1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2018-2024 Linaro Ltd.
5 */
6
7 #include <linux/bug.h>
8 #include <linux/firmware.h>
9 #include <linux/io.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/types.h>
16
17 #include <linux/firmware/qcom/qcom_scm.h>
18 #include <linux/soc/qcom/mdt_loader.h>
19
20 #include "ipa.h"
21 #include "ipa_cmd.h"
22 #include "ipa_data.h"
23 #include "ipa_endpoint.h"
24 #include "ipa_interrupt.h"
25 #include "ipa_mem.h"
26 #include "ipa_modem.h"
27 #include "ipa_power.h"
28 #include "ipa_reg.h"
29 #include "ipa_resource.h"
30 #include "ipa_smp2p.h"
31 #include "ipa_sysfs.h"
32 #include "ipa_table.h"
33 #include "ipa_uc.h"
34 #include "ipa_version.h"
35
36 /**
37 * DOC: The IP Accelerator
38 *
39 * This driver supports the Qualcomm IP Accelerator (IPA), which is a
40 * networking component found in many Qualcomm SoCs. The IPA is connected
41 * to the application processor (AP), but is also connected (and partially
42 * controlled by) other "execution environments" (EEs), such as a modem.
43 *
44 * The IPA is the conduit between the AP and the modem that carries network
45 * traffic. This driver presents a network interface representing the
46 * connection of the modem to external (e.g. LTE) networks.
47 *
48 * The IPA provides protocol checksum calculation, offloading this work
49 * from the AP. The IPA offers additional functionality, including routing,
50 * filtering, and NAT support, but that more advanced functionality is not
51 * currently supported. Despite that, some resources--including routing
52 * tables and filter tables--are defined in this driver because they must
53 * be initialized even when the advanced hardware features are not used.
54 *
55 * There are two distinct layers that implement the IPA hardware, and this
56 * is reflected in the organization of the driver. The generic software
57 * interface (GSI) is an integral component of the IPA, providing a
58 * well-defined communication layer between the AP subsystem and the IPA
59 * core. The GSI implements a set of "channels" used for communication
60 * between the AP and the IPA.
61 *
62 * The IPA layer uses GSI channels to implement its "endpoints". And while
63 * a GSI channel carries data between the AP and the IPA, a pair of IPA
64 * endpoints is used to carry traffic between two EEs. Specifically, the main
65 * modem network interface is implemented by two pairs of endpoints: a TX
66 * endpoint on the AP coupled with an RX endpoint on the modem; and another
67 * RX endpoint on the AP receiving data from a TX endpoint on the modem.
68 */
69
70 /* The name of the GSI firmware file relative to /lib/firmware */
71 #define IPA_FW_PATH_DEFAULT "ipa_fws.mdt"
72 #define IPA_PAS_ID 15
73
74 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
75 /* IPA v5.5+ does not specify Qtime timestamp config for DPL */
76 #define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */
77 #define TAG_TIMESTAMP_SHIFT 14
78 #define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */
79
80 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
81 #define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */
82
83 /**
84 * enum ipa_firmware_loader: How GSI firmware gets loaded
85 *
86 * @IPA_LOADER_DEFER: System not ready; try again later
87 * @IPA_LOADER_SELF: AP loads GSI firmware
88 * @IPA_LOADER_MODEM: Modem loads GSI firmware, signals when done
89 * @IPA_LOADER_SKIP: Neither AP nor modem need to load GSI firmware
90 * @IPA_LOADER_INVALID: GSI firmware loader specification is invalid
91 */
92 enum ipa_firmware_loader {
93 IPA_LOADER_DEFER,
94 IPA_LOADER_SELF,
95 IPA_LOADER_MODEM,
96 IPA_LOADER_SKIP,
97 IPA_LOADER_INVALID,
98 };
99
100 /**
101 * ipa_setup() - Set up IPA hardware
102 * @ipa: IPA pointer
103 *
104 * Perform initialization that requires issuing immediate commands on
105 * the command TX endpoint. If the modem is doing GSI firmware load
106 * and initialization, this function will be called when an SMP2P
107 * interrupt has been signaled by the modem. Otherwise it will be
108 * called from ipa_probe() after GSI firmware has been successfully
109 * loaded, authenticated, and started by Trust Zone.
