1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2001-2004 by David Brownell
4 */
5
6 /* this file is part of ehci-hcd.c */
7
8 /*-------------------------------------------------------------------------*/
9
10 /*
11 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
12 *
13 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
14 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
15 * buffers needed for the larger number). We use one QH per endpoint, queue
16 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
17 *
18 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
19 * interrupts) needs careful scheduling. Performance improvements can be
20 * an ongoing challenge. That's in "ehci-sched.c".
21 *
22 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
23 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
24 * (b) special fields in qh entries or (c) split iso entries. TTs will
25 * buffer low/full speed data so the host collects it at high speed.
26 */
27
28 /*-------------------------------------------------------------------------*/
29
30 /* fill a qtd, returning how much of the buffer we were able to queue up */
31
32 static unsigned int
qtd_fill(struct ehci_hcd * ehci,struct ehci_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)33 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
34 size_t len, int token, int maxpacket)
35 {
36 unsigned int count;
37 u64 addr = buf;
38 int i;
39
40 /* one buffer entry per 4K ... first might be short or unaligned */
41 qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
42 qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
43 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
44 if (likely (len < count)) /* ... iff needed */
45 count = len;
46 else {
47 buf += 0x1000;
48 buf &= ~0x0fff;
49
50 /* per-qtd limit: from 16K to 20K (best alignment) */
51 for (i = 1; count < len && i < 5; i++) {
52 addr = buf;
53 qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
54 qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
55 (u32)(addr >> 32));
56 buf += 0x1000;
57 if ((count + 0x1000) < len)
58 count += 0x1000;
59 else
60 count = len;
61 }
62
63 /* short packets may only terminate transfers */
64 if (count != len)
65 count -= (count % maxpacket);
66 }
67 qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
68 qtd->length = count;
69
70 return count;
71 }
72
73 /*-------------------------------------------------------------------------*/
74
75 static inline void
qh_update(struct ehci_hcd * ehci,struct ehci_qh * qh,struct ehci_qtd * qtd)76 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
77 {
78 struct ehci_qh_hw *hw = qh->hw;
79
80 /* writes to an active overlay are unsafe */
81 WARN_ON(qh->qh_state != QH_STATE_IDLE);
82
83 hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
84 hw->hw_alt_next = EHCI_LIST_END(ehci);
85
86 /* Except for control endpoints, we make hardware maintain data
87 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
88 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
89 * ever clear it.
90 */
91 if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
92 unsigned is_out, epnum;
93
94 is_out = qh->is_out;
95 epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
96 if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
97 hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
98 usb_settoggle(qh->ps.udev, epnum, is_out, 1);
99 }
100 }
101
102 hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
103 }
104
105 /* if it weren't for a common silicon quirk (writing the dummy into the qh
106 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
107 * recovery (including urb dequeue) would need software changes to a QH...
108 */
109 static void
qh_refresh(struct ehci_hcd * ehci,struct ehci_qh * qh)110 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
111 {
112 struct ehci_qtd *qtd;
113
114 qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
115
116 /*
117 * first qtd may already be partially processed.
118 * If we come here during unlink, the QH overlay region
119 * might have reference to the just unlinked qtd. The
120 * qtd is updated in qh_completions(). Update the QH
121 * overlay here.
122 */
123 if (qh->hw->hw_token & ACTIVE_BIT(ehci)) {
124 qh->hw->hw_qtd_next = qtd->hw_next;
125 if (qh->should_be_inactive)
126 ehci_warn(ehci, "qh %p should be inactive!\n", qh);
127 } else {
128 qh_update(ehci, qh, qtd);
129 }
130 qh->should_be_inactive = 0;
131 }
132
133 /*-------------------------------------------------------------------------*/
134
135 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
136
ehci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)137 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
138 struct usb_host_endpoint *ep)
139 {
140 struct ehci_hcd *ehci = hcd_to_ehci(hcd);
141 struct ehci_qh *qh = ep->hcpriv;
142 unsigned long flags;
143
144 spin_lock_irqsave(&ehci->lock, flags);
145 qh->clearing_tt = 0;
146 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
147 && ehci->rh_state == EHCI_RH_RUNNING)
148 qh_link_async(ehci, qh);
149 spin_unlock_irqrestore(&ehci->lock, flags);
150 }
151
ehci_clear_tt_buffer(struct ehci_hcd * ehci,struct ehci_qh * qh,struct urb * urb,u32 token)152 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
153 struct urb *urb, u32 token)
154 {
155
156 /* If an async split transaction gets an error or is unlinked,
157 * the TT buffer may be left in an indeterminate state. We
158 * have to clear the TT buffer.
159 *
160 * Note: this routine is never called for Isochronous transfers.
161 */
162 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
163 #ifdef CONFIG_DYNAMIC_DEBUG
164 struct usb_device *tt = urb->dev->tt->hub;
165 dev_dbg(&tt->dev,
166 "clear tt buffer port %d, a%d ep%d t%08x\n",
167 urb->dev->ttport, urb->dev->devnum,
168 usb_pipeendpoint(urb->pipe), token);
169 #endif /* CONFIG_DYNAMIC_DEBUG */
170 if (!ehci_is_TDI(ehci)
171 || urb->dev->tt->hub !=
172 ehci_to_hcd(ehci)->self.root_hub) {
173 if (usb_hub_clear_tt_buffer(urb) == 0)
174 qh->clearing_tt = 1;
175 } else {
176
177 /* REVISIT ARC-derived cores don't clear the root
178 * hub TT buffer in this way...
179 */
180 }
181 }
182 }
183
qtd_copy_status(struct ehci_hcd * ehci,struct urb * urb,size_t length,u32 token)184 static int qtd_copy_status (
185 struct ehci_hcd *ehci,
186 struct urb *urb,
187 size_t length,
188 u32 token
189 )
190 {
191 int status = -EINPROGRESS;
192
193 /* count IN/OUT bytes, not SETUP (even short packets) */
194 if (likely(QTD_PID(token) != PID_CODE_SETUP))
195 urb->actual_length += length - QTD_LENGTH (token);
196
197 /* don't modify error codes */
198 if (unlikely(urb->unlinked))
199 return status;
200
201 /* force cleanup after short read; not always an error */
202 if (unlikely (IS_SHORT_READ (token)))
203 status = -EREMOTEIO;
204
205 /* serious "can't proceed" faults reported by the hardware */
206 if (token & QTD_STS_HALT) {
207 if (token & QTD_STS_BABBLE) {
208 /* FIXME "must" disable babbling device's port too */
209 status = -EOVERFLOW;
210 /*
211 * When MMF is active and PID Code is IN, queue is halted.
212 * EHCI Specification, Table 4-13.
