1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/mtd/spi-nor.h>
9 #include <linux/slab.h>
10 #include <linux/sort.h>
11 
12 #include "core.h"
13 
14 #define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
15 #define SFDP_PARAM_HEADER_PTP(p) \
16 	(((p)->parameter_table_pointer[2] << 16) | \
17 	 ((p)->parameter_table_pointer[1] <<  8) | \
18 	 ((p)->parameter_table_pointer[0] <<  0))
19 #define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4)
20 
21 #define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
22 #define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
23 #define SFDP_4BAIT_ID		0xff84  /* 4-byte Address Instruction Table */
24 #define SFDP_PROFILE1_ID	0xff05	/* xSPI Profile 1.0 table. */
25 #define SFDP_SCCR_MAP_ID	0xff87	/*
26 					 * Status, Control and Configuration
27 					 * Register Map.
28 					 */
29 #define SFDP_SCCR_MAP_MC_ID	0xff88	/*
30 					 * Status, Control and Configuration
31 					 * Register Map Offsets for Multi-Chip
32 					 * SPI Memory Devices.
33 					 */
34 
35 #define SFDP_SIGNATURE		0x50444653U
36 
37 struct sfdp_header {
38 	u32		signature; /* Ox50444653U <=> "SFDP" */
39 	u8		minor;
40 	u8		major;
41 	u8		nph; /* 0-base number of parameter headers */
42 	u8		unused;
43 
44 	/* Basic Flash Parameter Table. */
45 	struct sfdp_parameter_header	bfpt_header;
46 };
47 
48 /* Fast Read settings. */
49 struct sfdp_bfpt_read {
50 	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
51 	u32			hwcaps;
52 
53 	/*
54 	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
55 	 * whether the Fast Read x-y-z command is supported.
56 	 */
57 	u32			supported_dword;
58 	u32			supported_bit;
59 
60 	/*
61 	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
62 	 * encodes the op code, the number of mode clocks and the number of wait
63 	 * states to be used by Fast Read x-y-z command.
64 	 */
65 	u32			settings_dword;
66 	u32			settings_shift;
67 
68 	/* The SPI protocol for this Fast Read x-y-z command. */
69 	enum spi_nor_protocol	proto;
70 };
71 
72 struct sfdp_bfpt_erase {
73 	/*
74 	 * The half-word at offset <shift> in DWORD <dword> encodes the
75 	 * op code and erase sector size to be used by Sector Erase commands.
76 	 */
77 	u32			dword;
78 	u32			shift;
79 };
80 
81 #define SMPT_CMD_ADDRESS_LEN_MASK		GENMASK(23, 22)
82 #define SMPT_CMD_ADDRESS_LEN_0			(0x0UL << 22)
83 #define SMPT_CMD_ADDRESS_LEN_3			(0x1UL << 22)
84 #define SMPT_CMD_ADDRESS_LEN_4			(0x2UL << 22)
85 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT	(0x3UL << 22)
86 
87 #define SMPT_CMD_READ_DUMMY_MASK		GENMASK(19, 16)
88 #define SMPT_CMD_READ_DUMMY_SHIFT		16
89 #define SMPT_CMD_READ_DUMMY(_cmd) \
90 	(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
91 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE		0xfUL
92 
93 #define SMPT_CMD_READ_DATA_MASK			GENMASK(31, 24)
94 #define SMPT_CMD_READ_DATA_SHIFT		24
95 #define SMPT_CMD_READ_DATA(_cmd) \
96 	(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
97 
98 #define SMPT_CMD_OPCODE_MASK			GENMASK(15, 8)
99 #define SMPT_CMD_OPCODE_SHIFT			8
100 #define SMPT_CMD_OPCODE(_cmd) \
101 	(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
102 
103 #define SMPT_MAP_REGION_COUNT_MASK		GENMASK(23, 16)
104 #define SMPT_MAP_REGION_COUNT_SHIFT		16
105 #define SMPT_MAP_REGION_COUNT(_header) \
106 	((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
107 	  SMPT_MAP_REGION_COUNT_SHIFT) + 1)
108 
109 #define SMPT_MAP_ID_MASK			GENMASK(15, 8)
110 #define SMPT_MAP_ID_SHIFT			8
111 #define SMPT_MAP_ID(_header) \
112 	(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
113 
114 #define SMPT_MAP_REGION_SIZE_MASK		GENMASK(31, 8)
115 #define SMPT_MAP_REGION_SIZE_SHIFT		8
116 #define SMPT_MAP_REGION_SIZE(_region) \
117 	(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
118 	   SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
119 
120 #define SMPT_MAP_REGION_ERASE_TYPE_MASK		GENMASK(3, 0)
121 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \
122 	((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
123 
124 #define SMPT_DESC_TYPE_MAP			BIT(1)
125 #define SMPT_DESC_END				BIT(0)
126 
127 #define SFDP_4BAIT_DWORD_MAX	2
128 
129 struct sfdp_4bait {
130 	/* The hardware capability. */
131 	u32		hwcaps;
132 
133 	/*
134 	 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
135 	 * the associated 4-byte address op code is supported.
136 	 */
137 	u32		supported_bit;
138 };
139 
140 /**
141  * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
142  *			addr_nbytes and read_dummy members of the struct spi_nor
143  *			should be previously set.
144  * @nor:	pointer to a 'struct spi_nor'
145  * @addr:	offset in the serial flash memory
146  * @len:	number of bytes to read
147  * @buf:	buffer where the data is copied into (dma-safe memory)
148  *
149  * Return: 0 on success, -errno otherwise.
150  */
spi_nor_read_raw(struct spi_nor * nor,u32 addr,size_t len,u8 * buf)151 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
152 {
153 	ssize_t ret;
154 
155 	while (len) {
156 		ret = spi_nor_read_data(nor, addr, len, buf);
157 		if (ret < 0)
158 			return ret;
159 		if (!ret || ret > len)
160 			return -EIO;
161 
162 		buf += ret;
163 		addr += ret;
164 		len -= ret;
165 	}
166 	return 0;
167 }
168 
169 /**
170  * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
171  * @nor:	pointer to a 'struct spi_nor'
172  * @addr:	offset in the SFDP area to start reading data from
173  * @len:	number of bytes to read
174  * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
175  *
176  * Whatever the actual numbers of bytes for address and dummy cycles are
177  * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
178  * followed by a 3-byte address and 8 dummy clock cycles.
179  *
180  * Return: 0 on success, -errno otherwise.
181  */
spi_nor_read_sfdp(struct spi_nor * nor,u32 addr,size_t len,void * buf)182 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
183 			     size_t len, void *buf)
184 {
185 	u8 addr_nbytes, read_opcode, read_dummy;
186 	int ret;
187 
188 	read_opcode = nor->read_opcode;
189 	addr_nbytes = nor->addr_nbytes;
190 	read_dummy = nor->read_dummy;
191 
192 	nor->read_opcode = SPINOR_OP_RDSFDP;
193 	nor->addr_nbytes = 3;
194 	nor->read_dummy = 8;
195 
196 	ret = spi_nor_read_raw(nor, addr, len, buf);
197 
198 	nor->read_opcode = read_opcode;
199 	nor->addr_nbytes = addr_nbytes;
200 	nor->read_dummy = read_dummy;
201 
202 	return ret;
203 }
204 
205 /**
206  * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
207  * @nor:	pointer to a 'struct spi_nor'
208  * @addr:	offset in the SFDP area to start reading data from
209  * @len:	number of bytes to read
210  * @buf:	buffer where the SFDP data are copied into
211  *
212  * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
213  * guaranteed to be dma-safe.