110 */
ipa_setup(struct ipa * ipa)111 int ipa_setup(struct ipa *ipa)
112 {
113 struct ipa_endpoint *exception_endpoint;
114 struct ipa_endpoint *command_endpoint;
115 struct device *dev = ipa->dev;
116 int ret;
117
118 ret = gsi_setup(&ipa->gsi);
119 if (ret)
120 return ret;
121
122 ipa_endpoint_setup(ipa);
123
124 /* We need to use the AP command TX endpoint to perform other
125 * initialization, so we enable first.
126 */
127 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
128 ret = ipa_endpoint_enable_one(command_endpoint);
129 if (ret)
130 goto err_endpoint_teardown;
131
132 ret = ipa_mem_setup(ipa); /* No matching teardown required */
133 if (ret)
134 goto err_command_disable;
135
136 ret = ipa_table_setup(ipa); /* No matching teardown required */
137 if (ret)
138 goto err_command_disable;
139
140 /* Enable the exception handling endpoint, and tell the hardware
141 * to use it by default.
142 */
143 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
144 ret = ipa_endpoint_enable_one(exception_endpoint);
145 if (ret)
146 goto err_command_disable;
147
148 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
149
150 /* We're all set. Now prepare for communication with the modem */
151 ret = ipa_qmi_setup(ipa);
152 if (ret)
153 goto err_default_route_clear;
154
155 ipa->setup_complete = true;
156
157 dev_info(dev, "IPA driver setup completed successfully\n");
158
159 return 0;
160
161 err_default_route_clear:
162 ipa_endpoint_default_route_clear(ipa);
163 ipa_endpoint_disable_one(exception_endpoint);
164 err_command_disable:
165 ipa_endpoint_disable_one(command_endpoint);
166 err_endpoint_teardown:
167 ipa_endpoint_teardown(ipa);
168 gsi_teardown(&ipa->gsi);
169
170 return ret;
171 }
172
173 /**
174 * ipa_teardown() - Inverse of ipa_setup()
175 * @ipa: IPA pointer
176 */
ipa_teardown(struct ipa * ipa)177 static void ipa_teardown(struct ipa *ipa)
178 {
179 struct ipa_endpoint *exception_endpoint;
180 struct ipa_endpoint *command_endpoint;
181
182 /* We're going to tear everything down, as if setup never completed */
183 ipa->setup_complete = false;
184
185 ipa_qmi_teardown(ipa);
186 ipa_endpoint_default_route_clear(ipa);
187 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
188 ipa_endpoint_disable_one(exception_endpoint);
189 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
190 ipa_endpoint_disable_one(command_endpoint);
191 ipa_endpoint_teardown(ipa);
192 gsi_teardown(&ipa->gsi);
193 }
194
195 static void
ipa_hardware_config_bcr(struct ipa * ipa,const struct ipa_data * data)196 ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data)
197 {
198 const struct reg *reg;
199 u32 val;
200
201 /* IPA v4.5+ has no backward compatibility register */
202 if (ipa->version >= IPA_VERSION_4_5)
203 return;
204
205 reg = ipa_reg(ipa, IPA_BCR);
206 val = data->backward_compat;
207 iowrite32(val, ipa->reg_virt + reg_offset(reg));
208 }
209
ipa_hardware_config_tx(struct ipa * ipa)210 static void ipa_hardware_config_tx(struct ipa *ipa)
211 {
212 enum ipa_version version = ipa->version;
213 const struct reg *reg;
214 u32 offset;
215 u32 val;
216
217 if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5)
218 return;
219
220 /* Disable PA mask to allow HOLB drop */
221 reg = ipa_reg(ipa, IPA_TX_CFG);
222 offset = reg_offset(reg);
223
224 val = ioread32(ipa->reg_virt + offset);
225
226 val &= ~reg_bit(reg, PA_MASK_EN);
227
228 iowrite32(val, ipa->reg_virt + offset);
229 }
230
ipa_hardware_config_clkon(struct ipa * ipa)231 static void ipa_hardware_config_clkon(struct ipa *ipa)
232 {
233 enum ipa_version version = ipa->version;
234 const struct reg *reg;
235 u32 val;
236
237 if (version >= IPA_VERSION_4_5)
238 return;
239
240 if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1)
241 return;
242
243 /* Implement some hardware workarounds */
244 reg = ipa_reg(ipa, CLKON_CFG);
245 if (version == IPA_VERSION_3_1) {
246 /* Disable MISC clock gating */
247 val = reg_bit(reg, CLKON_MISC);
248 } else { /* IPA v4.0+ */
249 /* Enable open global clocks in the CLKON configuration */
250 val = reg_bit(reg, CLKON_GLOBAL);
251 val |= reg_bit(reg, GLOBAL_2X_CLK);
252 }
253
254 iowrite32(val, ipa->reg_virt + reg_offset(reg));
