1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3 *
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16 #define RXRPC_TRACE_ONLY_DEFINE_ENUMS
17 #include <trace/events/rxrpc.h>
18
19 struct workqueue_struct *afs_async_calls;
20
21 static void afs_deferred_free_worker(struct work_struct *work);
22 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
24 static void afs_process_async_call(struct work_struct *);
25 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
26 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
27 static int afs_deliver_cm_op_id(struct afs_call *);
28
29 /* asynchronous incoming call initial processing */
30 static const struct afs_call_type afs_RXCMxxxx = {
31 .name = "CB.xxxx",
32 .deliver = afs_deliver_cm_op_id,
33 };
34
35 /*
36 * open an RxRPC socket and bind it to be a server for callback notifications
37 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
38 */
afs_open_socket(struct afs_net * net)39 int afs_open_socket(struct afs_net *net)
40 {
41 struct sockaddr_rxrpc srx;
42 struct socket *socket;
43 int ret;
44
45 _enter("");
46
47 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
48 if (ret < 0)
49 goto error_1;
50
51 socket->sk->sk_allocation = GFP_NOFS;
52
53 /* bind the callback manager's address to make this a server socket */
54 memset(&srx, 0, sizeof(srx));
55 srx.srx_family = AF_RXRPC;
56 srx.srx_service = CM_SERVICE;
57 srx.transport_type = SOCK_DGRAM;
58 srx.transport_len = sizeof(srx.transport.sin6);
59 srx.transport.sin6.sin6_family = AF_INET6;
60 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT);
61
62 ret = rxrpc_sock_set_min_security_level(socket->sk,
63 RXRPC_SECURITY_ENCRYPT);
64 if (ret < 0)
65 goto error_2;
66
67 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
68 if (ret == -EADDRINUSE) {
69 srx.transport.sin6.sin6_port = 0;
70 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
71 }
72 if (ret < 0)
73 goto error_2;
74
75 srx.srx_service = YFS_CM_SERVICE;
76 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
77 if (ret < 0)
78 goto error_2;
79
80 /* Ideally, we'd turn on service upgrade here, but we can't because
81 * OpenAFS is buggy and leaks the userStatus field from packet to
82 * packet and between FS packets and CB packets - so if we try to do an
83 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
84 * it sends back to us.
85 */
86
87 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
88 afs_rx_discard_new_call);
89
90 ret = kernel_listen(socket, INT_MAX);
91 if (ret < 0)
92 goto error_2;
93
94 net->socket = socket;
95 afs_charge_preallocation(&net->charge_preallocation_work);
96 _leave(" = 0");
97 return 0;
98
99 error_2:
100 sock_release(socket);
101 error_1:
102 _leave(" = %d", ret);
103 return ret;
104 }
105
106 /*
107 * close the RxRPC socket AFS was using
108 */
afs_close_socket(struct afs_net * net)109 void afs_close_socket(struct afs_net *net)
110 {
111 _enter("");
112
113 kernel_listen(net->socket, 0);
114 flush_workqueue(afs_async_calls);
115
116 if (net->spare_incoming_call) {
117 afs_put_call(net->spare_incoming_call);
118 net->spare_incoming_call = NULL;
119 }
120
121 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
122 wait_var_event(&net->nr_outstanding_calls,
123 !atomic_read(&net->nr_outstanding_calls));
124 _debug("no outstanding calls");
125
126 kernel_sock_shutdown(net->socket, SHUT_RDWR);
127 flush_workqueue(afs_async_calls);
128 sock_release(net->socket);
129
130 _debug("dework");
131 _leave("");
132 }
133
134 /*
135 * Allocate a call.
