1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Freescale Ethernet controllers
4  *
5  * Copyright (c) 2005 Intracom S.A.
6  *  by Pantelis Antoniou <panto@intracom.gr>
7  *
8  * 2005 (c) MontaVista Software, Inc.
9  * Vitaly Bordug <vbordug@ru.mvista.com>
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/string.h>
16 #include <linux/ptrace.h>
17 #include <linux/errno.h>
18 #include <linux/crc32.h>
19 #include <linux/ioport.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/spinlock.h>
26 #include <linux/ethtool.h>
27 #include <linux/bitops.h>
28 #include <linux/fs.h>
29 #include <linux/platform_device.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/gfp.h>
33 
34 #include <asm/irq.h>
35 #include <linux/uaccess.h>
36 
37 #include "fs_enet.h"
38 #include "fec.h"
39 
40 /*************************************************/
41 
42 #if defined(CONFIG_CPM1)
43 /* for a CPM1 __raw_xxx's are sufficient */
44 #define __fs_out32(addr, x)	__raw_writel(x, addr)
45 #define __fs_out16(addr, x)	__raw_writew(x, addr)
46 #define __fs_in32(addr)	__raw_readl(addr)
47 #define __fs_in16(addr)	__raw_readw(addr)
48 #else
49 /* for others play it safe */
50 #define __fs_out32(addr, x)	out_be32(addr, x)
51 #define __fs_out16(addr, x)	out_be16(addr, x)
52 #define __fs_in32(addr)	in_be32(addr)
53 #define __fs_in16(addr)	in_be16(addr)
54 #endif
55 
56 /* write */
57 #define FW(_fecp, _reg, _v) __fs_out32(&(_fecp)->fec_ ## _reg, (_v))
58 
59 /* read */
60 #define FR(_fecp, _reg)	__fs_in32(&(_fecp)->fec_ ## _reg)
61 
62 /* set bits */
63 #define FS(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) | (_v))
64 
65 /* clear bits */
66 #define FC(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) & ~(_v))
67 
68 /*
69  * Delay to wait for FEC reset command to complete (in us)
70  */
71 #define FEC_RESET_DELAY		50
72 
whack_reset(struct fec __iomem * fecp)73 static int whack_reset(struct fec __iomem *fecp)
74 {
75 	int i;
76 
77 	FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET);
78 	for (i = 0; i < FEC_RESET_DELAY; i++) {
79 		if ((FR(fecp, ecntrl) & FEC_ECNTRL_RESET) == 0)
80 			return 0;	/* OK */
81 		udelay(1);
82 	}
83 
84 	return -1;
85 }
86 
do_pd_setup(struct fs_enet_private * fep)87 static int do_pd_setup(struct fs_enet_private *fep)
88 {
89 	struct platform_device *ofdev = to_platform_device(fep->dev);
90 
91 	fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
92 	if (!fep->interrupt)
93 		return -EINVAL;
94 
95 	fep->fec.fecp = of_iomap(ofdev->dev.of_node, 0);
96 	if (!fep->fec.fecp)
97 		return -EINVAL;
98 
99 	return 0;
100 }
101 
102 #define FEC_NAPI_EVENT_MSK	(FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_TXF)
103 #define FEC_EVENT		(FEC_ENET_RXF | FEC_ENET_TXF)
104 #define FEC_ERR_EVENT_MSK	(FEC_ENET_HBERR | FEC_ENET_BABR | \
105 				 FEC_ENET_BABT | FEC_ENET_EBERR)
106 
setup_data(struct net_device * dev)107 static int setup_data(struct net_device *dev)
108 {
109 	struct fs_enet_private *fep = netdev_priv(dev);
110 
111 	if (do_pd_setup(fep) != 0)
112 		return -EINVAL;
113 
114 	fep->fec.hthi = 0;
115 	fep->fec.htlo = 0;
116 
117 	fep->ev_napi = FEC_NAPI_EVENT_MSK;
118 	fep->ev = FEC_EVENT;
119 	fep->ev_err = FEC_ERR_EVENT_MSK;
120 
121 	return 0;
122 }
123 
allocate_bd(struct net_device * dev)124 static int allocate_bd(struct net_device *dev)
125 {
126 	struct fs_enet_private *fep = netdev_priv(dev);
127 	const struct fs_platform_info *fpi = fep->fpi;
128 
129 	fep->ring_base = (void __force __iomem *)dma_alloc_coherent(fep->dev,
