1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
3 //
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
19
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE 256
22 #define IR_TAB_MAX_SIZE 8192
23
24 static const struct {
25 const char *name;
26 unsigned int repeat_period;
27 unsigned int scancode_bits;
28 } protocols[] = {
29 [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
30 [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
31 [RC_PROTO_RC5] = { .name = "rc-5",
32 .scancode_bits = 0x1f7f, .repeat_period = 114 },
33 [RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
34 .scancode_bits = 0x1f7f3f, .repeat_period = 114 },
35 [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
36 .scancode_bits = 0x2fff, .repeat_period = 114 },
37 [RC_PROTO_JVC] = { .name = "jvc",
38 .scancode_bits = 0xffff, .repeat_period = 125 },
39 [RC_PROTO_SONY12] = { .name = "sony-12",
40 .scancode_bits = 0x1f007f, .repeat_period = 100 },
41 [RC_PROTO_SONY15] = { .name = "sony-15",
42 .scancode_bits = 0xff007f, .repeat_period = 100 },
43 [RC_PROTO_SONY20] = { .name = "sony-20",
44 .scancode_bits = 0x1fff7f, .repeat_period = 100 },
45 [RC_PROTO_NEC] = { .name = "nec",
46 .scancode_bits = 0xffff, .repeat_period = 110 },
47 [RC_PROTO_NECX] = { .name = "nec-x",
48 .scancode_bits = 0xffffff, .repeat_period = 110 },
49 [RC_PROTO_NEC32] = { .name = "nec-32",
50 .scancode_bits = 0xffffffff, .repeat_period = 110 },
51 [RC_PROTO_SANYO] = { .name = "sanyo",
52 .scancode_bits = 0x1fffff, .repeat_period = 125 },
53 [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
54 .scancode_bits = 0xffffff, .repeat_period = 100 },
55 [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
56 .scancode_bits = 0x1fffff, .repeat_period = 100 },
57 [RC_PROTO_RC6_0] = { .name = "rc-6-0",
58 .scancode_bits = 0xffff, .repeat_period = 114 },
59 [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
60 .scancode_bits = 0xfffff, .repeat_period = 114 },
61 [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
62 .scancode_bits = 0xffffff, .repeat_period = 114 },
63 [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
64 .scancode_bits = 0xffffffff, .repeat_period = 114 },
65 [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
66 .scancode_bits = 0xffff7fff, .repeat_period = 114 },
67 [RC_PROTO_SHARP] = { .name = "sharp",
68 .scancode_bits = 0x1fff, .repeat_period = 125 },
69 [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
70 [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
71 [RC_PROTO_IMON] = { .name = "imon",
72 .scancode_bits = 0x7fffffff, .repeat_period = 114 },
73 [RC_PROTO_RCMM12] = { .name = "rc-mm-12",
74 .scancode_bits = 0x00000fff, .repeat_period = 114 },
75 [RC_PROTO_RCMM24] = { .name = "rc-mm-24",
76 .scancode_bits = 0x00ffffff, .repeat_period = 114 },
77 [RC_PROTO_RCMM32] = { .name = "rc-mm-32",
78 .scancode_bits = 0xffffffff, .repeat_period = 114 },
79 [RC_PROTO_XBOX_DVD] = { .name = "xbox-dvd", .repeat_period = 64 },
80 };
81
82 /* Used to keep track of known keymaps */
83 static LIST_HEAD(rc_map_list);
84 static DEFINE_SPINLOCK(rc_map_lock);
85 static struct led_trigger *led_feedback;
86
87 /* Used to keep track of rc devices */
88 static DEFINE_IDA(rc_ida);
89
seek_rc_map(const char * name)90 static struct rc_map_list *seek_rc_map(const char *name)
91 {
92 struct rc_map_list *map = NULL;
93
94 spin_lock(&rc_map_lock);
95 list_for_each_entry(map, &rc_map_list, list) {
96 if (!strcmp(name, map->map.name)) {
97 spin_unlock(&rc_map_lock);
98 return map;
99 }
100 }
101 spin_unlock(&rc_map_lock);
102
103 return NULL;
104 }
105
rc_map_get(const char * name)106 struct rc_map *rc_map_get(const char *name)