136 */
afs_alloc_call(struct afs_net * net,const struct afs_call_type * type,gfp_t gfp)137 static struct afs_call *afs_alloc_call(struct afs_net *net,
138 const struct afs_call_type *type,
139 gfp_t gfp)
140 {
141 struct afs_call *call;
142 int o;
143
144 call = kzalloc(sizeof(*call), gfp);
145 if (!call)
146 return NULL;
147
148 call->type = type;
149 call->net = net;
150 call->debug_id = atomic_inc_return(&rxrpc_debug_id);
151 refcount_set(&call->ref, 1);
152 INIT_WORK(&call->async_work, afs_process_async_call);
153 INIT_WORK(&call->free_work, afs_deferred_free_worker);
154 init_waitqueue_head(&call->waitq);
155 spin_lock_init(&call->state_lock);
156 call->iter = &call->def_iter;
157
158 o = atomic_inc_return(&net->nr_outstanding_calls);
159 trace_afs_call(call->debug_id, afs_call_trace_alloc, 1, o,
160 __builtin_return_address(0));
161 return call;
162 }
163
afs_free_call(struct afs_call * call)164 static void afs_free_call(struct afs_call *call)
165 {
166 struct afs_net *net = call->net;
167 int o;
168
169 ASSERT(!work_pending(&call->async_work));
170
171 rxrpc_kernel_put_peer(call->peer);
172
173 if (call->rxcall) {
174 rxrpc_kernel_shutdown_call(net->socket, call->rxcall);
175 rxrpc_kernel_put_call(net->socket, call->rxcall);
176 call->rxcall = NULL;
177 }
178 if (call->type->destructor)
179 call->type->destructor(call);
180
181 afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
182 kfree(call->request);
183
184 o = atomic_read(&net->nr_outstanding_calls);
185 trace_afs_call(call->debug_id, afs_call_trace_free, 0, o,
186 __builtin_return_address(0));
187 kfree(call);
188
189 o = atomic_dec_return(&net->nr_outstanding_calls);
190 if (o == 0)
191 wake_up_var(&net->nr_outstanding_calls);
192 }
193
194 /*
195 * Dispose of a reference on a call.
196 */
afs_put_call(struct afs_call * call)197 void afs_put_call(struct afs_call *call)
198 {
199 struct afs_net *net = call->net;
200 unsigned int debug_id = call->debug_id;
201 bool zero;
202 int r, o;
203
204 zero = __refcount_dec_and_test(&call->ref, &r);
205 o = atomic_read(&net->nr_outstanding_calls);
206 trace_afs_call(debug_id, afs_call_trace_put, r - 1, o,
207 __builtin_return_address(0));
208 if (zero)
209 afs_free_call(call);
210 }
211
afs_deferred_free_worker(struct work_struct * work)212 static void afs_deferred_free_worker(struct work_struct *work)
213 {
214 struct afs_call *call = container_of(work, struct afs_call, free_work);
215
216 afs_free_call(call);
217 }
218
219 /*
220 * Dispose of a reference on a call, deferring the cleanup to a workqueue
221 * to avoid lock recursion.
222 */
afs_deferred_put_call(struct afs_call * call)223 void afs_deferred_put_call(struct afs_call *call)
224 {
225 struct afs_net *net = call->net;
226 unsigned int debug_id = call->debug_id;
227 bool zero;
228 int r, o;
229
230 zero = __refcount_dec_and_test(&call->ref, &r);
231 o = atomic_read(&net->nr_outstanding_calls);
232 trace_afs_call(debug_id, afs_call_trace_put, r - 1, o,
233 __builtin_return_address(0));
234 if (zero)
235 schedule_work(&call->free_work);
236 }
237
afs_get_call(struct afs_call * call,enum afs_call_trace why)238 static struct afs_call *afs_get_call(struct afs_call *call,
239 enum afs_call_trace why)
240 {
241 int r;
242
243 __refcount_inc(&call->ref, &r);
244
245 trace_afs_call(call->debug_id, why, r + 1,
246 atomic_read(&call->net->nr_outstanding_calls),
247 __builtin_return_address(0));
248 return call;
249 }
250
251 /*
252 * Queue the call for actual work.
