot | send snapshot | action
6973 	 * -----------------------------------------------------------------------
6974 	 * subcase 1 | nlink |        0        |       0       | ignore
6975 	 * subcase 2 | nlink |       >0        |       0       | new_gen(deletion)
6976 	 * subcase 3 | nlink |        0        |      >0       | new_gen(creation)
6977 	 *
6978 	 */
6979 	if (result == BTRFS_COMPARE_TREE_NEW) {
6980 		if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6981 			sctx->ignore_cur_inode = true;
6982 			goto out;
6983 		}
6984 		sctx->cur_inode_gen = left_gen;
6985 		sctx->cur_inode_new = true;
6986 		sctx->cur_inode_deleted = false;
6987 		sctx->cur_inode_size = btrfs_inode_size(
6988 				sctx->left_path->nodes[0], left_ii);
6989 		sctx->cur_inode_mode = btrfs_inode_mode(
6990 				sctx->left_path->nodes[0], left_ii);
6991 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6992 				sctx->left_path->nodes[0], left_ii);
6993 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6994 			ret = send_create_inode_if_needed(sctx);
6995 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6996 		sctx->cur_inode_gen = right_gen;
6997 		sctx->cur_inode_new = false;
6998 		sctx->cur_inode_deleted = true;
6999 		sctx->cur_inode_size = btrfs_inode_size(
7000 				sctx->right_path->nodes[0], right_ii);
7001 		sctx->cur_inode_mode = btrfs_inode_mode(
7002 				sctx->right_path->nodes[0], right_ii);
7003 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
7004 		u32 new_nlinks, old_nlinks;
7005 
7006 		new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
7007 		old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
7008 		if (new_nlinks == 0 && old_nlinks == 0) {
7009 			sctx->ignore_cur_inode = true;
7010 			goto out;
7011 		} else if (new_nlinks == 0 || old_nlinks == 0) {
7012 			sctx->cur_inode_new_gen = 1;
7013 		}
7014 		/*
7015 		 * We need to do some special handling in case the inode was
7016 		 * reported as changed with a changed generation number. This
7017 		 * means that the original inode was deleted and new inode
7018 		 * reused the same inum. So we have to treat the old inode as
7019 		 * deleted and the new one as new.
7020 		 */
7021 		if (sctx->cur_inode_new_gen) {
7022 			/*
7023 			 * First, process the inode as if it was deleted.
7024 			 */
7025 			if (old_nlinks > 0) {
7026 				sctx->cur_inode_gen = right_gen;
7027 				sctx->cur_inode_new = false;
7028 				sctx->cur_inode_deleted = true;
7029 				sctx->cur_inode_size = btrfs_inode_size(
7030 						sctx->right_path->nodes[0], right_ii);
7031 				sctx->cur_inode_mode = btrfs_inode_mode(
7032 						sctx->right_path->nodes[0], right_ii);
7033 				ret = process_all_refs(sctx,
7034 						BTRFS_COMPARE_TREE_DELETED);
7035 				if (ret < 0)
7036 					goto out;
7037 			}
7038 
7039 			/*
7040 			 * Now process the inode as if it was new.
7041 			 */
7042 			if (new_nlinks > 0) {
7043 				sctx->cur_inode_gen = left_gen;
7044 				sctx->cur_inode_new = true;
7045 				sctx->cur_inode_deleted = false;
7046 				sctx->cur_inode_size = btrfs_inode_size(
7047 						sctx->left_path->nodes[0],
7048 						left_ii);
7049 				sctx->cur_inode_mode = btrfs_inode_mode(
7050 						sctx->left_path->nodes[0],
7051 						left_ii);
7052 				sctx->cur_inode_rdev = btrfs_inode_rdev(
7053 						sctx->left_path->nodes[0],
7054 						left_ii);
7055 				ret = send_create_inode_if_needed(sctx);
7056 				if (ret < 0)
7057 					goto out;
7058 
7059 				ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
7060 				if (ret < 0)
7061 					goto out;
7062 				/*
7063 				 * Advance send_progress now as we did not get
7064 				 * into process_recorded_refs_if_needed in the
7065 				 * new_gen case.
7066 				 */
7067 				sctx->send_progress = sctx->cur_ino + 1;
7068 
7069 				/*
7070 				 * Now process all extents and xattrs of the
7071 				 * inode as if they were all new.
7072 				 */
7073 				ret = process_all_extents(sctx);
7074 				if (ret < 0)
7075 					goto out;
7076 				ret = process_all_new_xattrs(sctx);
7077 				if (ret < 0)
7078 					goto out;
7079 			}
7080 		} else {
7081 			sctx->cur_inode_gen = left_gen;
7082 			sctx->cur_inode_new = false;
7083 			sctx->cur_inode_new_gen = false;
7084 			sctx->cur_inode_deleted = false;
7085 			sctx->cur_inode_size = btrfs_inode_size(
7086 					sctx->left_path->nodes[0], left_ii);
7087 			sctx->cur_inode_mode = btrfs_inode_mode(
7088 					sctx->left_path->nodes[0], left_ii);
7089 		}
7090 	}
7091 
7092 out:
7093 	return ret;
7094 }
7095 
7096 /*
7097  * We have to process new refs before deleted refs, but compare_trees gives us
7098  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7099  * first and later process them in process_recorded_refs.
7100  * For the cur_inode_new_gen case, we skip recording completely because
7101  * changed_inode did already initiate processing of refs. The reason for this is
7102  * that in this case, compare_tree actually compares the refs of 2 different
7103  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7104  * refs of the right tree as deleted and all refs of the left tree as new.