255 }
256
257 /* Configure bus access behavior for IPA components */
ipa_hardware_config_comp(struct ipa * ipa)258 static void ipa_hardware_config_comp(struct ipa *ipa)
259 {
260 const struct reg *reg;
261 u32 offset;
262 u32 val;
263
264 /* Nothing to configure prior to IPA v4.0 */
265 if (ipa->version < IPA_VERSION_4_0)
266 return;
267
268 reg = ipa_reg(ipa, COMP_CFG);
269 offset = reg_offset(reg);
270
271 val = ioread32(ipa->reg_virt + offset);
272
273 if (ipa->version == IPA_VERSION_4_0) {
274 val &= ~reg_bit(reg, IPA_QMB_SELECT_CONS_EN);
275 val &= ~reg_bit(reg, IPA_QMB_SELECT_PROD_EN);
276 val &= ~reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN);
277 } else if (ipa->version < IPA_VERSION_4_5) {
278 val |= reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS);
279 } else {
280 /* For IPA v4.5+ FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */
281 }
282
283 val |= reg_bit(reg, GSI_MULTI_INORDER_RD_DIS);
284 val |= reg_bit(reg, GSI_MULTI_INORDER_WR_DIS);
285
286 iowrite32(val, ipa->reg_virt + offset);
287 }
288
289 /* Configure DDR and (possibly) PCIe max read/write QSB values */
290 static void
ipa_hardware_config_qsb(struct ipa * ipa,const struct ipa_data * data)291 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
292 {
293 const struct ipa_qsb_data *data0;
294 const struct ipa_qsb_data *data1;
295 const struct reg *reg;
296 u32 val;
297
298 /* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
299 data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
300 if (data->qsb_count > 1)
301 data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
302
303 /* Max outstanding write accesses for QSB masters */
304 reg = ipa_reg(ipa, QSB_MAX_WRITES);
305
306 val = reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes);
307 if (data->qsb_count > 1)
308 val |= reg_encode(reg, GEN_QMB_1_MAX_WRITES, data1->max_writes);
309
310 iowrite32(val, ipa->reg_virt + reg_offset(reg));
311
312 /* Max outstanding read accesses for QSB masters */
313 reg = ipa_reg(ipa, QSB_MAX_READS);
314
315 val = reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads);
316 if (ipa->version >= IPA_VERSION_4_0)
317 val |= reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS,
318 data0->max_reads_beats);
319 if (data->qsb_count > 1) {
320 val = reg_encode(reg, GEN_QMB_1_MAX_READS, data1->max_reads);
321 if (ipa->version >= IPA_VERSION_4_0)
322 val |= reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS,
323 data1->max_reads_beats);
324 }
325
326 iowrite32(val, ipa->reg_virt + reg_offset(reg));
327 }
328
329 /* The internal inactivity timer clock is used for the aggregation timer */
330 #define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */
331
332 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
333 * field to represent the given number of microseconds. The value is one
334 * less than the number of timer ticks in the requested period. 0 is not
335 * a valid granularity value (so for example @usec must be at least 16 for
336 * a TIMER_FREQUENCY of 32000).
337 */
ipa_aggr_granularity_val(u32 usec)338 static __always_inline u32 ipa_aggr_granularity_val(u32 usec)
339 {
340 return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
341 }
342
343 /* IPA uses unified Qtime starting at IPA v4.5, implementing various
344 * timestamps and timers independent of the IPA core clock rate. The
345 * Qtimer is based on a 56-bit timestamp incremented at each tick of
346 * a 19.2 MHz SoC crystal oscillator (XO clock).
347 *
348 * For IPA timestamps (tag, NAT, data path logging) a lower resolution
349 * timestamp is achieved by shifting the Qtimer timestamp value right
350 * some number of bits to produce the low-order bits of the coarser
351 * granularity timestamp.
352 *
353 * For timers, a common timer clock is derived from the XO clock using
354 * a divider (we use 192, to produce a 100kHz timer clock). From
355 * this common clock, three "pulse generators" are used to produce
356 * timer ticks at a configurable frequency. IPA timers (such as
357 * those used for aggregation or head-of-line block handling) now
358 * define their period based on one of these pulse generators.