253 */
afs_queue_call_work(struct afs_call * call)254 static void afs_queue_call_work(struct afs_call *call)
255 {
256 if (call->type->work) {
257 INIT_WORK(&call->work, call->type->work);
258
259 afs_get_call(call, afs_call_trace_work);
260 if (!queue_work(afs_wq, &call->work))
261 afs_put_call(call);
262 }
263 }
264
265 /*
266 * allocate a call with flat request and reply buffers
267 */
afs_alloc_flat_call(struct afs_net * net,const struct afs_call_type * type,size_t request_size,size_t reply_max)268 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
269 const struct afs_call_type *type,
270 size_t request_size, size_t reply_max)
271 {
272 struct afs_call *call;
273
274 call = afs_alloc_call(net, type, GFP_NOFS);
275 if (!call)
276 goto nomem_call;
277
278 if (request_size) {
279 call->request_size = request_size;
280 call->request = kmalloc(request_size, GFP_NOFS);
281 if (!call->request)
282 goto nomem_free;
283 }
284
285 if (reply_max) {
286 call->reply_max = reply_max;
287 call->buffer = kmalloc(reply_max, GFP_NOFS);
288 if (!call->buffer)
289 goto nomem_free;
290 }
291
292 afs_extract_to_buf(call, call->reply_max);
293 call->operation_ID = type->op;
294 init_waitqueue_head(&call->waitq);
295 return call;
296
297 nomem_free:
298 afs_put_call(call);
299 nomem_call:
300 return NULL;
301 }
302
303 /*
304 * clean up a call with flat buffer
305 */
afs_flat_call_destructor(struct afs_call * call)306 void afs_flat_call_destructor(struct afs_call *call)
307 {
308 _enter("");
309
310 kfree(call->request);
311 call->request = NULL;
312 kfree(call->buffer);
313 call->buffer = NULL;
314 }
315
316 /*
317 * Advance the AFS call state when the RxRPC call ends the transmit phase.
318 */
afs_notify_end_request_tx(struct sock * sock,struct rxrpc_call * rxcall,unsigned long call_user_ID)319 static void afs_notify_end_request_tx(struct sock *sock,
320 struct rxrpc_call *rxcall,
321 unsigned long call_user_ID)
322 {
323 struct afs_call *call = (struct afs_call *)call_user_ID;
324
325 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
326 }
327
328 /*
329 * Initiate a call and synchronously queue up the parameters for dispatch. Any
330 * error is stored into the call struct, which the caller must check for.
331 */
afs_make_call(struct afs_call * call,gfp_t gfp)332 void afs_make_call(struct afs_call *call, gfp_t gfp)
333 {
334 struct rxrpc_call *rxcall;
335 struct msghdr msg;
336 struct kvec iov[1];
337 size_t len;
338 s64 tx_total_len;
339 int ret;
340
341 _enter(",{%pISp+%u},", rxrpc_kernel_remote_addr(call->peer), call->service_id);
342
343 ASSERT(call->type != NULL);
344 ASSERT(call->type->name != NULL);
345
346 _debug("____MAKE %p{%s,%x} [%d]____",
347 call, call->type->name, key_serial(call->key),
348 atomic_read(&call->net->nr_outstanding_calls));
349
350 trace_afs_make_call(call);
351
352 /* Work out the length we're going to transmit. This is awkward for
353 * calls such as FS.StoreData where there's an extra injection of data
354 * after the initial fixed part.
355 */
356 tx_total_len = call->request_size;
357 if (call->write_iter)
358 tx_total_len += iov_iter_count(call->write_iter);
359
360 /* If the call is going to be asynchronous, we need an extra ref for
361 * the call to hold itself so the caller need not hang on to its ref.
362 */
363 if (call->async) {
364 afs_get_call(call, afs_call_trace_get);
365 call->drop_ref = true;
366 }
367
368 /* create a call */
369 rxcall = rxrpc_kernel_begin_call(call->net->socket, call->peer, call->key,
370 (unsigned long)call,
371 tx_total_len,
372 call->max_lifespan,
373 gfp,
374 (call->async ?
375 afs_wake_up_async_call :
376 afs_wake_up_call_waiter),
377 call->service_id,
378 call->upgrade,
379 (call->intr ? RXRPC_PREINTERRUPTIBLE :
380 RXRPC_UNINTERRUPTIBLE),
381 call->debug_id);
382 if (IS_ERR(rxcall)) {
383 ret = PTR_ERR(rxcall);
384 call->error = ret;
385 goto error_kill_call;
386 }
387
388 call->rxcall = rxcall;
389 call->issue_time = ktime_get_real();
390
391 /* send the request */
392 iov[0].iov_base = call->request;
393 iov[0].iov_len = call->request_size;
394
395 msg.msg_name = NULL;
396 msg.msg_namelen = 0;
397 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, call->request_size);
398 msg.msg_control = NULL;
399 msg.msg_controllen = 0;
400 msg.msg_flags = MSG_WAITALL | (call->write_iter ? MSG_MORE : 0);
401
402 ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
403 &msg, call->request_size,
404 afs_notify_end_request_tx);
405 if (ret < 0)
406 goto error_do_abort;
407
408 if (call->write_iter) {
409 msg.msg_iter = *call->write_iter;
410 msg.msg_flags &= ~MSG_MORE;
411 trace_afs_send_data(call, &msg);
412
413 ret = rxrpc_kernel_send_data(call->net->socket,
414 call->rxcall, &msg,
415 iov_iter_count(&msg.msg_iter),
416 afs_notify_end_request_tx);
417 *call->write_iter = msg.msg_iter;
418
419 trace_afs_sent_data(call, &msg, ret);
420 if (ret < 0)
421 goto error_do_abort;
422 }
423
424 /* Note that at this point, we may have received the reply or an abort
425 * - and an asynchronous call may already have completed.
