1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /*
3  * SPI core driver for the Ocelot chip family.
4  *
5  * This driver will handle everything necessary to allow for communication over
6  * SPI to the VSC7511, VSC7512, VSC7513 and VSC7514 chips. The main functions
7  * are to prepare the chip's SPI interface for a specific bus speed, and a host
8  * processor's endianness. This will create and distribute regmaps for any
9  * children.
10  *
11  * Copyright 2021-2022 Innovative Advantage Inc.
12  *
13  * Author: Colin Foster <colin.foster@in-advantage.com>
14  */
15 
16 #include <linux/device.h>
17 #include <linux/err.h>
18 #include <linux/errno.h>
19 #include <linux/export.h>
20 #include <linux/ioport.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/module.h>
23 #include <linux/regmap.h>
24 #include <linux/spi/spi.h>
25 #include <linux/types.h>
26 #include <linux/units.h>
27 
28 #include "ocelot.h"
29 
30 #define REG_DEV_CPUORG_IF_CTRL		0x0000
31 #define REG_DEV_CPUORG_IF_CFGSTAT	0x0004
32 
33 #define CFGSTAT_IF_NUM_VCORE		(0 << 24)
34 #define CFGSTAT_IF_NUM_VRAP		(1 << 24)
35 #define CFGSTAT_IF_NUM_SI		(2 << 24)
36 #define CFGSTAT_IF_NUM_MIIM		(3 << 24)
37 
38 #define VSC7512_DEVCPU_ORG_RES_START	0x71000000
39 #define VSC7512_DEVCPU_ORG_RES_SIZE	0x38
40 
41 #define VSC7512_CHIP_REGS_RES_START	0x71070000
42 #define VSC7512_CHIP_REGS_RES_SIZE	0x14
43 
44 static const struct resource vsc7512_dev_cpuorg_resource =
45 	DEFINE_RES_REG_NAMED(VSC7512_DEVCPU_ORG_RES_START,
46 			     VSC7512_DEVCPU_ORG_RES_SIZE,
47 			     "devcpu_org");
48 
49 static const struct resource vsc7512_gcb_resource =
50 	DEFINE_RES_REG_NAMED(VSC7512_CHIP_REGS_RES_START,
51 			     VSC7512_CHIP_REGS_RES_SIZE,
52 			     "devcpu_gcb_chip_regs");
53 
ocelot_spi_initialize(struct device * dev)54 static int ocelot_spi_initialize(struct device *dev)
55 {
56 	struct ocelot_ddata *ddata = dev_get_drvdata(dev);
57 	u32 val, check;
58 	int err;
59 
60 	val = OCELOT_SPI_BYTE_ORDER;
61 
62 	/*
63 	 * The SPI address must be big-endian, but we want the payload to match
64 	 * our CPU. These are two bits (0 and 1) but they're repeated such that
65 	 * the write from any configuration will be valid. The four
66 	 * configurations are:
67 	 *
68 	 * 0b00: little-endian, MSB first
69 	 * |            111111   | 22221111 | 33222222 |
70 	 * | 76543210 | 54321098 | 32109876 | 10987654 |
71 	 *
72 	 * 0b01: big-endian, MSB first
73 	 * | 33222222 | 22221111 | 111111   |          |
74 	 * | 10987654 | 32109876 | 54321098 | 76543210 |
75 	 *
76 	 * 0b10: little-endian, LSB first
77 	 * |              111111 | 11112222 | 22222233 |
78 	 * | 01234567 | 89012345 | 67890123 | 45678901 |
79 	 *
80 	 * 0b11: big-endian, LSB first
81 	 * | 22222233 | 11112222 |   111111 |          |
82 	 * | 45678901 | 67890123 | 89012345 | 01234567 |
83 	 */
84 	err = regmap_write(ddata->cpuorg_regmap, REG_DEV_CPUORG_IF_CTRL, val);
85 	if (err)
86 		return err;
87 
88 	/*
89 	 * Apply the number of padding bytes between a read request and the data
90 	 * payload. Some registers have access times of up to 1us, so if the
91 	 * first payload bit is shifted out too quickly, the read will fail.
