1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt)			"bcmasp_intf: " fmt
3 
4 #include <asm/byteorder.h>
5 #include <linux/brcmphy.h>
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/etherdevice.h>
9 #include <linux/netdevice.h>
10 #include <linux/of_net.h>
11 #include <linux/of_mdio.h>
12 #include <linux/phy.h>
13 #include <linux/phy_fixed.h>
14 #include <linux/ptp_classify.h>
15 #include <linux/platform_device.h>
16 #include <net/ip.h>
17 #include <net/ipv6.h>
18 
19 #include "bcmasp.h"
20 #include "bcmasp_intf_defs.h"
21 
incr_ring(int index,int ring_count)22 static int incr_ring(int index, int ring_count)
23 {
24 	index++;
25 	if (index == ring_count)
26 		return 0;
27 
28 	return index;
29 }
30 
31 /* Points to last byte of descriptor */
incr_last_byte(dma_addr_t addr,dma_addr_t beg,int ring_count)32 static dma_addr_t incr_last_byte(dma_addr_t addr, dma_addr_t beg,
33 				 int ring_count)
34 {
35 	dma_addr_t end = beg + (ring_count * DESC_SIZE);
36 
37 	addr += DESC_SIZE;
38 	if (addr > end)
39 		return beg + DESC_SIZE - 1;
40 
41 	return addr;
42 }
43 
44 /* Points to first byte of descriptor */
incr_first_byte(dma_addr_t addr,dma_addr_t beg,int ring_count)45 static dma_addr_t incr_first_byte(dma_addr_t addr, dma_addr_t beg,
46 				  int ring_count)
47 {
48 	dma_addr_t end = beg + (ring_count * DESC_SIZE);
49 
50 	addr += DESC_SIZE;
51 	if (addr >= end)
52 		return beg;
53 
54 	return addr;
55 }
56 
bcmasp_enable_tx(struct bcmasp_intf * intf,int en)57 static void bcmasp_enable_tx(struct bcmasp_intf *intf, int en)
58 {
59 	if (en) {
60 		tx_spb_ctrl_wl(intf, TX_SPB_CTRL_ENABLE_EN, TX_SPB_CTRL_ENABLE);
61 		tx_epkt_core_wl(intf, (TX_EPKT_C_CFG_MISC_EN |
62 				TX_EPKT_C_CFG_MISC_PT |
63 				(intf->port << TX_EPKT_C_CFG_MISC_PS_SHIFT)),
64 				TX_EPKT_C_CFG_MISC);
65 	} else {
66 		tx_spb_ctrl_wl(intf, 0x0, TX_SPB_CTRL_ENABLE);
67 		tx_epkt_core_wl(intf, 0x0, TX_EPKT_C_CFG_MISC);
68 	}
69 }
70 
bcmasp_enable_rx(struct bcmasp_intf * intf,int en)71 static void bcmasp_enable_rx(struct bcmasp_intf *intf, int en)
72 {
73 	if (en)
74 		rx_edpkt_cfg_wl(intf, RX_EDPKT_CFG_ENABLE_EN,
75 				RX_EDPKT_CFG_ENABLE);
76 	else
77 		rx_edpkt_cfg_wl(intf, 0x0, RX_EDPKT_CFG_ENABLE);
78 }
79 
bcmasp_set_rx_mode(struct net_device * dev)80 static void bcmasp_set_rx_mode(struct net_device *dev)
81 {
82 	unsigned char mask[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
83 	struct bcmasp_intf *intf = netdev_priv(dev);
84 	struct netdev_hw_addr *ha;
85 	int ret;
86 
87 	spin_lock_bh(&intf->parent->mda_lock);
88 
89 	bcmasp_disable_all_filters(intf);
90 
91 	if (dev->flags & IFF_PROMISC)
92 		goto set_promisc;
93 
94 	bcmasp_set_promisc(intf, 0);
95 
96 	bcmasp_set_broad(intf, 1);
97 
98 	bcmasp_set_oaddr(intf, dev->dev_addr, 1);
99 
100 	if (dev->flags & IFF_ALLMULTI) {
101 		bcmasp_set_allmulti(intf, 1);
102 	} else {
103 		bcmasp_set_allmulti(intf, 0);
104 
105 		netdev_for_each_mc_addr(ha, dev) {
106 			ret = bcmasp_set_en_mda_filter(intf, ha->addr, mask);
107 			if (ret) {
108 				intf->mib.mc_filters_full_cnt++;
109 				goto set_promisc;
110 			}
111 		}
112 	}
113 
114 	netdev_for_each_uc_addr(ha, dev) {
115 		ret = bcmasp_set_en_mda_filter(intf, ha->addr, mask);
116 		if (ret) {
117 			intf->mib.uc_filters_full_cnt++;
118 			goto set_promisc;
119 		}
120 	}
121 
122 	spin_unlock_bh(&intf->parent->mda_lock);
123 	return;
124 
125 set_promisc:
126 	bcmasp_set_promisc(intf, 1);
127 	intf->mib.promisc_filters_cnt++;
128 
129 	/* disable all filters used by this port */
130 	bcmasp_disable_all_filters(intf);
131 
132 	spin_unlock_bh(&intf->parent->mda_lock);
133 }
134 
bcmasp_clean_txcb(struct bcmasp_intf * intf,int index)135 static void bcmasp_clean_txcb(struct bcmasp_intf *intf, int index)
136 {
137 	struct bcmasp_tx_cb *txcb = &intf->tx_cbs[index];
138 
139 	txcb->skb = NULL;
140 	dma_unmap_addr_set(txcb, dma_addr, 0);
141 	dma_unmap_len_set(txcb, dma_len, 0);
142 	txcb->last = false;
143 }
144 
tx_spb_ring_full(struct bcmasp_intf * intf,int cnt)145 static int tx_spb_ring_full(struct bcmasp_intf *intf, int cnt)
146 {
147 	int next_index, i;
148 
149 	/* Check if we have enough room for cnt descriptors */
150 	for (i = 0; i < cnt; i++) {
151 		next_index = incr_ring(intf->tx_spb_index, DESC_RING_COUNT);
152 		if (next_index == intf->tx_spb_clean_index)
153 			return 1;
154 	}
155 
156 	return 0;
157 }
158 
bcmasp_csum_offload(struct net_device * dev,struct sk_buff * skb,bool * csum_hw)159 static struct sk_buff *bcmasp_csum_offload(struct net_device *dev,
160 					   struct sk_buff *skb,
161 					   bool *csum_hw)
162 {
163 	struct bcmasp_intf *intf = netdev_priv(dev);
164 	u32 header = 0, header2 = 0, epkt = 0;
165 	struct bcmasp_pkt_offload *offload;
166 	unsigned int header_cnt = 0;
167 	u8 ip_proto;
168 	int ret;
169 
170 	if (skb->ip_summed != CHECKSUM_PARTIAL)
171 		return skb;
172 
173 	ret = skb_cow_head(skb, sizeof(*offload));
174 	if (ret < 0) {
175 		intf->mib.tx_realloc_offload_failed++;
176 		goto help;
177 	}
178 
179 	switch (skb->protocol) {
180 	case htons(ETH_P_IP):
181 		header |= PKT_OFFLOAD_HDR_SIZE_2((ip_hdrlen(skb) >> 8) & 0xf);
182 		header2 |= PKT_OFFLOAD_HDR2_SIZE_2(ip_hdrlen(skb) & 0xff);
183 		epkt |= PKT_OFFLOAD_EPKT_IP(0) | PKT_OFFLOAD_EPKT_CSUM_L2;
184 		ip_proto = ip_hdr(skb)->protocol;
185 		header_cnt += 2;
186 		break;
187 	case htons(ETH_P_IPV6):
188 		header |= PKT_OFFLOAD_HDR_SIZE_2((IP6_HLEN >> 8) & 0xf);
189 		header2 |= PKT_OFFLOAD_HDR2_SIZE_2(IP6_HLEN & 0xff);