359 */
ipa_qtime_config(struct ipa * ipa)360 static void ipa_qtime_config(struct ipa *ipa)
361 {
362 const struct reg *reg;
363 u32 offset;
364 u32 val;
365
366 /* Timer clock divider must be disabled when we change the rate */
367 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
368 iowrite32(0, ipa->reg_virt + reg_offset(reg));
369
370 reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG);
371 if (ipa->version < IPA_VERSION_5_5) {
372 /* Set DPL time stamp resolution to use Qtime (not 1 msec) */
373 val = reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT);
374 val |= reg_bit(reg, DPL_TIMESTAMP_SEL);
375 }
376 /* Configure tag and NAT Qtime timestamp resolution as well */
377 val = reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT);
378 val = reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT);
379
380 iowrite32(val, ipa->reg_virt + reg_offset(reg));
381
382 /* Set granularity of pulse generators used for other timers */
383 reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG);
384 val = reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US);
385 val |= reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS);
386 if (ipa->version >= IPA_VERSION_5_0) {
387 val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_10_MS);
388 val |= reg_encode(reg, PULSE_GRAN_3, IPA_GRAN_10_MS);
389 } else {
390 val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS);
391 }
392
393 iowrite32(val, ipa->reg_virt + reg_offset(reg));
394
395 /* Actual divider is 1 more than value supplied here */
396 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
397 offset = reg_offset(reg);
398
399 val = reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1);
400
401 iowrite32(val, ipa->reg_virt + offset);
402
403 /* Divider value is set; re-enable the common timer clock divider */
404 val |= reg_bit(reg, DIV_ENABLE);
405
406 iowrite32(val, ipa->reg_virt + offset);
407 }
408
409 /* Before IPA v4.5 timing is controlled by a counter register */
ipa_hardware_config_counter(struct ipa * ipa)410 static void ipa_hardware_config_counter(struct ipa *ipa)
411 {
412 u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
413 const struct reg *reg;
414 u32 val;
415
416 reg = ipa_reg(ipa, COUNTER_CFG);
417 /* If defined, EOT_COAL_GRANULARITY is 0 */
418 val = reg_encode(reg, AGGR_GRANULARITY, granularity);
419 iowrite32(val, ipa->reg_virt + reg_offset(reg));
420 }
421
ipa_hardware_config_timing(struct ipa * ipa)422 static void ipa_hardware_config_timing(struct ipa *ipa)
423 {
424 if (ipa->version < IPA_VERSION_4_5)
425 ipa_hardware_config_counter(ipa);
426 else
427 ipa_qtime_config(ipa);
428 }
429
ipa_hardware_config_hashing(struct ipa * ipa)430 static void ipa_hardware_config_hashing(struct ipa *ipa)
431 {
432 const struct reg *reg;
433
434 /* Other than IPA v4.2, all versions enable "hashing". Starting
435 * with IPA v5.0, the filter and router tables are implemented
436 * differently, but the default configuration enables this feature
437 * (now referred to as "cacheing"), so there's nothing to do here.
438 */
439 if (ipa->version != IPA_VERSION_4_2)
440 return;
441
442 /* IPA v4.2 does not support hashed tables, so disable them */
443 reg = ipa_reg(ipa, FILT_ROUT_HASH_EN);
444
445 /* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH,
446 * IPV4_FILTER_HASH are all zero.
447 */
448 iowrite32(0, ipa->reg_virt + reg_offset(reg));
449 }
450
ipa_idle_indication_cfg(struct ipa * ipa,u32 enter_idle_debounce_thresh,bool const_non_idle_enable)451 static void ipa_idle_indication_cfg(struct ipa *ipa,
452 u32 enter_idle_debounce_thresh,
453 bool const_non_idle_enable)
454 {
455 const struct reg *reg;
456 u32 val;
457
458 if (ipa->version < IPA_VERSION_3_5_1)
459 return;
460
461 reg = ipa_reg(ipa, IDLE_INDICATION_CFG);
462 val = reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH,
463 enter_idle_debounce_thresh);
464 if (const_non_idle_enable)
465 val |= reg_bit(reg, CONST_NON_IDLE_ENABLE);
466
467 iowrite32(val, ipa->reg_virt + reg_offset(reg));
468 }
469
470 /**
471 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
472 * @ipa: IPA pointer
473 *
474 * Configures when the IPA signals it is idle to the global clock
475 * controller, which can respond by scaling down the clock to save
476 * power.