426 *
427 * afs_wait_for_call_to_complete(call)
428 * must be called to synchronously clean up.
429 */
430 return;
431
432 error_do_abort:
433 if (ret != -ECONNABORTED) {
434 rxrpc_kernel_abort_call(call->net->socket, rxcall,
435 RX_USER_ABORT, ret,
436 afs_abort_send_data_error);
437 } else {
438 len = 0;
439 iov_iter_kvec(&msg.msg_iter, ITER_DEST, NULL, 0, 0);
440 rxrpc_kernel_recv_data(call->net->socket, rxcall,
441 &msg.msg_iter, &len, false,
442 &call->abort_code, &call->service_id);
443 call->responded = true;
444 }
445 call->error = ret;
446 trace_afs_call_done(call);
447 error_kill_call:
448 if (call->type->done)
449 call->type->done(call);
450
451 /* We need to dispose of the extra ref we grabbed for an async call.
452 * The call, however, might be queued on afs_async_calls and we need to
453 * make sure we don't get any more notifications that might requeue it.
454 */
455 if (call->rxcall)
456 rxrpc_kernel_shutdown_call(call->net->socket, call->rxcall);
457 if (call->async) {
458 if (cancel_work_sync(&call->async_work))
459 afs_put_call(call);
460 afs_set_call_complete(call, ret, 0);
461 }
462
463 call->error = ret;
464 call->state = AFS_CALL_COMPLETE;
465 _leave(" = %d", ret);
466 }
467
468 /*
469 * Log remote abort codes that indicate that we have a protocol disagreement
470 * with the server.
471 */
afs_log_error(struct afs_call * call,s32 remote_abort)472 static void afs_log_error(struct afs_call *call, s32 remote_abort)
473 {
474 static int max = 0;
475 const char *msg;
476 int m;
477
478 switch (remote_abort) {
479 case RX_EOF: msg = "unexpected EOF"; break;
480 case RXGEN_CC_MARSHAL: msg = "client marshalling"; break;
481 case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling"; break;
482 case RXGEN_SS_MARSHAL: msg = "server marshalling"; break;
483 case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling"; break;
484 case RXGEN_DECODE: msg = "opcode decode"; break;
485 case RXGEN_SS_XDRFREE: msg = "server XDR cleanup"; break;
486 case RXGEN_CC_XDRFREE: msg = "client XDR cleanup"; break;
487 case -32: msg = "insufficient data"; break;
488 default:
489 return;
490 }
491
492 m = max;
493 if (m < 3) {
494 max = m + 1;
495 pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n",
496 msg, call->type->name,
497 rxrpc_kernel_remote_addr(call->peer));
498 }
499 }
500
501 /*
502 * deliver messages to a call
503 */
afs_deliver_to_call(struct afs_call * call)504 static void afs_deliver_to_call(struct afs_call *call)
505 {
506 enum afs_call_state state;
507 size_t len;
508 u32 abort_code, remote_abort = 0;
509 int ret;
510
511 _enter("%s", call->type->name);
512
513 while (state = READ_ONCE(call->state),
514 state == AFS_CALL_CL_AWAIT_REPLY ||
515 state == AFS_CALL_SV_AWAIT_OP_ID ||
516 state == AFS_CALL_SV_AWAIT_REQUEST ||
517 state == AFS_CALL_SV_AWAIT_ACK
518 ) {
519 if (state == AFS_CALL_SV_AWAIT_ACK) {
520 len = 0;
521 iov_iter_kvec(&call->def_iter, ITER_DEST, NULL, 0, 0);
522 ret = rxrpc_kernel_recv_data(call->net->socket,
523 call->rxcall, &call->def_iter,
524 &len, false, &remote_abort,
525 &call->service_id);
526 trace_afs_receive_data(call, &call->def_iter, false, ret);
527
528 if (ret == -EINPROGRESS || ret == -EAGAIN)
529 return;
530 if (ret < 0 || ret == 1) {
531 if (ret == 1)
532 ret = 0;
533 goto call_complete;
534 }
535 return;
536 }
537
538 ret = call->type->deliver(call);
539 state = READ_ONCE(call->state);
540 if (ret == 0 && call->unmarshalling_error)
541 ret = -EBADMSG;
542 switch (ret) {
543 case 0:
544 call->responded = true;
545 afs_queue_call_work(call);