190 		epkt |= PKT_OFFLOAD_EPKT_IP(1) | PKT_OFFLOAD_EPKT_CSUM_L2;
191 		ip_proto = ipv6_hdr(skb)->nexthdr;
192 		header_cnt += 2;
193 		break;
194 	default:
195 		goto help;
196 	}
197 
198 	switch (ip_proto) {
199 	case IPPROTO_TCP:
200 		header2 |= PKT_OFFLOAD_HDR2_SIZE_3(tcp_hdrlen(skb));
201 		epkt |= PKT_OFFLOAD_EPKT_TP(0) | PKT_OFFLOAD_EPKT_CSUM_L3;
202 		header_cnt++;
203 		break;
204 	case IPPROTO_UDP:
205 		header2 |= PKT_OFFLOAD_HDR2_SIZE_3(UDP_HLEN);
206 		epkt |= PKT_OFFLOAD_EPKT_TP(1) | PKT_OFFLOAD_EPKT_CSUM_L3;
207 		header_cnt++;
208 		break;
209 	default:
210 		goto help;
211 	}
212 
213 	offload = (struct bcmasp_pkt_offload *)skb_push(skb, sizeof(*offload));
214 
215 	header |= PKT_OFFLOAD_HDR_OP | PKT_OFFLOAD_HDR_COUNT(header_cnt) |
216 		  PKT_OFFLOAD_HDR_SIZE_1(ETH_HLEN);
217 	epkt |= PKT_OFFLOAD_EPKT_OP;
218 
219 	offload->nop = htonl(PKT_OFFLOAD_NOP);
220 	offload->header = htonl(header);
221 	offload->header2 = htonl(header2);
222 	offload->epkt = htonl(epkt);
223 	offload->end = htonl(PKT_OFFLOAD_END_OP);
224 	*csum_hw = true;
225 
226 	return skb;
227 
228 help:
229 	skb_checksum_help(skb);
230 
231 	return skb;
232 }
233 
bcmasp_rx_edpkt_dma_rq(struct bcmasp_intf * intf)234 static unsigned long bcmasp_rx_edpkt_dma_rq(struct bcmasp_intf *intf)
235 {
236 	return rx_edpkt_dma_rq(intf, RX_EDPKT_DMA_VALID);
237 }
238 
bcmasp_rx_edpkt_cfg_wq(struct bcmasp_intf * intf,dma_addr_t addr)239 static void bcmasp_rx_edpkt_cfg_wq(struct bcmasp_intf *intf, dma_addr_t addr)
240 {
241 	rx_edpkt_cfg_wq(intf, addr, RX_EDPKT_RING_BUFFER_READ);
242 }
243 
bcmasp_rx_edpkt_dma_wq(struct bcmasp_intf * intf,dma_addr_t addr)244 static void bcmasp_rx_edpkt_dma_wq(struct bcmasp_intf *intf, dma_addr_t addr)
245 {
246 	rx_edpkt_dma_wq(intf, addr, RX_EDPKT_DMA_READ);
247 }
248 
bcmasp_tx_spb_dma_rq(struct bcmasp_intf * intf)249 static unsigned long bcmasp_tx_spb_dma_rq(struct bcmasp_intf *intf)
250 {
251 	return tx_spb_dma_rq(intf, TX_SPB_DMA_READ);
252 }
253 
bcmasp_tx_spb_dma_wq(struct bcmasp_intf * intf,dma_addr_t addr)254 static void bcmasp_tx_spb_dma_wq(struct bcmasp_intf *intf, dma_addr_t addr)
255 {
256 	tx_spb_dma_wq(intf, addr, TX_SPB_DMA_VALID);
257 }
258 
259 static const struct bcmasp_intf_ops bcmasp_intf_ops = {
260 	.rx_desc_read = bcmasp_rx_edpkt_dma_rq,
261 	.rx_buffer_write = bcmasp_rx_edpkt_cfg_wq,
262 	.rx_desc_write = bcmasp_rx_edpkt_dma_wq,
263 	.tx_read = bcmasp_tx_spb_dma_rq,
264 	.tx_write = bcmasp_tx_spb_dma_wq,
265 };
266 
bcmasp_xmit(struct sk_buff * skb,struct net_device * dev)267 static netdev_tx_t bcmasp_xmit(struct sk_buff *skb, struct net_device *dev)
268 {
269 	struct bcmasp_intf *intf = netdev_priv(dev);
270 	unsigned int total_bytes, size;
271 	int spb_index, nr_frags, i, j;
272 	struct bcmasp_tx_cb *txcb;
273 	dma_addr_t mapping, valid;
274 	struct bcmasp_desc *desc;
275 	bool csum_hw = false;
276 	struct device *kdev;
277 	skb_frag_t *frag;
278 
279 	kdev = &intf->parent->pdev->dev;
280 
281 	nr_frags = skb_shinfo(skb)->nr_frags;
282 
283 	if (tx_spb_ring_full(intf, nr_frags + 1)) {
284 		netif_stop_queue(dev);
285 		if (net_ratelimit())
286 			netdev_err(dev, "Tx Ring Full!\n");
287 		return NETDEV_TX_BUSY;
288 	}
289 
290 	/* Save skb len before adding csum offload header */
291 	total_bytes = skb->len;
292 	skb = bcmasp_csum_offload(dev, skb, &csum_hw);
293 	if (!skb)
294 		return NETDEV_TX_OK;
295 
296 	spb_index = intf->tx_spb_index;
297 	valid = intf->tx_spb_dma_valid;
298 	for (i = 0; i <= nr_frags; i++) {
299 		if (!i) {
300 			size = skb_headlen(skb);
301 			if (!nr_frags && size < (ETH_ZLEN + ETH_FCS_LEN)) {
302 				if (skb_put_padto(skb, ETH_ZLEN + ETH_FCS_LEN))
303 					return NETDEV_TX_OK;
304 				size = skb->len;
305 			}
306 			mapping = dma_map_single(kdev, skb->data, size,
307 						 DMA_TO_DEVICE);
308 		} else {
309 			frag = &skb_shinfo(skb)->frags[i - 1];
310 			size = skb_frag_size(frag);
311 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
312 						   DMA_TO_DEVICE);
313 		}
314 
315 		if (dma_mapping_error(kdev, mapping)) {
316 			intf->mib.tx_dma_failed++;
317 			spb_index = intf->tx_spb_index;
318 			for (j = 0; j < i; j++) {
319 				bcmasp_clean_txcb(intf, spb_index);
320 				spb_index = incr_ring(spb_index,
321 						      DESC_RING_COUNT);
322 			}
323 			/* Rewind so we do not have a hole */
324 			spb_index = intf->tx_spb_index;
325 			dev_kfree_skb(skb);
326 			return NETDEV_TX_OK;
327 		}
328 
329 		txcb = &intf->tx_cbs[spb_index];
330 		desc = &intf->tx_spb_cpu[spb_index];
331 		memset(desc, 0, sizeof(*desc));
332 		txcb->skb = skb;
333 		txcb->bytes_sent = total_bytes;
334 		dma_unmap_addr_set(txcb, dma_addr, mapping);
335 		dma_unmap_len_set(txcb, dma_len, size);
336 		if (!i) {
337 			desc->flags |= DESC_SOF;
338 			if (csum_hw)
339 				desc->flags |= DESC_EPKT_CMD;
340 		}
341 
342 		if (i == nr_frags) {
343 			desc->flags |= DESC_EOF;
344 			txcb->last = true;
345 		}
346 
347 		desc->buf = mapping;
348 		desc->size = size;
349 		desc->flags |= DESC_INT_EN;
350 
351 		netif_dbg(intf, tx_queued, dev,
352 			  "%s dma_buf=%pad dma_len=0x%x flags=0x%x index=0x%x\n",
353 			  __func__, &mapping, desc->size, desc->flags,
354 			  spb_index);
355 
356 		spb_index = incr_ring(spb_index, DESC_RING_COUNT);
357 		valid = incr_last_byte(valid, intf->tx_spb_dma_addr,
358 				       DESC_RING_COUNT);
359 	}
360 
361 	/* Ensure all descriptors have been written to DRAM for the
362 	 * hardware to see up-to-date contents.