107 {
108
109 struct rc_map_list *map;
110
111 map = seek_rc_map(name);
112 #ifdef CONFIG_MODULES
113 if (!map) {
114 int rc = request_module("%s", name);
115 if (rc < 0) {
116 pr_err("Couldn't load IR keymap %s\n", name);
117 return NULL;
118 }
119 msleep(20); /* Give some time for IR to register */
120
121 map = seek_rc_map(name);
122 }
123 #endif
124 if (!map) {
125 pr_err("IR keymap %s not found\n", name);
126 return NULL;
127 }
128
129 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
130
131 return &map->map;
132 }
133 EXPORT_SYMBOL_GPL(rc_map_get);
134
rc_map_register(struct rc_map_list * map)135 int rc_map_register(struct rc_map_list *map)
136 {
137 spin_lock(&rc_map_lock);
138 list_add_tail(&map->list, &rc_map_list);
139 spin_unlock(&rc_map_lock);
140 return 0;
141 }
142 EXPORT_SYMBOL_GPL(rc_map_register);
143
rc_map_unregister(struct rc_map_list * map)144 void rc_map_unregister(struct rc_map_list *map)
145 {
146 spin_lock(&rc_map_lock);
147 list_del(&map->list);
148 spin_unlock(&rc_map_lock);
149 }
150 EXPORT_SYMBOL_GPL(rc_map_unregister);
151
152
153 static struct rc_map_table empty[] = {
154 { 0x2a, KEY_COFFEE },
155 };
156
157 static struct rc_map_list empty_map = {
158 .map = {
159 .scan = empty,
160 .size = ARRAY_SIZE(empty),
161 .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */
162 .name = RC_MAP_EMPTY,
163 }
164 };
165
166 /**
167 * scancode_to_u64() - converts scancode in &struct input_keymap_entry
168 * @ke: keymap entry containing scancode to be converted.
169 * @scancode: pointer to the location where converted scancode should
170 * be stored.
171 *
172 * This function is a version of input_scancode_to_scalar specialized for
173 * rc-core.
174 */
scancode_to_u64(const struct input_keymap_entry * ke,u64 * scancode)175 static int scancode_to_u64(const struct input_keymap_entry *ke, u64 *scancode)
176 {
177 switch (ke->len) {
178 case 1:
179 *scancode = *((u8 *)ke->scancode);
180 break;
181
182 case 2:
183 *scancode = *((u16 *)ke->scancode);
184 break;
185
186 case 4:
187 *scancode = *((u32 *)ke->scancode);
188 break;
189
190 case 8:
191 *scancode = *((u64 *)ke->scancode);
192 break;
193
194 default:
195 return -EINVAL;
196 }
197
198 return 0;
199 }
200
201 /**
202 * ir_create_table() - initializes a scancode table
203 * @dev: the rc_dev device
204 * @rc_map: the rc_map to initialize
205 * @name: name to assign to the table
206 * @rc_proto: ir type to assign to the new table
207 * @size: initial size of the table
208 *
209 * This routine will initialize the rc_map and will allocate
210 * memory to hold at least the specified number of elements.
211 *
212 * return: zero on success or a negative error code
213 */
ir_create_table(struct rc_dev * dev,struct rc_map * rc_map,const char * name,u64 rc_proto,size_t size)214 static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
215 const char *name, u64 rc_proto, size_t size)
216 {
217 rc_map->name = kstrdup(name, GFP_KERNEL);
218 if (!rc_map->name)
219 return -ENOMEM;
220 rc_map->rc_proto = rc_proto;
221 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
222 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
223 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
224 if (!rc_map->scan) {
225 kfree(rc_map->name);
226 rc_map->name = NULL;
227 return -ENOMEM;
228 }
229
230 dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
231 rc_map->size, rc_map->alloc);
232 return 0;
233 }
234
235 /**
236 * ir_free_table() - frees memory allocated by a scancode table
237 * @rc_map: the table whose mappings need to be freed
238 *
239 * This routine will free memory alloctaed for key mappings used by given
240 * scancode table.