92 	 */
93 	val = ddata->spi_padding_bytes;
94 	err = regmap_write(ddata->cpuorg_regmap, REG_DEV_CPUORG_IF_CFGSTAT, val);
95 	if (err)
96 		return err;
97 
98 	/*
99 	 * After we write the interface configuration, read it back here. This
100 	 * will verify several different things. The first is that the number of
101 	 * padding bytes actually got written correctly. These are found in bits
102 	 * 0:3.
103 	 *
104 	 * The second is that bit 16 is cleared. Bit 16 is IF_CFGSTAT:IF_STAT,
105 	 * and will be set if the register access is too fast. This would be in
106 	 * the condition that the number of padding bytes is insufficient for
107 	 * the SPI bus frequency.
108 	 *
109 	 * The last check is for bits 31:24, which define the interface by which
110 	 * the registers are being accessed. Since we're accessing them via the
111 	 * serial interface, it must return IF_NUM_SI.
112 	 */
113 	check = val | CFGSTAT_IF_NUM_SI;
114 
115 	err = regmap_read(ddata->cpuorg_regmap, REG_DEV_CPUORG_IF_CFGSTAT, &val);
116 	if (err)
117 		return err;
118 
119 	if (check != val)
120 		return -ENODEV;
121 
122 	return 0;
123 }
124 
125 static const struct regmap_config ocelot_spi_regmap_config = {
126 	.reg_bits = 24,
127 	.reg_stride = 4,
128 	.reg_shift = REGMAP_DOWNSHIFT(2),
129 	.val_bits = 32,
130 
131 	.write_flag_mask = 0x80,
132 
133 	.use_single_read = true,
134 	.use_single_write = true,
135 	.can_multi_write = false,
136 
137 	.reg_format_endian = REGMAP_ENDIAN_BIG,
138 	.val_format_endian = REGMAP_ENDIAN_NATIVE,
139 };
140 
ocelot_spi_regmap_bus_read(void * context,const void * reg,size_t reg_size,void * val,size_t val_size)141 static int ocelot_spi_regmap_bus_read(void *context, const void *reg, size_t reg_size,
142 				      void *val, size_t val_size)
143 {
144 	struct spi_transfer xfers[3] = {0};
145 	struct device *dev = context;
146 	struct ocelot_ddata *ddata;
147 	struct spi_device *spi;
148 	unsigned int index = 0;
149 
150 	ddata = dev_get_drvdata(dev);
151 	spi = to_spi_device(dev);
152 
153 	xfers[index].tx_buf = reg;
154 	xfers[index].len = reg_size;
155 	index++;
156 
157 	if (ddata->spi_padding_bytes) {
158 		xfers[index].len = ddata->spi_padding_bytes;
159 		xfers[index].tx_buf = ddata->dummy_buf;
160 		xfers[index].dummy_data = 1;
161 		index++;
162 	}
163 
164 	xfers[index].rx_buf = val;
165 	xfers[index].len = val_size;
166 	index++;
167 
168 	return spi_sync_transfer(spi, xfers, index);
169 }
170 
ocelot_spi_regmap_bus_write(void * context,const void * data,size_t count)171 static int ocelot_spi_regmap_bus_write(void *context, const void *data, size_t count)
172 {
173 	struct device *dev = context;
174 	struct spi_device *spi = to_spi_device(dev);
175 
176 	return spi_write(spi, data, count);
177 }
178 
179 static const struct regmap_bus ocelot_spi_regmap_bus = {
180 	.write = ocelot_spi_regmap_bus_write,
181 	.read = ocelot_spi_regmap_bus_read,
182 };
183 
ocelot_spi_init_regmap(struct device * dev,const struct resource * res)184 struct regmap *ocelot_spi_init_regmap(struct device *dev, const struct resource *res)
185 {
186 	struct regmap_config regmap_config;
187 
188 	memcpy(&regmap_config, &ocelot_spi_regmap_config, sizeof(regmap_config));
189 
190 	regmap_config.name = res->name;
191 	regmap_config.max_register = resource_size(res) - 1;
192 	regmap_config.reg_base = res->start;
193 
194 	return devm_regmap_init(dev, &ocelot_spi_regmap_bus, dev, &regmap_config);
195 }
196 EXPORT_SYMBOL_NS(ocelot_spi_init_regmap, MFD_OCELOT_SPI);
197 
ocelot_spi_probe(struct spi_device * spi)198 static int ocelot_spi_probe(struct spi_device *spi)
199 {
200 	struct device *dev = &spi->dev;
201 	struct ocelot_ddata *ddata;
202 	struct regmap *r;
203 	int err;
204 
205 	ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
206 	if (!ddata)
207 		return -ENOMEM;
208 
209 	spi_set_drvdata(spi, ddata);
210 
211 	if (spi->max_speed_hz <= 500000) {
212 		ddata->spi_padding_bytes = 0;
213 	} else {
214 		/*
215 		 * Calculation taken from the manual for IF_CFGSTAT:IF_CFG.