214  *
215  * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
216  *          otherwise.
217  */
spi_nor_read_sfdp_dma_unsafe(struct spi_nor * nor,u32 addr,size_t len,void * buf)218 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
219 					size_t len, void *buf)
220 {
221 	void *dma_safe_buf;
222 	int ret;
223 
224 	dma_safe_buf = kmalloc(len, GFP_KERNEL);
225 	if (!dma_safe_buf)
226 		return -ENOMEM;
227 
228 	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
229 	memcpy(buf, dma_safe_buf, len);
230 	kfree(dma_safe_buf);
231 
232 	return ret;
233 }
234 
235 static void
spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command * read,u16 half,enum spi_nor_protocol proto)236 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
237 				    u16 half,
238 				    enum spi_nor_protocol proto)
239 {
240 	read->num_mode_clocks = (half >> 5) & 0x07;
241 	read->num_wait_states = (half >> 0) & 0x1f;
242 	read->opcode = (half >> 8) & 0xff;
243 	read->proto = proto;
244 }
245 
246 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
247 	/* Fast Read 1-1-2 */
248 	{
249 		SNOR_HWCAPS_READ_1_1_2,
250 		SFDP_DWORD(1), BIT(16),	/* Supported bit */
251 		SFDP_DWORD(4), 0,	/* Settings */
252 		SNOR_PROTO_1_1_2,
253 	},
254 
255 	/* Fast Read 1-2-2 */
256 	{
257 		SNOR_HWCAPS_READ_1_2_2,
258 		SFDP_DWORD(1), BIT(20),	/* Supported bit */
259 		SFDP_DWORD(4), 16,	/* Settings */
260 		SNOR_PROTO_1_2_2,
261 	},
262 
263 	/* Fast Read 2-2-2 */
264 	{
265 		SNOR_HWCAPS_READ_2_2_2,
266 		SFDP_DWORD(5),  BIT(0),	/* Supported bit */
267 		SFDP_DWORD(6), 16,	/* Settings */
268 		SNOR_PROTO_2_2_2,
269 	},
270 
271 	/* Fast Read 1-1-4 */
272 	{
273 		SNOR_HWCAPS_READ_1_1_4,
274 		SFDP_DWORD(1), BIT(22),	/* Supported bit */
275 		SFDP_DWORD(3), 16,	/* Settings */
276 		SNOR_PROTO_1_1_4,
277 	},
278 
279 	/* Fast Read 1-4-4 */
280 	{
281 		SNOR_HWCAPS_READ_1_4_4,
282 		SFDP_DWORD(1), BIT(21),	/* Supported bit */
283 		SFDP_DWORD(3), 0,	/* Settings */
284 		SNOR_PROTO_1_4_4,
285 	},
286 
287 	/* Fast Read 4-4-4 */
288 	{
289 		SNOR_HWCAPS_READ_4_4_4,
290 		SFDP_DWORD(5), BIT(4),	/* Supported bit */
291 		SFDP_DWORD(7), 16,	/* Settings */
292 		SNOR_PROTO_4_4_4,
293 	},
294 };
295 
296 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
297 	/* Erase Type 1 in DWORD8 bits[15:0] */
298 	{SFDP_DWORD(8), 0},
299 
300 	/* Erase Type 2 in DWORD8 bits[31:16] */
301 	{SFDP_DWORD(8), 16},
302 
303 	/* Erase Type 3 in DWORD9 bits[15:0] */
304 	{SFDP_DWORD(9), 0},
305 
306 	/* Erase Type 4 in DWORD9 bits[31:16] */
307 	{SFDP_DWORD(9), 16},
308 };
309 
310 /**
311  * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
312  * @erase:	pointer to a structure that describes a SPI NOR erase type
313  * @size:	the size of the sector/block erased by the erase type
314  * @opcode:	the SPI command op code to erase the sector/block
315  * @i:		erase type index as sorted in the Basic Flash Parameter Table
316  *
317  * The supported Erase Types will be sorted at init in ascending order, with
318  * the smallest Erase Type size being the first member in the erase_type array
319  * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
320  * the Basic Flash Parameter Table since it will be used later on to
321  * synchronize with the supported Erase Types defined in SFDP optional tables.
322  */
323 static void
spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type * erase,u32 size,u8 opcode,u8 i)324 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
325 				     u32 size, u8 opcode, u8 i)
326 {
327 	erase->idx = i;
328 	spi_nor_set_erase_type(erase, size, opcode);
329 }
330 
331 /**
332  * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
333  * @l:	member in the left half of the map's erase_type array
334  * @r:	member in the right half of the map's erase_type array
335  *
336  * Comparison function used in the sort() call to sort in ascending order the
337  * map's erase types, the smallest erase type size being the first member in the
338  * sorted erase_type array.
339  *
340  * Return: the result of @l->size - @r->size
341  */
spi_nor_map_cmp_erase_type(const void * l,const void * r)342 static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
343 {
344 	const struct spi_nor_erase_type *left = l, *right = r;
345 
346 	return left->size - right->size;
347 }
348 
349 /**
350  * spi_nor_sort_erase_mask() - sort erase mask
351  * @map:	the erase map of the SPI NOR
352  * @erase_mask:	the erase type mask to be sorted
353  *
354  * Replicate the sort done for the map's erase types in BFPT: sort the erase
355  * mask in ascending order with the smallest erase type size starting from
356  * BIT(0) in the sorted erase mask.
357  *
358  * Return: sorted erase mask.
359  */
spi_nor_sort_erase_mask(struct spi_nor_erase_map * map,u8 erase_mask)360 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
361 {
362 	struct spi_nor_erase_type *erase_type = map->erase_type;
363 	int i;
364 	u8 sorted_erase_mask = 0;
365 
366 	if (!erase_mask)
367 		return 0;
368 
369 	/* Replicate the sort done for the map's erase types. */
370 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
371 		if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
372 			sorted_erase_mask |= BIT(i);
373 
374 	return sorted_erase_mask;
375 }
376 
377 /**
378  * spi_nor_regions_sort_erase_types() - sort erase types in each region
379  * @map:	the erase map of the SPI NOR
380  *
381  * Function assumes that the erase types defined in the erase map are already
382  * sorted in ascending order, with the smallest erase type size being the first
383  * member in the erase_type array. It replicates the sort done for the map's
384  * erase types. Each region's erase bitmask will indicate which erase types are
385  * supported from the sorted erase types defined in the erase map.
386  * Sort the all region's erase type at init in order to speed up the process of
387  * finding the best erase command at runtime.