213 */
214 } else if ((token & QTD_STS_MMF) &&
215 (QTD_PID(token) == PID_CODE_IN)) {
216 status = -EPROTO;
217 /* CERR nonzero + halt --> stall */
218 } else if (QTD_CERR(token)) {
219 status = -EPIPE;
220
221 /* In theory, more than one of the following bits can be set
222 * since they are sticky and the transaction is retried.
223 * Which to test first is rather arbitrary.
224 */
225 } else if (token & QTD_STS_MMF) {
226 /* fs/ls interrupt xfer missed the complete-split */
227 status = -EPROTO;
228 } else if (token & QTD_STS_DBE) {
229 status = (QTD_PID(token) == PID_CODE_IN) /* IN ? */
230 ? -ENOSR /* hc couldn't read data */
231 : -ECOMM; /* hc couldn't write data */
232 } else if (token & QTD_STS_XACT) {
233 /* timeout, bad CRC, wrong PID, etc */
234 ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
235 urb->dev->devpath,
236 usb_pipeendpoint(urb->pipe),
237 usb_pipein(urb->pipe) ? "in" : "out");
238 status = -EPROTO;
239 } else { /* unknown */
240 status = -EPROTO;
241 }
242 }
243
244 return status;
245 }
246
247 static void
ehci_urb_done(struct ehci_hcd * ehci,struct urb * urb,int status)248 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
249 {
250 if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
251 /* ... update hc-wide periodic stats */
252 ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
253 }
254
255 if (unlikely(urb->unlinked)) {
256 INCR(ehci->stats.unlink);
257 } else {
258 /* report non-error and short read status as zero */
259 if (status == -EINPROGRESS || status == -EREMOTEIO)
260 status = 0;
261 INCR(ehci->stats.complete);
262 }
263
264 #ifdef EHCI_URB_TRACE
265 ehci_dbg (ehci,
266 "%s %s urb %p ep%d%s status %d len %d/%d\n",
267 __func__, urb->dev->devpath, urb,
268 usb_pipeendpoint (urb->pipe),
269 usb_pipein (urb->pipe) ? "in" : "out",
270 status,
271 urb->actual_length, urb->transfer_buffer_length);
272 #endif
273
274 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
275 usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
276 }
277
278 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
279
280 /*
281 * Process and free completed qtds for a qh, returning URBs to drivers.
282 * Chases up to qh->hw_current. Returns nonzero if the caller should
283 * unlink qh.
284 */
285 static unsigned
qh_completions(struct ehci_hcd * ehci,struct ehci_qh * qh)286 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
287 {
288 struct ehci_qtd *last, *end = qh->dummy;
289 struct list_head *entry, *tmp;
290 int last_status;
291 int stopped;
292 u8 state;
293 struct ehci_qh_hw *hw = qh->hw;
294
295 /* completions (or tasks on other cpus) must never clobber HALT
296 * till we've gone through and cleaned everything up, even when
297 * they add urbs to this qh's queue or mark them for unlinking.
298 *
299 * NOTE: unlinking expects to be done in queue order.
300 *
301 * It's a bug for qh->qh_state to be anything other than
302 * QH_STATE_IDLE, unless our caller is scan_async() or
303 * scan_intr().
304 */
305 state = qh->qh_state;
306 qh->qh_state = QH_STATE_COMPLETING;
307 stopped = (state == QH_STATE_IDLE);
308
309 rescan:
310 last = NULL;
311 last_status = -EINPROGRESS;
312 qh->dequeue_during_giveback = 0;
313
314 /* remove de-activated QTDs from front of queue.
315 * after faults (including short reads), cleanup this urb
316 * then let the queue advance.
317 * if queue is stopped, handles unlinks.
318 */
319 list_for_each_safe (entry, tmp, &qh->qtd_list) {
320 struct ehci_qtd *qtd;
321 struct urb *urb;
322 u32 token = 0;
323
324 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
325 urb = qtd->urb;
326
327 /* clean up any state from previous QTD ...*/
328 if (last) {
329 if (likely (last->urb != urb)) {
330 ehci_urb_done(ehci, last->urb, last_status);
331 last_status = -EINPROGRESS;
332 }
333 ehci_qtd_free (ehci, last);
334 last = NULL;
335 }
336
337 /* ignore urbs submitted during completions we reported */
338 if (qtd == end)
339 break;
340
341 /* hardware copies qtd out of qh overlay */
342 rmb ();
343 token = hc32_to_cpu(ehci, qtd->hw_token);
344
345 /* always clean up qtds the hc de-activated */
346 retry_xacterr:
347 if ((token & QTD_STS_ACTIVE) == 0) {
348
349 /* Report Data Buffer Error: non-fatal but useful */
350 if (token & QTD_STS_DBE)
351 ehci_dbg(ehci,
352 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
353 urb,
354 usb_endpoint_num(&urb->ep->desc),
355 usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
356 urb->transfer_buffer_length,
357 qtd,
358 qh);
359
360 /* on STALL, error, and short reads this urb must
361 * complete and all its qtds must be recycled.
362 */
363 if ((token & QTD_STS_HALT) != 0) {
364
365 /* retry transaction errors until we
366 * reach the software xacterr limit
367 */
368 if ((token & QTD_STS_XACT) &&
369 QTD_CERR(token) == 0 &&
370 ++qh->xacterrs < QH_XACTERR_MAX &&
371 !urb->unlinked) {
372 ehci_dbg(ehci,
373 "detected XactErr len %zu/%zu retry %d\n",
374 qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
375
376 /* reset the token in the qtd and the
377 * qh overlay (which still contains
378 * the qtd) so that we pick up from
379 * where we left off
380 */
381 token &= ~QTD_STS_HALT;
382 token |= QTD_STS_ACTIVE |
383 (EHCI_TUNE_CERR << 10);
384 qtd->hw_token = cpu_to_hc32(ehci,
385 token);
386 wmb();
387 hw->hw_token = cpu_to_hc32(ehci,
388 token);
389 goto retry_xacterr;
390 }
391 stopped = 1;
392 qh->unlink_reason |= QH_UNLINK_HALTED;
393
394 /* magic dummy for some short reads; qh won't advance.
395 * that silicon quirk can kick in with this dummy too.
396 *
397 * other short reads won't stop the queue, including
398 * control transfers (status stage handles that) or
399 * most other single-qtd reads ... the queue stops if
400 * URB_SHORT_NOT_OK was set so the driver submitting
401 * the urbs could clean it up.