7105  */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7106 static int changed_ref(struct send_ctx *sctx,
7107 		       enum btrfs_compare_tree_result result)
7108 {
7109 	int ret = 0;
7110 
7111 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7112 		inconsistent_snapshot_error(sctx, result, "reference");
7113 		return -EIO;
7114 	}
7115 
7116 	if (!sctx->cur_inode_new_gen &&
7117 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7118 		if (result == BTRFS_COMPARE_TREE_NEW)
7119 			ret = record_new_ref(sctx);
7120 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7121 			ret = record_deleted_ref(sctx);
7122 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7123 			ret = record_changed_ref(sctx);
7124 	}
7125 
7126 	return ret;
7127 }
7128 
7129 /*
7130  * Process new/deleted/changed xattrs. We skip processing in the
7131  * cur_inode_new_gen case because changed_inode did already initiate processing
7132  * of xattrs. The reason is the same as in changed_ref
7133  */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7134 static int changed_xattr(struct send_ctx *sctx,
7135 			 enum btrfs_compare_tree_result result)
7136 {
7137 	int ret = 0;
7138 
7139 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7140 		inconsistent_snapshot_error(sctx, result, "xattr");
7141 		return -EIO;
7142 	}
7143 
7144 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7145 		if (result == BTRFS_COMPARE_TREE_NEW)
7146 			ret = process_new_xattr(sctx);
7147 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7148 			ret = process_deleted_xattr(sctx);
7149 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7150 			ret = process_changed_xattr(sctx);
7151 	}
7152 
7153 	return ret;
7154 }
7155 
7156 /*
7157  * Process new/deleted/changed extents. We skip processing in the
7158  * cur_inode_new_gen case because changed_inode did already initiate processing
7159  * of extents. The reason is the same as in changed_ref
7160  */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7161 static int changed_extent(struct send_ctx *sctx,
7162 			  enum btrfs_compare_tree_result result)
7163 {
7164 	int ret = 0;
7165 
7166 	/*
7167 	 * We have found an extent item that changed without the inode item
7168 	 * having changed. This can happen either after relocation (where the
7169 	 * disk_bytenr of an extent item is replaced at
7170 	 * relocation.c:replace_file_extents()) or after deduplication into a
7171 	 * file in both the parent and send snapshots (where an extent item can
7172 	 * get modified or replaced with a new one). Note that deduplication
7173 	 * updates the inode item, but it only changes the iversion (sequence
7174 	 * field in the inode item) of the inode, so if a file is deduplicated
7175 	 * the same amount of times in both the parent and send snapshots, its
7176 	 * iversion becomes the same in both snapshots, whence the inode item is
7177 	 * the same on both snapshots.
7178 	 */
7179 	if (sctx->cur_ino != sctx->cmp_key->objectid)
7180 		return 0;
7181 
7182 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7183 		if (result != BTRFS_COMPARE_TREE_DELETED)
7184 			ret = process_extent(sctx, sctx->left_path,
7185 					sctx->cmp_key);
7186 	}
7187 
7188 	return ret;
7189 }
7190 
changed_verity(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7191 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7192 {
7193 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7194 		if (result == BTRFS_COMPARE_TREE_NEW)
7195 			sctx->cur_inode_needs_verity = true;
7196 	}
7197 	return 0;
7198 }
7199 
dir_changed(struct send_ctx * sctx,u64 dir)7200 static int dir_changed(struct send_ctx *sctx, u64 dir)
7201 {
7202 	u64 orig_gen, new_gen;
7203 	int ret;
7204 
7205 	ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7206 	if (ret)
7207 		return ret;
7208 
7209 	ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7210 	if (ret)
7211 		return ret;
7212 
7213 	return (orig_gen != new_gen) ? 1 : 0;
7214 }
7215 
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)7216 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7217 			struct btrfs_key *key)
7218 {
7219 	struct btrfs_inode_extref *extref;
7220 	struct extent_buffer *leaf;
7221 	u64 dirid = 0, last_dirid = 0;
7222 	unsigned long ptr;
7223 	u32 item_size;
7224 	u32 cur_offset = 0;
7225 	int ref_name_len;
7226 	int ret = 0;
7227 
7228 	/* Easy case, just check this one dirid */
7229 	if (key->type == BTRFS_INODE_REF_KEY) {
7230 		dirid = key->offset;
7231 
7232 		ret = dir_changed(sctx, dirid);
7233 		goto out;
7234 	}
7235 
7236 	leaf = path->nodes[0];
7237 	item_size = btrfs_item_size(leaf, path->slots[0]);
7238 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7239 	while (cur_offset < item_size) {
7240 		extref = (struct btrfs_inode_extref *)(ptr +
7241 						       cur_offset);
7242 		dirid = btrfs_inode_extref_parent(leaf, extref);
7243 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7244 		cur_offset += ref_name_len + sizeof(*extref);
7245 		if (dirid == last_dirid)
7246 			continue;
7247 		ret = dir_changed(sctx, dirid);
7248 		if (ret)
7249 			break;
7250 		last_dirid = dirid;
7251 	}
7252 out:
7253 	return ret;
7254 }
7255 
7256 /*
7257  * Updates compare related fields in sctx and simply forwards to the actual
7258  * changed_xxx functions.
7259  */
changed_cb(struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,struct send_ctx * sctx)7260 static int changed_cb(struct btrfs_path *left_path,
7261 		      struct btrfs_path *right_path,
7262 		      struct btrfs_key *key,
7263 		      enum btrfs_compare_tree_result result,
7264 		      struct send_ctx *sctx)
7265 {
7266 	int ret = 0;
7267 
7268 	/*
7269 	 * We can not hold the commit root semaphore here. This is because in
7270 	 * the case of sending and receiving to the same filesystem, using a
7271 	 * pipe, could result in a deadlock:
7272 	 *
7273 	 * 1) The task running send blocks on the pipe because it's full;
7274 	 *
7275 	 * 2) The task running receive, which is the only consumer of the pipe,
7276 	 *    is waiting for a transaction commit (for example due to a space
7277 	 *    reservation when doing a write or triggering a transaction commit
7278 	 *    when creating a subvolume);
7279 	 *
7280 	 * 3) The transaction is waiting to write lock the commit root semaphore,
7281 	 *    but can not acquire it since it's being held at 1).
7282 	 *
7283 	 * Down this call chain we write to the pipe through kernel_write().
7284 	 * The same type of problem can also happen when sending to a file that
7285 	 * is stored in the same filesystem - when reserving space for a write
7286 	 * into the file, we can trigger a transaction commit.
7287 	 *
7288 	 * Our caller has supplied us with clones of leaves from the send and
7289 	 * parent roots, so we're safe here from a concurrent relocation and
7290 	 * further reallocation of metadata extents while we are here. Below we
7291 	 * also assert that the leaves are clones.
7292 	 */
7293 	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7294 
7295 	/*
7296 	 * We always have a send root, so left_path is never NULL. We will not
7297 	 * have a leaf when we have reached the end of the send root but have
7298 	 * not yet reached the end of the parent root.
7299 	 */
7300 	if (left_path->nodes[0])
7301 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7302 				&left_path->nodes[0]->bflags));
7303 	/*
7304 	 * When doing a full send we don't have a parent root, so right_path is
7305 	 * NULL. When doing an incremental send, we may have reached the end of
7306 	 * the parent root already, so we don't have a leaf at right_path.