388  */
spi_nor_regions_sort_erase_types(struct spi_nor_erase_map * map)389 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
390 {
391 	struct spi_nor_erase_region *region = map->regions;
392 	u8 sorted_erase_mask;
393 	unsigned int i;
394 
395 	for (i = 0; i < map->n_regions; i++) {
396 		sorted_erase_mask =
397 			spi_nor_sort_erase_mask(map, region[i].erase_mask);
398 
399 		/* Overwrite erase mask. */
400 		region[i].erase_mask = sorted_erase_mask;
401 	}
402 }
403 
404 /**
405  * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
406  * @nor:		pointer to a 'struct spi_nor'
407  * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
408  *			the Basic Flash Parameter Table length and version
409  *
410  * The Basic Flash Parameter Table is the main and only mandatory table as
411  * defined by the SFDP (JESD216) specification.
412  * It provides us with the total size (memory density) of the data array and
413  * the number of address bytes for Fast Read, Page Program and Sector Erase
414  * commands.
415  * For Fast READ commands, it also gives the number of mode clock cycles and
416  * wait states (regrouped in the number of dummy clock cycles) for each
417  * supported instruction op code.
418  * For Page Program, the page size is now available since JESD216 rev A, however
419  * the supported instruction op codes are still not provided.
420  * For Sector Erase commands, this table stores the supported instruction op
421  * codes and the associated sector sizes.
422  * Finally, the Quad Enable Requirements (QER) are also available since JESD216
423  * rev A. The QER bits encode the manufacturer dependent procedure to be
424  * executed to set the Quad Enable (QE) bit in some internal register of the
425  * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
426  * sending any Quad SPI command to the memory. Actually, setting the QE bit
427  * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
428  * and IO3 hence enabling 4 (Quad) I/O lines.
429  *
430  * Return: 0 on success, -errno otherwise.
431  */
spi_nor_parse_bfpt(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header)432 static int spi_nor_parse_bfpt(struct spi_nor *nor,
433 			      const struct sfdp_parameter_header *bfpt_header)
434 {
435 	struct spi_nor_flash_parameter *params = nor->params;
436 	struct spi_nor_erase_map *map = &params->erase_map;
437 	struct spi_nor_erase_type *erase_type = map->erase_type;
438 	struct sfdp_bfpt bfpt;
439 	size_t len;
440 	int i, cmd, err;
441 	u32 addr, val;
442 	u32 dword;
443 	u16 half;
444 	u8 erase_mask;
445 	u8 wait_states, mode_clocks, opcode;
446 
447 	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
448 	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
449 		return -EINVAL;
450 
451 	/* Read the Basic Flash Parameter Table. */
452 	len = min_t(size_t, sizeof(bfpt),
453 		    bfpt_header->length * sizeof(u32));
454 	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
455 	memset(&bfpt, 0, sizeof(bfpt));
456 	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
457 	if (err < 0)
458 		return err;
459 
460 	/* Fix endianness of the BFPT DWORDs. */
461 	le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
462 
463 	/* Number of address bytes. */
464 	switch (bfpt.dwords[SFDP_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
465 	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
466 	case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
467 		params->addr_nbytes = 3;
468 		params->addr_mode_nbytes = 3;
469 		break;
470 
471 	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
472 		params->addr_nbytes = 4;
473 		params->addr_mode_nbytes = 4;
474 		break;
475 
476 	default:
477 		break;
478 	}
479 
480 	/* Flash Memory Density (in bits). */
481 	val = bfpt.dwords[SFDP_DWORD(2)];
482 	if (val & BIT(31)) {
483 		val &= ~BIT(31);
484 
485 		/*
486 		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
487 		 * bits is unlikely to exist so this error probably means
488 		 * the BFPT we are reading is corrupted/wrong.
489 		 */
490 		if (val > 63)
491 			return -EINVAL;
492 
493 		params->size = 1ULL << val;
494 	} else {
495 		params->size = val + 1;
496 	}
497 	params->size >>= 3; /* Convert to bytes. */
498 
499 	/* Fast Read settings. */
500 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
501 		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
502 		struct spi_nor_read_command *read;
503 
504 		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
505 			params->hwcaps.mask &= ~rd->hwcaps;
506 			continue;
507 		}
508 
509 		params->hwcaps.mask |= rd->hwcaps;
510 		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
511 		read = &params->reads[cmd];
512 		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
513 		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
514 	}
515 
516 	/*
517 	 * Sector Erase settings. Reinitialize the uniform erase map using the
518 	 * Erase Types defined in the bfpt table.
519 	 */
520 	erase_mask = 0;
521 	memset(&params->erase_map, 0, sizeof(params->erase_map));
522 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
523 		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
524 		u32 erasesize;
525 		u8 opcode;
526 
527 		half = bfpt.dwords[er->dword] >> er->shift;
528 		erasesize = half & 0xff;
529 
530 		/* erasesize == 0 means this Erase Type is not supported. */
531 		if (!erasesize)
532 			continue;
533 
534 		erasesize = 1U << erasesize;
535 		opcode = (half >> 8) & 0xff;
536 		erase_mask |= BIT(i);
537 		spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
538 						     opcode, i);
539 	}
540 	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
541 	/*
542 	 * Sort all the map's Erase Types in ascending order with the smallest
543 	 * erase size being the first member in the erase_type array.
544 	 */
545 	sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
546 	     spi_nor_map_cmp_erase_type, NULL);
547 	/*
548 	 * Sort the erase types in the uniform region in order to update the
549 	 * uniform_erase_type bitmask. The bitmask will be used later on when
550 	 * selecting the uniform erase.
551 	 */
552 	spi_nor_regions_sort_erase_types(map);
553 
554 	/* Stop here if not JESD216 rev A or later. */
555 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
556 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
557 
558 	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
559 	val = bfpt.dwords[SFDP_DWORD(11)];
560 	val &= BFPT_DWORD11_PAGE_SIZE_MASK;
561 	val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
562 	params->page_size = 1U << val;
563 
564 	/* Quad Enable Requirements. */
565 	switch (bfpt.dwords[SFDP_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
566 	case BFPT_DWORD15_QER_NONE:
567 		params->quad_enable = NULL;
568 		break;
569 
570 	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
571 		/*
572 		 * Writing only one byte to the Status Register has the
573 		 * side-effect of clearing Status Register 2.
574 		 */
575 	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
576 		/*
577 		 * Read Configuration Register (35h) instruction is not
578 		 * supported.
579 		 */
580 		nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
581 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
582 		break;
583 
584 	case BFPT_DWORD15_QER_SR1_BIT6:
585 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
586 		params->quad_enable = spi_nor_sr1_bit6_quad_enable;
587 		break;
588 
589 	case BFPT_DWORD15_QER_SR2_BIT7:
590 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
591 		params->quad_enable = spi_nor_sr2_bit7_quad_enable;
592 		break;
593 
594 	case BFPT_DWORD15_QER_SR2_BIT1:
595 		/*
596 		 * JESD216 rev B or later does not specify if writing only one
597 		 * byte to the Status Register clears or not the Status
598 		 * Register 2, so let's be cautious and keep the default
599 		 * assumption of a 16-bit Write Status (01h) command.