546 if (state == AFS_CALL_CL_PROC_REPLY) {
547 if (call->op)
548 set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
549 &call->op->server->flags);
550 goto call_complete;
551 }
552 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
553 goto done;
554 case -EINPROGRESS:
555 case -EAGAIN:
556 goto out;
557 case -ECONNABORTED:
558 ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
559 call->responded = true;
560 afs_log_error(call, call->abort_code);
561 goto done;
562 case -ENOTSUPP:
563 call->responded = true;
564 abort_code = RXGEN_OPCODE;
565 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
566 abort_code, ret,
567 afs_abort_op_not_supported);
568 goto local_abort;
569 case -EIO:
570 pr_err("kAFS: Call %u in bad state %u\n",
571 call->debug_id, state);
572 fallthrough;
573 case -ENODATA:
574 case -EBADMSG:
575 case -EMSGSIZE:
576 case -ENOMEM:
577 case -EFAULT:
578 abort_code = RXGEN_CC_UNMARSHAL;
579 if (state != AFS_CALL_CL_AWAIT_REPLY)
580 abort_code = RXGEN_SS_UNMARSHAL;
581 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
582 abort_code, ret,
583 afs_abort_unmarshal_error);
584 goto local_abort;
585 default:
586 abort_code = RX_CALL_DEAD;
587 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
588 abort_code, ret,
589 afs_abort_general_error);
590 goto local_abort;
591 }
592 }
593
594 done:
595 if (call->type->done)
596 call->type->done(call);
597 out:
598 _leave("");
599 return;
600
601 local_abort:
602 abort_code = 0;
603 call_complete:
604 afs_set_call_complete(call, ret, remote_abort);
605 state = AFS_CALL_COMPLETE;
606 goto done;
607 }
608
609 /*
610 * Wait synchronously for a call to complete.
611 */
afs_wait_for_call_to_complete(struct afs_call * call)612 void afs_wait_for_call_to_complete(struct afs_call *call)
613 {
614 bool rxrpc_complete = false;
615
616 _enter("");
617
618 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
619 DECLARE_WAITQUEUE(myself, current);
620
621 add_wait_queue(&call->waitq, &myself);
622 for (;;) {
623 set_current_state(TASK_UNINTERRUPTIBLE);
624
625 /* deliver any messages that are in the queue */
626 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
627 call->need_attention) {
628 call->need_attention = false;
629 __set_current_state(TASK_RUNNING);
630 afs_deliver_to_call(call);
631 continue;
632 }
633
634 if (afs_check_call_state(call, AFS_CALL_COMPLETE))
635 break;
636
637 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
638 /* rxrpc terminated the call. */
639 rxrpc_complete = true;
640 break;
641 }
642
643 schedule();
644 }
645
646 remove_wait_queue(&call->waitq, &myself);
647 __set_current_state(TASK_RUNNING);
648 }
649
650 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
651 if (rxrpc_complete) {
652 afs_set_call_complete(call, call->error, call->abort_code);
653 } else {
654 /* Kill off the call if it's still live. */
655 _debug("call interrupted");
656 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
657 RX_USER_ABORT, -EINTR,
658 afs_abort_interrupted))
659 afs_set_call_complete(call, -EINTR, 0);
660 }
661 }
662 }
663
664 /*
665 * wake up a waiting call
666 */
afs_wake_up_call_waiter(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)667 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
668 unsigned long call_user_ID)
669 {
670 struct afs_call *call = (struct afs_call *)call_user_ID;
671
672 call->need_attention = true;
673 wake_up(&call->waitq);
674 }
675
676 /*
677 * Wake up an asynchronous call. The caller is holding the call notify
678 * spinlock around this, so we can't call afs_put_call().