241 */
ir_free_table(struct rc_map * rc_map)242 static void ir_free_table(struct rc_map *rc_map)
243 {
244 rc_map->size = 0;
245 kfree(rc_map->name);
246 rc_map->name = NULL;
247 kfree(rc_map->scan);
248 rc_map->scan = NULL;
249 }
250
251 /**
252 * ir_resize_table() - resizes a scancode table if necessary
253 * @dev: the rc_dev device
254 * @rc_map: the rc_map to resize
255 * @gfp_flags: gfp flags to use when allocating memory
256 *
257 * This routine will shrink the rc_map if it has lots of
258 * unused entries and grow it if it is full.
259 *
260 * return: zero on success or a negative error code
261 */
ir_resize_table(struct rc_dev * dev,struct rc_map * rc_map,gfp_t gfp_flags)262 static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
263 gfp_t gfp_flags)
264 {
265 unsigned int oldalloc = rc_map->alloc;
266 unsigned int newalloc = oldalloc;
267 struct rc_map_table *oldscan = rc_map->scan;
268 struct rc_map_table *newscan;
269
270 if (rc_map->size == rc_map->len) {
271 /* All entries in use -> grow keytable */
272 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
273 return -ENOMEM;
274
275 newalloc *= 2;
276 dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
277 }
278
279 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
280 /* Less than 1/3 of entries in use -> shrink keytable */
281 newalloc /= 2;
282 dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
283 }
284
285 if (newalloc == oldalloc)
286 return 0;
287
288 newscan = kmalloc(newalloc, gfp_flags);
289 if (!newscan)
290 return -ENOMEM;
291
292 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
293 rc_map->scan = newscan;
294 rc_map->alloc = newalloc;
295 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
296 kfree(oldscan);
297 return 0;
298 }
299
300 /**
301 * ir_update_mapping() - set a keycode in the scancode->keycode table
302 * @dev: the struct rc_dev device descriptor
303 * @rc_map: scancode table to be adjusted
304 * @index: index of the mapping that needs to be updated
305 * @new_keycode: the desired keycode
306 *
307 * This routine is used to update scancode->keycode mapping at given
308 * position.
309 *
310 * return: previous keycode assigned to the mapping
311 *
312 */
ir_update_mapping(struct rc_dev * dev,struct rc_map * rc_map,unsigned int index,unsigned int new_keycode)313 static unsigned int ir_update_mapping(struct rc_dev *dev,
314 struct rc_map *rc_map,
315 unsigned int index,
316 unsigned int new_keycode)
317 {
318 int old_keycode = rc_map->scan[index].keycode;
319 int i;
320
321 /* Did the user wish to remove the mapping? */
322 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
323 dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04llx\n",
324 index, rc_map->scan[index].scancode);
325 rc_map->len--;
326 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
327 (rc_map->len - index) * sizeof(struct rc_map_table));
328 } else {
329 dev_dbg(&dev->dev, "#%d: %s scan 0x%04llx with key 0x%04x\n",
330 index,
331 old_keycode == KEY_RESERVED ? "New" : "Replacing",
332 rc_map->scan[index].scancode, new_keycode);
333 rc_map->scan[index].keycode = new_keycode;
334 __set_bit(new_keycode, dev->input_dev->keybit);
335 }
336
337 if (old_keycode != KEY_RESERVED) {
338 /* A previous mapping was updated... */
339 __clear_bit(old_keycode, dev->input_dev->keybit);
340 /* ... but another scancode might use the same keycode */
341 for (i = 0; i < rc_map->len; i++) {
342 if (rc_map->scan[i].keycode == old_keycode) {
343 __set_bit(old_keycode, dev->input_dev->keybit);
344 break;
345 }
346 }
347
348 /* Possibly shrink the keytable, failure is not a problem */
349 ir_resize_table(dev, rc_map, GFP_ATOMIC);
350 }
351
352 return old_keycode;
353 }
354
355 /**
356 * ir_establish_scancode() - set a keycode in the scancode->keycode table
357 * @dev: the struct rc_dev device descriptor
358 * @rc_map: scancode table to be searched
359 * @scancode: the desired scancode
360 * @resize: controls whether we allowed to resize the table to
361 * accommodate not yet present scancodes
362 *
363 * This routine is used to locate given scancode in rc_map.