402 */
403 } else if (IS_SHORT_READ (token)
404 && !(qtd->hw_alt_next
405 & EHCI_LIST_END(ehci))) {
406 stopped = 1;
407 qh->unlink_reason |= QH_UNLINK_SHORT_READ;
408 }
409
410 /* stop scanning when we reach qtds the hc is using */
411 } else if (likely (!stopped
412 && ehci->rh_state >= EHCI_RH_RUNNING)) {
413 break;
414
415 /* scan the whole queue for unlinks whenever it stops */
416 } else {
417 stopped = 1;
418
419 /* cancel everything if we halt, suspend, etc */
420 if (ehci->rh_state < EHCI_RH_RUNNING) {
421 last_status = -ESHUTDOWN;
422 qh->unlink_reason |= QH_UNLINK_SHUTDOWN;
423 }
424
425 /* this qtd is active; skip it unless a previous qtd
426 * for its urb faulted, or its urb was canceled.
427 */
428 else if (last_status == -EINPROGRESS && !urb->unlinked)
429 continue;
430
431 /*
432 * If this was the active qtd when the qh was unlinked
433 * and the overlay's token is active, then the overlay
434 * hasn't been written back to the qtd yet so use its
435 * token instead of the qtd's. After the qtd is
436 * processed and removed, the overlay won't be valid
437 * any more.
438 */
439 if (state == QH_STATE_IDLE &&
440 qh->qtd_list.next == &qtd->qtd_list &&
441 (hw->hw_token & ACTIVE_BIT(ehci))) {
442 token = hc32_to_cpu(ehci, hw->hw_token);
443 hw->hw_token &= ~ACTIVE_BIT(ehci);
444 qh->should_be_inactive = 1;
445
446 /* An unlink may leave an incomplete
447 * async transaction in the TT buffer.
448 * We have to clear it.
449 */
450 ehci_clear_tt_buffer(ehci, qh, urb, token);
451 }
452 }
453
454 /* unless we already know the urb's status, collect qtd status
455 * and update count of bytes transferred. in common short read
456 * cases with only one data qtd (including control transfers),
457 * queue processing won't halt. but with two or more qtds (for
458 * example, with a 32 KB transfer), when the first qtd gets a
459 * short read the second must be removed by hand.
460 */
461 if (last_status == -EINPROGRESS) {
462 last_status = qtd_copy_status(ehci, urb,
463 qtd->length, token);
464 if (last_status == -EREMOTEIO
465 && (qtd->hw_alt_next
466 & EHCI_LIST_END(ehci)))
467 last_status = -EINPROGRESS;
468
469 /* As part of low/full-speed endpoint-halt processing
470 * we must clear the TT buffer (11.17.5).
471 */
472 if (unlikely(last_status != -EINPROGRESS &&
473 last_status != -EREMOTEIO)) {
474 /* The TT's in some hubs malfunction when they
475 * receive this request following a STALL (they
476 * stop sending isochronous packets). Since a
477 * STALL can't leave the TT buffer in a busy
478 * state (if you believe Figures 11-48 - 11-51
479 * in the USB 2.0 spec), we won't clear the TT
480 * buffer in this case. Strictly speaking this
481 * is a violation of the spec.
482 */
483 if (last_status != -EPIPE)
484 ehci_clear_tt_buffer(ehci, qh, urb,
485 token);
486 }
487 }
488
489 /* if we're removing something not at the queue head,
490 * patch the hardware queue pointer.
491 */
492 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
493 last = list_entry (qtd->qtd_list.prev,
494 struct ehci_qtd, qtd_list);
495 last->hw_next = qtd->hw_next;
496 }
497
498 /* remove qtd; it's recycled after possible urb completion */
499 list_del (&qtd->qtd_list);
500 last = qtd;
501
502 /* reinit the xacterr counter for the next qtd */
503 qh->xacterrs = 0;
504 }
505
506 /* last urb's completion might still need calling */
507 if (likely (last != NULL)) {
508 ehci_urb_done(ehci, last->urb, last_status);
509 ehci_qtd_free (ehci, last);
510 }
511
512 /* Do we need to rescan for URBs dequeued during a giveback? */
513 if (unlikely(qh->dequeue_during_giveback)) {
514 /* If the QH is already unlinked, do the rescan now. */
515 if (state == QH_STATE_IDLE)
516 goto rescan;
517
518 /* Otherwise the caller must unlink the QH. */
519 }
520
521 /* restore original state; caller must unlink or relink */
522 qh->qh_state = state;
523
524 /* be sure the hardware's done with the qh before refreshing
525 * it after fault cleanup, or recovering from silicon wrongly
526 * overlaying the dummy qtd (which reduces DMA chatter).
527 *
528 * We won't refresh a QH that's linked (after the HC
529 * stopped the queue). That avoids a race:
530 * - HC reads first part of QH;
531 * - CPU updates that first part and the token;
532 * - HC reads rest of that QH, including token
533 * Result: HC gets an inconsistent image, and then
534 * DMAs to/from the wrong memory (corrupting it).
535 *
536 * That should be rare for interrupt transfers,
537 * except maybe high bandwidth ...
538 */
539 if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
540 qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY;
541
542 /* Let the caller know if the QH needs to be unlinked. */
543 return qh->unlink_reason;
544 }
545
546 /*-------------------------------------------------------------------------*/
547
548 /*
549 * reverse of qh_urb_transaction: free a list of TDs.
550 * used for cleanup after errors, before HC sees an URB's TDs.
551 */
qtd_list_free(struct ehci_hcd * ehci,struct urb * urb,struct list_head * qtd_list)552 static void qtd_list_free (
553 struct ehci_hcd *ehci,
554 struct urb *urb,
555 struct list_head *qtd_list
556 ) {
557 struct list_head *entry, *temp;
558
559 list_for_each_safe (entry, temp, qtd_list) {
560 struct ehci_qtd *qtd;
561
562 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
563 list_del (&qtd->qtd_list);
564 ehci_qtd_free (ehci, qtd);
565 }
566 }
567
568 /*
569 * create a list of filled qtds for this URB; won't link into qh.