363 	 */
364 	wmb();
365 
366 	intf->tx_spb_index = spb_index;
367 	intf->tx_spb_dma_valid = valid;
368 	bcmasp_intf_tx_write(intf, intf->tx_spb_dma_valid);
369 
370 	if (tx_spb_ring_full(intf, MAX_SKB_FRAGS + 1))
371 		netif_stop_queue(dev);
372 
373 	return NETDEV_TX_OK;
374 }
375 
bcmasp_netif_start(struct net_device * dev)376 static void bcmasp_netif_start(struct net_device *dev)
377 {
378 	struct bcmasp_intf *intf = netdev_priv(dev);
379 
380 	bcmasp_set_rx_mode(dev);
381 	napi_enable(&intf->tx_napi);
382 	napi_enable(&intf->rx_napi);
383 
384 	bcmasp_enable_rx_irq(intf, 1);
385 	bcmasp_enable_tx_irq(intf, 1);
386 	bcmasp_enable_phy_irq(intf, 1);
387 
388 	phy_start(dev->phydev);
389 }
390 
umac_reset(struct bcmasp_intf * intf)391 static void umac_reset(struct bcmasp_intf *intf)
392 {
393 	umac_wl(intf, 0x0, UMC_CMD);
394 	umac_wl(intf, UMC_CMD_SW_RESET, UMC_CMD);
395 	usleep_range(10, 100);
396 	/* We hold the umac in reset and bring it out of
397 	 * reset when phy link is up.
398 	 */
399 }
400 
umac_set_hw_addr(struct bcmasp_intf * intf,const unsigned char * addr)401 static void umac_set_hw_addr(struct bcmasp_intf *intf,
402 			     const unsigned char *addr)
403 {
404 	u32 mac0 = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) |
405 		    addr[3];
406 	u32 mac1 = (addr[4] << 8) | addr[5];
407 
408 	umac_wl(intf, mac0, UMC_MAC0);
409 	umac_wl(intf, mac1, UMC_MAC1);
410 }
411 
umac_enable_set(struct bcmasp_intf * intf,u32 mask,unsigned int enable)412 static void umac_enable_set(struct bcmasp_intf *intf, u32 mask,
413 			    unsigned int enable)
414 {
415 	u32 reg;
416 
417 	reg = umac_rl(intf, UMC_CMD);
418 	if (reg & UMC_CMD_SW_RESET)
419 		return;
420 	if (enable)
421 		reg |= mask;
422 	else
423 		reg &= ~mask;
424 	umac_wl(intf, reg, UMC_CMD);
425 
426 	/* UniMAC stops on a packet boundary, wait for a full-sized packet
427 	 * to be processed (1 msec).
428 	 */
429 	if (enable == 0)
430 		usleep_range(1000, 2000);
431 }
432 
umac_init(struct bcmasp_intf * intf)433 static void umac_init(struct bcmasp_intf *intf)
434 {
435 	umac_wl(intf, 0x800, UMC_FRM_LEN);
436 	umac_wl(intf, 0xffff, UMC_PAUSE_CNTRL);
437 	umac_wl(intf, 0x800, UMC_RX_MAX_PKT_SZ);
438 }
439 
bcmasp_tx_reclaim(struct bcmasp_intf * intf)440 static int bcmasp_tx_reclaim(struct bcmasp_intf *intf)
441 {
442 	struct bcmasp_intf_stats64 *stats = &intf->stats64;
443 	struct device *kdev = &intf->parent->pdev->dev;
444 	unsigned long read, released = 0;
445 	struct bcmasp_tx_cb *txcb;
446 	struct bcmasp_desc *desc;
447 	dma_addr_t mapping;
448 
449 	read = bcmasp_intf_tx_read(intf);
450 	while (intf->tx_spb_dma_read != read) {
451 		txcb = &intf->tx_cbs[intf->tx_spb_clean_index];
452 		mapping = dma_unmap_addr(txcb, dma_addr);
453 
454 		dma_unmap_single(kdev, mapping,
455 				 dma_unmap_len(txcb, dma_len),
456 				 DMA_TO_DEVICE);
457 
458 		if (txcb->last) {
459 			dev_consume_skb_any(txcb->skb);
460 
461 			u64_stats_update_begin(&stats->syncp);
462 			u64_stats_inc(&stats->tx_packets);
463 			u64_stats_add(&stats->tx_bytes, txcb->bytes_sent);
464 			u64_stats_update_end(&stats->syncp);
465 		}
466 
467 		desc = &intf->tx_spb_cpu[intf->tx_spb_clean_index];
468 
469 		netif_dbg(intf, tx_done, intf->ndev,
470 			  "%s dma_buf=%pad dma_len=0x%x flags=0x%x c_index=0x%x\n",
471 			  __func__, &mapping, desc->size, desc->flags,
472 			  intf->tx_spb_clean_index);
473 
474 		bcmasp_clean_txcb(intf, intf->tx_spb_clean_index);
475 		released++;
476 
477 		intf->tx_spb_clean_index = incr_ring(intf->tx_spb_clean_index,
478 						     DESC_RING_COUNT);
479 		intf->tx_spb_dma_read = incr_first_byte(intf->tx_spb_dma_read,
480 							intf->tx_spb_dma_addr,
481 							DESC_RING_COUNT);
482 	}
483 
484 	return released;
485 }
486 
bcmasp_tx_poll(struct napi_struct * napi,int budget)487 static int bcmasp_tx_poll(struct napi_struct *napi, int budget)
488 {
489 	struct bcmasp_intf *intf =
490 		container_of(napi, struct bcmasp_intf, tx_napi);
491 	int released = 0;
492 
493 	released = bcmasp_tx_reclaim(intf);
494 
495 	napi_complete(&intf->tx_napi);
496 
497 	bcmasp_enable_tx_irq(intf, 1);
498 
499 	if (released)
500 		netif_wake_queue(intf->ndev);
501 
502 	return 0;
503 }
504 
bcmasp_rx_poll(struct napi_struct * napi,int budget)505 static int bcmasp_rx_poll(struct napi_struct *napi, int budget)
506 {
507 	struct bcmasp_intf *intf =
508 		container_of(napi, struct bcmasp_intf, rx_napi);
509 	struct bcmasp_intf_stats64 *stats = &intf->stats64;
510 	struct device *kdev = &intf->parent->pdev->dev;
511 	unsigned long processed = 0;
512 	struct bcmasp_desc *desc;
513 	struct sk_buff *skb;
514 	dma_addr_t valid;
515 	void *data;
516 	u64 flags;
517 	u32 len;
518 
519 	valid = bcmasp_intf_rx_desc_read(intf) + 1;
520 	if (valid == intf->rx_edpkt_dma_addr + DESC_RING_SIZE)
521 		valid = intf->rx_edpkt_dma_addr;
522 
523 	while ((processed < budget) && (valid != intf->rx_edpkt_dma_read)) {
524 		desc = &intf->rx_edpkt_cpu[intf->rx_edpkt_index];
525 
526 		/* Ensure that descriptor has been fully written to DRAM by
527 		 * hardware before reading by the CPU
528 		 */
529 		rmb();
530 
531 		/* Calculate virt addr by offsetting from physical addr */
532 		data = intf->rx_ring_cpu +