130 					    (fpi->tx_ring + fpi->rx_ring) *
131 					    sizeof(cbd_t), &fep->ring_mem_addr,
132 					    GFP_KERNEL);
133 	if (fep->ring_base == NULL)
134 		return -ENOMEM;
135 
136 	return 0;
137 }
138 
free_bd(struct net_device * dev)139 static void free_bd(struct net_device *dev)
140 {
141 	struct fs_enet_private *fep = netdev_priv(dev);
142 	const struct fs_platform_info *fpi = fep->fpi;
143 
144 	if(fep->ring_base)
145 		dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring)
146 					* sizeof(cbd_t),
147 					(void __force *)fep->ring_base,
148 					fep->ring_mem_addr);
149 }
150 
cleanup_data(struct net_device * dev)151 static void cleanup_data(struct net_device *dev)
152 {
153 	/* nothing */
154 }
155 
set_promiscuous_mode(struct net_device * dev)156 static void set_promiscuous_mode(struct net_device *dev)
157 {
158 	struct fs_enet_private *fep = netdev_priv(dev);
159 	struct fec __iomem *fecp = fep->fec.fecp;
160 
161 	FS(fecp, r_cntrl, FEC_RCNTRL_PROM);
162 }
163 
set_multicast_start(struct net_device * dev)164 static void set_multicast_start(struct net_device *dev)
165 {
166 	struct fs_enet_private *fep = netdev_priv(dev);
167 
168 	fep->fec.hthi = 0;
169 	fep->fec.htlo = 0;
170 }
171 
set_multicast_one(struct net_device * dev,const u8 * mac)172 static void set_multicast_one(struct net_device *dev, const u8 *mac)
173 {
174 	struct fs_enet_private *fep = netdev_priv(dev);
175 	int temp, hash_index;
176 	u32 crc, csrVal;
177 
178 	crc = ether_crc(6, mac);
179 
180 	temp = (crc & 0x3f) >> 1;
181 	hash_index = ((temp & 0x01) << 4) |
182 		     ((temp & 0x02) << 2) |
183 		     ((temp & 0x04)) |
184 		     ((temp & 0x08) >> 2) |
185 		     ((temp & 0x10) >> 4);
186 	csrVal = 1 << hash_index;
187 	if (crc & 1)
188 		fep->fec.hthi |= csrVal;
189 	else
190 		fep->fec.htlo |= csrVal;
191 }
192 
set_multicast_finish(struct net_device * dev)193 static void set_multicast_finish(struct net_device *dev)
194 {
195 	struct fs_enet_private *fep = netdev_priv(dev);
196 	struct fec __iomem *fecp = fep->fec.fecp;
197 
198 	/* if all multi or too many multicasts; just enable all */
199 	if ((dev->flags & IFF_ALLMULTI) != 0 ||
200 	    netdev_mc_count(dev) > FEC_MAX_MULTICAST_ADDRS) {
201 		fep->fec.hthi = 0xffffffffU;
202 		fep->fec.htlo = 0xffffffffU;
203 	}
204 
205 	FC(fecp, r_cntrl, FEC_RCNTRL_PROM);
206 	FW(fecp, grp_hash_table_high, fep->fec.hthi);
207 	FW(fecp, grp_hash_table_low, fep->fec.htlo);
208 }
209 
set_multicast_list(struct net_device * dev)210 static void set_multicast_list(struct net_device *dev)
211 {
212 	struct netdev_hw_addr *ha;
213 
214 	if ((dev->flags & IFF_PROMISC) == 0) {
215 		set_multicast_start(dev);
216 		netdev_for_each_mc_addr(ha, dev)
217 			set_multicast_one(dev, ha->addr);
218 		set_multicast_finish(dev);
219 	} else
220 		set_promiscuous_mode(dev);
221 }
222 
restart(struct net_device * dev,phy_interface_t interface,int speed,int duplex)223 static void restart(struct net_device *dev, phy_interface_t interface,
224 		    int speed, int duplex)
225 {
226 	struct fs_enet_private *fep = netdev_priv(dev);
227 	struct fec __iomem *fecp = fep->fec.fecp;
228 	const struct fs_platform_info *fpi = fep->fpi;
229 	dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
230 	int r;
231 	u32 addrhi, addrlo;
232 
233 	struct mii_bus *mii = dev->phydev->mdio.bus;
234 	struct fec_info* fec_inf = mii->priv;
235 
236 	r = whack_reset(fep->fec.fecp);
237 	if (r != 0)
238 		dev_err(fep->dev, "FEC Reset FAILED!\n");
239 	/*
240 	 * Set station address.