570 */
571 static struct list_head *
qh_urb_transaction(struct ehci_hcd * ehci,struct urb * urb,struct list_head * head,gfp_t flags)572 qh_urb_transaction (
573 struct ehci_hcd *ehci,
574 struct urb *urb,
575 struct list_head *head,
576 gfp_t flags
577 ) {
578 struct ehci_qtd *qtd, *qtd_prev;
579 dma_addr_t buf;
580 int len, this_sg_len, maxpacket;
581 int is_input;
582 u32 token;
583 int i;
584 struct scatterlist *sg;
585
586 /*
587 * URBs map to sequences of QTDs: one logical transaction
588 */
589 qtd = ehci_qtd_alloc (ehci, flags);
590 if (unlikely (!qtd))
591 return NULL;
592 list_add_tail (&qtd->qtd_list, head);
593 qtd->urb = urb;
594
595 token = QTD_STS_ACTIVE;
596 token |= (EHCI_TUNE_CERR << 10);
597 /* for split transactions, SplitXState initialized to zero */
598
599 len = urb->transfer_buffer_length;
600 is_input = usb_pipein (urb->pipe);
601 if (usb_pipecontrol (urb->pipe)) {
602 /* SETUP pid */
603 qtd_fill(ehci, qtd, urb->setup_dma,
604 sizeof (struct usb_ctrlrequest),
605 token | (PID_CODE_SETUP << 8), 8);
606
607 /* ... and always at least one more pid */
608 token ^= QTD_TOGGLE;
609 qtd_prev = qtd;
610 qtd = ehci_qtd_alloc (ehci, flags);
611 if (unlikely (!qtd))
612 goto cleanup;
613 qtd->urb = urb;
614 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
615 list_add_tail (&qtd->qtd_list, head);
616
617 /* for zero length DATA stages, STATUS is always IN */
618 if (len == 0)
619 token |= (PID_CODE_IN << 8);
620 }
621
622 /*
623 * data transfer stage: buffer setup
624 */
625 i = urb->num_mapped_sgs;
626 if (len > 0 && i > 0) {
627 sg = urb->sg;
628 buf = sg_dma_address(sg);
629
630 /* urb->transfer_buffer_length may be smaller than the
631 * size of the scatterlist (or vice versa)
632 */
633 this_sg_len = min_t(int, sg_dma_len(sg), len);
634 } else {
635 sg = NULL;
636 buf = urb->transfer_dma;
637 this_sg_len = len;
638 }
639
640 if (is_input)
641 token |= (PID_CODE_IN << 8);
642 /* else it's already initted to "out" pid (0 << 8) */
643
644 maxpacket = usb_endpoint_maxp(&urb->ep->desc);
645
646 /*
647 * buffer gets wrapped in one or more qtds;
648 * last one may be "short" (including zero len)
649 * and may serve as a control status ack
650 */
651 for (;;) {
652 unsigned int this_qtd_len;
653
654 this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
655 maxpacket);
656 this_sg_len -= this_qtd_len;
657 len -= this_qtd_len;
658 buf += this_qtd_len;
659
660 /*
661 * short reads advance to a "magic" dummy instead of the next
662 * qtd ... that forces the queue to stop, for manual cleanup.
663 * (this will usually be overridden later.)
664 */
665 if (is_input)
666 qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
667
668 /* qh makes control packets use qtd toggle; maybe switch it */
669 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
670 token ^= QTD_TOGGLE;
671
672 if (likely(this_sg_len <= 0)) {
673 if (--i <= 0 || len <= 0)
674 break;
675 sg = sg_next(sg);
676 buf = sg_dma_address(sg);
677 this_sg_len = min_t(int, sg_dma_len(sg), len);
678 }
679
680 qtd_prev = qtd;
681 qtd = ehci_qtd_alloc (ehci, flags);
682 if (unlikely (!qtd))
683 goto cleanup;
684 qtd->urb = urb;
685 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
686 list_add_tail (&qtd->qtd_list, head);
687 }
688
689 /*
690 * unless the caller requires manual cleanup after short reads,
691 * have the alt_next mechanism keep the queue running after the
692 * last data qtd (the only one, for control and most other cases).
693 */
694 if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
695 || usb_pipecontrol (urb->pipe)))
696 qtd->hw_alt_next = EHCI_LIST_END(ehci);
697
698 /*
699 * control requests may need a terminating data "status" ack;
700 * other OUT ones may need a terminating short packet
701 * (zero length).
702 */
703 if (likely (urb->transfer_buffer_length != 0)) {
704 int one_more = 0;
705
706 if (usb_pipecontrol (urb->pipe)) {
707 one_more = 1;
708 token ^= (PID_CODE_IN << 8); /* "in" <--> "out" */
709 token |= QTD_TOGGLE; /* force DATA1 */
710 } else if (usb_pipeout(urb->pipe)
711 && (urb->transfer_flags & URB_ZERO_PACKET)
712 && !(urb->transfer_buffer_length % maxpacket)) {
713 one_more = 1;
714 }
715 if (one_more) {
716 qtd_prev = qtd;
717 qtd = ehci_qtd_alloc (ehci, flags);
718 if (unlikely (!qtd))
719 goto cleanup;
720 qtd->urb = urb;
721 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
722 list_add_tail (&qtd->qtd_list, head);
723
724 /* never any data in such packets */
725 qtd_fill(ehci, qtd, 0, 0, token, 0);
726 }
727 }
728
729 /* by default, enable interrupt on urb completion */
730 if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
731 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
732 return head;
733
734 cleanup:
735 qtd_list_free (ehci, urb, head);
736 return NULL;
737 }
738
739 /*-------------------------------------------------------------------------*/
740
741 // Would be best to create all qh's from config descriptors,
742 // when each interface/altsetting is established. Unlink
743 // any previous qh and cancel its urbs first; endpoints are
744 // implicitly reset then (data toggle too).
745 // That'd mean updating how usbcore talks to HCDs. (2.7?)
746
747
748 /*
749 * Each QH holds a qtd list; a QH is used for everything except iso.
750 *
751 * For interrupt urbs, the scheduler must set the microframe scheduling
752 * mask(s) each time the QH gets scheduled. For highspeed, that's
753 * just one microframe in the s-mask. For split interrupt transactions
754 * there are additional complications: c-mask, maybe FSTNs.
755 */
756 static struct ehci_qh *
qh_make(struct ehci_hcd * ehci,struct urb * urb,gfp_t flags)757 qh_make (
758 struct ehci_hcd *ehci,
759 struct urb *urb,
760 gfp_t flags
761 ) {
762 struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
763 struct usb_host_endpoint *ep;
764 u32 info1 = 0, info2 = 0;
765 int is_input, type;
766 int maxp = 0;
767 int mult;
768 struct usb_tt *tt = urb->dev->tt;
769 struct ehci_qh_hw *hw;
770
771 if (!qh)
772 return qh;
773
774 /*
775 * init endpoint/device data for this QH
776 */
777 info1 |= usb_pipeendpoint (urb->pipe) << 8;
778 info1 |= usb_pipedevice (urb->pipe) << 0;
779
780 is_input = usb_pipein (urb->pipe);
781 type = usb_pipetype (urb->pipe);
782 ep = usb_pipe_endpoint (urb->dev, urb->pipe);
783 maxp = usb_endpoint_maxp (&ep->desc);
784 mult = usb_endpoint_maxp_mult (&ep->desc);
785
786 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
787 * acts like up to 3KB, but is built from smaller packets.
