1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell Octeon EP (EndPoint) VF Ethernet Driver
3  *
4  * Copyright (C) 2020 Marvell.
5  *
6  */
7 
8 #include <linux/pci.h>
9 #include <linux/etherdevice.h>
10 #include <linux/vmalloc.h>
11 
12 #include "octep_vf_config.h"
13 #include "octep_vf_main.h"
14 
octep_vf_oq_reset_indices(struct octep_vf_oq * oq)15 static void octep_vf_oq_reset_indices(struct octep_vf_oq *oq)
16 {
17 	oq->host_read_idx = 0;
18 	oq->host_refill_idx = 0;
19 	oq->refill_count = 0;
20 	oq->last_pkt_count = 0;
21 	oq->pkts_pending = 0;
22 }
23 
24 /**
25  * octep_vf_oq_fill_ring_buffers() - fill initial receive buffers for Rx ring.
26  *
27  * @oq: Octeon Rx queue data structure.
28  *
29  * Return: 0, if successfully filled receive buffers for all descriptors.
30  *         -ENOMEM, if failed to allocate a buffer or failed to map for DMA.
31  */
octep_vf_oq_fill_ring_buffers(struct octep_vf_oq * oq)32 static int octep_vf_oq_fill_ring_buffers(struct octep_vf_oq *oq)
33 {
34 	struct octep_vf_oq_desc_hw *desc_ring = oq->desc_ring;
35 	struct page *page;
36 	u32 i;
37 
38 	for (i = 0; i < oq->max_count; i++) {
39 		page = dev_alloc_page();
40 		if (unlikely(!page)) {
41 			dev_err(oq->dev, "Rx buffer alloc failed\n");
42 			goto rx_buf_alloc_err;
43 		}
44 		desc_ring[i].buffer_ptr = dma_map_page(oq->dev, page, 0,
45 						       PAGE_SIZE,
46 						       DMA_FROM_DEVICE);
47 		if (dma_mapping_error(oq->dev, desc_ring[i].buffer_ptr)) {
48 			dev_err(oq->dev,
49 				"OQ-%d buffer alloc: DMA mapping error!\n",
50 				oq->q_no);
51 			goto dma_map_err;
52 		}
53 		oq->buff_info[i].page = page;
54 	}
55 
56 	return 0;
57 
58 dma_map_err:
59 	put_page(page);
60 rx_buf_alloc_err:
61 	while (i) {
62 		i--;
63 		dma_unmap_page(oq->dev, desc_ring[i].buffer_ptr, PAGE_SIZE, DMA_FROM_DEVICE);
64 		put_page(oq->buff_info[i].page);
65 		oq->buff_info[i].page = NULL;
66 	}
67 
68 	return -ENOMEM;
69 }
70 
71 /**
72  * octep_vf_oq_refill() - refill buffers for used Rx ring descriptors.
73  *
74  * @oct: Octeon device private data structure.
75  * @oq: Octeon Rx queue data structure.
76  *
77  * Return: number of descriptors successfully refilled with receive buffers.
78  */
octep_vf_oq_refill(struct octep_vf_device * oct,struct octep_vf_oq * oq)79 static int octep_vf_oq_refill(struct octep_vf_device *oct, struct octep_vf_oq *oq)
80 {
81 	struct octep_vf_oq_desc_hw *desc_ring = oq->desc_ring;
82 	struct page *page;
83 	u32 refill_idx, i;
84 
85 	refill_idx = oq->host_refill_idx;
86 	for (i = 0; i < oq->refill_count; i++) {
87 		page = dev_alloc_page();
88 		if (unlikely(!page)) {
89 			dev_err(oq->dev, "refill: rx buffer alloc failed\n");
90 			oq->stats.alloc_failures++;
91 			break;
92 		}
93 
94 		desc_ring[refill_idx].buffer_ptr = dma_map_page(oq->dev, page, 0,
95 								PAGE_SIZE, DMA_FROM_DEVICE);
96 		if (dma_mapping_error(oq->dev, desc_ring[refill_idx].buffer_ptr)) {
97 			dev_err(oq->dev,
98 				"OQ-%d buffer refill: DMA mapping error!\n",
99 				oq->q_no);
100 			put_page(page);
101 			oq->stats.alloc_failures++;
102 			break;
103 		}
104 		oq->buff_info[refill_idx].page = page;
105 		refill_idx++;
106 		if (refill_idx == oq->max_count)
107 			refill_idx = 0;
108 	}
109 	oq->host_refill_idx = refill_idx;
110 	oq->refill_count -= i;
111 
112 	return i;
113 }
114 
115 /**
116  * octep_vf_setup_oq() - Setup a Rx queue.