600 		 */
601 		nor->flags |= SNOR_F_HAS_16BIT_SR;
602 
603 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
604 		break;
605 
606 	default:
607 		dev_dbg(nor->dev, "BFPT QER reserved value used\n");
608 		break;
609 	}
610 
611 	dword = bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_4B_ADDR_MODE_MASK;
612 	if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_BRWR))
613 		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr;
614 	else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_WREN_EN4B_EX4B))
615 		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b;
616 	else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_EN4B_EX4B))
617 		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b;
618 	else
619 		dev_dbg(nor->dev, "BFPT: 4-Byte Address Mode method is not recognized or not implemented\n");
620 
621 	/* Soft Reset support. */
622 	if (bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST)
623 		nor->flags |= SNOR_F_SOFT_RESET;
624 
625 	/* Stop here if not JESD216 rev C or later. */
626 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
627 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
628 
629 	/* Parse 1-1-8 read instruction */
630 	opcode = FIELD_GET(BFPT_DWORD17_RD_1_1_8_CMD, bfpt.dwords[SFDP_DWORD(17)]);
631 	if (opcode) {
632 		mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_1_8_MODE_CLOCKS,
633 					bfpt.dwords[SFDP_DWORD(17)]);
634 		wait_states = FIELD_GET(BFPT_DWORD17_RD_1_1_8_WAIT_STATES,
635 					bfpt.dwords[SFDP_DWORD(17)]);
636 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
637 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
638 					  mode_clocks, wait_states, opcode,
639 					  SNOR_PROTO_1_1_8);
640 	}
641 
642 	/* Parse 1-8-8 read instruction */
643 	opcode = FIELD_GET(BFPT_DWORD17_RD_1_8_8_CMD, bfpt.dwords[SFDP_DWORD(17)]);
644 	if (opcode) {
645 		mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_8_8_MODE_CLOCKS,
646 					bfpt.dwords[SFDP_DWORD(17)]);
647 		wait_states = FIELD_GET(BFPT_DWORD17_RD_1_8_8_WAIT_STATES,
648 					bfpt.dwords[SFDP_DWORD(17)]);
649 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_8_8;
650 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_8_8],
651 					  mode_clocks, wait_states, opcode,
652 					  SNOR_PROTO_1_8_8);
653 	}
654 
655 	/* 8D-8D-8D command extension. */
656 	switch (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
657 	case BFPT_DWORD18_CMD_EXT_REP:
658 		nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
659 		break;
660 
661 	case BFPT_DWORD18_CMD_EXT_INV:
662 		nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
663 		break;
664 
665 	case BFPT_DWORD18_CMD_EXT_RES:
666 		dev_dbg(nor->dev, "Reserved command extension used\n");
667 		break;
668 
669 	case BFPT_DWORD18_CMD_EXT_16B:
670 		dev_dbg(nor->dev, "16-bit opcodes not supported\n");
671 		return -EOPNOTSUPP;
672 	}
673 
674 	return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
675 }
676 
677 /**
678  * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the
679  *			       configuration detection command.
680  * @nor:	pointer to a 'struct spi_nor'
681  * @settings:	configuration detection command descriptor, dword1
682  */
spi_nor_smpt_addr_nbytes(const struct spi_nor * nor,const u32 settings)683 static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings)
684 {
685 	switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
686 	case SMPT_CMD_ADDRESS_LEN_0:
687 		return 0;
688 	case SMPT_CMD_ADDRESS_LEN_3:
689 		return 3;
690 	case SMPT_CMD_ADDRESS_LEN_4:
691 		return 4;
692 	case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
693 	default:
694 		return nor->params->addr_mode_nbytes;
695 	}
696 }
697 
698 /**
699  * spi_nor_smpt_read_dummy() - return the configuration detection command read
700  *			       latency, in clock cycles.
701  * @nor:	pointer to a 'struct spi_nor'
702  * @settings:	configuration detection command descriptor, dword1
703  *
704  * Return: the number of dummy cycles for an SMPT read
705  */
spi_nor_smpt_read_dummy(const struct spi_nor * nor,const u32 settings)706 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
707 {
708 	u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
709 
710 	if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
711 		return nor->read_dummy;
712 	return read_dummy;
713 }
714 
715 /**
716  * spi_nor_get_map_in_use() - get the configuration map in use
717  * @nor:	pointer to a 'struct spi_nor'
718  * @smpt:	pointer to the sector map parameter table
719  * @smpt_len:	sector map parameter table length
720  *
721  * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
722  */
spi_nor_get_map_in_use(struct spi_nor * nor,const u32 * smpt,u8 smpt_len)723 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
724 					 u8 smpt_len)
725 {
726 	const u32 *ret;
727 	u8 *buf;
728 	u32 addr;
729 	int err;
730 	u8 i;
731 	u8 addr_nbytes, read_opcode, read_dummy;
732 	u8 read_data_mask, map_id;
733 
734 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
735 	buf = kmalloc(sizeof(*buf), GFP_KERNEL);
736 	if (!buf)
737 		return ERR_PTR(-ENOMEM);
738 
739 	addr_nbytes = nor->addr_nbytes;
740 	read_dummy = nor->read_dummy;
741 	read_opcode = nor->read_opcode;
742 
743 	map_id = 0;
744 	/* Determine if there are any optional Detection Command Descriptors */
745 	for (i = 0; i < smpt_len; i += 2) {
746 		if (smpt[i] & SMPT_DESC_TYPE_MAP)
747 			break;
748 
749 		read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
750 		nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]);
751 		nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
752 		nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
753 		addr = smpt[i + 1];
754 
755 		err = spi_nor_read_raw(nor, addr, 1, buf);
756 		if (err) {
757 			ret = ERR_PTR(err);
758 			goto out;
759 		}
760 
761 		/*
762 		 * Build an index value that is used to select the Sector Map
763 		 * Configuration that is currently in use.
764 		 */
765 		map_id = map_id << 1 | !!(*buf & read_data_mask);
766 	}
767 
768 	/*
769 	 * If command descriptors are provided, they always precede map
770 	 * descriptors in the table. There is no need to start the iteration
771 	 * over smpt array all over again.
772 	 *
773 	 * Find the matching configuration map.
774 	 */
775 	ret = ERR_PTR(-EINVAL);
776 	while (i < smpt_len) {
777 		if (SMPT_MAP_ID(smpt[i]) == map_id) {
778 			ret = smpt + i;
779 			break;
780 		}
781 
782 		/*
783 		 * If there are no more configuration map descriptors and no
784 		 * configuration ID matched the configuration identifier, the
785 		 * sector address map is unknown.
786 		 */
787 		if (smpt[i] & SMPT_DESC_END)
788 			break;
789 
790 		/* increment the table index to the next map */
791 		i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
792 	}
793 
794 	/* fall through */
795 out:
796 	kfree(buf);
797 	nor->addr_nbytes = addr_nbytes;
798 	nor->read_dummy = read_dummy;
799 	nor->read_opcode = read_opcode;
800 	return ret;
801 }
802 
803 /**
804  * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
805  * @region:	pointer to a structure that describes a SPI NOR erase region
806  * @erase:	pointer to a structure that describes a SPI NOR erase type
807  * @erase_type:	erase type bitmask
808  */
809 static void
spi_nor_region_check_overlay(struct spi_nor_erase_region * region,const struct spi_nor_erase_type * erase,const u8 erase_type)810 spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
811 			     const struct spi_nor_erase_type *erase,
812 			     const u8 erase_type)
813 {
814 	int i;
815 
816 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
817 		if (!(erase[i].size && erase_type & BIT(erase[i].idx)))
818 			continue;
819 		if (region->size & erase[i].size_mask) {
820 			region->overlaid = true;
821 			return;
822 		}
823 	}
824 }
825 
826 /**
827  * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
828  * @nor:	pointer to a 'struct spi_nor'
829  * @smpt:	pointer to the sector map parameter table
830  *
831  * Return: 0 on success, -errno otherwise.