788 */
789 if (maxp > 1024) {
790 ehci_dbg(ehci, "bogus qh maxpacket %d\n", maxp);
791 goto done;
792 }
793
794 /* Compute interrupt scheduling parameters just once, and save.
795 * - allowing for high bandwidth, how many nsec/uframe are used?
796 * - split transactions need a second CSPLIT uframe; same question
797 * - splits also need a schedule gap (for full/low speed I/O)
798 * - qh has a polling interval
799 *
800 * For control/bulk requests, the HC or TT handles these.
801 */
802 if (type == PIPE_INTERRUPT) {
803 unsigned tmp;
804
805 qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
806 is_input, 0, mult * maxp));
807 qh->ps.phase = NO_FRAME;
808
809 if (urb->dev->speed == USB_SPEED_HIGH) {
810 qh->ps.c_usecs = 0;
811 qh->gap_uf = 0;
812
813 if (urb->interval > 1 && urb->interval < 8) {
814 /* NOTE interval 2 or 4 uframes could work.
815 * But interval 1 scheduling is simpler, and
816 * includes high bandwidth.
817 */
818 urb->interval = 1;
819 } else if (urb->interval > ehci->periodic_size << 3) {
820 urb->interval = ehci->periodic_size << 3;
821 }
822 qh->ps.period = urb->interval >> 3;
823
824 /* period for bandwidth allocation */
825 tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
826 1 << (urb->ep->desc.bInterval - 1));
827
828 /* Allow urb->interval to override */
829 qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
830 qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
831 } else {
832 int think_time;
833
834 /* gap is f(FS/LS transfer times) */
835 qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
836 is_input, 0, maxp) / (125 * 1000);
837
838 /* FIXME this just approximates SPLIT/CSPLIT times */
839 if (is_input) { // SPLIT, gap, CSPLIT+DATA
840 qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
841 qh->ps.usecs = HS_USECS(1);
842 } else { // SPLIT+DATA, gap, CSPLIT
843 qh->ps.usecs += HS_USECS(1);
844 qh->ps.c_usecs = HS_USECS(0);
845 }
846
847 think_time = tt ? tt->think_time : 0;
848 qh->ps.tt_usecs = NS_TO_US(think_time +
849 usb_calc_bus_time (urb->dev->speed,
850 is_input, 0, maxp));
851 if (urb->interval > ehci->periodic_size)
852 urb->interval = ehci->periodic_size;
853 qh->ps.period = urb->interval;
854
855 /* period for bandwidth allocation */
856 tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
857 urb->ep->desc.bInterval);
858 tmp = rounddown_pow_of_two(tmp);
859
860 /* Allow urb->interval to override */
861 qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
862 qh->ps.bw_uperiod = qh->ps.bw_period << 3;
863 }
864 }
865
866 /* support for tt scheduling, and access to toggles */
867 qh->ps.udev = urb->dev;
868 qh->ps.ep = urb->ep;
869
870 /* using TT? */
871 switch (urb->dev->speed) {
872 case USB_SPEED_LOW:
873 info1 |= QH_LOW_SPEED;
874 fallthrough;
875
876 case USB_SPEED_FULL:
877 /* EPS 0 means "full" */
878 if (type != PIPE_INTERRUPT)
879 info1 |= (EHCI_TUNE_RL_TT << 28);
880 if (type == PIPE_CONTROL) {
881 info1 |= QH_CONTROL_EP; /* for TT */
882 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
883 }
884 info1 |= maxp << 16;
885
886 info2 |= (EHCI_TUNE_MULT_TT << 30);
887
888 /* Some Freescale processors have an erratum in which the
889 * port number in the queue head was 0..N-1 instead of 1..N.
890 */
891 if (ehci_has_fsl_portno_bug(ehci))
892 info2 |= (urb->dev->ttport-1) << 23;
893 else
894 info2 |= urb->dev->ttport << 23;
895
896 /* set the address of the TT; for TDI's integrated
897 * root hub tt, leave it zeroed.
898 */
899 if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
900 info2 |= tt->hub->devnum << 16;
901
902 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
903
904 break;
905
906 case USB_SPEED_HIGH: /* no TT involved */
907 info1 |= QH_HIGH_SPEED;
908 if (type == PIPE_CONTROL) {
909 info1 |= (EHCI_TUNE_RL_HS << 28);
910 info1 |= 64 << 16; /* usb2 fixed maxpacket */
911 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
912 info2 |= (EHCI_TUNE_MULT_HS << 30);
913 } else if (type == PIPE_BULK) {
914 info1 |= (EHCI_TUNE_RL_HS << 28);
915 /* The USB spec says that high speed bulk endpoints
916 * always use 512 byte maxpacket. But some device
917 * vendors decided to ignore that, and MSFT is happy
918 * to help them do so. So now people expect to use
919 * such nonconformant devices with Linux too; sigh.
920 */
921 info1 |= maxp << 16;
922 info2 |= (EHCI_TUNE_MULT_HS << 30);
923 } else { /* PIPE_INTERRUPT */
924 info1 |= maxp << 16;
925 info2 |= mult << 30;
926 }
927 break;
928 default:
929 ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
930 urb->dev->speed);
931 done:
932 qh_destroy(ehci, qh);
933 return NULL;
934 }
935
936 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
937
938 /* init as live, toggle clear */
939 qh->qh_state = QH_STATE_IDLE;
940 hw = qh->hw;
941 hw->hw_info1 = cpu_to_hc32(ehci, info1);
942 hw->hw_info2 = cpu_to_hc32(ehci, info2);
943 qh->is_out = !is_input;
944 usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
945 return qh;
946 }
947
948 /*-------------------------------------------------------------------------*/
949
enable_async(struct ehci_hcd * ehci)950 static void enable_async(struct ehci_hcd *ehci)
951 {
952 if (ehci->async_count++)
953 return;
954
955 /* Stop waiting to turn off the async schedule */
956 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
957
958 /* Don't start the schedule until ASS is 0 */
959 ehci_poll_ASS(ehci);
960 turn_on_io_watchdog(ehci);
961 }
962
disable_async(struct ehci_hcd * ehci)963 static void disable_async(struct ehci_hcd *ehci)
964 {
965 if (--ehci->async_count)
966 return;
967
968 /* The async schedule and unlink lists are supposed to be empty */
969 WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
970 !list_empty(&ehci->async_idle));
971
972 /* Don't turn off the schedule until ASS is 1 */
973 ehci_poll_ASS(ehci);
974 }
975
976 /* move qh (and its qtds) onto async queue; maybe enable queue. */
977
qh_link_async(struct ehci_hcd * ehci,struct ehci_qh * qh)978 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
979 {
980 __hc32 dma = QH_NEXT(ehci, qh->qh_dma);
981 struct ehci_qh *head;
982
983 /* Don't link a QH if there's a Clear-TT-Buffer pending */
984 if (unlikely(qh->clearing_tt))
985 return;
986
987 WARN_ON(qh->qh_state != QH_STATE_IDLE);
988
989 /* clear halt and/or toggle; and maybe recover from silicon quirk */
990 qh_refresh(ehci, qh);
991
992 /* splice right after start */
993 head = ehci->async;
994 qh->qh_next = head->qh_next;
995 qh->hw->hw_next = head->hw->hw_next;
996 wmb ();
997
998 head->qh_next.qh = qh;
999 head->hw->hw_next = dma;
1000
1001 qh->qh_state = QH_STATE_LINKED;
1002 qh->xacterrs = 0;
1003 qh->unlink_reason = 0;
1004 /* qtd completions reported later by interrupt */
1005
1006 enable_async(ehci);
1007 }
1008
1009 /*-------------------------------------------------------------------------*/
1010
1011 /*
1012 * For control/bulk/interrupt, return QH with these TDs appended.