117  *
118  * @oct: Octeon device private data structure.
119  * @q_no: Rx queue number to be setup.
120  *
121  * Allocate resources for a Rx queue.
122  */
octep_vf_setup_oq(struct octep_vf_device * oct,int q_no)123 static int octep_vf_setup_oq(struct octep_vf_device *oct, int q_no)
124 {
125 	struct octep_vf_oq *oq;
126 	u32 desc_ring_size;
127 
128 	oq = vzalloc(sizeof(*oq));
129 	if (!oq)
130 		goto create_oq_fail;
131 	oct->oq[q_no] = oq;
132 
133 	oq->octep_vf_dev = oct;
134 	oq->netdev = oct->netdev;
135 	oq->dev = &oct->pdev->dev;
136 	oq->q_no = q_no;
137 	oq->max_count = CFG_GET_OQ_NUM_DESC(oct->conf);
138 	oq->ring_size_mask = oq->max_count - 1;
139 	oq->buffer_size = CFG_GET_OQ_BUF_SIZE(oct->conf);
140 	oq->max_single_buffer_size = oq->buffer_size - OCTEP_VF_OQ_RESP_HW_SIZE;
141 
142 	/* When the hardware/firmware supports additional capabilities,
143 	 * additional header is filled-in by Octeon after length field in
144 	 * Rx packets. this header contains additional packet information.
145 	 */
146 	if (oct->fw_info.rx_ol_flags)
147 		oq->max_single_buffer_size -= OCTEP_VF_OQ_RESP_HW_EXT_SIZE;
148 
149 	oq->refill_threshold = CFG_GET_OQ_REFILL_THRESHOLD(oct->conf);
150 
151 	desc_ring_size = oq->max_count * OCTEP_VF_OQ_DESC_SIZE;
152 	oq->desc_ring = dma_alloc_coherent(oq->dev, desc_ring_size,
153 					   &oq->desc_ring_dma, GFP_KERNEL);
154 
155 	if (unlikely(!oq->desc_ring)) {
156 		dev_err(oq->dev,
157 			"Failed to allocate DMA memory for OQ-%d !!\n", q_no);
158 		goto desc_dma_alloc_err;
159 	}
160 
161 	oq->buff_info = vzalloc(oq->max_count * OCTEP_VF_OQ_RECVBUF_SIZE);
162 
163 	if (unlikely(!oq->buff_info)) {
164 		dev_err(&oct->pdev->dev,
165 			"Failed to allocate buffer info for OQ-%d\n", q_no);
166 		goto buf_list_err;
167 	}
168 
169 	if (octep_vf_oq_fill_ring_buffers(oq))
170 		goto oq_fill_buff_err;
171 
172 	octep_vf_oq_reset_indices(oq);
173 	oct->hw_ops.setup_oq_regs(oct, q_no);
174 	oct->num_oqs++;
175 
176 	return 0;
177 
178 oq_fill_buff_err:
179 	vfree(oq->buff_info);
180 	oq->buff_info = NULL;
181 buf_list_err:
182 	dma_free_coherent(oq->dev, desc_ring_size,
183 			  oq->desc_ring, oq->desc_ring_dma);
184 	oq->desc_ring = NULL;
185 desc_dma_alloc_err:
186 	vfree(oq);
187 	oct->oq[q_no] = NULL;
188 create_oq_fail:
189 	return -ENOMEM;
190 }
191 
192 /**
193  * octep_vf_oq_free_ring_buffers() - Free ring buffers.
194  *
195  * @oq: Octeon Rx queue data structure.
196  *
197  * Free receive buffers in unused Rx queue descriptors.