216 		 * Register access time is 1us, so we need to configure and send
217 		 * out enough padding bytes between the read request and data
218 		 * transmission that lasts at least 1 microsecond.
219 		 */
220 		ddata->spi_padding_bytes = 1 + (spi->max_speed_hz / HZ_PER_MHZ + 2) / 8;
221 
222 		ddata->dummy_buf = devm_kzalloc(dev, ddata->spi_padding_bytes, GFP_KERNEL);
223 		if (!ddata->dummy_buf)
224 			return -ENOMEM;
225 	}
226 
227 	spi->bits_per_word = 8;
228 
229 	err = spi_setup(spi);
230 	if (err)
231 		return dev_err_probe(&spi->dev, err, "Error performing SPI setup\n");
232 
233 	r = ocelot_spi_init_regmap(dev, &vsc7512_dev_cpuorg_resource);
234 	if (IS_ERR(r))
235 		return PTR_ERR(r);
236 
237 	ddata->cpuorg_regmap = r;
238 
239 	r = ocelot_spi_init_regmap(dev, &vsc7512_gcb_resource);
240 	if (IS_ERR(r))
241 		return PTR_ERR(r);
242 
243 	ddata->gcb_regmap = r;
244 
245 	/*
246 	 * The chip must be set up for SPI before it gets initialized and reset.
247 	 * This must be done before calling init, and after a chip reset is
248 	 * performed.
249 	 */
250 	err = ocelot_spi_initialize(dev);
251 	if (err)
252 		return dev_err_probe(dev, err, "Error initializing SPI bus\n");
253 
254 	err = ocelot_chip_reset(dev);
255 	if (err)
256 		return dev_err_probe(dev, err, "Error resetting device\n");
257 
258 	/*
259 	 * A chip reset will clear the SPI configuration, so it needs to be done
260 	 * again before we can access any registers.
261 	 */
262 	err = ocelot_spi_initialize(dev);
263 	if (err)
264 		return dev_err_probe(dev, err, "Error initializing SPI bus after reset\n");
265 
266 	err = ocelot_core_init(dev);
267 	if (err)
268 		return dev_err_probe(dev, err, "Error initializing Ocelot core\n");
269 
270 	return 0;
271 }
272 
273 static const struct spi_device_id ocelot_spi_ids[] = {
274 	{ "vsc7512", 0 },
275 	{ }
276 };
277 MODULE_DEVICE_TABLE(spi, ocelot_spi_ids);
278 
279 static const struct of_device_id ocelot_spi_of_match[] = {
280 	{ .compatible = "mscc,vsc7512" },
281 	{ }
282 };
283 MODULE_DEVICE_TABLE(of, ocelot_spi_of_match);
284 
285 static struct spi_driver ocelot_spi_driver = {
286 	.driver = {
287 		.name = "ocelot-soc",
288 		.of_match_table = ocelot_spi_of_match,
289 	},
290 	.id_table = ocelot_spi_ids,
291 	.probe = ocelot_spi_probe,
292 };
293 module_spi_driver(ocelot_spi_driver);
294 
295 MODULE_DESCRIPTION("SPI Controlled Ocelot Chip Driver");
296 MODULE_AUTHOR("Colin Foster <colin.foster@in-advantage.com>");
297 MODULE_LICENSE("Dual MIT/GPL");
298 MODULE_IMPORT_NS(MFD_OCELOT);
299