533 			(DESC_ADDR(desc->buf) - intf->rx_ring_dma);
534 
535 		flags = DESC_FLAGS(desc->buf);
536 		if (unlikely(flags & (DESC_CRC_ERR | DESC_RX_SYM_ERR))) {
537 			if (net_ratelimit()) {
538 				netif_err(intf, rx_status, intf->ndev,
539 					  "flags=0x%llx\n", flags);
540 			}
541 
542 			u64_stats_update_begin(&stats->syncp);
543 			if (flags & DESC_CRC_ERR)
544 				u64_stats_inc(&stats->rx_crc_errs);
545 			if (flags & DESC_RX_SYM_ERR)
546 				u64_stats_inc(&stats->rx_sym_errs);
547 			u64_stats_update_end(&stats->syncp);
548 
549 			goto next;
550 		}
551 
552 		dma_sync_single_for_cpu(kdev, DESC_ADDR(desc->buf), desc->size,
553 					DMA_FROM_DEVICE);
554 
555 		len = desc->size;
556 
557 		skb = napi_alloc_skb(napi, len);
558 		if (!skb) {
559 			u64_stats_update_begin(&stats->syncp);
560 			u64_stats_inc(&stats->rx_dropped);
561 			u64_stats_update_end(&stats->syncp);
562 			intf->mib.alloc_rx_skb_failed++;
563 
564 			goto next;
565 		}
566 
567 		skb_put(skb, len);
568 		memcpy(skb->data, data, len);
569 
570 		skb_pull(skb, 2);
571 		len -= 2;
572 		if (likely(intf->crc_fwd)) {
573 			skb_trim(skb, len - ETH_FCS_LEN);
574 			len -= ETH_FCS_LEN;
575 		}
576 
577 		if ((intf->ndev->features & NETIF_F_RXCSUM) &&
578 		    (desc->buf & DESC_CHKSUM))
579 			skb->ip_summed = CHECKSUM_UNNECESSARY;
580 
581 		skb->protocol = eth_type_trans(skb, intf->ndev);
582 
583 		napi_gro_receive(napi, skb);
584 
585 		u64_stats_update_begin(&stats->syncp);
586 		u64_stats_inc(&stats->rx_packets);
587 		u64_stats_add(&stats->rx_bytes, len);
588 		u64_stats_update_end(&stats->syncp);
589 
590 next:
591 		bcmasp_intf_rx_buffer_write(intf, (DESC_ADDR(desc->buf) +
592 					    desc->size));
593 
594 		processed++;
595 		intf->rx_edpkt_dma_read =
596 			incr_first_byte(intf->rx_edpkt_dma_read,
597 					intf->rx_edpkt_dma_addr,
598 					DESC_RING_COUNT);
599 		intf->rx_edpkt_index = incr_ring(intf->rx_edpkt_index,
600 						 DESC_RING_COUNT);
601 	}
602 
603 	bcmasp_intf_rx_desc_write(intf, intf->rx_edpkt_dma_read);
604 
605 	if (processed < budget) {
606 		napi_complete_done(&intf->rx_napi, processed);
607 		bcmasp_enable_rx_irq(intf, 1);
608 	}
609 
610 	return processed;
611 }
612 
bcmasp_adj_link(struct net_device * dev)613 static void bcmasp_adj_link(struct net_device *dev)
614 {
615 	struct bcmasp_intf *intf = netdev_priv(dev);
616 	struct phy_device *phydev = dev->phydev;
617 	u32 cmd_bits = 0, reg;
618 	int changed = 0;
619 	bool active;
620 
621 	if (intf->old_link != phydev->link) {
622 		changed = 1;
623 		intf->old_link = phydev->link;
624 	}
625 
626 	if (intf->old_duplex != phydev->duplex) {
627 		changed = 1;
628 		intf->old_duplex = phydev->duplex;
629 	}
630 
631 	switch (phydev->speed) {
632 	case SPEED_2500:
633 		cmd_bits = UMC_CMD_SPEED_2500;
634 		break;
635 	case SPEED_1000:
636 		cmd_bits = UMC_CMD_SPEED_1000;
637 		break;
638 	case SPEED_100:
639 		cmd_bits = UMC_CMD_SPEED_100;
640 		break;
641 	case SPEED_10:
642 		cmd_bits = UMC_CMD_SPEED_10;
643 		break;
644 	default:
645 		break;
646 	}
647 	cmd_bits <<= UMC_CMD_SPEED_SHIFT;
648 
649 	if (phydev->duplex == DUPLEX_HALF)
650 		cmd_bits |= UMC_CMD_HD_EN;
651 
652 	if (intf->old_pause != phydev->pause) {
653 		changed = 1;
654 		intf->old_pause = phydev->pause;
655 	}
656 
657 	if (!phydev->pause)
658 		cmd_bits |= UMC_CMD_RX_PAUSE_IGNORE | UMC_CMD_TX_PAUSE_IGNORE;
659 
660 	if (!changed)
661 		return;
662 
663 	if (phydev->link) {
664 		reg = umac_rl(intf, UMC_CMD);
665 		reg &= ~((UMC_CMD_SPEED_MASK << UMC_CMD_SPEED_SHIFT) |
666 			UMC_CMD_HD_EN | UMC_CMD_RX_PAUSE_IGNORE |
667 			UMC_CMD_TX_PAUSE_IGNORE);
668 		reg |= cmd_bits;
669 		if (reg & UMC_CMD_SW_RESET) {
670 			reg &= ~UMC_CMD_SW_RESET;
671 			umac_wl(intf, reg, UMC_CMD);
672 			udelay(2);
673 			reg |= UMC_CMD_TX_EN | UMC_CMD_RX_EN | UMC_CMD_PROMISC;
674 		}
675 		umac_wl(intf, reg, UMC_CMD);
676 
677 		active = phy_init_eee(phydev, 0) >= 0;
678 		bcmasp_eee_enable_set(intf, active);
679 	}
680 
681 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
682 	if (phydev->link)
683 		reg |= RGMII_LINK;
684 	else
685 		reg &= ~RGMII_LINK;
686 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
687 
688 	if (changed)
689 		phy_print_status(phydev);
690 }
691 
bcmasp_alloc_buffers(struct bcmasp_intf * intf)692 static int bcmasp_alloc_buffers(struct bcmasp_intf *intf)
693 {
694 	struct device *kdev = &intf->parent->pdev->dev;
695 	struct page *buffer_pg;
696 
697 	/* Alloc RX */
698 	intf->rx_buf_order = get_order(RING_BUFFER_SIZE);
699 	buffer_pg = alloc_pages(GFP_KERNEL, intf->rx_buf_order);
700 	if (!buffer_pg)
701 		return -ENOMEM;
702 
703 	intf->rx_ring_cpu = page_to_virt(buffer_pg);
704 	intf->rx_ring_dma = dma_map_page(kdev, buffer_pg, 0, RING_BUFFER_SIZE,
705 					 DMA_FROM_DEVICE);
706 	if (dma_mapping_error(kdev, intf->rx_ring_dma))
707 		goto free_rx_buffer;
708 
709 	intf->rx_edpkt_cpu = dma_alloc_coherent(kdev, DESC_RING_SIZE,
710 						&intf->rx_edpkt_dma_addr, GFP_KERNEL);
711 	if (!intf->rx_edpkt_cpu)
712 		goto free_rx_buffer_dma;
713 
714 	/* Alloc TX */
715 	intf->tx_spb_cpu = dma_alloc_coherent(kdev, DESC_RING_SIZE,
716 					      &intf->tx_spb_dma_addr, GFP_KERNEL);
717 	if (!intf->tx_spb_cpu)