477 */
ipa_hardware_dcd_config(struct ipa * ipa)478 static void ipa_hardware_dcd_config(struct ipa *ipa)
479 {
480 /* Recommended values for IPA 3.5 and later according to IPA HPG */
481 ipa_idle_indication_cfg(ipa, 256, false);
482 }
483
ipa_hardware_dcd_deconfig(struct ipa * ipa)484 static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
485 {
486 /* Power-on reset values */
487 ipa_idle_indication_cfg(ipa, 0, true);
488 }
489
490 /**
491 * ipa_hardware_config() - Primitive hardware initialization
492 * @ipa: IPA pointer
493 * @data: IPA configuration data
494 */
ipa_hardware_config(struct ipa * ipa,const struct ipa_data * data)495 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
496 {
497 ipa_hardware_config_bcr(ipa, data);
498 ipa_hardware_config_tx(ipa);
499 ipa_hardware_config_clkon(ipa);
500 ipa_hardware_config_comp(ipa);
501 ipa_hardware_config_qsb(ipa, data);
502 ipa_hardware_config_timing(ipa);
503 ipa_hardware_config_hashing(ipa);
504 ipa_hardware_dcd_config(ipa);
505 }
506
507 /**
508 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
509 * @ipa: IPA pointer
510 *
511 * This restores the power-on reset values (even if they aren't different)
512 */
ipa_hardware_deconfig(struct ipa * ipa)513 static void ipa_hardware_deconfig(struct ipa *ipa)
514 {
515 /* Mostly we just leave things as we set them. */
516 ipa_hardware_dcd_deconfig(ipa);
517 }
518
519 /**
520 * ipa_config() - Configure IPA hardware
521 * @ipa: IPA pointer
522 * @data: IPA configuration data
523 *
524 * Perform initialization requiring IPA power to be enabled.
525 */
ipa_config(struct ipa * ipa,const struct ipa_data * data)526 static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
527 {
528 int ret;
529
530 ipa_hardware_config(ipa, data);
531
532 ret = ipa_mem_config(ipa);
533 if (ret)
534 goto err_hardware_deconfig;
535
536 ret = ipa_interrupt_config(ipa);
537 if (ret)
538 goto err_mem_deconfig;
539
540 ipa_uc_config(ipa);
541
542 ret = ipa_endpoint_config(ipa);
543 if (ret)
544 goto err_uc_deconfig;
545
546 ipa_table_config(ipa); /* No deconfig required */
547
548 /* Assign resource limitation to each group; no deconfig required */
549 ret = ipa_resource_config(ipa, data->resource_data);
550 if (ret)
551 goto err_endpoint_deconfig;
552
553 ret = ipa_modem_config(ipa);
554 if (ret)
555 goto err_endpoint_deconfig;
556
557 return 0;
558
559 err_endpoint_deconfig:
560 ipa_endpoint_deconfig(ipa);
561 err_uc_deconfig:
562 ipa_uc_deconfig(ipa);
563 ipa_interrupt_deconfig(ipa);
564 err_mem_deconfig:
565 ipa_mem_deconfig(ipa);
566 err_hardware_deconfig:
567 ipa_hardware_deconfig(ipa);
568
569 return ret;
570 }
571
572 /**
573 * ipa_deconfig() - Inverse of ipa_config()
574 * @ipa: IPA pointer
575 */
ipa_deconfig(struct ipa * ipa)576 static void ipa_deconfig(struct ipa *ipa)
577 {
578 ipa_modem_deconfig(ipa);
579 ipa_endpoint_deconfig(ipa);
580 ipa_uc_deconfig(ipa);
581 ipa_interrupt_deconfig(ipa);
582 ipa_mem_deconfig(ipa);
583 ipa_hardware_deconfig(ipa);
584 }
585
ipa_firmware_load(struct device * dev)586 static int ipa_firmware_load(struct device *dev)
587 {
588 const struct firmware *fw;
589 struct device_node *node;
590 struct resource res;
591 phys_addr_t phys;
592 const char *path;
593 ssize_t size;
594 void *virt;
595 int ret;
596
597 node = of_parse_phandle(dev->of_node, "memory-region", 0);
598 if (!node) {
599 dev_err(dev, "DT error getting \"memory-region\" property\n");
600 return -EINVAL;
601 }
602
603 ret = of_address_to_resource(node, 0, &res);
604 of_node_put(node);
605 if (ret) {
606 dev_err(dev, "error %d getting \"memory-region\" resource\n",
607 ret);
608 return ret;
609 }
610
611 /* Use name from DTB if specified; use default for *any* error */
612 ret = of_property_read_string(dev->of_node, "firmware-name", &path);
613 if (ret) {
614 dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
615 ret);
616 path = IPA_FW_PATH_DEFAULT;
617 }
618
619 ret = request_firmware(&fw, path, dev);
620 if (ret) {
621 dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
622 return ret;
623 }
624
625 phys = res.start;
626 size = (size_t)resource_size(&res);
627 virt = memremap(phys, size, MEMREMAP_WC);
628 if (!virt) {
629 dev_err(dev, "unable to remap firmware memory\n");
630 ret = -ENOMEM;
631 goto out_release_firmware;
632 }
633
634 ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
635 if (ret)
636 dev_err(dev, "error %d loading \"%s\"\n", ret, path);