7307 	 */
7308 	if (right_path && right_path->nodes[0])
7309 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7310 				&right_path->nodes[0]->bflags));
7311 
7312 	if (result == BTRFS_COMPARE_TREE_SAME) {
7313 		if (key->type == BTRFS_INODE_REF_KEY ||
7314 		    key->type == BTRFS_INODE_EXTREF_KEY) {
7315 			ret = compare_refs(sctx, left_path, key);
7316 			if (!ret)
7317 				return 0;
7318 			if (ret < 0)
7319 				return ret;
7320 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7321 			return maybe_send_hole(sctx, left_path, key);
7322 		} else {
7323 			return 0;
7324 		}
7325 		result = BTRFS_COMPARE_TREE_CHANGED;
7326 		ret = 0;
7327 	}
7328 
7329 	sctx->left_path = left_path;
7330 	sctx->right_path = right_path;
7331 	sctx->cmp_key = key;
7332 
7333 	ret = finish_inode_if_needed(sctx, 0);
7334 	if (ret < 0)
7335 		goto out;
7336 
7337 	/* Ignore non-FS objects */
7338 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7339 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7340 		goto out;
7341 
7342 	if (key->type == BTRFS_INODE_ITEM_KEY) {
7343 		ret = changed_inode(sctx, result);
7344 	} else if (!sctx->ignore_cur_inode) {
7345 		if (key->type == BTRFS_INODE_REF_KEY ||
7346 		    key->type == BTRFS_INODE_EXTREF_KEY)
7347 			ret = changed_ref(sctx, result);
7348 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
7349 			ret = changed_xattr(sctx, result);
7350 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
7351 			ret = changed_extent(sctx, result);
7352 		else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7353 			 key->offset == 0)
7354 			ret = changed_verity(sctx, result);
7355 	}
7356 
7357 out:
7358 	return ret;
7359 }
7360 
search_key_again(const struct send_ctx * sctx,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key)7361 static int search_key_again(const struct send_ctx *sctx,
7362 			    struct btrfs_root *root,
7363 			    struct btrfs_path *path,
7364 			    const struct btrfs_key *key)
7365 {
7366 	int ret;
7367 
7368 	if (!path->need_commit_sem)
7369 		lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7370 
7371 	/*
7372 	 * Roots used for send operations are readonly and no one can add,
7373 	 * update or remove keys from them, so we should be able to find our
7374 	 * key again. The only exception is deduplication, which can operate on
7375 	 * readonly roots and add, update or remove keys to/from them - but at
7376 	 * the moment we don't allow it to run in parallel with send.
7377 	 */
7378 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7379 	ASSERT(ret <= 0);
7380 	if (ret > 0) {
7381 		btrfs_print_tree(path->nodes[path->lowest_level], false);
7382 		btrfs_err(root->fs_info,
7383 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7384 			  key->objectid, key->type, key->offset,
7385 			  (root == sctx->parent_root ? "parent" : "send"),
7386 			  btrfs_root_id(root), path->lowest_level,
7387 			  path->slots[path->lowest_level]);
7388 		return -EUCLEAN;
7389 	}
7390 
7391 	return ret;
7392 }
7393 
full_send_tree(struct send_ctx * sctx)7394 static int full_send_tree(struct send_ctx *sctx)
7395 {
7396 	int ret;
7397 	struct btrfs_root *send_root = sctx->send_root;
7398 	struct btrfs_key key;
7399 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7400 	struct btrfs_path *path;
7401 
7402 	path = alloc_path_for_send();
7403 	if (!path)
7404 		return -ENOMEM;
7405 	path->reada = READA_FORWARD_ALWAYS;
7406 
7407 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7408 	key.type = BTRFS_INODE_ITEM_KEY;
7409 	key.offset = 0;
7410 
7411 	down_read(&fs_info->commit_root_sem);
7412 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7413 	up_read(&fs_info->commit_root_sem);
7414 
7415 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7416 	if (ret < 0)
7417 		goto out;
7418 	if (ret)
7419 		goto out_finish;
7420 
7421 	while (1) {
7422 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7423 
7424 		ret = changed_cb(path, NULL, &key,
7425 				 BTRFS_COMPARE_TREE_NEW, sctx);
7426 		if (ret < 0)
7427 			goto out;
7428 
7429 		down_read(&fs_info->commit_root_sem);
7430 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7431 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7432 			up_read(&fs_info->commit_root_sem);
7433 			/*
7434 			 * A transaction used for relocating a block group was
7435 			 * committed or is about to finish its commit. Release
7436 			 * our path (leaf) and restart the search, so that we
7437 			 * avoid operating on any file extent items that are
7438 			 * stale, with a disk_bytenr that reflects a pre
7439 			 * relocation value. This way we avoid as much as
7440 			 * possible to fallback to regular writes when checking
7441 			 * if we can clone file ranges.
7442 			 */
7443 			btrfs_release_path(path);
7444 			ret = search_key_again(sctx, send_root, path, &key);
7445 			if (ret < 0)
7446 				goto out;
7447 		} else {
7448 			up_read(&fs_info->commit_root_sem);
7449 		}
7450 
7451 		ret = btrfs_next_item(send_root, path);
7452 		if (ret < 0)
7453 			goto out;
7454 		if (ret) {
7455 			ret  = 0;
7456 			break;
7457 		}
7458 	}
7459 
7460 out_finish:
7461 	ret = finish_inode_if_needed(sctx, 1);
7462 
7463 out:
7464 	btrfs_free_path(path);
7465 	return ret;
7466 }
7467 
replace_node_with_clone(struct btrfs_path * path,int level)7468 static int replace_node_with_clone(struct btrfs_path *path, int level)
7469 {
7470 	struct extent_buffer *clone;
7471 
7472 	clone = btrfs_clone_extent_buffer(path->nodes[level]);
7473 	if (!clone)
7474 		return -ENOMEM;
7475 
7476 	free_extent_buffer(path->nodes[level]);
7477 	path->nodes[level] = clone;
7478 
7479 	return 0;
7480 }
7481 
tree_move_down(struct btrfs_path * path,int * level,u64 reada_min_gen)7482 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7483 {
7484 	struct extent_buffer *eb;
7485 	struct extent_buffer *parent = path->nodes[*level];
7486 	int slot = path->slots[*level];
7487 	const int nritems = btrfs_header_nritems(parent);
7488 	u64 reada_max;
7489 	u64 reada_done = 0;
7490 
7491 	lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7492 	ASSERT(*level != 0);
7493 
7494 	eb = btrfs_read_node_slot(parent, slot);
7495 	if (IS_ERR(eb))
7496 		return PTR_ERR(eb);
7497 
7498 	/*
7499 	 * Trigger readahead for the next leaves we will process, so that it is
7500 	 * very likely that when we need them they are already in memory and we
7501 	 * will not block on disk IO. For nodes we only do readahead for one,
7502 	 * since the time window between processing nodes is typically larger.