1013 * Allocates and initializes the QH if necessary.
1014 * Returns null if it can't allocate a QH it needs to.
1015 * If the QH has TDs (urbs) already, that's great.
1016 */
qh_append_tds(struct ehci_hcd * ehci,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)1017 static struct ehci_qh *qh_append_tds (
1018 struct ehci_hcd *ehci,
1019 struct urb *urb,
1020 struct list_head *qtd_list,
1021 int epnum,
1022 void **ptr
1023 )
1024 {
1025 struct ehci_qh *qh = NULL;
1026 __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1027
1028 qh = (struct ehci_qh *) *ptr;
1029 if (unlikely (qh == NULL)) {
1030 /* can't sleep here, we have ehci->lock... */
1031 qh = qh_make (ehci, urb, GFP_ATOMIC);
1032 *ptr = qh;
1033 }
1034 if (likely (qh != NULL)) {
1035 struct ehci_qtd *qtd;
1036
1037 if (unlikely (list_empty (qtd_list)))
1038 qtd = NULL;
1039 else
1040 qtd = list_entry (qtd_list->next, struct ehci_qtd,
1041 qtd_list);
1042
1043 /* control qh may need patching ... */
1044 if (unlikely (epnum == 0)) {
1045
1046 /* usb_reset_device() briefly reverts to address 0 */
1047 if (usb_pipedevice (urb->pipe) == 0)
1048 qh->hw->hw_info1 &= ~qh_addr_mask;
1049 }
1050
1051 /* just one way to queue requests: swap with the dummy qtd.
1052 * only hc or qh_refresh() ever modify the overlay.
1053 */
1054 if (likely (qtd != NULL)) {
1055 struct ehci_qtd *dummy;
1056 dma_addr_t dma;
1057 __hc32 token;
1058
1059 /* to avoid racing the HC, use the dummy td instead of
1060 * the first td of our list (becomes new dummy). both
1061 * tds stay deactivated until we're done, when the
1062 * HC is allowed to fetch the old dummy (4.10.2).
1063 */
1064 token = qtd->hw_token;
1065 qtd->hw_token = HALT_BIT(ehci);
1066
1067 dummy = qh->dummy;
1068
1069 dma = dummy->qtd_dma;
1070 *dummy = *qtd;
1071 dummy->qtd_dma = dma;
1072
1073 list_del (&qtd->qtd_list);
1074 list_add (&dummy->qtd_list, qtd_list);
1075 list_splice_tail(qtd_list, &qh->qtd_list);
1076
1077 ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1078 qh->dummy = qtd;
1079
1080 /* hc must see the new dummy at list end */
1081 dma = qtd->qtd_dma;
1082 qtd = list_entry (qh->qtd_list.prev,
1083 struct ehci_qtd, qtd_list);
1084 qtd->hw_next = QTD_NEXT(ehci, dma);
1085
1086 /* let the hc process these next qtds */
1087 wmb ();
1088 dummy->hw_token = token;
1089
1090 urb->hcpriv = qh;
1091 }
1092 }
1093 return qh;
1094 }
1095
1096 /*-------------------------------------------------------------------------*/
1097
1098 static int
submit_async(struct ehci_hcd * ehci,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)1099 submit_async (
1100 struct ehci_hcd *ehci,
1101 struct urb *urb,
1102 struct list_head *qtd_list,
1103 gfp_t mem_flags
1104 ) {
1105 int epnum;
1106 unsigned long flags;
1107 struct ehci_qh *qh = NULL;
1108 int rc;
1109
1110 epnum = urb->ep->desc.bEndpointAddress;
1111
1112 #ifdef EHCI_URB_TRACE
1113 {
1114 struct ehci_qtd *qtd;
1115 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1116 ehci_dbg(ehci,
1117 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1118 __func__, urb->dev->devpath, urb,
1119 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1120 urb->transfer_buffer_length,
1121 qtd, urb->ep->hcpriv);
1122 }
1123 #endif
1124
1125 spin_lock_irqsave (&ehci->lock, flags);
1126 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1127 rc = -ESHUTDOWN;
1128 goto done;
1129 }
1130 rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1131 if (unlikely(rc))
1132 goto done;
1133
1134 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1135 if (unlikely(qh == NULL)) {
1136 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1137 rc = -ENOMEM;
1138 goto done;
1139 }
1140
1141 /* Control/bulk operations through TTs don't need scheduling,
1142 * the HC and TT handle it when the TT has a buffer ready.
1143 */
1144 if (likely (qh->qh_state == QH_STATE_IDLE))
1145 qh_link_async(ehci, qh);
1146 done:
1147 spin_unlock_irqrestore (&ehci->lock, flags);
1148 if (unlikely (qh == NULL))
1149 qtd_list_free (ehci, urb, qtd_list);
1150 return rc;
1151 }
1152
1153 /*-------------------------------------------------------------------------*/
1154 #ifdef CONFIG_USB_HCD_TEST_MODE
1155 /*
1156 * This function creates the qtds and submits them for the
1157 * SINGLE_STEP_SET_FEATURE Test.