679 */
afs_wake_up_async_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)680 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
681 unsigned long call_user_ID)
682 {
683 struct afs_call *call = (struct afs_call *)call_user_ID;
684 int r;
685
686 trace_afs_notify_call(rxcall, call);
687 call->need_attention = true;
688
689 if (__refcount_inc_not_zero(&call->ref, &r)) {
690 trace_afs_call(call->debug_id, afs_call_trace_wake, r + 1,
691 atomic_read(&call->net->nr_outstanding_calls),
692 __builtin_return_address(0));
693
694 if (!queue_work(afs_async_calls, &call->async_work))
695 afs_deferred_put_call(call);
696 }
697 }
698
699 /*
700 * Perform I/O processing on an asynchronous call. The work item carries a ref
701 * to the call struct that we either need to release or to pass on.
702 */
afs_process_async_call(struct work_struct * work)703 static void afs_process_async_call(struct work_struct *work)
704 {
705 struct afs_call *call = container_of(work, struct afs_call, async_work);
706
707 _enter("");
708
709 if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
710 call->need_attention = false;
711 afs_deliver_to_call(call);
712 }
713
714 afs_put_call(call);
715 _leave("");
716 }
717
afs_rx_attach(struct rxrpc_call * rxcall,unsigned long user_call_ID)718 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
719 {
720 struct afs_call *call = (struct afs_call *)user_call_ID;
721
722 call->rxcall = rxcall;
723 }
724
725 /*
726 * Charge the incoming call preallocation.
727 */
afs_charge_preallocation(struct work_struct * work)728 void afs_charge_preallocation(struct work_struct *work)
729 {
730 struct afs_net *net =
731 container_of(work, struct afs_net, charge_preallocation_work);
732 struct afs_call *call = net->spare_incoming_call;
733
734 for (;;) {
735 if (!call) {
736 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
737 if (!call)
738 break;
739
740 call->drop_ref = true;
741 call->async = true;
742 call->state = AFS_CALL_SV_AWAIT_OP_ID;
743 init_waitqueue_head(&call->waitq);
744 afs_extract_to_tmp(call);
745 }
746
747 if (rxrpc_kernel_charge_accept(net->socket,
748 afs_wake_up_async_call,
749 afs_rx_attach,
750 (unsigned long)call,
751 GFP_KERNEL,
752 call->debug_id) < 0)
753 break;
754 call = NULL;
755 }
756 net->spare_incoming_call = call;
757 }
758
759 /*
760 * Discard a preallocated call when a socket is shut down.
761 */
afs_rx_discard_new_call(struct rxrpc_call * rxcall,unsigned long user_call_ID)762 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
763 unsigned long user_call_ID)
764 {
765 struct afs_call *call = (struct afs_call *)user_call_ID;
766
767 call->rxcall = NULL;
768 afs_put_call(call);
769 }
770
771 /*
772 * Notification of an incoming call.
773 */
afs_rx_new_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long user_call_ID)774 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
775 unsigned long user_call_ID)
776 {
777 struct afs_net *net = afs_sock2net(sk);
778
779 queue_work(afs_wq, &net->charge_preallocation_work);
780 }
781
782 /*
783 * Grab the operation ID from an incoming cache manager call. The socket
784 * buffer is discarded on error or if we don't yet have sufficient data.
785 */
afs_deliver_cm_op_id(struct afs_call * call)786 static int afs_deliver_cm_op_id(struct afs_call *call)
787 {
788 int ret;
789
790 _enter("{%zu}", iov_iter_count(call->iter));
791
792 /* the operation ID forms the first four bytes of the request data */
793 ret = afs_extract_data(call, true);
794 if (ret < 0)
795 return ret;
796
797 call->operation_ID = ntohl(call->tmp);
798 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
799
800 /* ask the cache manager to route the call (it'll change the call type
801 * if successful) */
802 if (!afs_cm_incoming_call(call))
803 return -ENOTSUPP;
804
805 trace_afs_cb_call(call);
806
807 /* pass responsibility for the remainer of this message off to the
808 * cache manager op */
809 return call->type->deliver(call);
810 }
811
812 /*
813 * Advance the AFS call state when an RxRPC service call ends the transmit
814 * phase.