7503 	 */
7504 	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7505 
7506 	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7507 		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7508 			btrfs_readahead_node_child(parent, slot);
7509 			reada_done += eb->fs_info->nodesize;
7510 		}
7511 	}
7512 
7513 	path->nodes[*level - 1] = eb;
7514 	path->slots[*level - 1] = 0;
7515 	(*level)--;
7516 
7517 	if (*level == 0)
7518 		return replace_node_with_clone(path, 0);
7519 
7520 	return 0;
7521 }
7522 
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)7523 static int tree_move_next_or_upnext(struct btrfs_path *path,
7524 				    int *level, int root_level)
7525 {
7526 	int ret = 0;
7527 	int nritems;
7528 	nritems = btrfs_header_nritems(path->nodes[*level]);
7529 
7530 	path->slots[*level]++;
7531 
7532 	while (path->slots[*level] >= nritems) {
7533 		if (*level == root_level) {
7534 			path->slots[*level] = nritems - 1;
7535 			return -1;
7536 		}
7537 
7538 		/* move upnext */
7539 		path->slots[*level] = 0;
7540 		free_extent_buffer(path->nodes[*level]);
7541 		path->nodes[*level] = NULL;
7542 		(*level)++;
7543 		path->slots[*level]++;
7544 
7545 		nritems = btrfs_header_nritems(path->nodes[*level]);
7546 		ret = 1;
7547 	}
7548 	return ret;
7549 }
7550 
7551 /*
7552  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7553  * or down.
7554  */
tree_advance(struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key,u64 reada_min_gen)7555 static int tree_advance(struct btrfs_path *path,
7556 			int *level, int root_level,
7557 			int allow_down,
7558 			struct btrfs_key *key,
7559 			u64 reada_min_gen)
7560 {
7561 	int ret;
7562 
7563 	if (*level == 0 || !allow_down) {
7564 		ret = tree_move_next_or_upnext(path, level, root_level);
7565 	} else {
7566 		ret = tree_move_down(path, level, reada_min_gen);
7567 	}
7568 
7569 	/*
7570 	 * Even if we have reached the end of a tree, ret is -1, update the key
7571 	 * anyway, so that in case we need to restart due to a block group
7572 	 * relocation, we can assert that the last key of the root node still
7573 	 * exists in the tree.
7574 	 */
7575 	if (*level == 0)
7576 		btrfs_item_key_to_cpu(path->nodes[*level], key,
7577 				      path->slots[*level]);
7578 	else
7579 		btrfs_node_key_to_cpu(path->nodes[*level], key,
7580 				      path->slots[*level]);
7581 
7582 	return ret;
7583 }
7584 
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)7585 static int tree_compare_item(struct btrfs_path *left_path,
7586 			     struct btrfs_path *right_path,
7587 			     char *tmp_buf)
7588 {
7589 	int cmp;
7590 	int len1, len2;
7591 	unsigned long off1, off2;
7592 
7593 	len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7594 	len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7595 	if (len1 != len2)
7596 		return 1;
7597 
7598 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7599 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7600 				right_path->slots[0]);
7601 
7602 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7603 
7604 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7605 	if (cmp)
7606 		return 1;
7607 	return 0;
7608 }
7609 
7610 /*
7611  * A transaction used for relocating a block group was committed or is about to
7612  * finish its commit. Release our paths and restart the search, so that we are
7613  * not using stale extent buffers:
7614  *
7615  * 1) For levels > 0, we are only holding references of extent buffers, without
7616  *    any locks on them, which does not prevent them from having been relocated
7617  *    and reallocated after the last time we released the commit root semaphore.
7618  *    The exception are the root nodes, for which we always have a clone, see
7619  *    the comment at btrfs_compare_trees();
7620  *
7621  * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7622  *    we are safe from the concurrent relocation and reallocation. However they
7623  *    can have file extent items with a pre relocation disk_bytenr value, so we
7624  *    restart the start from the current commit roots and clone the new leaves so
7625  *    that we get the post relocation disk_bytenr values. Not doing so, could
7626  *    make us clone the wrong data in case there are new extents using the old
7627  *    disk_bytenr that happen to be shared.
7628  */
restart_after_relocation(struct btrfs_path * left_path,struct btrfs_path * right_path,const struct btrfs_key * left_key,const struct btrfs_key * right_key,int left_level,int right_level,const struct send_ctx * sctx)7629 static int restart_after_relocation(struct btrfs_path *left_path,
7630 				    struct btrfs_path *right_path,
7631 				    const struct btrfs_key *left_key,
7632 				    const struct btrfs_key *right_key,
7633 				    int left_level,
7634 				    int right_level,
7635 				    const struct send_ctx *sctx)
7636 {
7637 	int root_level;
7638 	int ret;
7639 
7640 	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7641 
7642 	btrfs_release_path(left_path);
7643 	btrfs_release_path(right_path);
7644 
7645 	/*
7646 	 * Since keys can not be added or removed to/from our roots because they
7647 	 * are readonly and we do not allow deduplication to run in parallel
7648 	 * (which can add, remove or change keys), the layout of the trees should
7649 	 * not change.
7650 	 */
7651 	left_path->lowest_level = left_level;
7652 	ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7653 	if (ret < 0)
7654 		return ret;
7655 
7656 	right_path->lowest_level = right_level;
7657 	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7658 	if (ret < 0)
7659 		return ret;
7660 
7661 	/*
7662 	 * If the lowest level nodes are leaves, clone them so that they can be
7663 	 * safely used by changed_cb() while not under the protection of the
7664 	 * commit root semaphore, even if relocation and reallocation happens in
7665 	 * parallel.
7666 	 */
7667 	if (left_level == 0) {
7668 		ret = replace_node_with_clone(left_path, 0);
7669 		if (ret < 0)
7670 			return ret;
7671 	}
7672 
7673 	if (right_level == 0) {
7674 		ret = replace_node_with_clone(right_path, 0);
7675 		if (ret < 0)
7676 			return ret;
7677 	}
7678 
7679 	/*
7680 	 * Now clone the root nodes (unless they happen to be the leaves we have
7681 	 * already cloned). This is to protect against concurrent snapshotting of
7682 	 * the send and parent roots (see the comment at btrfs_compare_trees()).
7683 	 */
7684 	root_level = btrfs_header_level(sctx->send_root->commit_root);
7685 	if (root_level > 0) {
7686 		ret = replace_node_with_clone(left_path, root_level);
7687 		if (ret < 0)
7688 			return ret;
7689 	}
7690 
7691 	root_level = btrfs_header_level(sctx->parent_root->commit_root);
7692 	if (root_level > 0) {
7693 		ret = replace_node_with_clone(right_path, root_level);
7694 		if (ret < 0)
7695 			return ret;
7696 	}
7697 
7698 	return 0;
7699 }
7700 
7701 /*
7702  * This function compares two trees and calls the provided callback for
7703  * every changed/new/deleted item it finds.
7704  * If shared tree blocks are encountered, whole subtrees are skipped, making
7705  * the compare pretty fast on snapshotted subvolumes.
7706  *
7707  * This currently works on commit roots only. As commit roots are read only,
7708  * we don't do any locking. The commit roots are protected with transactions.
7709  * Transactions are ended and rejoined when a commit is tried in between.
7710  *
7711  * This function checks for modifications done to the trees while comparing.