637 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
638 dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
639
640 memunmap(virt);
641 out_release_firmware:
642 release_firmware(fw);
643
644 return ret;
645 }
646
647 static const struct of_device_id ipa_match[] = {
648 {
649 .compatible = "qcom,msm8998-ipa",
650 .data = &ipa_data_v3_1,
651 },
652 {
653 .compatible = "qcom,sdm845-ipa",
654 .data = &ipa_data_v3_5_1,
655 },
656 {
657 .compatible = "qcom,sc7180-ipa",
658 .data = &ipa_data_v4_2,
659 },
660 {
661 .compatible = "qcom,sdx55-ipa",
662 .data = &ipa_data_v4_5,
663 },
664 {
665 .compatible = "qcom,sm6350-ipa",
666 .data = &ipa_data_v4_7,
667 },
668 {
669 .compatible = "qcom,sm8350-ipa",
670 .data = &ipa_data_v4_9,
671 },
672 {
673 .compatible = "qcom,sc7280-ipa",
674 .data = &ipa_data_v4_11,
675 },
676 {
677 .compatible = "qcom,sdx65-ipa",
678 .data = &ipa_data_v5_0,
679 },
680 {
681 .compatible = "qcom,sm8550-ipa",
682 .data = &ipa_data_v5_5,
683 },
684 { },
685 };
686 MODULE_DEVICE_TABLE(of, ipa_match);
687
688 /* Check things that can be validated at build time. This just
689 * groups these things BUILD_BUG_ON() calls don't clutter the rest
690 * of the code.
691 * */
ipa_validate_build(void)692 static void ipa_validate_build(void)
693 {
694 /* At one time we assumed a 64-bit build, allowing some do_div()
695 * calls to be replaced by simple division or modulo operations.
696 * We currently only perform divide and modulo operations on u32,
697 * u16, or size_t objects, and of those only size_t has any chance
698 * of being a 64-bit value. (It should be guaranteed 32 bits wide
699 * on a 32-bit build, but there is no harm in verifying that.)
700 */
701 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
702
703 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
704 BUILD_BUG_ON(GSI_EE_AP != 0);
705
706 /* There's no point if we have no channels or event rings */
707 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
708 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
709
710 /* GSI hardware design limits */
711 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
712 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
713
714 /* The number of TREs in a transaction is limited by the channel's
715 * TLV FIFO size. A transaction structure uses 8-bit fields
716 * to represents the number of TREs it has allocated and used.
717 */
718 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
719
720 /* This is used as a divisor */
721 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
722
723 /* Aggregation granularity value can't be 0, and must fit */
724 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
725 }
726
ipa_firmware_loader(struct device * dev)727 static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev)
728 {
729 bool modem_init;
730 const char *str;
731 int ret;
732
733 /* Look up the old and new properties by name */
734 modem_init = of_property_read_bool(dev->of_node, "modem-init");
735 ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str);
736
737 /* If the new property doesn't exist, it's legacy behavior */
738 if (ret == -EINVAL) {
739 if (modem_init)
740 return IPA_LOADER_MODEM;
741 goto out_self;
742 }
743
744 /* Any other error on the new property means it's poorly defined */
745 if (ret)
746 return IPA_LOADER_INVALID;
747
748 /* New property value exists; if old one does too, that's invalid */
749 if (modem_init)
750 return IPA_LOADER_INVALID;
751
752 /* Modem loads GSI firmware for "modem" */
753 if (!strcmp(str, "modem"))
754 return IPA_LOADER_MODEM;
755
756 /* No GSI firmware load is needed for "skip" */
757 if (!strcmp(str, "skip"))
758 return IPA_LOADER_SKIP;
759
760 /* Any value other than "self" is an error */
761 if (strcmp(str, "self"))
762 return IPA_LOADER_INVALID;
763 out_self:
764 /* We need Trust Zone to load firmware; make sure it's available */
765 if (qcom_scm_is_available())
766 return IPA_LOADER_SELF;
767
768 return IPA_LOADER_DEFER;
769 }
770
771 /**
772 * ipa_probe() - IPA platform driver probe function
773 * @pdev: Platform device pointer
774 *
775 * Return: 0 if successful, or a negative error code (possibly
776 * EPROBE_DEFER)
777 *
778 * This is the main entry point for the IPA driver. Initialization proceeds
779 * in several stages:
780 * - The "init" stage involves activities that can be initialized without
781 * access to the IPA hardware.