718 		goto free_rx_edpkt_dma;
719 
720 	intf->tx_cbs = kcalloc(DESC_RING_COUNT, sizeof(struct bcmasp_tx_cb),
721 			       GFP_KERNEL);
722 	if (!intf->tx_cbs)
723 		goto free_tx_spb_dma;
724 
725 	return 0;
726 
727 free_tx_spb_dma:
728 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->tx_spb_cpu,
729 			  intf->tx_spb_dma_addr);
730 free_rx_edpkt_dma:
731 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->rx_edpkt_cpu,
732 			  intf->rx_edpkt_dma_addr);
733 free_rx_buffer_dma:
734 	dma_unmap_page(kdev, intf->rx_ring_dma, RING_BUFFER_SIZE,
735 		       DMA_FROM_DEVICE);
736 free_rx_buffer:
737 	__free_pages(buffer_pg, intf->rx_buf_order);
738 
739 	return -ENOMEM;
740 }
741 
bcmasp_reclaim_free_buffers(struct bcmasp_intf * intf)742 static void bcmasp_reclaim_free_buffers(struct bcmasp_intf *intf)
743 {
744 	struct device *kdev = &intf->parent->pdev->dev;
745 
746 	/* RX buffers */
747 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->rx_edpkt_cpu,
748 			  intf->rx_edpkt_dma_addr);
749 	dma_unmap_page(kdev, intf->rx_ring_dma, RING_BUFFER_SIZE,
750 		       DMA_FROM_DEVICE);
751 	__free_pages(virt_to_page(intf->rx_ring_cpu), intf->rx_buf_order);
752 
753 	/* TX buffers */
754 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->tx_spb_cpu,
755 			  intf->tx_spb_dma_addr);
756 	kfree(intf->tx_cbs);
757 }
758 
bcmasp_init_rx(struct bcmasp_intf * intf)759 static void bcmasp_init_rx(struct bcmasp_intf *intf)
760 {
761 	/* Restart from index 0 */
762 	intf->rx_ring_dma_valid = intf->rx_ring_dma + RING_BUFFER_SIZE - 1;
763 	intf->rx_edpkt_dma_valid = intf->rx_edpkt_dma_addr + (DESC_RING_SIZE - 1);
764 	intf->rx_edpkt_dma_read = intf->rx_edpkt_dma_addr;
765 	intf->rx_edpkt_index = 0;
766 
767 	/* Make sure channels are disabled */
768 	rx_edpkt_cfg_wl(intf, 0x0, RX_EDPKT_CFG_ENABLE);
769 
770 	/* Rx SPB */
771 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_READ);
772 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_WRITE);
773 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_BASE);
774 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma_valid,
775 			RX_EDPKT_RING_BUFFER_END);
776 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma_valid,
777 			RX_EDPKT_RING_BUFFER_VALID);
778 
779 	/* EDPKT */
780 	rx_edpkt_cfg_wl(intf, (RX_EDPKT_CFG_CFG0_RBUF_4K <<
781 			RX_EDPKT_CFG_CFG0_DBUF_SHIFT) |
782 		       (RX_EDPKT_CFG_CFG0_64_ALN <<
783 			RX_EDPKT_CFG_CFG0_BALN_SHIFT) |
784 		       (RX_EDPKT_CFG_CFG0_EFRM_STUF),
785 			RX_EDPKT_CFG_CFG0);
786 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_WRITE);
787 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_READ);
788 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_BASE);
789 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_valid, RX_EDPKT_DMA_END);
790 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_valid, RX_EDPKT_DMA_VALID);
791 
792 	umac2fb_wl(intf, UMAC2FB_CFG_DEFAULT_EN | ((intf->channel + 11) <<
793 		   UMAC2FB_CFG_CHID_SHIFT) | (0xd << UMAC2FB_CFG_OK_SEND_SHIFT),
794 		   UMAC2FB_CFG);
795 }
796 
797 
bcmasp_init_tx(struct bcmasp_intf * intf)798 static void bcmasp_init_tx(struct bcmasp_intf *intf)
799 {
800 	/* Restart from index 0 */
801 	intf->tx_spb_dma_valid = intf->tx_spb_dma_addr + DESC_RING_SIZE - 1;
802 	intf->tx_spb_dma_read = intf->tx_spb_dma_addr;
803 	intf->tx_spb_index = 0;
804 	intf->tx_spb_clean_index = 0;
805 	memset(intf->tx_cbs, 0, sizeof(struct bcmasp_tx_cb) * DESC_RING_COUNT);
806 
807 	/* Make sure channels are disabled */
808 	tx_spb_ctrl_wl(intf, 0x0, TX_SPB_CTRL_ENABLE);
809 	tx_epkt_core_wl(intf, 0x0, TX_EPKT_C_CFG_MISC);
810 
811 	/* Tx SPB */
812 	tx_spb_ctrl_wl(intf, ((intf->channel + 8) << TX_SPB_CTRL_XF_BID_SHIFT),
813 		       TX_SPB_CTRL_XF_CTRL2);
814 	tx_pause_ctrl_wl(intf, (1 << (intf->channel + 8)), TX_PAUSE_MAP_VECTOR);
815 	tx_spb_top_wl(intf, 0x1e, TX_SPB_TOP_BLKOUT);
816 	tx_spb_top_wl(intf, 0x0, TX_SPB_TOP_SPRE_BW_CTRL);
817 
818 	tx_spb_dma_wq(intf, intf->tx_spb_dma_addr, TX_SPB_DMA_READ);
819 	tx_spb_dma_wq(intf, intf->tx_spb_dma_addr, TX_SPB_DMA_BASE);
820 	tx_spb_dma_wq(intf, intf->tx_spb_dma_valid, TX_SPB_DMA_END);
821 	tx_spb_dma_wq(intf, intf->tx_spb_dma_valid, TX_SPB_DMA_VALID);
822 }
823 
bcmasp_ephy_enable_set(struct bcmasp_intf * intf,bool enable)824 static void bcmasp_ephy_enable_set(struct bcmasp_intf *intf, bool enable)
825 {
826 	u32 mask = RGMII_EPHY_CFG_IDDQ_BIAS | RGMII_EPHY_CFG_EXT_PWRDOWN |
827 		   RGMII_EPHY_CFG_IDDQ_GLOBAL;
828 	u32 reg;
829 
830 	reg = rgmii_rl(intf, RGMII_EPHY_CNTRL);
831 	if (enable) {
832 		reg &= ~RGMII_EPHY_CK25_DIS;
833 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
834 		mdelay(1);
835 
836 		reg &= ~mask;
837 		reg |= RGMII_EPHY_RESET;
838 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
839 		mdelay(1);
840 
841 		reg &= ~RGMII_EPHY_RESET;
842 	} else {
843 		reg |= mask | RGMII_EPHY_RESET;
844 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
845 		mdelay(1);
846 		reg |= RGMII_EPHY_CK25_DIS;
847 	}
848 	rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
849 	mdelay(1);
850 
851 	/* Set or clear the LED control override to avoid lighting up LEDs
852 	 * while the EPHY is powered off and drawing unnecessary current.