832  */
spi_nor_init_non_uniform_erase_map(struct spi_nor * nor,const u32 * smpt)833 static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
834 					      const u32 *smpt)
835 {
836 	struct spi_nor_erase_map *map = &nor->params->erase_map;
837 	struct spi_nor_erase_type *erase = map->erase_type;
838 	struct spi_nor_erase_region *region;
839 	u64 offset;
840 	u32 region_count;
841 	int i, j;
842 	u8 uniform_erase_type, save_uniform_erase_type;
843 	u8 erase_type, regions_erase_type;
844 
845 	region_count = SMPT_MAP_REGION_COUNT(*smpt);
846 	/*
847 	 * The regions will be freed when the driver detaches from the
848 	 * device.
849 	 */
850 	region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
851 			      GFP_KERNEL);
852 	if (!region)
853 		return -ENOMEM;
854 	map->regions = region;
855 	map->n_regions = region_count;
856 
857 	uniform_erase_type = 0xff;
858 	regions_erase_type = 0;
859 	offset = 0;
860 	/* Populate regions. */
861 	for (i = 0; i < region_count; i++) {
862 		j = i + 1; /* index for the region dword */
863 		region[i].offset = offset;
864 		region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
865 		erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
866 		region[i].erase_mask = erase_type;
867 
868 		spi_nor_region_check_overlay(&region[i], erase, erase_type);
869 
870 		/*
871 		 * Save the erase types that are supported in all regions and
872 		 * can erase the entire flash memory.
873 		 */
874 		uniform_erase_type &= erase_type;
875 
876 		/*
877 		 * regions_erase_type mask will indicate all the erase types
878 		 * supported in this configuration map.
879 		 */
880 		regions_erase_type |= erase_type;
881 
882 		offset = region[i].offset + region[i].size;
883 	}
884 
885 	save_uniform_erase_type = map->uniform_region.erase_mask;
886 	map->uniform_region.erase_mask =
887 				spi_nor_sort_erase_mask(map,
888 							uniform_erase_type);
889 
890 	if (!regions_erase_type) {
891 		/*
892 		 * Roll back to the previous uniform_erase_type mask, SMPT is
893 		 * broken.
894 		 */
895 		map->uniform_region.erase_mask = save_uniform_erase_type;
896 		return -EINVAL;
897 	}
898 
899 	/*
900 	 * BFPT advertises all the erase types supported by all the possible
901 	 * map configurations. Mask out the erase types that are not supported
902 	 * by the current map configuration.
903 	 */
904 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
905 		if (!(regions_erase_type & BIT(erase[i].idx)))
906 			spi_nor_mask_erase_type(&erase[i]);
907 
908 	return 0;
909 }
910 
911 /**
912  * spi_nor_parse_smpt() - parse Sector Map Parameter Table
913  * @nor:		pointer to a 'struct spi_nor'
914  * @smpt_header:	sector map parameter table header
915  *
916  * This table is optional, but when available, we parse it to identify the
917  * location and size of sectors within the main data array of the flash memory
918  * device and to identify which Erase Types are supported by each sector.
919  *
920  * Return: 0 on success, -errno otherwise.
921  */
spi_nor_parse_smpt(struct spi_nor * nor,const struct sfdp_parameter_header * smpt_header)922 static int spi_nor_parse_smpt(struct spi_nor *nor,
923 			      const struct sfdp_parameter_header *smpt_header)
924 {
925 	const u32 *sector_map;
926 	u32 *smpt;
927 	size_t len;
928 	u32 addr;
929 	int ret;
930 
931 	/* Read the Sector Map Parameter Table. */
932 	len = smpt_header->length * sizeof(*smpt);
933 	smpt = kmalloc(len, GFP_KERNEL);
934 	if (!smpt)
935 		return -ENOMEM;
936 
937 	addr = SFDP_PARAM_HEADER_PTP(smpt_header);
938 	ret = spi_nor_read_sfdp(nor, addr, len, smpt);
939 	if (ret)
940 		goto out;
941 
942 	/* Fix endianness of the SMPT DWORDs. */
943 	le32_to_cpu_array(smpt, smpt_header->length);
944 
945 	sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
946 	if (IS_ERR(sector_map)) {
947 		ret = PTR_ERR(sector_map);
948 		goto out;
949 	}
950 
951 	ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
952 	if (ret)
953 		goto out;
954 
955 	spi_nor_regions_sort_erase_types(&nor->params->erase_map);
956 	/* fall through */
957 out:
958 	kfree(smpt);
959 	return ret;
960 }
961 
962 /**
963  * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
964  * @nor:		pointer to a 'struct spi_nor'.
965  * @param_header:	pointer to the 'struct sfdp_parameter_header' describing
966  *			the 4-Byte Address Instruction Table length and version.
967  *
968  * Return: 0 on success, -errno otherwise.
969  */
spi_nor_parse_4bait(struct spi_nor * nor,const struct sfdp_parameter_header * param_header)970 static int spi_nor_parse_4bait(struct spi_nor *nor,
971 			       const struct sfdp_parameter_header *param_header)
972 {
973 	static const struct sfdp_4bait reads[] = {
974 		{ SNOR_HWCAPS_READ,		BIT(0) },
975 		{ SNOR_HWCAPS_READ_FAST,	BIT(1) },
976 		{ SNOR_HWCAPS_READ_1_1_2,	BIT(2) },
977 		{ SNOR_HWCAPS_READ_1_2_2,	BIT(3) },
978 		{ SNOR_HWCAPS_READ_1_1_4,	BIT(4) },
979 		{ SNOR_HWCAPS_READ_1_4_4,	BIT(5) },
980 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	BIT(13) },
981 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	BIT(14) },
982 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	BIT(15) },
983 		{ SNOR_HWCAPS_READ_1_1_8,	BIT(20) },
984 		{ SNOR_HWCAPS_READ_1_8_8,	BIT(21) },
985 	};
986 	static const struct sfdp_4bait programs[] = {
987 		{ SNOR_HWCAPS_PP,		BIT(6) },
988 		{ SNOR_HWCAPS_PP_1_1_4,		BIT(7) },
989 		{ SNOR_HWCAPS_PP_1_4_4,		BIT(8) },
990 	};
991 	static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
992 		{ 0u /* not used */,		BIT(9) },
993 		{ 0u /* not used */,		BIT(10) },
994 		{ 0u /* not used */,		BIT(11) },
995 		{ 0u /* not used */,		BIT(12) },
996 	};
997 	struct spi_nor_flash_parameter *params = nor->params;
998 	struct spi_nor_pp_command *params_pp = params->page_programs;
999 	struct spi_nor_erase_map *map = &params->erase_map;
1000 	struct spi_nor_erase_type *erase_type = map->erase_type;
1001 	u32 *dwords;
1002 	size_t len;
1003 	u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
1004 	int i, ret;
1005 
1006 	if (param_header->major != SFDP_JESD216_MAJOR ||
1007 	    param_header->length < SFDP_4BAIT_DWORD_MAX)
1008 		return -EINVAL;
1009 
1010 	/* Read the 4-byte Address Instruction Table. */
1011 	len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
1012 
1013 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
1014 	dwords = kmalloc(len, GFP_KERNEL);
1015 	if (!dwords)
1016 		return -ENOMEM;
1017 
1018 	addr = SFDP_PARAM_HEADER_PTP(param_header);
1019 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1020 	if (ret)
1021 		goto out;
1022 
1023 	/* Fix endianness of the 4BAIT DWORDs. */
1024 	le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
1025 
1026 	/*
1027 	 * Compute the subset of (Fast) Read commands for which the 4-byte
1028 	 * version is supported.