7712  * If it detects a change, it aborts immediately.
7713  */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,struct send_ctx * sctx)7714 static int btrfs_compare_trees(struct btrfs_root *left_root,
7715 			struct btrfs_root *right_root, struct send_ctx *sctx)
7716 {
7717 	struct btrfs_fs_info *fs_info = left_root->fs_info;
7718 	int ret;
7719 	int cmp;
7720 	struct btrfs_path *left_path = NULL;
7721 	struct btrfs_path *right_path = NULL;
7722 	struct btrfs_key left_key;
7723 	struct btrfs_key right_key;
7724 	char *tmp_buf = NULL;
7725 	int left_root_level;
7726 	int right_root_level;
7727 	int left_level;
7728 	int right_level;
7729 	int left_end_reached = 0;
7730 	int right_end_reached = 0;
7731 	int advance_left = 0;
7732 	int advance_right = 0;
7733 	u64 left_blockptr;
7734 	u64 right_blockptr;
7735 	u64 left_gen;
7736 	u64 right_gen;
7737 	u64 reada_min_gen;
7738 
7739 	left_path = btrfs_alloc_path();
7740 	if (!left_path) {
7741 		ret = -ENOMEM;
7742 		goto out;
7743 	}
7744 	right_path = btrfs_alloc_path();
7745 	if (!right_path) {
7746 		ret = -ENOMEM;
7747 		goto out;
7748 	}
7749 
7750 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7751 	if (!tmp_buf) {
7752 		ret = -ENOMEM;
7753 		goto out;
7754 	}
7755 
7756 	left_path->search_commit_root = 1;
7757 	left_path->skip_locking = 1;
7758 	right_path->search_commit_root = 1;
7759 	right_path->skip_locking = 1;
7760 
7761 	/*
7762 	 * Strategy: Go to the first items of both trees. Then do
7763 	 *
7764 	 * If both trees are at level 0
7765 	 *   Compare keys of current items
7766 	 *     If left < right treat left item as new, advance left tree
7767 	 *       and repeat
7768 	 *     If left > right treat right item as deleted, advance right tree
7769 	 *       and repeat
7770 	 *     If left == right do deep compare of items, treat as changed if
7771 	 *       needed, advance both trees and repeat
7772 	 * If both trees are at the same level but not at level 0
7773 	 *   Compare keys of current nodes/leafs
7774 	 *     If left < right advance left tree and repeat
7775 	 *     If left > right advance right tree and repeat
7776 	 *     If left == right compare blockptrs of the next nodes/leafs
7777 	 *       If they match advance both trees but stay at the same level
7778 	 *         and repeat
7779 	 *       If they don't match advance both trees while allowing to go
7780 	 *         deeper and repeat
7781 	 * If tree levels are different
7782 	 *   Advance the tree that needs it and repeat
7783 	 *
7784 	 * Advancing a tree means:
7785 	 *   If we are at level 0, try to go to the next slot. If that's not
7786 	 *   possible, go one level up and repeat. Stop when we found a level
7787 	 *   where we could go to the next slot. We may at this point be on a
7788 	 *   node or a leaf.
7789 	 *
7790 	 *   If we are not at level 0 and not on shared tree blocks, go one
7791 	 *   level deeper.
7792 	 *
7793 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
7794 	 *   the right if possible or go up and right.
7795 	 */
7796 
7797 	down_read(&fs_info->commit_root_sem);
7798 	left_level = btrfs_header_level(left_root->commit_root);
7799 	left_root_level = left_level;
7800 	/*
7801 	 * We clone the root node of the send and parent roots to prevent races
7802 	 * with snapshot creation of these roots. Snapshot creation COWs the
7803 	 * root node of a tree, so after the transaction is committed the old
7804 	 * extent can be reallocated while this send operation is still ongoing.
7805 	 * So we clone them, under the commit root semaphore, to be race free.
7806 	 */
7807 	left_path->nodes[left_level] =
7808 			btrfs_clone_extent_buffer(left_root->commit_root);
7809 	if (!left_path->nodes[left_level]) {
7810 		ret = -ENOMEM;
7811 		goto out_unlock;
7812 	}
7813 
7814 	right_level = btrfs_header_level(right_root->commit_root);
7815 	right_root_level = right_level;
7816 	right_path->nodes[right_level] =
7817 			btrfs_clone_extent_buffer(right_root->commit_root);
7818 	if (!right_path->nodes[right_level]) {
7819 		ret = -ENOMEM;
7820 		goto out_unlock;
7821 	}
7822 	/*
7823 	 * Our right root is the parent root, while the left root is the "send"
7824 	 * root. We know that all new nodes/leaves in the left root must have
7825 	 * a generation greater than the right root's generation, so we trigger
7826 	 * readahead for those nodes and leaves of the left root, as we know we
7827 	 * will need to read them at some point.