198  */
octep_vf_oq_free_ring_buffers(struct octep_vf_oq * oq)199 static void octep_vf_oq_free_ring_buffers(struct octep_vf_oq *oq)
200 {
201 	struct octep_vf_oq_desc_hw *desc_ring = oq->desc_ring;
202 	int  i;
203 
204 	if (!oq->desc_ring || !oq->buff_info)
205 		return;
206 
207 	for (i = 0; i < oq->max_count; i++)  {
208 		if (oq->buff_info[i].page) {
209 			dma_unmap_page(oq->dev, desc_ring[i].buffer_ptr,
210 				       PAGE_SIZE, DMA_FROM_DEVICE);
211 			put_page(oq->buff_info[i].page);
212 			oq->buff_info[i].page = NULL;
213 			desc_ring[i].buffer_ptr = 0;
214 		}
215 	}
216 	octep_vf_oq_reset_indices(oq);
217 }
218 
219 /**
220  * octep_vf_free_oq() - Free Rx queue resources.
221  *
222  * @oq: Octeon Rx queue data structure.
223  *
224  * Free all resources of a Rx queue.
225  */
octep_vf_free_oq(struct octep_vf_oq * oq)226 static int octep_vf_free_oq(struct octep_vf_oq *oq)
227 {
228 	struct octep_vf_device *oct = oq->octep_vf_dev;
229 	int q_no = oq->q_no;
230 
231 	octep_vf_oq_free_ring_buffers(oq);
232 
233 	vfree(oq->buff_info);
234 
235 	if (oq->desc_ring)
236 		dma_free_coherent(oq->dev,
237 				  oq->max_count * OCTEP_VF_OQ_DESC_SIZE,
238 				  oq->desc_ring, oq->desc_ring_dma);
239 
240 	vfree(oq);
241 	oct->oq[q_no] = NULL;
242 	oct->num_oqs--;
243 	return 0;
244 }
245 
246 /**
247  * octep_vf_setup_oqs() - setup resources for all Rx queues.
248  *
249  * @oct: Octeon device private data structure.
250  */
octep_vf_setup_oqs(struct octep_vf_device * oct)251 int octep_vf_setup_oqs(struct octep_vf_device *oct)
252 {
253 	int i, retval = 0;
254 
255 	oct->num_oqs = 0;
256 	for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++) {
257 		retval = octep_vf_setup_oq(oct, i);
258 		if (retval) {
259 			dev_err(&oct->pdev->dev,
260 				"Failed to setup OQ(RxQ)-%d.\n", i);
261 			goto oq_setup_err;
262 		}
263 		dev_dbg(&oct->pdev->dev, "Successfully setup OQ(RxQ)-%d.\n", i);
264 	}
265 
266 	return 0;
267 
268 oq_setup_err:
269 	while (i) {
270 		i--;
271 		octep_vf_free_oq(oct->oq[i]);
272 	}
273 	return retval;
274 }
275 
276 /**
277  * octep_vf_oq_dbell_init() - Initialize Rx queue doorbell.
278  *
279  * @oct: Octeon device private data structure.
280  *
281  * Write number of descriptors to Rx queue doorbell register.
282  */
octep_vf_oq_dbell_init(struct octep_vf_device * oct)283 void octep_vf_oq_dbell_init(struct octep_vf_device *oct)
284 {
285 	int i;
286 
287 	for (i = 0; i < oct->num_oqs; i++)
288 		writel(oct->oq[i]->max_count, oct->oq[i]->pkts_credit_reg);
289 }
290 
291 /**
292  * octep_vf_free_oqs() - Free resources of all Rx queues.
293  *
294  * @oct: Octeon device private data structure.
295  */
octep_vf_free_oqs(struct octep_vf_device * oct)296 void octep_vf_free_oqs(struct octep_vf_device *oct)
297 {
298 	int i;
299 
300 	for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++) {
301 		if (!oct->oq[i])
302 			continue;
303 		octep_vf_free_oq(oct->oq[i]);
304 		dev_dbg(&oct->pdev->dev,
305 			"Successfully freed OQ(RxQ)-%d.\n", i);
306 	}
307 }
308 
309 /**
310  * octep_vf_oq_check_hw_for_pkts() - Check for new Rx packets.
311  *
312  * @oct: Octeon device private data structure.
313  * @oq: Octeon Rx queue data structure.
314  *
315  * Return: packets received after previous check.