1029 	 */
1030 	discard_hwcaps = 0;
1031 	read_hwcaps = 0;
1032 	for (i = 0; i < ARRAY_SIZE(reads); i++) {
1033 		const struct sfdp_4bait *read = &reads[i];
1034 
1035 		discard_hwcaps |= read->hwcaps;
1036 		if ((params->hwcaps.mask & read->hwcaps) &&
1037 		    (dwords[SFDP_DWORD(1)] & read->supported_bit))
1038 			read_hwcaps |= read->hwcaps;
1039 	}
1040 
1041 	/*
1042 	 * Compute the subset of Page Program commands for which the 4-byte
1043 	 * version is supported.
1044 	 */
1045 	pp_hwcaps = 0;
1046 	for (i = 0; i < ARRAY_SIZE(programs); i++) {
1047 		const struct sfdp_4bait *program = &programs[i];
1048 
1049 		/*
1050 		 * The 4 Byte Address Instruction (Optional) Table is the only
1051 		 * SFDP table that indicates support for Page Program Commands.
1052 		 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
1053 		 * authority for specifying Page Program support.
1054 		 */
1055 		discard_hwcaps |= program->hwcaps;
1056 		if (dwords[SFDP_DWORD(1)] & program->supported_bit)
1057 			pp_hwcaps |= program->hwcaps;
1058 	}
1059 
1060 	/*
1061 	 * Compute the subset of Sector Erase commands for which the 4-byte
1062 	 * version is supported.
1063 	 */
1064 	erase_mask = 0;
1065 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1066 		const struct sfdp_4bait *erase = &erases[i];
1067 
1068 		if (dwords[SFDP_DWORD(1)] & erase->supported_bit)
1069 			erase_mask |= BIT(i);
1070 	}
1071 
1072 	/* Replicate the sort done for the map's erase types in BFPT. */
1073 	erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
1074 
1075 	/*
1076 	 * We need at least one 4-byte op code per read, program and erase
1077 	 * operation; the .read(), .write() and .erase() hooks share the
1078 	 * nor->addr_nbytes value.
1079 	 */
1080 	if (!read_hwcaps || !pp_hwcaps || !erase_mask)
1081 		goto out;
1082 
1083 	/*
1084 	 * Discard all operations from the 4-byte instruction set which are
1085 	 * not supported by this memory.
1086 	 */
1087 	params->hwcaps.mask &= ~discard_hwcaps;
1088 	params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
1089 
1090 	/* Use the 4-byte address instruction set. */
1091 	for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
1092 		struct spi_nor_read_command *read_cmd = &params->reads[i];
1093 
1094 		read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
1095 	}
1096 
1097 	/* 4BAIT is the only SFDP table that indicates page program support. */
1098 	if (pp_hwcaps & SNOR_HWCAPS_PP) {
1099 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
1100 					SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
1101 		/*
1102 		 * Since xSPI Page Program opcode is backward compatible with
1103 		 * Legacy SPI, use Legacy SPI opcode there as well.
1104 		 */
1105 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_8_8_8_DTR],
1106 					SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
1107 	}
1108 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
1109 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
1110 					SPINOR_OP_PP_1_1_4_4B,
1111 					SNOR_PROTO_1_1_4);
1112 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
1113 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
1114 					SPINOR_OP_PP_1_4_4_4B,
1115 					SNOR_PROTO_1_4_4);
1116 
1117 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1118 		if (erase_mask & BIT(i))
1119 			erase_type[i].opcode = (dwords[SFDP_DWORD(2)] >>
1120 						erase_type[i].idx * 8) & 0xFF;
1121 		else
1122 			spi_nor_mask_erase_type(&erase_type[i]);
1123 	}
1124 
1125 	/*
1126 	 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
1127 	 * later because we already did the conversion to 4byte opcodes. Also,
1128 	 * this latest function implements a legacy quirk for the erase size of
1129 	 * Spansion memory. However this quirk is no longer needed with new
1130 	 * SFDP compliant memories.
1131 	 */
1132 	params->addr_nbytes = 4;
1133 	nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
1134 
1135 	/* fall through */
1136 out:
1137 	kfree(dwords);
1138 	return ret;
1139 }
1140 
1141 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES		BIT(29)
1142 #define PROFILE1_DWORD1_RDSR_DUMMY		BIT(28)
1143 #define PROFILE1_DWORD1_RD_FAST_CMD		GENMASK(15, 8)
1144 #define PROFILE1_DWORD4_DUMMY_200MHZ		GENMASK(11, 7)
1145 #define PROFILE1_DWORD5_DUMMY_166MHZ		GENMASK(31, 27)
1146 #define PROFILE1_DWORD5_DUMMY_133MHZ		GENMASK(21, 17)
1147 #define PROFILE1_DWORD5_DUMMY_100MHZ		GENMASK(11, 7)
1148 
1149 /**
1150  * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
1151  * @nor:		pointer to a 'struct spi_nor'
1152  * @profile1_header:	pointer to the 'struct sfdp_parameter_header' describing
1153  *			the Profile 1.0 Table length and version.
1154  *
1155  * Return: 0 on success, -errno otherwise.
1156  */
spi_nor_parse_profile1(struct spi_nor * nor,const struct sfdp_parameter_header * profile1_header)1157 static int spi_nor_parse_profile1(struct spi_nor *nor,
1158 				  const struct sfdp_parameter_header *profile1_header)
1159 {
1160 	u32 *dwords, addr;
1161 	size_t len;
1162 	int ret;
1163 	u8 dummy, opcode;
1164 
1165 	len = profile1_header->length * sizeof(*dwords);
1166 	dwords = kmalloc(len, GFP_KERNEL);
1167 	if (!dwords)
1168 		return -ENOMEM;
1169 
1170 	addr = SFDP_PARAM_HEADER_PTP(profile1_header);
1171 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1172 	if (ret)
1173 		goto out;
1174 
1175 	le32_to_cpu_array(dwords, profile1_header->length);
1176 
1177 	/* Get 8D-8D-8D fast read opcode and dummy cycles. */
1178 	opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[SFDP_DWORD(1)]);
1179 
1180 	 /* Set the Read Status Register dummy cycles and dummy address bytes. */
1181 	if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_DUMMY)
1182 		nor->params->rdsr_dummy = 8;
1183 	else
1184 		nor->params->rdsr_dummy = 4;
1185 
1186 	if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
1187 		nor->params->rdsr_addr_nbytes = 4;
1188 	else
1189 		nor->params->rdsr_addr_nbytes = 0;
1190 
1191 	/*
1192 	 * We don't know what speed the controller is running at. Find the
1193 	 * dummy cycles for the fastest frequency the flash can run at to be
1194 	 * sure we are never short of dummy cycles. A value of 0 means the
1195 	 * frequency is not supported.