1158 * This is done in two parts: first SETUP req for GetDesc is sent then
1159 * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1160 *
1161 * is_setup : i/p argument decides which of the two stage needs to be
1162 * performed; TRUE - SETUP and FALSE - IN+STATUS
1163 * Returns 0 if success
1164 */
ehci_submit_single_step_set_feature(struct usb_hcd * hcd,struct urb * urb,int is_setup)1165 static int ehci_submit_single_step_set_feature(
1166 struct usb_hcd *hcd,
1167 struct urb *urb,
1168 int is_setup
1169 ) {
1170 struct ehci_hcd *ehci = hcd_to_ehci(hcd);
1171 struct list_head qtd_list;
1172 struct list_head *head;
1173
1174 struct ehci_qtd *qtd, *qtd_prev;
1175 dma_addr_t buf;
1176 int len, maxpacket;
1177 u32 token;
1178
1179 INIT_LIST_HEAD(&qtd_list);
1180 head = &qtd_list;
1181
1182 /* URBs map to sequences of QTDs: one logical transaction */
1183 qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
1184 if (unlikely(!qtd))
1185 return -1;
1186 list_add_tail(&qtd->qtd_list, head);
1187 qtd->urb = urb;
1188
1189 token = QTD_STS_ACTIVE;
1190 token |= (EHCI_TUNE_CERR << 10);
1191
1192 len = urb->transfer_buffer_length;
1193 /*
1194 * Check if the request is to perform just the SETUP stage (getDesc)
1195 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1196 * 15 secs after the setup
1197 */
1198 if (is_setup) {
1199 /* SETUP pid, and interrupt after SETUP completion */
1200 qtd_fill(ehci, qtd, urb->setup_dma,
1201 sizeof(struct usb_ctrlrequest),
1202 QTD_IOC | token | (PID_CODE_SETUP << 8), 8);
1203
1204 submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
1205 return 0; /*Return now; we shall come back after 15 seconds*/
1206 }
1207
1208 /*
1209 * IN: data transfer stage: buffer setup : start the IN txn phase for
1210 * the get_Desc SETUP which was sent 15seconds back
1211 */
1212 token ^= QTD_TOGGLE; /*We need to start IN with DATA-1 Pid-sequence*/
1213 buf = urb->transfer_dma;
1214
1215 token |= (PID_CODE_IN << 8); /*This is IN stage*/
1216
1217 maxpacket = usb_endpoint_maxp(&urb->ep->desc);
1218
1219 qtd_fill(ehci, qtd, buf, len, token, maxpacket);
1220
1221 /*
1222 * Our IN phase shall always be a short read; so keep the queue running
1223 * and let it advance to the next qtd which zero length OUT status
1224 */
1225 qtd->hw_alt_next = EHCI_LIST_END(ehci);
1226
1227 /* STATUS stage for GetDesc control request */
1228 token ^= (PID_CODE_IN << 8); /* "in" <--> "out" */
1229 token |= QTD_TOGGLE; /* force DATA1 */
1230
1231 qtd_prev = qtd;
1232 qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
1233 if (unlikely(!qtd))
1234 goto cleanup;
1235 qtd->urb = urb;
1236 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
1237 list_add_tail(&qtd->qtd_list, head);
1238
1239 /* Interrupt after STATUS completion */
1240 qtd_fill(ehci, qtd, 0, 0, token | QTD_IOC, 0);
1241
1242 submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
1243
1244 return 0;
1245
1246 cleanup:
1247 qtd_list_free(ehci, urb, head);
1248 return -1;
1249 }
1250 #endif /* CONFIG_USB_HCD_TEST_MODE */
1251
1252 /*-------------------------------------------------------------------------*/
1253
single_unlink_async(struct ehci_hcd * ehci,struct ehci_qh * qh)1254 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1255 {
1256 struct ehci_qh *prev;
1257
1258 /* Add to the end of the list of QHs waiting for the next IAAD */
1259 qh->qh_state = QH_STATE_UNLINK_WAIT;
1260 list_add_tail(&qh->unlink_node, &ehci->async_unlink);
1261
1262 /* Unlink it from the schedule */
1263 prev = ehci->async;
1264 while (prev->qh_next.qh != qh)
1265 prev = prev->qh_next.qh;
1266
1267 prev->hw->hw_next = qh->hw->hw_next;
1268 prev->qh_next = qh->qh_next;
1269 if (ehci->qh_scan_next == qh)
1270 ehci->qh_scan_next = qh->qh_next.qh;
1271 }
1272
start_iaa_cycle(struct ehci_hcd * ehci)1273 static void start_iaa_cycle(struct ehci_hcd *ehci)
1274 {
1275 /* If the controller isn't running, we don't have to wait for it */
1276 if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1277 end_unlink_async(ehci);
1278
1279 /* Otherwise start a new IAA cycle if one isn't already running */
1280 } else if (ehci->rh_state == EHCI_RH_RUNNING &&
1281 !ehci->iaa_in_progress) {
1282
1283 /* Make sure the unlinks are all visible to the hardware */
1284 wmb();
1285
1286 ehci_writel(ehci, ehci->command | CMD_IAAD,
1287 &ehci->regs->command);
1288 ehci_readl(ehci, &ehci->regs->command);
1289 ehci->iaa_in_progress = true;
1290 ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1291 }
1292 }
1293
end_iaa_cycle(struct ehci_hcd * ehci)1294 static void end_iaa_cycle(struct ehci_hcd *ehci)
1295 {
1296 if (ehci->has_synopsys_hc_bug)
1297 ehci_writel(ehci, (u32) ehci->async->qh_dma,
1298 &ehci->regs->async_next);
1299
1300 /* The current IAA cycle has ended */
1301 ehci->iaa_in_progress = false;
1302
1303 end_unlink_async(ehci);
1304 }
1305
1306 /* See if the async qh for the qtds being unlinked are now gone from the HC */
1307
end_unlink_async(struct ehci_hcd * ehci)1308 static void end_unlink_async(struct ehci_hcd *ehci)
1309 {
1310 struct ehci_qh *qh;
1311 bool early_exit;
1312
1313 if (list_empty(&ehci->async_unlink))
1314 return;
1315 qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
1316 unlink_node); /* QH whose IAA cycle just ended */
1317
1318 /*
1319 * If async_unlinking is set then this routine is already running,
1320 * either on the stack or on another CPU.
1321 */
1322 early_exit = ehci->async_unlinking;
1323
1324 /* If the controller isn't running, process all the waiting QHs */
1325 if (ehci->rh_state < EHCI_RH_RUNNING)
1326 list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
1327
1328 /*
1329 * Intel (?) bug: The HC can write back the overlay region even
1330 * after the IAA interrupt occurs. In self-defense, always go
1331 * through two IAA cycles for each QH.
1332 */
1333 else if (qh->qh_state == QH_STATE_UNLINK) {
1334 /*
1335 * Second IAA cycle has finished. Process only the first
1336 * waiting QH (NVIDIA (?) bug).
1337 */
1338 list_move_tail(&qh->unlink_node, &ehci->async_idle);
1339 }
1340
1341 /*
1342 * AMD/ATI (?) bug: The HC can continue to use an active QH long
1343 * after the IAA interrupt occurs. To prevent problems, QHs that
1344 * may still be active will wait until 2 ms have passed with no
1345 * change to the hw_current and hw_token fields (this delay occurs
1346 * between the two IAA cycles).