7828 	 */
7829 	reada_min_gen = btrfs_header_generation(right_root->commit_root);
7830 
7831 	if (left_level == 0)
7832 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
7833 				&left_key, left_path->slots[left_level]);
7834 	else
7835 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
7836 				&left_key, left_path->slots[left_level]);
7837 	if (right_level == 0)
7838 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
7839 				&right_key, right_path->slots[right_level]);
7840 	else
7841 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
7842 				&right_key, right_path->slots[right_level]);
7843 
7844 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7845 
7846 	while (1) {
7847 		if (need_resched() ||
7848 		    rwsem_is_contended(&fs_info->commit_root_sem)) {
7849 			up_read(&fs_info->commit_root_sem);
7850 			cond_resched();
7851 			down_read(&fs_info->commit_root_sem);
7852 		}
7853 
7854 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7855 			ret = restart_after_relocation(left_path, right_path,
7856 						       &left_key, &right_key,
7857 						       left_level, right_level,
7858 						       sctx);
7859 			if (ret < 0)
7860 				goto out_unlock;
7861 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7862 		}
7863 
7864 		if (advance_left && !left_end_reached) {
7865 			ret = tree_advance(left_path, &left_level,
7866 					left_root_level,
7867 					advance_left != ADVANCE_ONLY_NEXT,
7868 					&left_key, reada_min_gen);
7869 			if (ret == -1)
7870 				left_end_reached = ADVANCE;
7871 			else if (ret < 0)
7872 				goto out_unlock;
7873 			advance_left = 0;
7874 		}
7875 		if (advance_right && !right_end_reached) {
7876 			ret = tree_advance(right_path, &right_level,
7877 					right_root_level,
7878 					advance_right != ADVANCE_ONLY_NEXT,
7879 					&right_key, reada_min_gen);
7880 			if (ret == -1)
7881 				right_end_reached = ADVANCE;
7882 			else if (ret < 0)
7883 				goto out_unlock;
7884 			advance_right = 0;
7885 		}
7886 
7887 		if (left_end_reached && right_end_reached) {
7888 			ret = 0;
7889 			goto out_unlock;
7890 		} else if (left_end_reached) {
7891 			if (right_level == 0) {
7892 				up_read(&fs_info->commit_root_sem);
7893 				ret = changed_cb(left_path, right_path,
7894 						&right_key,
7895 						BTRFS_COMPARE_TREE_DELETED,
7896 						sctx);
7897 				if (ret < 0)
7898 					goto out;
7899 				down_read(&fs_info->commit_root_sem);
7900 			}
7901 			advance_right = ADVANCE;
7902 			continue;
7903 		} else if (right_end_reached) {
7904 			if (left_level == 0) {
7905 				up_read(&fs_info->commit_root_sem);
7906 				ret = changed_cb(left_path, right_path,
7907 						&left_key,
7908 						BTRFS_COMPARE_TREE_NEW,
7909 						sctx);
7910 				if (ret < 0)
7911 					goto out;
7912 				down_read(&fs_info->commit_root_sem);
7913 			}
7914 			advance_left = ADVANCE;
7915 			continue;
7916 		}
7917 
7918 		if (left_level == 0 && right_level == 0) {
7919 			up_read(&fs_info->commit_root_sem);
7920 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7921 			if (cmp < 0) {
7922 				ret = changed_cb(left_path, right_path,
7923 						&left_key,
7924 						BTRFS_COMPARE_TREE_NEW,
7925 						sctx);
7926 				advance_left = ADVANCE;
7927 			} else if (cmp > 0) {
7928 				ret = changed_cb(left_path, right_path,
7929 						&right_key,
7930 						BTRFS_COMPARE_TREE_DELETED,
7931 						sctx);
7932 				advance_right = ADVANCE;
7933 			} else {
7934 				enum btrfs_compare_tree_result result;
7935 
7936 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7937 				ret = tree_compare_item(left_path, right_path,
7938 							tmp_buf);
7939 				if (ret)
7940 					result = BTRFS_COMPARE_TREE_CHANGED;
7941 				else
7942 					result = BTRFS_COMPARE_TREE_SAME;
7943 				ret = changed_cb(left_path, right_path,
7944 						 &left_key, result, sctx);
7945 				advance_left = ADVANCE;
7946 				advance_right = ADVANCE;
7947 			}
7948 
7949 			if (ret < 0)
7950 				goto out;
7951 			down_read(&fs_info->commit_root_sem);
7952 		} else if (left_level == right_level) {
7953 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7954 			if (cmp < 0) {
7955 				advance_left = ADVANCE;
7956 			} else if (cmp > 0) {
7957 				advance_right = ADVANCE;
7958 			} else {
7959 				left_blockptr = btrfs_node_blockptr(
7960 						left_path->nodes[left_level],
7961 						left_path->slots[left_level]);
7962 				right_blockptr = btrfs_node_blockptr(
7963 						right_path->nodes[right_level],
7964 						right_path->slots[right_level]);
7965 				left_gen = btrfs_node_ptr_generation(
7966 						left_path->nodes[left_level],
7967 						left_path->slots[left_level]);
7968 				right_gen = btrfs_node_ptr_generation(
7969 						right_path->nodes[right_level],
7970 						right_path->slots[right_level]);
7971 				if (left_blockptr == right_blockptr &&
7972 				    left_gen == right_gen) {
7973 					/*
7974 					 * As we're on a shared block, don't
7975 					 * allow to go deeper.
7976 					 */
7977 					advance_left = ADVANCE_ONLY_NEXT;
7978 					advance_right = ADVANCE_ONLY_NEXT;
7979 				} else {
7980 					advance_left = ADVANCE;
7981 					advance_right = ADVANCE;
7982 				}
7983 			}
7984 		} else if (left_level < right_level) {
7985 			advance_right = ADVANCE;
7986 		} else {
7987 			advance_left = ADVANCE;
7988 		}
7989 	}
7990 
7991 out_unlock:
7992 	up_read(&fs_info->commit_root_sem);
7993 out:
7994 	btrfs_free_path(left_path);
7995 	btrfs_free_path(right_path);
7996 	kvfree(tmp_buf);
7997 	return ret;
7998 }
7999 
send_subvol(struct send_ctx * sctx)8000 static int send_subvol(struct send_ctx *sctx)
8001 {
8002 	int ret;
8003 
8004 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
8005 		ret = send_header(sctx);
8006 		if (ret < 0)
8007 			goto out;
8008 	}
8009 
8010 	ret = send_subvol_begin(sctx);
8011 	if (ret < 0)
8012 		goto out;
8013 
8014 	if (sctx->parent_root) {
8015 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
8016 		if (ret < 0)
8017 			goto out;
8018 		ret = finish_inode_if_needed(sctx, 1);
8019 		if (ret < 0)
8020 			goto out;
8021 	} else {
8022 		ret = full_send_tree(sctx);
8023 		if (ret < 0)
8024 			goto out;
8025 	}
8026 
8027 out:
8028 	free_recorded_refs(sctx);
8029 	return ret;
8030 }
8031 
8032 /*
8033  * If orphan cleanup did remove any orphans from a root, it means the tree
8034  * was modified and therefore the commit root is not the same as the current
8035  * root anymore. This is a problem, because send uses the commit root and
8036  * therefore can see inode items that don't exist in the current root anymore,
8037  * and for example make calls to btrfs_iget, which will do tree lookups based
8038  * on the current root and not on the commit root. Those lookups will fail,
8039  * returning a -ESTALE error, and making send fail with that error. So make
8040  * sure a send does not see any orphans we have just removed, and that it will
8041  * see the same inodes regardless of whether a transaction commit happened
8042  * before it started (meaning that the commit root will be the same as the
8043  * current root) or not.
8044  */
ensure_commit_roots_uptodate(struct send_ctx * sctx)8045 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
8046 {
8047 	struct btrfs_root *root = sctx->parent_root;
8048 
8049 	if (root && root->node != root->commit_root)
8050 		return btrfs_commit_current_transaction(root);
8051 
8052 	for (int i = 0; i < sctx->clone_roots_cnt; i++) {
8053 		root = sctx->clone_roots[i].root;
8054 		if (root->node != root->commit_root)
8055 			return btrfs_commit_current_transaction(root);
8056 	}
8057 
8058 	return 0;
8059 }
8060 
8061 /*
8062  * Make sure any existing dellaloc is flushed for any root used by a send
8063  * operation so that we do not miss any data and we do not race with writeback
8064  * finishing and changing a tree while send is using the tree. This could
8065  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8066  * a send operation then uses the subvolume.