1196 	 *
1197 	 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
1198 	 * flashes set the correct value if needed in their fixup hooks.
1199 	 */
1200 	dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[SFDP_DWORD(4)]);
1201 	if (!dummy)
1202 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ,
1203 				  dwords[SFDP_DWORD(5)]);
1204 	if (!dummy)
1205 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ,
1206 				  dwords[SFDP_DWORD(5)]);
1207 	if (!dummy)
1208 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ,
1209 				  dwords[SFDP_DWORD(5)]);
1210 	if (!dummy)
1211 		dev_dbg(nor->dev,
1212 			"Can't find dummy cycles from Profile 1.0 table\n");
1213 
1214 	/* Round up to an even value to avoid tripping controllers up. */
1215 	dummy = round_up(dummy, 2);
1216 
1217 	/* Update the fast read settings. */
1218 	nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
1219 	spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
1220 				  0, dummy, opcode,
1221 				  SNOR_PROTO_8_8_8_DTR);
1222 
1223 	/*
1224 	 * Page Program is "Required Command" in the xSPI Profile 1.0. Update
1225 	 * the params->hwcaps.mask here.
1226 	 */
1227 	nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
1228 
1229 out:
1230 	kfree(dwords);
1231 	return ret;
1232 }
1233 
1234 #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE		BIT(31)
1235 
1236 /**
1237  * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
1238  *                        Map.
1239  * @nor:		pointer to a 'struct spi_nor'
1240  * @sccr_header:	pointer to the 'struct sfdp_parameter_header' describing
1241  *			the SCCR Map table length and version.
1242  *
1243  * Return: 0 on success, -errno otherwise.
1244  */
spi_nor_parse_sccr(struct spi_nor * nor,const struct sfdp_parameter_header * sccr_header)1245 static int spi_nor_parse_sccr(struct spi_nor *nor,
1246 			      const struct sfdp_parameter_header *sccr_header)
1247 {
1248 	struct spi_nor_flash_parameter *params = nor->params;
1249 	u32 *dwords, addr;
1250 	size_t len;
1251 	int ret;
1252 
1253 	len = sccr_header->length * sizeof(*dwords);
1254 	dwords = kmalloc(len, GFP_KERNEL);
1255 	if (!dwords)
1256 		return -ENOMEM;
1257 
1258 	addr = SFDP_PARAM_HEADER_PTP(sccr_header);
1259 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1260 	if (ret)
1261 		goto out;
1262 
1263 	le32_to_cpu_array(dwords, sccr_header->length);
1264 
1265 	/* Address offset for volatile registers (die 0) */
1266 	if (!params->vreg_offset) {
1267 		params->vreg_offset = devm_kmalloc(nor->dev, sizeof(*dwords),
1268 						   GFP_KERNEL);
1269 		if (!params->vreg_offset) {
1270 			ret = -ENOMEM;
1271 			goto out;
1272 		}
1273 	}
1274 	params->vreg_offset[0] = dwords[SFDP_DWORD(1)];
1275 	params->n_dice = 1;
1276 
1277 	if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE,
1278 		      dwords[SFDP_DWORD(22)]))
1279 		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
1280 
1281 out:
1282 	kfree(dwords);
1283 	return ret;
1284 }
1285 
1286 /**
1287  * spi_nor_parse_sccr_mc() - Parse the Status, Control and Configuration
1288  *                           Register Map Offsets for Multi-Chip SPI Memory
1289  *                           Devices.
1290  * @nor:		pointer to a 'struct spi_nor'
1291  * @sccr_mc_header:	pointer to the 'struct sfdp_parameter_header' describing
1292  *			the SCCR Map offsets table length and version.
1293  *
1294  * Return: 0 on success, -errno otherwise.
1295  */
spi_nor_parse_sccr_mc(struct spi_nor * nor,const struct sfdp_parameter_header * sccr_mc_header)1296 static int spi_nor_parse_sccr_mc(struct spi_nor *nor,
1297 				 const struct sfdp_parameter_header *sccr_mc_header)
1298 {
1299 	struct spi_nor_flash_parameter *params = nor->params;
1300 	u32 *dwords, addr;
1301 	u8 i, n_dice;
1302 	size_t len;
1303 	int ret;
1304 
1305 	len = sccr_mc_header->length * sizeof(*dwords);
1306 	dwords = kmalloc(len, GFP_KERNEL);
1307 	if (!dwords)
1308 		return -ENOMEM;
1309 
1310 	addr = SFDP_PARAM_HEADER_PTP(sccr_mc_header);
1311 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1312 	if (ret)
1313 		goto out;
1314 
1315 	le32_to_cpu_array(dwords, sccr_mc_header->length);
1316 
1317 	/*
1318 	 * Pair of DOWRDs (volatile and non-volatile register offsets) per
1319 	 * additional die. Hence, length = 2 * (number of additional dice).
1320 	 */
1321 	n_dice = 1 + sccr_mc_header->length / 2;
1322 
1323 	/* Address offset for volatile registers of additional dice */
1324 	params->vreg_offset =
1325 			devm_krealloc(nor->dev, params->vreg_offset,
1326 				      n_dice * sizeof(*dwords),
1327 				      GFP_KERNEL);
1328 	if (!params->vreg_offset) {
1329 		ret = -ENOMEM;
1330 		goto out;
1331 	}
1332 
1333 	for (i = 1; i < n_dice; i++)
1334 		params->vreg_offset[i] = dwords[SFDP_DWORD(i) * 2];
1335 
1336 	params->n_dice = n_dice;
1337 
1338 out:
1339 	kfree(dwords);
1340 	return ret;
1341 }
1342 
1343 /**
1344  * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
1345  * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP
1346  * tables.
1347  * @nor:	pointer to a 'struct spi_nor'
1348  *
1349  * Used to tweak various flash parameters when information provided by the SFDP
1350  * tables are wrong.
1351  */
spi_nor_post_sfdp_fixups(struct spi_nor * nor)1352 static int spi_nor_post_sfdp_fixups(struct spi_nor *nor)
1353 {
1354 	int ret;
1355 
1356 	if (nor->manufacturer && nor->manufacturer->fixups &&
1357 	    nor->manufacturer->fixups->post_sfdp) {
1358 		ret = nor->manufacturer->fixups->post_sfdp(nor);
1359 		if (ret)
1360 			return ret;
1361 	}
1362 
1363 	if (nor->info->fixups && nor->info->fixups->post_sfdp)
1364 		return nor->info->fixups->post_sfdp(nor);
1365 
1366 	return 0;
1367 }
1368 
1369 /**
1370  * spi_nor_check_sfdp_signature() - check for a valid SFDP signature
1371  * @nor:	pointer to a 'struct spi_nor'
1372  *
1373  * Used to detect if the flash supports the RDSFDP command as well as the
1374  * presence of a valid SFDP table.
1375  *
1376  * Return: 0 on success, -errno otherwise.