782 * - The "config" stage requires IPA power to be active so IPA registers
783 * can be accessed, but does not require the use of IPA immediate commands.
784 * - The "setup" stage uses IPA immediate commands, and so requires the GSI
785 * layer to be initialized.
786 *
787 * A Boolean Device Tree "modem-init" property determines whether GSI
788 * initialization will be performed by the AP (Trust Zone) or the modem.
789 * If the AP does GSI initialization, the setup phase is entered after
790 * this has completed successfully. Otherwise the modem initializes
791 * the GSI layer and signals it has finished by sending an SMP2P interrupt
792 * to the AP; this triggers the start if IPA setup.
793 */
ipa_probe(struct platform_device * pdev)794 static int ipa_probe(struct platform_device *pdev)
795 {
796 struct device *dev = &pdev->dev;
797 struct ipa_interrupt *interrupt;
798 enum ipa_firmware_loader loader;
799 const struct ipa_data *data;
800 struct ipa_power *power;
801 struct ipa *ipa;
802 int ret;
803
804 ipa_validate_build();
805
806 /* Get configuration data early; needed for power initialization */
807 data = of_device_get_match_data(dev);
808 if (!data) {
809 dev_err(dev, "matched hardware not supported\n");
810 return -ENODEV;
811 }
812
813 if (!data->modem_route_count) {
814 dev_err(dev, "modem_route_count cannot be zero\n");
815 return -EINVAL;
816 }
817
818 loader = ipa_firmware_loader(dev);
819 if (loader == IPA_LOADER_INVALID)
820 return -EINVAL;
821 if (loader == IPA_LOADER_DEFER)
822 return -EPROBE_DEFER;
823
824 /* The IPA interrupt might not be ready when we're probed, so this
825 * might return -EPROBE_DEFER.
826 */
827 interrupt = ipa_interrupt_init(pdev);
828 if (IS_ERR(interrupt))
829 return PTR_ERR(interrupt);
830
831 /* The clock and interconnects might not be ready when we're probed,
832 * so this might return -EPROBE_DEFER.
833 */
834 power = ipa_power_init(dev, data->power_data);
835 if (IS_ERR(power)) {
836 ret = PTR_ERR(power);
837 goto err_interrupt_exit;
838 }
839
840 /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */
841 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
842 if (!ipa) {
843 ret = -ENOMEM;
844 goto err_power_exit;
845 }
846
847 ipa->dev = dev;
848 dev_set_drvdata(dev, ipa);
849 ipa->interrupt = interrupt;
850 ipa->power = power;
851 ipa->version = data->version;
852 ipa->modem_route_count = data->modem_route_count;
853 init_completion(&ipa->completion);
854
855 ret = ipa_reg_init(ipa, pdev);
856 if (ret)
857 goto err_kfree_ipa;
858
859 ret = ipa_mem_init(ipa, pdev, data->mem_data);
860 if (ret)
861 goto err_reg_exit;
862
863 ret = ipa_cmd_init(ipa);
864 if (ret)
865 goto err_mem_exit;
866
867 ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
868 data->endpoint_data);
869 if (ret)
870 goto err_mem_exit;
871
872 /* Result is a non-zero mask of endpoints that support filtering */
873 ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data);
874 if (ret)
875 goto err_gsi_exit;
876
877 ret = ipa_table_init(ipa);
878 if (ret)
879 goto err_endpoint_exit;
880
881 ret = ipa_smp2p_init(ipa, pdev, loader == IPA_LOADER_MODEM);
882 if (ret)
883 goto err_table_exit;
884
885 /* Power needs to be active for config and setup */
886 ret = pm_runtime_get_sync(dev);
887 if (WARN_ON(ret < 0))
888 goto err_power_put;
889
890 ret = ipa_config(ipa, data);
891 if (ret)
892 goto err_power_put;
893
894 dev_info(dev, "IPA driver initialized");
895
896 /* If the modem is loading GSI firmware, it will trigger a call to
897 * ipa_setup() when it has finished. In that case we're done here.