241 	 */
242 	addrhi = ((u32) dev->dev_addr[0] << 24) |
243 		 ((u32) dev->dev_addr[1] << 16) |
244 		 ((u32) dev->dev_addr[2] <<  8) |
245 		  (u32) dev->dev_addr[3];
246 	addrlo = ((u32) dev->dev_addr[4] << 24) |
247 		 ((u32) dev->dev_addr[5] << 16);
248 	FW(fecp, addr_low, addrhi);
249 	FW(fecp, addr_high, addrlo);
250 
251 	/*
252 	 * Reset all multicast.
253 	 */
254 	FW(fecp, grp_hash_table_high, fep->fec.hthi);
255 	FW(fecp, grp_hash_table_low, fep->fec.htlo);
256 
257 	/*
258 	 * Set maximum receive buffer size.
259 	 */
260 	FW(fecp, r_buff_size, PKT_MAXBLR_SIZE);
261 #ifdef CONFIG_FS_ENET_MPC5121_FEC
262 	FW(fecp, r_cntrl, PKT_MAXBUF_SIZE << 16);
263 #else
264 	FW(fecp, r_hash, PKT_MAXBUF_SIZE);
265 #endif
266 
267 	/* get physical address */
268 	rx_bd_base_phys = fep->ring_mem_addr;
269 	tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
270 
271 	/*
272 	 * Set receive and transmit descriptor base.
273 	 */
274 	FW(fecp, r_des_start, rx_bd_base_phys);
275 	FW(fecp, x_des_start, tx_bd_base_phys);
276 
277 	fs_init_bds(dev);
278 
279 	/*
280 	 * Enable big endian and don't care about SDMA FC.
281 	 */
282 #ifdef CONFIG_FS_ENET_MPC5121_FEC
283 	FS(fecp, dma_control, 0xC0000000);
284 #else
285 	FW(fecp, fun_code, 0x78000000);
286 #endif
287 
288 	/*
289 	 * Set MII speed.
290 	 */
291 	FW(fecp, mii_speed, fec_inf->mii_speed);
292 
293 	/*
294 	 * Clear any outstanding interrupt.
295 	 */
296 	FW(fecp, ievent, 0xffc0);
297 #ifndef CONFIG_FS_ENET_MPC5121_FEC
298 	FW(fecp, ivec, (virq_to_hw(fep->interrupt) / 2) << 29);
299 
300 	FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE);	/* MII enable */
301 #else
302 	/*
303 	 * Only set MII/RMII mode - do not touch maximum frame length
304 	 * configured before.
305 	 */
306 	FS(fecp, r_cntrl, interface == PHY_INTERFACE_MODE_RMII ?
307 			  FEC_RCNTRL_RMII_MODE : FEC_RCNTRL_MII_MODE);
308 #endif
309 	/*
310 	 * adjust to duplex mode
311 	 */
312 	if (duplex == DUPLEX_FULL) {
313 		FC(fecp, r_cntrl, FEC_RCNTRL_DRT);
314 		FS(fecp, x_cntrl, FEC_TCNTRL_FDEN);	/* FD enable */
315 	} else {
316 		FS(fecp, r_cntrl, FEC_RCNTRL_DRT);
317 		FC(fecp, x_cntrl, FEC_TCNTRL_FDEN);	/* FD disable */
318 	}
319 
320 	/* Restore multicast and promiscuous settings */
321 	set_multicast_list(dev);
322 
323 	/*
324 	 * Enable interrupts we wish to service.
325 	 */
326 	FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB |
327 	   FEC_ENET_RXF | FEC_ENET_RXB);
328 
329 	/*
330 	 * And last, enable the transmit and receive processing.
331 	 */
332 	FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
333 	FW(fecp, r_des_active, 0x01000000);
334 }
335 
stop(struct net_device * dev)336 static void stop(struct net_device *dev)
337 {
338 	struct fs_enet_private *fep = netdev_priv(dev);
339 	struct fec __iomem *fecp = fep->fec.fecp;
340 	int i;
341 
342 	if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0)
343 		return;		/* already down */
344 
345 	FW(fecp, x_cntrl, 0x01);	/* Graceful transmit stop */
346 	for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) &&
347 	     i < FEC_RESET_DELAY; i++)
348 		udelay(1);
349 
350 	if (i == FEC_RESET_DELAY)
351 		dev_warn(fep->dev, "FEC timeout on graceful transmit stop\n");
352 	/*
353 	 * Disable FEC. Let only MII interrupts.