316  */
octep_vf_oq_check_hw_for_pkts(struct octep_vf_device * oct,struct octep_vf_oq * oq)317 static int octep_vf_oq_check_hw_for_pkts(struct octep_vf_device *oct,
318 					 struct octep_vf_oq *oq)
319 {
320 	u32 pkt_count, new_pkts;
321 
322 	pkt_count = readl(oq->pkts_sent_reg);
323 	new_pkts = pkt_count - oq->last_pkt_count;
324 
325 	/* Clear the hardware packets counter register if the rx queue is
326 	 * being processed continuously with-in a single interrupt and
327 	 * reached half its max value.
328 	 * this counter is not cleared every time read, to save write cycles.
329 	 */
330 	if (unlikely(pkt_count > 0xF0000000U)) {
331 		writel(pkt_count, oq->pkts_sent_reg);
332 		pkt_count = readl(oq->pkts_sent_reg);
333 		new_pkts += pkt_count;
334 	}
335 	oq->last_pkt_count = pkt_count;
336 	oq->pkts_pending += new_pkts;
337 	return new_pkts;
338 }
339 
340 /**
341  * __octep_vf_oq_process_rx() - Process hardware Rx queue and push to stack.
342  *
343  * @oct: Octeon device private data structure.
344  * @oq: Octeon Rx queue data structure.
345  * @pkts_to_process: number of packets to be processed.
346  *
347  * Process the new packets in Rx queue.
348  * Packets larger than single Rx buffer arrive in consecutive descriptors.
349  * But, count returned by the API only accounts full packets, not fragments.
350  *
351  * Return: number of packets processed and pushed to stack.
352  */
__octep_vf_oq_process_rx(struct octep_vf_device * oct,struct octep_vf_oq * oq,u16 pkts_to_process)353 static int __octep_vf_oq_process_rx(struct octep_vf_device *oct,
354 				    struct octep_vf_oq *oq, u16 pkts_to_process)
355 {
356 	struct octep_vf_oq_resp_hw_ext *resp_hw_ext = NULL;
357 	netdev_features_t feat = oq->netdev->features;
358 	struct octep_vf_rx_buffer *buff_info;
359 	struct octep_vf_oq_resp_hw *resp_hw;
360 	u32 pkt, rx_bytes, desc_used;
361 	u16 data_offset, rx_ol_flags;
362 	struct sk_buff *skb;
363 	u32 read_idx;
364 
365 	read_idx = oq->host_read_idx;
366 	rx_bytes = 0;
367 	desc_used = 0;
368 	for (pkt = 0; pkt < pkts_to_process; pkt++) {
369 		buff_info = (struct octep_vf_rx_buffer *)&oq->buff_info[read_idx];
370 		dma_unmap_page(oq->dev, oq->desc_ring[read_idx].buffer_ptr,
371 			       PAGE_SIZE, DMA_FROM_DEVICE);
372 		resp_hw = page_address(buff_info->page);
373 		buff_info->page = NULL;
374 
375 		/* Swap the length field that is in Big-Endian to CPU */
376 		buff_info->len = be64_to_cpu(resp_hw->length);
377 		if (oct->fw_info.rx_ol_flags) {
378 			/* Extended response header is immediately after
379 			 * response header (resp_hw)
380 			 */
381 			resp_hw_ext = (struct octep_vf_oq_resp_hw_ext *)
382 				      (resp_hw + 1);
383 			buff_info->len -= OCTEP_VF_OQ_RESP_HW_EXT_SIZE;
384 			/* Packet Data is immediately after
385 			 * extended response header.
386 			 */
387 			data_offset = OCTEP_VF_OQ_RESP_HW_SIZE +
388 				      OCTEP_VF_OQ_RESP_HW_EXT_SIZE;
389 			rx_ol_flags = resp_hw_ext->rx_ol_flags;
390 		} else {
391 			/* Data is immediately after
392 			 * Hardware Rx response header.