898 */
899 if (loader == IPA_LOADER_MODEM)
900 goto done;
901
902 if (loader == IPA_LOADER_SELF) {
903 /* The AP is loading GSI firmware; do so now */
904 ret = ipa_firmware_load(dev);
905 if (ret)
906 goto err_deconfig;
907 } /* Otherwise loader == IPA_LOADER_SKIP */
908
909 /* GSI firmware is loaded; proceed to setup */
910 ret = ipa_setup(ipa);
911 if (ret)
912 goto err_deconfig;
913 done:
914 pm_runtime_mark_last_busy(dev);
915 (void)pm_runtime_put_autosuspend(dev);
916
917 return 0;
918
919 err_deconfig:
920 ipa_deconfig(ipa);
921 err_power_put:
922 pm_runtime_put_noidle(dev);
923 ipa_smp2p_exit(ipa);
924 err_table_exit:
925 ipa_table_exit(ipa);
926 err_endpoint_exit:
927 ipa_endpoint_exit(ipa);
928 err_gsi_exit:
929 gsi_exit(&ipa->gsi);
930 err_mem_exit:
931 ipa_mem_exit(ipa);
932 err_reg_exit:
933 ipa_reg_exit(ipa);
934 err_kfree_ipa:
935 kfree(ipa);
936 err_power_exit:
937 ipa_power_exit(power);
938 err_interrupt_exit:
939 ipa_interrupt_exit(interrupt);
940
941 return ret;
942 }
943
ipa_remove(struct platform_device * pdev)944 static void ipa_remove(struct platform_device *pdev)
945 {
946 struct ipa_interrupt *interrupt;
947 struct ipa_power *power;
948 struct device *dev;
949 struct ipa *ipa;
950 int ret;
951
952 ipa = dev_get_drvdata(&pdev->dev);
953 dev = ipa->dev;
954 WARN_ON(dev != &pdev->dev);
955
956 power = ipa->power;
957 interrupt = ipa->interrupt;
958
959 /* Prevent the modem from triggering a call to ipa_setup(). This
960 * also ensures a modem-initiated setup that's underway completes.
961 */
962 ipa_smp2p_irq_disable_setup(ipa);
963
964 ret = pm_runtime_get_sync(dev);
965 if (WARN_ON(ret < 0))
966 goto out_power_put;
967
968 if (ipa->setup_complete) {
969 ret = ipa_modem_stop(ipa);
970 /* If starting or stopping is in progress, try once more */
971 if (ret == -EBUSY) {
972 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
973 ret = ipa_modem_stop(ipa);
974 }
975 if (ret) {
976 /*
977 * Not cleaning up here properly might also yield a
978 * crash later on. As the device is still unregistered
979 * in this case, this might even yield a crash later on.
980 */
981 dev_err(dev, "Failed to stop modem (%pe), leaking resources\n",
982 ERR_PTR(ret));
983 return;
984 }
985
986 ipa_teardown(ipa);
987 }
988
989 ipa_deconfig(ipa);
990 out_power_put:
991 pm_runtime_put_noidle(dev);
992 ipa_smp2p_exit(ipa);
993 ipa_table_exit(ipa);
994 ipa_endpoint_exit(ipa);
995 gsi_exit(&ipa->gsi);
996 ipa_mem_exit(ipa);
997 ipa_reg_exit(ipa);
998 kfree(ipa);
999 ipa_power_exit(power);
1000 ipa_interrupt_exit(interrupt);
1001
1002 dev_info(dev, "IPA driver removed");
1003 }
1004
1005 static const struct attribute_group *ipa_attribute_groups[] = {
1006 &ipa_attribute_group,
1007 &ipa_feature_attribute_group,
1008 &ipa_endpoint_id_attribute_group,
1009 &ipa_modem_attribute_group,
1010 NULL,
1011 };
1012
1013 static struct platform_driver ipa_driver = {
1014 .probe = ipa_probe,
1015 .remove_new = ipa_remove,
1016 .shutdown = ipa_remove,
1017 .driver = {
1018 .name = "ipa",
1019 .pm = &ipa_pm_ops,
1020 .of_match_table = ipa_match,
1021 .dev_groups = ipa_attribute_groups,
1022 },
1023 };
1024
1025 module_platform_driver(ipa_driver);
1026
1027 MODULE_LICENSE("GPL v2");
1028 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
1029