354 	 */
355 	FW(fecp, imask, 0);
356 	FC(fecp, ecntrl, FEC_ECNTRL_ETHER_EN);
357 
358 	fs_cleanup_bds(dev);
359 }
360 
napi_clear_event_fs(struct net_device * dev)361 static void napi_clear_event_fs(struct net_device *dev)
362 {
363 	struct fs_enet_private *fep = netdev_priv(dev);
364 	struct fec __iomem *fecp = fep->fec.fecp;
365 
366 	FW(fecp, ievent, FEC_NAPI_EVENT_MSK);
367 }
368 
napi_enable_fs(struct net_device * dev)369 static void napi_enable_fs(struct net_device *dev)
370 {
371 	struct fs_enet_private *fep = netdev_priv(dev);
372 	struct fec __iomem *fecp = fep->fec.fecp;
373 
374 	FS(fecp, imask, FEC_NAPI_EVENT_MSK);
375 }
376 
napi_disable_fs(struct net_device * dev)377 static void napi_disable_fs(struct net_device *dev)
378 {
379 	struct fs_enet_private *fep = netdev_priv(dev);
380 	struct fec __iomem *fecp = fep->fec.fecp;
381 
382 	FC(fecp, imask, FEC_NAPI_EVENT_MSK);
383 }
384 
rx_bd_done(struct net_device * dev)385 static void rx_bd_done(struct net_device *dev)
386 {
387 	struct fs_enet_private *fep = netdev_priv(dev);
388 	struct fec __iomem *fecp = fep->fec.fecp;
389 
390 	FW(fecp, r_des_active, 0x01000000);
391 }
392 
tx_kickstart(struct net_device * dev)393 static void tx_kickstart(struct net_device *dev)
394 {
395 	struct fs_enet_private *fep = netdev_priv(dev);
396 	struct fec __iomem *fecp = fep->fec.fecp;
397 
398 	FW(fecp, x_des_active, 0x01000000);
399 }
400 
get_int_events(struct net_device * dev)401 static u32 get_int_events(struct net_device *dev)
402 {
403 	struct fs_enet_private *fep = netdev_priv(dev);
404 	struct fec __iomem *fecp = fep->fec.fecp;
405 
406 	return FR(fecp, ievent) & FR(fecp, imask);
407 }
408 
clear_int_events(struct net_device * dev,u32 int_events)409 static void clear_int_events(struct net_device *dev, u32 int_events)
410 {
411 	struct fs_enet_private *fep = netdev_priv(dev);
412 	struct fec __iomem *fecp = fep->fec.fecp;
413 
414 	FW(fecp, ievent, int_events);
415 }
416 
ev_error(struct net_device * dev,u32 int_events)417 static void ev_error(struct net_device *dev, u32 int_events)
418 {
419 	struct fs_enet_private *fep = netdev_priv(dev);
420 
421 	dev_warn(fep->dev, "FEC ERROR(s) 0x%x\n", int_events);
422 }
423 
get_regs(struct net_device * dev,void * p,int * sizep)424 static int get_regs(struct net_device *dev, void *p, int *sizep)
425 {
426 	struct fs_enet_private *fep = netdev_priv(dev);
427 
428 	if (*sizep < sizeof(struct fec))
429 		return -EINVAL;
430 
431 	memcpy_fromio(p, fep->fec.fecp, sizeof(struct fec));
432 
433 	return 0;
434 }
435 
get_regs_len(struct net_device * dev)436 static int get_regs_len(struct net_device *dev)
437 {
438 	return sizeof(struct fec);
439 }
440 
tx_restart(struct net_device * dev)441 static void tx_restart(struct net_device *dev)
442 {
443 	/* nothing */
444 }
445 
446 /*************************************************************************/
447 
448 const struct fs_ops fs_fec_ops = {
449 	.setup_data		= setup_data,
450 	.cleanup_data		= cleanup_data,
451 	.set_multicast_list	= set_multicast_list,
452 	.restart		= restart,
453 	.stop			= stop,
454 	.napi_clear_event	= napi_clear_event_fs,
455 	.napi_enable		= napi_enable_fs,
456 	.napi_disable		= napi_disable_fs,
457 	.rx_bd_done		= rx_bd_done,
458 	.tx_kickstart		= tx_kickstart,
459 	.get_int_events		= get_int_events,
460 	.clear_int_events	= clear_int_events,
461 	.ev_error		= ev_error,
462 	.get_regs		= get_regs,
463 	.get_regs_len		= get_regs_len,
464 	.tx_restart		= tx_restart,
465 	.allocate_bd		= allocate_bd,
466 	.free_bd		= free_bd,
467 };
468 
469