853 	 */
854 	reg = rgmii_rl(intf, RGMII_SYS_LED_CNTRL);
855 	if (enable)
856 		reg &= ~RGMII_SYS_LED_CNTRL_LINK_OVRD;
857 	else
858 		reg |= RGMII_SYS_LED_CNTRL_LINK_OVRD;
859 	rgmii_wl(intf, reg, RGMII_SYS_LED_CNTRL);
860 }
861 
bcmasp_rgmii_mode_en_set(struct bcmasp_intf * intf,bool enable)862 static void bcmasp_rgmii_mode_en_set(struct bcmasp_intf *intf, bool enable)
863 {
864 	u32 reg;
865 
866 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
867 	reg &= ~RGMII_OOB_DIS;
868 	if (enable)
869 		reg |= RGMII_MODE_EN;
870 	else
871 		reg &= ~RGMII_MODE_EN;
872 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
873 }
874 
bcmasp_netif_deinit(struct net_device * dev)875 static void bcmasp_netif_deinit(struct net_device *dev)
876 {
877 	struct bcmasp_intf *intf = netdev_priv(dev);
878 	u32 reg, timeout = 1000;
879 
880 	napi_disable(&intf->tx_napi);
881 
882 	bcmasp_enable_tx(intf, 0);
883 
884 	/* Flush any TX packets in the pipe */
885 	tx_spb_dma_wl(intf, TX_SPB_DMA_FIFO_FLUSH, TX_SPB_DMA_FIFO_CTRL);
886 	do {
887 		reg = tx_spb_dma_rl(intf, TX_SPB_DMA_FIFO_STATUS);
888 		if (!(reg & TX_SPB_DMA_FIFO_FLUSH))
889 			break;
890 		usleep_range(1000, 2000);
891 	} while (timeout-- > 0);
892 	tx_spb_dma_wl(intf, 0x0, TX_SPB_DMA_FIFO_CTRL);
893 
894 	bcmasp_tx_reclaim(intf);
895 
896 	umac_enable_set(intf, UMC_CMD_TX_EN, 0);
897 
898 	phy_stop(dev->phydev);
899 
900 	umac_enable_set(intf, UMC_CMD_RX_EN, 0);
901 
902 	bcmasp_flush_rx_port(intf);
903 	usleep_range(1000, 2000);
904 	bcmasp_enable_rx(intf, 0);
905 
906 	napi_disable(&intf->rx_napi);
907 
908 	/* Disable interrupts */
909 	bcmasp_enable_tx_irq(intf, 0);
910 	bcmasp_enable_rx_irq(intf, 0);
911 	bcmasp_enable_phy_irq(intf, 0);
912 
913 	netif_napi_del(&intf->tx_napi);
914 	netif_napi_del(&intf->rx_napi);
915 }
916 
bcmasp_stop(struct net_device * dev)917 static int bcmasp_stop(struct net_device *dev)
918 {
919 	struct bcmasp_intf *intf = netdev_priv(dev);
920 
921 	netif_dbg(intf, ifdown, dev, "bcmasp stop\n");
922 
923 	/* Stop tx from updating HW */
924 	netif_tx_disable(dev);
925 
926 	bcmasp_netif_deinit(dev);
927 
928 	bcmasp_reclaim_free_buffers(intf);
929 
930 	phy_disconnect(dev->phydev);
931 
932 	/* Disable internal EPHY or external PHY */
933 	if (intf->internal_phy)
934 		bcmasp_ephy_enable_set(intf, false);
935 	else
936 		bcmasp_rgmii_mode_en_set(intf, false);
937 
938 	/* Disable the interface clocks */
939 	bcmasp_core_clock_set_intf(intf, false);
940 
941 	clk_disable_unprepare(intf->parent->clk);
942 
943 	return 0;
944 }
945 
bcmasp_configure_port(struct bcmasp_intf * intf)946 static void bcmasp_configure_port(struct bcmasp_intf *intf)
947 {
948 	u32 reg, id_mode_dis = 0;
949 
950 	reg = rgmii_rl(intf, RGMII_PORT_CNTRL);
951 	reg &= ~RGMII_PORT_MODE_MASK;
952 
953 	switch (intf->phy_interface) {
954 	case PHY_INTERFACE_MODE_RGMII:
955 		/* RGMII_NO_ID: TXC transitions at the same time as TXD
956 		 *		(requires PCB or receiver-side delay)
957 		 * RGMII:	Add 2ns delay on TXC (90 degree shift)
958 		 *
959 		 * ID is implicitly disabled for 100Mbps (RG)MII operation.
960 		 */
961 		id_mode_dis = RGMII_ID_MODE_DIS;
962 		fallthrough;
963 	case PHY_INTERFACE_MODE_RGMII_TXID:
964 		reg |= RGMII_PORT_MODE_EXT_GPHY;
965 		break;
966 	case PHY_INTERFACE_MODE_MII:
967 		reg |= RGMII_PORT_MODE_EXT_EPHY;
968 		break;
969 	default:
970 		break;
971 	}
972 
973 	if (intf->internal_phy)
974 		reg |= RGMII_PORT_MODE_EPHY;
975 
976 	rgmii_wl(intf, reg, RGMII_PORT_CNTRL);
977 
978 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
979 	reg &= ~RGMII_ID_MODE_DIS;
980 	reg |= id_mode_dis;
981 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
982 }
983 
bcmasp_netif_init(struct net_device * dev,bool phy_connect)984 static int bcmasp_netif_init(struct net_device *dev, bool phy_connect)
985 {
986 	struct bcmasp_intf *intf = netdev_priv(dev);
987 	phy_interface_t phy_iface = intf->phy_interface;
988 	u32 phy_flags = PHY_BRCM_AUTO_PWRDWN_ENABLE |
989 			PHY_BRCM_DIS_TXCRXC_NOENRGY |
990 			PHY_BRCM_IDDQ_SUSPEND;
991 	struct phy_device *phydev = NULL;
992 	int ret;
993 
994 	/* Always enable interface clocks */
995 	bcmasp_core_clock_set_intf(intf, true);
996 
997 	/* Enable internal PHY or external PHY before any MAC activity */
998 	if (intf->internal_phy)
999 		bcmasp_ephy_enable_set(intf, true);
1000 	else
1001 		bcmasp_rgmii_mode_en_set(intf, true);
1002 	bcmasp_configure_port(intf);
1003 
1004 	/* This is an ugly quirk but we have not been correctly
1005 	 * interpreting the phy_interface values and we have done that
1006 	 * across different drivers, so at least we are consistent in
1007 	 * our mistakes.
1008 	 *
1009 	 * When the Generic PHY driver is in use either the PHY has
1010 	 * been strapped or programmed correctly by the boot loader so
1011 	 * we should stick to our incorrect interpretation since we
1012 	 * have validated it.
1013 	 *
1014 	 * Now when a dedicated PHY driver is in use, we need to
1015 	 * reverse the meaning of the phy_interface_mode values to
1016 	 * something that the PHY driver will interpret and act on such
1017 	 * that we have two mistakes canceling themselves so to speak.
1018 	 * We only do this for the two modes that GENET driver
1019 	 * officially supports on Broadcom STB chips:
1020 	 * PHY_INTERFACE_MODE_RGMII and PHY_INTERFACE_MODE_RGMII_TXID.
1021 	 * Other modes are not *officially* supported with the boot
1022 	 * loader and the scripted environment generating Device Tree
1023 	 * blobs for those platforms.
1024 	 *
1025 	 * Note that internal PHY and fixed-link configurations are not
1026 	 * affected because they use different phy_interface_t values
1027 	 * or the Generic PHY driver.