393 			 */
394 			data_offset = OCTEP_VF_OQ_RESP_HW_SIZE;
395 			rx_ol_flags = 0;
396 		}
397 		rx_bytes += buff_info->len;
398 
399 		if (buff_info->len <= oq->max_single_buffer_size) {
400 			skb = napi_build_skb((void *)resp_hw, PAGE_SIZE);
401 			skb_reserve(skb, data_offset);
402 			skb_put(skb, buff_info->len);
403 			read_idx++;
404 			desc_used++;
405 			if (read_idx == oq->max_count)
406 				read_idx = 0;
407 		} else {
408 			struct skb_shared_info *shinfo;
409 			u16 data_len;
410 
411 			skb = napi_build_skb((void *)resp_hw, PAGE_SIZE);
412 			skb_reserve(skb, data_offset);
413 			/* Head fragment includes response header(s);
414 			 * subsequent fragments contains only data.
415 			 */
416 			skb_put(skb, oq->max_single_buffer_size);
417 			read_idx++;
418 			desc_used++;
419 			if (read_idx == oq->max_count)
420 				read_idx = 0;
421 
422 			shinfo = skb_shinfo(skb);
423 			data_len = buff_info->len - oq->max_single_buffer_size;
424 			while (data_len) {
425 				dma_unmap_page(oq->dev, oq->desc_ring[read_idx].buffer_ptr,
426 					       PAGE_SIZE, DMA_FROM_DEVICE);
427 				buff_info = (struct octep_vf_rx_buffer *)
428 					    &oq->buff_info[read_idx];
429 				if (data_len < oq->buffer_size) {
430 					buff_info->len = data_len;
431 					data_len = 0;
432 				} else {
433 					buff_info->len = oq->buffer_size;
434 					data_len -= oq->buffer_size;
435 				}
436 
437 				skb_add_rx_frag(skb, shinfo->nr_frags,
438 						buff_info->page, 0,
439 						buff_info->len,
440 						buff_info->len);
441 				buff_info->page = NULL;
442 				read_idx++;
443 				desc_used++;
444 				if (read_idx == oq->max_count)
445 					read_idx = 0;
446 			}
447 		}
448 
449 		skb->dev = oq->netdev;
450 		skb->protocol = eth_type_trans(skb, skb->dev);
451 		if (feat & NETIF_F_RXCSUM &&
452 		    OCTEP_VF_RX_CSUM_VERIFIED(rx_ol_flags))
453 			skb->ip_summed = CHECKSUM_UNNECESSARY;
454 		else
455 			skb->ip_summed = CHECKSUM_NONE;
456 		napi_gro_receive(oq->napi, skb);
457 	}
458 
459 	oq->host_read_idx = read_idx;
460 	oq->refill_count += desc_used;
461 	oq->stats.packets += pkt;
462 	oq->stats.bytes += rx_bytes;
463 
464 	return pkt;
465 }
466 
467 /**
468  * octep_vf_oq_process_rx() - Process Rx queue.
469  *
470  * @oq: Octeon Rx queue data structure.
471  * @budget: max number of packets can be processed in one invocation.
472  *
473  * Check for newly received packets and process them.
474  * Keeps checking for new packets until budget is used or no new packets seen.
475  *
476  * Return: number of packets processed.
477  */
octep_vf_oq_process_rx(struct octep_vf_oq * oq,int budget)478 int octep_vf_oq_process_rx(struct octep_vf_oq *oq, int budget)
479 {
480 	u32 pkts_available, pkts_processed, total_pkts_processed;
481 	struct octep_vf_device *oct = oq->octep_vf_dev;
482 
483 	pkts_available = 0;
484 	pkts_processed = 0;
485 	total_pkts_processed = 0;
486 	while (total_pkts_processed < budget) {
487 		 /* update pending count only when current one exhausted */
488 		if (oq->pkts_pending == 0)
489 			octep_vf_oq_check_hw_for_pkts(oct, oq);
490 		pkts_available = min(budget - total_pkts_processed,
491 				     oq->pkts_pending);
492 		if (!pkts_available)
493 			break;
494 
495 		pkts_processed = __octep_vf_oq_process_rx(oct, oq,
496 							  pkts_available);
497 		oq->pkts_pending -= pkts_processed;
498 		total_pkts_processed += pkts_processed;
499 	}
500 
501 	if (oq->refill_count >= oq->refill_threshold) {
502 		u32 desc_refilled = octep_vf_oq_refill(oct, oq);
503 
504 		/* flush pending writes before updating credits */
505 		smp_wmb();
506 		writel(desc_refilled, oq->pkts_credit_reg);
507 	}
508 
509 	return total_pkts_processed;
510 }
511