8067  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8068  */
flush_delalloc_roots(struct send_ctx * sctx)8069 static int flush_delalloc_roots(struct send_ctx *sctx)
8070 {
8071 	struct btrfs_root *root = sctx->parent_root;
8072 	int ret;
8073 	int i;
8074 
8075 	if (root) {
8076 		ret = btrfs_start_delalloc_snapshot(root, false);
8077 		if (ret)
8078 			return ret;
8079 		btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8080 	}
8081 
8082 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
8083 		root = sctx->clone_roots[i].root;
8084 		ret = btrfs_start_delalloc_snapshot(root, false);
8085 		if (ret)
8086 			return ret;
8087 		btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8088 	}
8089 
8090 	return 0;
8091 }
8092 
btrfs_root_dec_send_in_progress(struct btrfs_root * root)8093 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8094 {
8095 	spin_lock(&root->root_item_lock);
8096 	root->send_in_progress--;
8097 	/*
8098 	 * Not much left to do, we don't know why it's unbalanced and
8099 	 * can't blindly reset it to 0.
8100 	 */
8101 	if (root->send_in_progress < 0)
8102 		btrfs_err(root->fs_info,
8103 			  "send_in_progress unbalanced %d root %llu",
8104 			  root->send_in_progress, btrfs_root_id(root));
8105 	spin_unlock(&root->root_item_lock);
8106 }
8107 
dedupe_in_progress_warn(const struct btrfs_root * root)8108 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8109 {
8110 	btrfs_warn_rl(root->fs_info,
8111 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8112 		      btrfs_root_id(root), root->dedupe_in_progress);
8113 }
8114 
btrfs_ioctl_send(struct btrfs_inode * inode,const struct btrfs_ioctl_send_args * arg)8115 long btrfs_ioctl_send(struct btrfs_inode *inode, const struct btrfs_ioctl_send_args *arg)
8116 {
8117 	int ret = 0;
8118 	struct btrfs_root *send_root = inode->root;
8119 	struct btrfs_fs_info *fs_info = send_root->fs_info;
8120 	struct btrfs_root *clone_root;
8121 	struct send_ctx *sctx = NULL;
8122 	u32 i;
8123 	u64 *clone_sources_tmp = NULL;
8124 	int clone_sources_to_rollback = 0;
8125 	size_t alloc_size;
8126 	int sort_clone_roots = 0;
8127 	struct btrfs_lru_cache_entry *entry;
8128 	struct btrfs_lru_cache_entry *tmp;
8129 
8130 	if (!capable(CAP_SYS_ADMIN))
8131 		return -EPERM;
8132 
8133 	/*
8134 	 * The subvolume must remain read-only during send, protect against
8135 	 * making it RW. This also protects against deletion.
8136 	 */
8137 	spin_lock(&send_root->root_item_lock);
8138 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8139 		dedupe_in_progress_warn(send_root);
8140 		spin_unlock(&send_root->root_item_lock);
8141 		return -EAGAIN;
8142 	}
8143 	send_root->send_in_progress++;
8144 	spin_unlock(&send_root->root_item_lock);
8145 
8146 	/*
8147 	 * Userspace tools do the checks and warn the user if it's
8148 	 * not RO.
8149 	 */
8150 	if (!btrfs_root_readonly(send_root)) {
8151 		ret = -EPERM;
8152 		goto out;
8153 	}
8154 
8155 	/*
8156 	 * Check that we don't overflow at later allocations, we request
8157 	 * clone_sources_count + 1 items, and compare to unsigned long inside
8158 	 * access_ok. Also set an upper limit for allocation size so this can't
8159 	 * easily exhaust memory. Max number of clone sources is about 200K.
8160 	 */
8161 	if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8162 		ret = -EINVAL;
8163 		goto out;
8164 	}
8165 
8166 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8167 		ret = -EOPNOTSUPP;
8168 		goto out;
8169 	}
8170 
8171 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8172 	if (!sctx) {
8173 		ret = -ENOMEM;
8174 		goto out;
8175 	}
8176 
8177 	INIT_LIST_HEAD(&sctx->new_refs);
8178 	INIT_LIST_HEAD(&sctx->deleted_refs);
8179 
8180 	btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8181 	btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8182 	btrfs_lru_cache_init(&sctx->dir_created_cache,
8183 			     SEND_MAX_DIR_CREATED_CACHE_SIZE);
8184 	/*
8185 	 * This cache is periodically trimmed to a fixed size elsewhere, see
8186 	 * cache_dir_utimes() and trim_dir_utimes_cache().
8187 	 */
8188 	btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8189 
8190 	sctx->pending_dir_moves = RB_ROOT;
8191 	sctx->waiting_dir_moves = RB_ROOT;
8192 	sctx->orphan_dirs = RB_ROOT;
8193 	sctx->rbtree_new_refs = RB_ROOT;
8194 	sctx->rbtree_deleted_refs = RB_ROOT;
8195 
8196 	sctx->flags = arg->flags;
8197 
8198 	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8199 		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8200 			ret = -EPROTO;
8201 			goto out;
8202 		}
8203 		/* Zero means "use the highest version" */
8204 		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8205 	} else {
8206 		sctx->proto = 1;
8207 	}
8208 	if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8209 		ret = -EINVAL;
8210 		goto out;
8211 	}
8212 
8213 	sctx->send_filp = fget(arg->send_fd);
8214 	if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8215 		ret = -EBADF;
8216 		goto out;
8217 	}
8218 
8219 	sctx->send_root = send_root;
8220 	/*
8221 	 * Unlikely but possible, if the subvolume is marked for deletion but
8222 	 * is slow to remove the directory entry, send can still be started
8223 	 */
8224 	if (btrfs_root_dead(sctx->send_root)) {
8225 		ret = -EPERM;
8226 		goto out;
8227 	}
8228 
8229 	sctx->clone_roots_cnt = arg->clone_sources_count;
8230 
8231 	if (sctx->proto >= 2) {
8232 		u32 send_buf_num_pages;
8233 
8234 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8235 		sctx->send_buf = vmalloc(sctx->send_max_size);
8236 		if (!sctx->send_buf) {
8237 			ret = -ENOMEM;
8238 			goto out;
8239 		}
8240 		send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8241 		sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8242 					       sizeof(*sctx->send_buf_pages),
8243 					       GFP_KERNEL);
8244 		if (!sctx->send_buf_pages) {
8245 			ret = -ENOMEM;
8246 			goto out;
8247 		}
8248 		for (i = 0; i < send_buf_num_pages; i++) {
8249 			sctx->send_buf_pages[i] =
8250 				vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8251 		}
8252 	} else {
8253 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8254 		sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8255 	}
8256 	if (!sctx->send_buf) {
8257 		ret = -ENOMEM;
8258 		goto out;
8259 	}