1347 *
1348 * The EHCI spec (4.8.2) says that active QHs must not be removed
1349 * from the async schedule and recommends waiting until the QH
1350 * goes inactive. This is ridiculous because the QH will _never_
1351 * become inactive if the endpoint NAKs indefinitely.
1352 */
1353
1354 /* Some reasons for unlinking guarantee the QH can't be active */
1355 else if (qh->unlink_reason & (QH_UNLINK_HALTED |
1356 QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY))
1357 goto DelayDone;
1358
1359 /* The QH can't be active if the queue was and still is empty... */
1360 else if ((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) &&
1361 list_empty(&qh->qtd_list))
1362 goto DelayDone;
1363
1364 /* ... or if the QH has halted */
1365 else if (qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT))
1366 goto DelayDone;
1367
1368 /* Otherwise we have to wait until the QH stops changing */
1369 else {
1370 __hc32 qh_current, qh_token;
1371
1372 qh_current = qh->hw->hw_current;
1373 qh_token = qh->hw->hw_token;
1374 if (qh_current != ehci->old_current ||
1375 qh_token != ehci->old_token) {
1376 ehci->old_current = qh_current;
1377 ehci->old_token = qh_token;
1378 ehci_enable_event(ehci,
1379 EHCI_HRTIMER_ACTIVE_UNLINK, true);
1380 return;
1381 }
1382 DelayDone:
1383 qh->qh_state = QH_STATE_UNLINK;
1384 early_exit = true;
1385 }
1386 ehci->old_current = ~0; /* Prepare for next QH */
1387
1388 /* Start a new IAA cycle if any QHs are waiting for it */
1389 if (!list_empty(&ehci->async_unlink))
1390 start_iaa_cycle(ehci);
1391
1392 /*
1393 * Don't allow nesting or concurrent calls,
1394 * or wait for the second IAA cycle for the next QH.
1395 */
1396 if (early_exit)
1397 return;
1398
1399 /* Process the idle QHs */
1400 ehci->async_unlinking = true;
1401 while (!list_empty(&ehci->async_idle)) {
1402 qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
1403 unlink_node);
1404 list_del(&qh->unlink_node);
1405
1406 qh->qh_state = QH_STATE_IDLE;
1407 qh->qh_next.qh = NULL;
1408
1409 if (!list_empty(&qh->qtd_list))
1410 qh_completions(ehci, qh);
1411 if (!list_empty(&qh->qtd_list) &&
1412 ehci->rh_state == EHCI_RH_RUNNING)
1413 qh_link_async(ehci, qh);
1414 disable_async(ehci);
1415 }
1416 ehci->async_unlinking = false;
1417 }
1418
1419 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
1420
unlink_empty_async(struct ehci_hcd * ehci)1421 static void unlink_empty_async(struct ehci_hcd *ehci)
1422 {
1423 struct ehci_qh *qh;
1424 struct ehci_qh *qh_to_unlink = NULL;
1425 int count = 0;
1426
1427 /* Find the last async QH which has been empty for a timer cycle */
1428 for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
1429 if (list_empty(&qh->qtd_list) &&
1430 qh->qh_state == QH_STATE_LINKED) {
1431 ++count;
1432 if (qh->unlink_cycle != ehci->async_unlink_cycle)
1433 qh_to_unlink = qh;
1434 }
1435 }
1436
1437 /* If nothing else is being unlinked, unlink the last empty QH */
1438 if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
1439 qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY;
1440 start_unlink_async(ehci, qh_to_unlink);
1441 --count;
1442 }
1443
1444 /* Other QHs will be handled later */
1445 if (count > 0) {
1446 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1447 ++ehci->async_unlink_cycle;
1448 }
1449 }
1450
1451 #ifdef CONFIG_PM
1452
1453 /* The root hub is suspended; unlink all the async QHs */
unlink_empty_async_suspended(struct ehci_hcd * ehci)1454 static void unlink_empty_async_suspended(struct ehci_hcd *ehci)
1455 {
1456 struct ehci_qh *qh;
1457
1458 while (ehci->async->qh_next.qh) {
1459 qh = ehci->async->qh_next.qh;
1460 WARN_ON(!list_empty(&qh->qtd_list));
1461 single_unlink_async(ehci, qh);
1462 }
1463 }
1464
1465 #endif
1466
1467 /* makes sure the async qh will become idle */
1468 /* caller must own ehci->lock */
1469
start_unlink_async(struct ehci_hcd * ehci,struct ehci_qh * qh)1470 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1471 {
1472 /* If the QH isn't linked then there's nothing we can do. */
1473 if (qh->qh_state != QH_STATE_LINKED)
1474 return;
1475
1476 single_unlink_async(ehci, qh);
1477 start_iaa_cycle(ehci);
1478 }
1479
1480 /*-------------------------------------------------------------------------*/
1481
scan_async(struct ehci_hcd * ehci)1482 static void scan_async (struct ehci_hcd *ehci)
1483 {
1484 struct ehci_qh *qh;
1485 bool check_unlinks_later = false;
1486
1487 ehci->qh_scan_next = ehci->async->qh_next.qh;
1488 while (ehci->qh_scan_next) {
1489 qh = ehci->qh_scan_next;
1490 ehci->qh_scan_next = qh->qh_next.qh;
1491
1492 /* clean any finished work for this qh */
1493 if (!list_empty(&qh->qtd_list)) {
1494 int temp;
1495
1496 /*
1497 * Unlinks could happen here; completion reporting
1498 * drops the lock. That's why ehci->qh_scan_next
1499 * always holds the next qh to scan; if the next qh
1500 * gets unlinked then ehci->qh_scan_next is adjusted
1501 * in single_unlink_async().
1502 */
1503 temp = qh_completions(ehci, qh);
1504 if (unlikely(temp)) {
1505 start_unlink_async(ehci, qh);
1506 } else if (list_empty(&qh->qtd_list)
1507 && qh->qh_state == QH_STATE_LINKED) {
1508 qh->unlink_cycle = ehci->async_unlink_cycle;
1509 check_unlinks_later = true;
1510 }
1511 }
1512 }
1513
1514 /*
1515 * Unlink empty entries, reducing DMA usage as well
1516 * as HCD schedule-scanning costs. Delay for any qh
1517 * we just scanned, there's a not-unusual case that it
1518 * doesn't stay idle for long.
1519 */
1520 if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1521 !(ehci->enabled_hrtimer_events &
1522 BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1523 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1524 ++ehci->async_unlink_cycle;
1525 }
1526 }
1527