1028 	 */
1029 	switch (phy_iface) {
1030 	case PHY_INTERFACE_MODE_RGMII:
1031 		phy_iface = PHY_INTERFACE_MODE_RGMII_ID;
1032 		break;
1033 	case PHY_INTERFACE_MODE_RGMII_TXID:
1034 		phy_iface = PHY_INTERFACE_MODE_RGMII_RXID;
1035 		break;
1036 	default:
1037 		break;
1038 	}
1039 
1040 	if (phy_connect) {
1041 		phydev = of_phy_connect(dev, intf->phy_dn,
1042 					bcmasp_adj_link, phy_flags,
1043 					phy_iface);
1044 		if (!phydev) {
1045 			ret = -ENODEV;
1046 			netdev_err(dev, "could not attach to PHY\n");
1047 			goto err_phy_disable;
1048 		}
1049 
1050 		if (intf->internal_phy)
1051 			dev->phydev->irq = PHY_MAC_INTERRUPT;
1052 
1053 		/* Indicate that the MAC is responsible for PHY PM */
1054 		phydev->mac_managed_pm = true;
1055 	}
1056 
1057 	umac_reset(intf);
1058 
1059 	umac_init(intf);
1060 
1061 	umac_set_hw_addr(intf, dev->dev_addr);
1062 
1063 	intf->old_duplex = -1;
1064 	intf->old_link = -1;
1065 	intf->old_pause = -1;
1066 
1067 	bcmasp_init_tx(intf);
1068 	netif_napi_add_tx(intf->ndev, &intf->tx_napi, bcmasp_tx_poll);
1069 	bcmasp_enable_tx(intf, 1);
1070 
1071 	bcmasp_init_rx(intf);
1072 	netif_napi_add(intf->ndev, &intf->rx_napi, bcmasp_rx_poll);
1073 	bcmasp_enable_rx(intf, 1);
1074 
1075 	intf->crc_fwd = !!(umac_rl(intf, UMC_CMD) & UMC_CMD_CRC_FWD);
1076 
1077 	bcmasp_netif_start(dev);
1078 
1079 	netif_start_queue(dev);
1080 
1081 	return 0;
1082 
1083 err_phy_disable:
1084 	if (intf->internal_phy)
1085 		bcmasp_ephy_enable_set(intf, false);
1086 	else
1087 		bcmasp_rgmii_mode_en_set(intf, false);
1088 	return ret;
1089 }
1090 
bcmasp_open(struct net_device * dev)1091 static int bcmasp_open(struct net_device *dev)
1092 {
1093 	struct bcmasp_intf *intf = netdev_priv(dev);
1094 	int ret;
1095 
1096 	netif_dbg(intf, ifup, dev, "bcmasp open\n");
1097 
1098 	ret = bcmasp_alloc_buffers(intf);
1099 	if (ret)
1100 		return ret;
1101 
1102 	ret = clk_prepare_enable(intf->parent->clk);
1103 	if (ret)
1104 		goto err_free_mem;
1105 
1106 	ret = bcmasp_netif_init(dev, true);
1107 	if (ret) {
1108 		clk_disable_unprepare(intf->parent->clk);
1109 		goto err_free_mem;
1110 	}
1111 
1112 	return ret;
1113 
1114 err_free_mem:
1115 	bcmasp_reclaim_free_buffers(intf);
1116 
1117 	return ret;
1118 }
1119 
bcmasp_tx_timeout(struct net_device * dev,unsigned int txqueue)1120 static void bcmasp_tx_timeout(struct net_device *dev, unsigned int txqueue)
1121 {
1122 	struct bcmasp_intf *intf = netdev_priv(dev);
1123 
1124 	netif_dbg(intf, tx_err, dev, "transmit timeout!\n");
1125 	intf->mib.tx_timeout_cnt++;
1126 }
1127 
bcmasp_get_phys_port_name(struct net_device * dev,char * name,size_t len)1128 static int bcmasp_get_phys_port_name(struct net_device *dev,
1129 				     char *name, size_t len)
1130 {
1131 	struct bcmasp_intf *intf = netdev_priv(dev);
1132 
1133 	if (snprintf(name, len, "p%d", intf->port) >= len)
1134 		return -EINVAL;
1135 
1136 	return 0;
1137 }
1138 
bcmasp_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)1139 static void bcmasp_get_stats64(struct net_device *dev,
1140 			       struct rtnl_link_stats64 *stats)
1141 {
1142 	struct bcmasp_intf *intf = netdev_priv(dev);
1143 	struct bcmasp_intf_stats64 *lstats;
1144 	unsigned int start;
1145 
1146 	lstats = &intf->stats64;
1147 
1148 	do {
1149 		start = u64_stats_fetch_begin(&lstats->syncp);
1150 		stats->rx_packets = u64_stats_read(&lstats->rx_packets);
1151 		stats->rx_bytes = u64_stats_read(&lstats->rx_bytes);
1152 		stats->rx_dropped = u64_stats_read(&lstats->rx_dropped);
1153 		stats->rx_crc_errors = u64_stats_read(&lstats->rx_crc_errs);
1154 		stats->rx_frame_errors = u64_stats_read(&lstats->rx_sym_errs);
1155 		stats->rx_errors = stats->rx_crc_errors + stats->rx_frame_errors;
1156 
1157 		stats->tx_packets = u64_stats_read(&lstats->tx_packets);
1158 		stats->tx_bytes = u64_stats_read(&lstats->tx_bytes);
1159 	} while (u64_stats_fetch_retry(&lstats->syncp, start));
1160 }
1161 
1162 static const struct net_device_ops bcmasp_netdev_ops = {
1163 	.ndo_open		= bcmasp_open,
1164 	.ndo_stop		= bcmasp_stop,
1165 	.ndo_start_xmit		= bcmasp_xmit,
1166 	.ndo_tx_timeout		= bcmasp_tx_timeout,
1167 	.ndo_set_rx_mode	= bcmasp_set_rx_mode,
1168 	.ndo_get_phys_port_name	= bcmasp_get_phys_port_name,
1169 	.ndo_eth_ioctl		= phy_do_ioctl_running,
1170 	.ndo_set_mac_address	= eth_mac_addr,
1171 	.ndo_get_stats64	= bcmasp_get_stats64,
1172 };
1173 
bcmasp_map_res(struct bcmasp_priv * priv,struct bcmasp_intf * intf)1174 static void bcmasp_map_res(struct bcmasp_priv *priv, struct bcmasp_intf *intf)
1175 {
1176 	/* Per port */
1177 	intf->res.umac = priv->base + UMC_OFFSET(intf);
1178 	intf->res.umac2fb = priv->base + (priv->hw_info->umac2fb +
1179 					  (intf->port * 0x4));
1180 	intf->res.rgmii = priv->base + RGMII_OFFSET(intf);
1181 
1182 	/* Per ch */
1183 	intf->tx_spb_dma = priv->base + TX_SPB_DMA_OFFSET(intf);
1184 	intf->res.tx_spb_ctrl = priv->base + TX_SPB_CTRL_OFFSET(intf);
1185 	intf->res.tx_spb_top = priv->base + TX_SPB_TOP_OFFSET(intf);
1186 	intf->res.tx_epkt_core = priv->base + TX_EPKT_C_OFFSET(intf);
1187 	intf->res.tx_pause_ctrl = priv->base + TX_PAUSE_CTRL_OFFSET(intf);
1188 
1189 	intf->rx_edpkt_dma = priv->base + RX_EDPKT_DMA_OFFSET(intf);
1190 	intf->rx_edpkt_cfg = priv->base + RX_EDPKT_CFG_OFFSET(intf);
1191 }
1192 
1193 #define MAX_IRQ_STR_LEN		64
bcmasp_interface_create(struct bcmasp_priv * priv,struct device_node * ndev_dn,int i)1194 struct bcmasp_intf *bcmasp_interface_create(struct bcmasp_priv *priv,
1195 					    struct device_node *ndev_dn, int i)
1196 {
1197 	struct device *dev = &priv->pdev->dev;
1198 	struct bcmasp_intf *intf;
1199 	struct net_device *ndev;
1200 	int ch, port, ret;
1201 
1202 	if (of_property_read_u32(ndev_dn, "reg", &port)) {
1203 		dev_warn(dev, "%s: invalid port number\n", ndev_dn->name);
1204 		goto err;
1205 	}
1206 
1207 	if (of_property_read_u32(ndev_dn, "brcm,channel", &ch)) {
1208 		dev_warn(dev, "%s: invalid ch number\n", ndev_dn->name);
1209 		goto err;
1210 	}
1211 
1212 	ndev = alloc_etherdev(sizeof(struct bcmasp_intf));