1377  */
spi_nor_check_sfdp_signature(struct spi_nor * nor)1378 int spi_nor_check_sfdp_signature(struct spi_nor *nor)
1379 {
1380 	u32 signature;
1381 	int err;
1382 
1383 	/* Get the SFDP header. */
1384 	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature),
1385 					   &signature);
1386 	if (err < 0)
1387 		return err;
1388 
1389 	/* Check the SFDP signature. */
1390 	if (le32_to_cpu(signature) != SFDP_SIGNATURE)
1391 		return -EINVAL;
1392 
1393 	return 0;
1394 }
1395 
1396 /**
1397  * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1398  * @nor:		pointer to a 'struct spi_nor'
1399  *
1400  * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1401  * specification. This is a standard which tends to supported by almost all
1402  * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1403  * runtime the main parameters needed to perform basic SPI flash operations such
1404  * as Fast Read, Page Program or Sector Erase commands.
1405  *
1406  * Return: 0 on success, -errno otherwise.
1407  */
spi_nor_parse_sfdp(struct spi_nor * nor)1408 int spi_nor_parse_sfdp(struct spi_nor *nor)
1409 {
1410 	const struct sfdp_parameter_header *param_header, *bfpt_header;
1411 	struct sfdp_parameter_header *param_headers = NULL;
1412 	struct sfdp_header header;
1413 	struct device *dev = nor->dev;
1414 	struct sfdp *sfdp;
1415 	size_t sfdp_size;
1416 	size_t psize;
1417 	int i, err;
1418 
1419 	/* Get the SFDP header. */
1420 	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
1421 	if (err < 0)
1422 		return err;
1423 
1424 	/* Check the SFDP header version. */
1425 	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1426 	    header.major != SFDP_JESD216_MAJOR)
1427 		return -EINVAL;
1428 
1429 	/*
1430 	 * Verify that the first and only mandatory parameter header is a
1431 	 * Basic Flash Parameter Table header as specified in JESD216.
1432 	 */
1433 	bfpt_header = &header.bfpt_header;
1434 	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1435 	    bfpt_header->major != SFDP_JESD216_MAJOR)
1436 		return -EINVAL;
1437 
1438 	sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) +
1439 		    SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header);
1440 
1441 	/*
1442 	 * Allocate memory then read all parameter headers with a single
1443 	 * Read SFDP command. These parameter headers will actually be parsed
1444 	 * twice: a first time to get the latest revision of the basic flash
1445 	 * parameter table, then a second time to handle the supported optional
1446 	 * tables.
1447 	 * Hence we read the parameter headers once for all to reduce the
1448 	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1449 	 * because we don't need to keep these parameter headers: the allocated
1450 	 * memory is always released with kfree() before exiting this function.
1451 	 */
1452 	if (header.nph) {
1453 		psize = header.nph * sizeof(*param_headers);
1454 
1455 		param_headers = kmalloc(psize, GFP_KERNEL);
1456 		if (!param_headers)
1457 			return -ENOMEM;
1458 
1459 		err = spi_nor_read_sfdp(nor, sizeof(header),
1460 					psize, param_headers);
1461 		if (err < 0) {
1462 			dev_dbg(dev, "failed to read SFDP parameter headers\n");
1463 			goto exit;
1464 		}
1465 	}
1466 
1467 	/*
1468 	 * Cache the complete SFDP data. It is not (easily) possible to fetch
1469 	 * SFDP after probe time and we need it for the sysfs access.
1470 	 */
1471 	for (i = 0; i < header.nph; i++) {
1472 		param_header = &param_headers[i];
1473 		sfdp_size = max_t(size_t, sfdp_size,
1474 				  SFDP_PARAM_HEADER_PTP(param_header) +
1475 				  SFDP_PARAM_HEADER_PARAM_LEN(param_header));
1476 	}
1477 
1478 	/*
1479 	 * Limit the total size to a reasonable value to avoid allocating too
1480 	 * much memory just of because the flash returned some insane values.
1481 	 */
1482 	if (sfdp_size > PAGE_SIZE) {
1483 		dev_dbg(dev, "SFDP data (%zu) too big, truncating\n",
1484 			sfdp_size);
1485 		sfdp_size = PAGE_SIZE;
1486 	}
1487 
1488 	sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL);
1489 	if (!sfdp) {
1490 		err = -ENOMEM;
1491 		goto exit;
1492 	}
1493 
1494 	/*
1495 	 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the
1496 	 * sfdp_size should be a multiple of DWORDs. But in case a flash
1497 	 * is not spec compliant, make sure that we have enough space to store
1498 	 * the complete SFDP data.
1499 	 */
1500 	sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords));
1501 	sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords,
1502 				    sizeof(*sfdp->dwords), GFP_KERNEL);
1503 	if (!sfdp->dwords) {
1504 		err = -ENOMEM;
1505 		devm_kfree(dev, sfdp);
1506 		goto exit;
1507 	}
1508 
1509 	err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords);
1510 	if (err < 0) {
1511 		dev_dbg(dev, "failed to read SFDP data\n");
1512 		devm_kfree(dev, sfdp->dwords);
1513 		devm_kfree(dev, sfdp);
1514 		goto exit;
1515 	}
1516 
1517 	nor->sfdp = sfdp;
1518 
1519 	/*
1520 	 * Check other parameter headers to get the latest revision of
1521 	 * the basic flash parameter table.
1522 	 */
1523 	for (i = 0; i < header.nph; i++) {
1524 		param_header = &param_headers[i];
1525 
1526 		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1527 		    param_header->major == SFDP_JESD216_MAJOR &&
1528 		    (param_header->minor > bfpt_header->minor ||
1529 		     (param_header->minor == bfpt_header->minor &&
1530 		      param_header->length > bfpt_header->length)))
1531 			bfpt_header = param_header;
1532 	}
1533 
1534 	err = spi_nor_parse_bfpt(nor, bfpt_header);
1535 	if (err)
1536 		goto exit;
1537 
1538 	/* Parse optional parameter tables. */
1539 	for (i = 0; i < header.nph; i++) {
1540 		param_header = &param_headers[i];
1541 
1542 		switch (SFDP_PARAM_HEADER_ID(param_header)) {
1543 		case SFDP_SECTOR_MAP_ID:
1544 			err = spi_nor_parse_smpt(nor, param_header);
1545 			break;
1546 
1547 		case SFDP_4BAIT_ID:
1548 			err = spi_nor_parse_4bait(nor, param_header);
1549 			break;
1550 
1551 		case SFDP_PROFILE1_ID:
1552 			err = spi_nor_parse_profile1(nor, param_header);
1553 			break;
1554 
1555 		case SFDP_SCCR_MAP_ID:
1556 			err = spi_nor_parse_sccr(nor, param_header);
1557 			break;
1558 
1559 		case SFDP_SCCR_MAP_MC_ID:
1560 			err = spi_nor_parse_sccr_mc(nor, param_header);
1561 			break;
1562 
1563 		default:
1564 			break;
1565 		}
1566 
1567 		if (err) {
1568 			dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
1569 				 SFDP_PARAM_HEADER_ID(param_header));
1570 			/*
1571 			 * Let's not drop all information we extracted so far
1572 			 * if optional table parsers fail. In case of failing,
1573 			 * each optional parser is responsible to roll back to
1574 			 * the previously known spi_nor data.
1575 			 */
1576 			err = 0;
1577 		}
1578 	}
1579 
1580 	err = spi_nor_post_sfdp_fixups(nor);
1581 exit:
1582 	kfree(param_headers);
1583 	return err;
1584 }
1585