815 */
afs_notify_end_reply_tx(struct sock * sock,struct rxrpc_call * rxcall,unsigned long call_user_ID)816 static void afs_notify_end_reply_tx(struct sock *sock,
817 struct rxrpc_call *rxcall,
818 unsigned long call_user_ID)
819 {
820 struct afs_call *call = (struct afs_call *)call_user_ID;
821
822 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
823 }
824
825 /*
826 * send an empty reply
827 */
afs_send_empty_reply(struct afs_call * call)828 void afs_send_empty_reply(struct afs_call *call)
829 {
830 struct afs_net *net = call->net;
831 struct msghdr msg;
832
833 _enter("");
834
835 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
836
837 msg.msg_name = NULL;
838 msg.msg_namelen = 0;
839 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, NULL, 0, 0);
840 msg.msg_control = NULL;
841 msg.msg_controllen = 0;
842 msg.msg_flags = 0;
843
844 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
845 afs_notify_end_reply_tx)) {
846 case 0:
847 _leave(" [replied]");
848 return;
849
850 case -ENOMEM:
851 _debug("oom");
852 rxrpc_kernel_abort_call(net->socket, call->rxcall,
853 RXGEN_SS_MARSHAL, -ENOMEM,
854 afs_abort_oom);
855 fallthrough;
856 default:
857 _leave(" [error]");
858 return;
859 }
860 }
861
862 /*
863 * send a simple reply
864 */
afs_send_simple_reply(struct afs_call * call,const void * buf,size_t len)865 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
866 {
867 struct afs_net *net = call->net;
868 struct msghdr msg;
869 struct kvec iov[1];
870 int n;
871
872 _enter("");
873
874 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
875
876 iov[0].iov_base = (void *) buf;
877 iov[0].iov_len = len;
878 msg.msg_name = NULL;
879 msg.msg_namelen = 0;
880 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, len);
881 msg.msg_control = NULL;
882 msg.msg_controllen = 0;
883 msg.msg_flags = 0;
884
885 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
886 afs_notify_end_reply_tx);
887 if (n >= 0) {
888 /* Success */
889 _leave(" [replied]");
890 return;
891 }
892
893 if (n == -ENOMEM) {
894 _debug("oom");
895 rxrpc_kernel_abort_call(net->socket, call->rxcall,
896 RXGEN_SS_MARSHAL, -ENOMEM,
897 afs_abort_oom);
898 }
899 _leave(" [error]");
900 }
901
902 /*
903 * Extract a piece of data from the received data socket buffers.
904 */
afs_extract_data(struct afs_call * call,bool want_more)905 int afs_extract_data(struct afs_call *call, bool want_more)
906 {
907 struct afs_net *net = call->net;
908 struct iov_iter *iter = call->iter;
909 enum afs_call_state state;
910 u32 remote_abort = 0;
911 int ret;
912
913 _enter("{%s,%zu,%zu},%d",
914 call->type->name, call->iov_len, iov_iter_count(iter), want_more);
915
916 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
917 &call->iov_len, want_more, &remote_abort,
918 &call->service_id);
919 trace_afs_receive_data(call, call->iter, want_more, ret);
920 if (ret == 0 || ret == -EAGAIN)
921 return ret;
922
923 state = READ_ONCE(call->state);
924 if (ret == 1) {
925 switch (state) {
926 case AFS_CALL_CL_AWAIT_REPLY:
927 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
928 break;
929 case AFS_CALL_SV_AWAIT_REQUEST:
930 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
931 break;
932 case AFS_CALL_COMPLETE:
933 kdebug("prem complete %d", call->error);
934 return afs_io_error(call, afs_io_error_extract);
935 default:
936 break;
937 }
938 return 0;
939 }
940
941 afs_set_call_complete(call, ret, remote_abort);
942 return ret;
943 }
944
945 /*
946 * Log protocol error production.
947 */
afs_protocol_error(struct afs_call * call,enum afs_eproto_cause cause)948 noinline int afs_protocol_error(struct afs_call *call,
949 enum afs_eproto_cause cause)
950 {
951 trace_afs_protocol_error(call, cause);
952 if (call)
953 call->unmarshalling_error = true;
954 return -EBADMSG;
955 }
956