8260 
8261 	sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8262 				     sizeof(*sctx->clone_roots),
8263 				     GFP_KERNEL);
8264 	if (!sctx->clone_roots) {
8265 		ret = -ENOMEM;
8266 		goto out;
8267 	}
8268 
8269 	alloc_size = array_size(sizeof(*arg->clone_sources),
8270 				arg->clone_sources_count);
8271 
8272 	if (arg->clone_sources_count) {
8273 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8274 		if (!clone_sources_tmp) {
8275 			ret = -ENOMEM;
8276 			goto out;
8277 		}
8278 
8279 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8280 				alloc_size);
8281 		if (ret) {
8282 			ret = -EFAULT;
8283 			goto out;
8284 		}
8285 
8286 		for (i = 0; i < arg->clone_sources_count; i++) {
8287 			clone_root = btrfs_get_fs_root(fs_info,
8288 						clone_sources_tmp[i], true);
8289 			if (IS_ERR(clone_root)) {
8290 				ret = PTR_ERR(clone_root);
8291 				goto out;
8292 			}
8293 			spin_lock(&clone_root->root_item_lock);
8294 			if (!btrfs_root_readonly(clone_root) ||
8295 			    btrfs_root_dead(clone_root)) {
8296 				spin_unlock(&clone_root->root_item_lock);
8297 				btrfs_put_root(clone_root);
8298 				ret = -EPERM;
8299 				goto out;
8300 			}
8301 			if (clone_root->dedupe_in_progress) {
8302 				dedupe_in_progress_warn(clone_root);
8303 				spin_unlock(&clone_root->root_item_lock);
8304 				btrfs_put_root(clone_root);
8305 				ret = -EAGAIN;
8306 				goto out;
8307 			}
8308 			clone_root->send_in_progress++;
8309 			spin_unlock(&clone_root->root_item_lock);
8310 
8311 			sctx->clone_roots[i].root = clone_root;
8312 			clone_sources_to_rollback = i + 1;
8313 		}
8314 		kvfree(clone_sources_tmp);
8315 		clone_sources_tmp = NULL;
8316 	}
8317 
8318 	if (arg->parent_root) {
8319 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8320 						      true);
8321 		if (IS_ERR(sctx->parent_root)) {
8322 			ret = PTR_ERR(sctx->parent_root);
8323 			goto out;
8324 		}
8325 
8326 		spin_lock(&sctx->parent_root->root_item_lock);
8327 		sctx->parent_root->send_in_progress++;
8328 		if (!btrfs_root_readonly(sctx->parent_root) ||
8329 				btrfs_root_dead(sctx->parent_root)) {
8330 			spin_unlock(&sctx->parent_root->root_item_lock);
8331 			ret = -EPERM;
8332 			goto out;
8333 		}
8334 		if (sctx->parent_root->dedupe_in_progress) {
8335 			dedupe_in_progress_warn(sctx->parent_root);
8336 			spin_unlock(&sctx->parent_root->root_item_lock);
8337 			ret = -EAGAIN;
8338 			goto out;
8339 		}
8340 		spin_unlock(&sctx->parent_root->root_item_lock);
8341 	}
8342 
8343 	/*
8344 	 * Clones from send_root are allowed, but only if the clone source
8345 	 * is behind the current send position. This is checked while searching
8346 	 * for possible clone sources.
8347 	 */
8348 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
8349 		btrfs_grab_root(sctx->send_root);
8350 
8351 	/* We do a bsearch later */
8352 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
8353 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8354 			NULL);
8355 	sort_clone_roots = 1;
8356 
8357 	ret = flush_delalloc_roots(sctx);
8358 	if (ret)
8359 		goto out;
8360 
8361 	ret = ensure_commit_roots_uptodate(sctx);
8362 	if (ret)
8363 		goto out;
8364 
8365 	ret = send_subvol(sctx);
8366 	if (ret < 0)
8367 		goto out;
8368 
8369 	btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8370 		ret = send_utimes(sctx, entry->key, entry->gen);
8371 		if (ret < 0)
8372 			goto out;
8373 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8374 	}
8375 
8376 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8377 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8378 		if (ret < 0)
8379 			goto out;
8380 		ret = send_cmd(sctx);
8381 		if (ret < 0)
8382 			goto out;
8383 	}
8384 
8385 out:
8386 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8387 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8388 		struct rb_node *n;
8389 		struct pending_dir_move *pm;
8390 
8391 		n = rb_first(&sctx->pending_dir_moves);
8392 		pm = rb_entry(n, struct pending_dir_move, node);
8393 		while (!list_empty(&pm->list)) {
8394 			struct pending_dir_move *pm2;
8395 
8396 			pm2 = list_first_entry(&pm->list,
8397 					       struct pending_dir_move, list);
8398 			free_pending_move(sctx, pm2);
8399 		}
8400 		free_pending_move(sctx, pm);
8401 	}
8402 
8403 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8404 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8405 		struct rb_node *n;
8406 		struct waiting_dir_move *dm;
8407 
8408 		n = rb_first(&sctx->waiting_dir_moves);
8409 		dm = rb_entry(n, struct waiting_dir_move, node);
8410 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
8411 		kfree(dm);
8412 	}
8413 
8414 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8415 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8416 		struct rb_node *n;
8417 		struct orphan_dir_info *odi;
8418 
8419 		n = rb_first(&sctx->orphan_dirs);
8420 		odi = rb_entry(n, struct orphan_dir_info, node);
8421 		free_orphan_dir_info(sctx, odi);
8422 	}
8423 
8424 	if (sort_clone_roots) {
8425 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
8426 			btrfs_root_dec_send_in_progress(
8427 					sctx->clone_roots[i].root);
8428 			btrfs_put_root(sctx->clone_roots[i].root);
8429 		}
8430 	} else {
8431 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8432 			btrfs_root_dec_send_in_progress(
8433 					sctx->clone_roots[i].root);
8434 			btrfs_put_root(sctx->clone_roots[i].root);
8435 		}
8436 
8437 		btrfs_root_dec_send_in_progress(send_root);
8438 	}
8439 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8440 		btrfs_root_dec_send_in_progress(sctx->parent_root);
8441 		btrfs_put_root(sctx->parent_root);
8442 	}
8443 
8444 	kvfree(clone_sources_tmp);
8445 
8446 	if (sctx) {
8447 		if (sctx->send_filp)
8448 			fput(sctx->send_filp);
8449 
8450 		kvfree(sctx->clone_roots);
8451 		kfree(sctx->send_buf_pages);
8452 		kvfree(sctx->send_buf);
8453 		kvfree(sctx->verity_descriptor);
8454 
8455 		close_current_inode(sctx);
8456 
8457 		btrfs_lru_cache_clear(&sctx->name_cache);
8458 		btrfs_lru_cache_clear(&sctx->backref_cache);
8459 		btrfs_lru_cache_clear(&sctx->dir_created_cache);
8460 		btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8461 
8462 		kfree(sctx);
8463 	}
8464 
8465 	return ret;
8466 }
8467