1213 	if (!ndev) {
1214 		dev_warn(dev, "%s: unable to alloc ndev\n", ndev_dn->name);
1215 		goto err;
1216 	}
1217 	intf = netdev_priv(ndev);
1218 
1219 	intf->parent = priv;
1220 	intf->ndev = ndev;
1221 	intf->channel = ch;
1222 	intf->port = port;
1223 	intf->ndev_dn = ndev_dn;
1224 	intf->index = i;
1225 
1226 	ret = of_get_phy_mode(ndev_dn, &intf->phy_interface);
1227 	if (ret < 0) {
1228 		dev_err(dev, "invalid PHY mode property\n");
1229 		goto err_free_netdev;
1230 	}
1231 
1232 	if (intf->phy_interface == PHY_INTERFACE_MODE_INTERNAL)
1233 		intf->internal_phy = true;
1234 
1235 	intf->phy_dn = of_parse_phandle(ndev_dn, "phy-handle", 0);
1236 	if (!intf->phy_dn && of_phy_is_fixed_link(ndev_dn)) {
1237 		ret = of_phy_register_fixed_link(ndev_dn);
1238 		if (ret) {
1239 			dev_warn(dev, "%s: failed to register fixed PHY\n",
1240 				 ndev_dn->name);
1241 			goto err_free_netdev;
1242 		}
1243 		intf->phy_dn = ndev_dn;
1244 	}
1245 
1246 	/* Map resource */
1247 	bcmasp_map_res(priv, intf);
1248 
1249 	if ((!phy_interface_mode_is_rgmii(intf->phy_interface) &&
1250 	     intf->phy_interface != PHY_INTERFACE_MODE_MII &&
1251 	     intf->phy_interface != PHY_INTERFACE_MODE_INTERNAL) ||
1252 	    (intf->port != 1 && intf->internal_phy)) {
1253 		netdev_err(intf->ndev, "invalid PHY mode: %s for port %d\n",
1254 			   phy_modes(intf->phy_interface), intf->port);
1255 		ret = -EINVAL;
1256 		goto err_free_netdev;
1257 	}
1258 
1259 	ret = of_get_ethdev_address(ndev_dn, ndev);
1260 	if (ret) {
1261 		netdev_warn(ndev, "using random Ethernet MAC\n");
1262 		eth_hw_addr_random(ndev);
1263 	}
1264 
1265 	SET_NETDEV_DEV(ndev, dev);
1266 	intf->ops = &bcmasp_intf_ops;
1267 	ndev->netdev_ops = &bcmasp_netdev_ops;
1268 	ndev->ethtool_ops = &bcmasp_ethtool_ops;
1269 	intf->msg_enable = netif_msg_init(-1, NETIF_MSG_DRV |
1270 					  NETIF_MSG_PROBE |
1271 					  NETIF_MSG_LINK);
1272 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
1273 			  NETIF_F_RXCSUM;
1274 	ndev->hw_features |= ndev->features;
1275 	ndev->needed_headroom += sizeof(struct bcmasp_pkt_offload);
1276 
1277 	return intf;
1278 
1279 err_free_netdev:
1280 	free_netdev(ndev);
1281 err:
1282 	return NULL;
1283 }
1284 
bcmasp_interface_destroy(struct bcmasp_intf * intf)1285 void bcmasp_interface_destroy(struct bcmasp_intf *intf)
1286 {
1287 	if (intf->ndev->reg_state == NETREG_REGISTERED)
1288 		unregister_netdev(intf->ndev);
1289 	if (of_phy_is_fixed_link(intf->ndev_dn))
1290 		of_phy_deregister_fixed_link(intf->ndev_dn);
1291 	free_netdev(intf->ndev);
1292 }
1293 
bcmasp_suspend_to_wol(struct bcmasp_intf * intf)1294 static void bcmasp_suspend_to_wol(struct bcmasp_intf *intf)
1295 {
1296 	struct net_device *ndev = intf->ndev;
1297 	u32 reg;
1298 
1299 	reg = umac_rl(intf, UMC_MPD_CTRL);
1300 	if (intf->wolopts & (WAKE_MAGIC | WAKE_MAGICSECURE))
1301 		reg |= UMC_MPD_CTRL_MPD_EN;
1302 	reg &= ~UMC_MPD_CTRL_PSW_EN;
1303 	if (intf->wolopts & WAKE_MAGICSECURE) {
1304 		/* Program the SecureOn password */
1305 		umac_wl(intf, get_unaligned_be16(&intf->sopass[0]),
1306 			UMC_PSW_MS);
1307 		umac_wl(intf, get_unaligned_be32(&intf->sopass[2]),
1308 			UMC_PSW_LS);
1309 		reg |= UMC_MPD_CTRL_PSW_EN;
1310 	}
1311 	umac_wl(intf, reg, UMC_MPD_CTRL);
1312 
1313 	if (intf->wolopts & WAKE_FILTER)
1314 		bcmasp_netfilt_suspend(intf);
1315 
1316 	/* Bring UniMAC out of reset if needed and enable RX */
1317 	reg = umac_rl(intf, UMC_CMD);
1318 	if (reg & UMC_CMD_SW_RESET)
1319 		reg &= ~UMC_CMD_SW_RESET;
1320 
1321 	reg |= UMC_CMD_RX_EN | UMC_CMD_PROMISC;
1322 	umac_wl(intf, reg, UMC_CMD);
1323 
1324 	umac_enable_set(intf, UMC_CMD_RX_EN, 1);
1325 
1326 	if (intf->parent->wol_irq > 0) {
1327 		wakeup_intr2_core_wl(intf->parent, 0xffffffff,
1328 				     ASP_WAKEUP_INTR2_MASK_CLEAR);
1329 	}
1330 
1331 	if (intf->eee.eee_enabled && intf->parent->eee_fixup)
1332 		intf->parent->eee_fixup(intf, true);
1333 
1334 	netif_dbg(intf, wol, ndev, "entered WOL mode\n");
1335 }
1336 
bcmasp_interface_suspend(struct bcmasp_intf * intf)1337 int bcmasp_interface_suspend(struct bcmasp_intf *intf)
1338 {
1339 	struct device *kdev = &intf->parent->pdev->dev;
1340 	struct net_device *dev = intf->ndev;
1341 
1342 	if (!netif_running(dev))
1343 		return 0;
1344 
1345 	netif_device_detach(dev);
1346 
1347 	bcmasp_netif_deinit(dev);
1348 
1349 	if (!intf->wolopts) {
1350 		if (intf->internal_phy)
1351 			bcmasp_ephy_enable_set(intf, false);
1352 		else
1353 			bcmasp_rgmii_mode_en_set(intf, false);
1354 
1355 		/* If Wake-on-LAN is disabled, we can safely
1356 		 * disable the network interface clocks.
1357 		 */
1358 		bcmasp_core_clock_set_intf(intf, false);
1359 	}
1360 
1361 	if (device_may_wakeup(kdev) && intf->wolopts)
1362 		bcmasp_suspend_to_wol(intf);
1363 
1364 	clk_disable_unprepare(intf->parent->clk);
1365 
1366 	return 0;
1367 }
1368 
bcmasp_resume_from_wol(struct bcmasp_intf * intf)1369 static void bcmasp_resume_from_wol(struct bcmasp_intf *intf)
1370 {
1371 	u32 reg;
1372 
1373 	if (intf->eee.eee_enabled && intf->parent->eee_fixup)
1374 		intf->parent->eee_fixup(intf, false);
1375 
1376 	reg = umac_rl(intf, UMC_MPD_CTRL);
1377 	reg &= ~UMC_MPD_CTRL_MPD_EN;
1378 	umac_wl(intf, reg, UMC_MPD_CTRL);
1379 
1380 	if (intf->parent->wol_irq > 0) {
1381 		wakeup_intr2_core_wl(intf->parent, 0xffffffff,
1382 				     ASP_WAKEUP_INTR2_MASK_SET);
1383 	}
1384 }
1385 
bcmasp_interface_resume(struct bcmasp_intf * intf)1386 int bcmasp_interface_resume(struct bcmasp_intf *intf)
1387 {
1388 	struct net_device *dev = intf->ndev;
1389 	int ret;
1390 
1391 	if (!netif_running(dev))
1392 		return 0;
1393 
1394 	ret = clk_prepare_enable(intf->parent->clk);
1395 	if (ret)
1396 		return ret;
1397 
1398 	ret = bcmasp_netif_init(dev, false);
1399 	if (ret)
1400 		goto out;
1401 
1402 	bcmasp_resume_from_wol(intf);
1403 
1404 	if (intf->eee.eee_enabled)
1405 		bcmasp_eee_enable_set(intf, true);
1406 
1407 	netif_device_attach(dev);
1408 
1409 	return 0;
1410 
1411 out:
1412 	clk_disable_unprepare(intf->parent->clk);
1413 	return ret;
1414 }
1415