364 * If scancode is not yet present the routine will allocate a new slot
365 * for it.
366 *
367 * return: index of the mapping containing scancode in question
368 * or -1U in case of failure.
369 */
ir_establish_scancode(struct rc_dev * dev,struct rc_map * rc_map,u64 scancode,bool resize)370 static unsigned int ir_establish_scancode(struct rc_dev *dev,
371 struct rc_map *rc_map,
372 u64 scancode, bool resize)
373 {
374 unsigned int i;
375
376 /*
377 * Unfortunately, some hardware-based IR decoders don't provide
378 * all bits for the complete IR code. In general, they provide only
379 * the command part of the IR code. Yet, as it is possible to replace
380 * the provided IR with another one, it is needed to allow loading
381 * IR tables from other remotes. So, we support specifying a mask to
382 * indicate the valid bits of the scancodes.
383 */
384 if (dev->scancode_mask)
385 scancode &= dev->scancode_mask;
386
387 /* First check if we already have a mapping for this ir command */
388 for (i = 0; i < rc_map->len; i++) {
389 if (rc_map->scan[i].scancode == scancode)
390 return i;
391
392 /* Keytable is sorted from lowest to highest scancode */
393 if (rc_map->scan[i].scancode >= scancode)
394 break;
395 }
396
397 /* No previous mapping found, we might need to grow the table */
398 if (rc_map->size == rc_map->len) {
399 if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
400 return -1U;
401 }
402
403 /* i is the proper index to insert our new keycode */
404 if (i < rc_map->len)
405 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
406 (rc_map->len - i) * sizeof(struct rc_map_table));
407 rc_map->scan[i].scancode = scancode;
408 rc_map->scan[i].keycode = KEY_RESERVED;
409 rc_map->len++;
410
411 return i;
412 }
413
414 /**
415 * ir_setkeycode() - set a keycode in the scancode->keycode table
416 * @idev: the struct input_dev device descriptor
417 * @ke: Input keymap entry
418 * @old_keycode: result
419 *
420 * This routine is used to handle evdev EVIOCSKEY ioctl.
421 *
422 * return: -EINVAL if the keycode could not be inserted, otherwise zero.
423 */
ir_setkeycode(struct input_dev * idev,const struct input_keymap_entry * ke,unsigned int * old_keycode)424 static int ir_setkeycode(struct input_dev *idev,
425 const struct input_keymap_entry *ke,
426 unsigned int *old_keycode)
427 {
428 struct rc_dev *rdev = input_get_drvdata(idev);
429 struct rc_map *rc_map = &rdev->rc_map;
430 unsigned int index;
431 u64 scancode;
432 int retval = 0;
433 unsigned long flags;
434
435 spin_lock_irqsave(&rc_map->lock, flags);
436
437 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
438 index = ke->index;
439 if (index >= rc_map->len) {
440 retval = -EINVAL;
441 goto out;
442 }
443 } else {
444 retval = scancode_to_u64(ke, &scancode);
445 if (retval)
446 goto out;
447
448 index = ir_establish_scancode(rdev, rc_map, scancode, true);
449 if (index >= rc_map->len) {
450 retval = -ENOMEM;
451 goto out;
452 }
453 }
454
455 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
456
457 out:
458 spin_unlock_irqrestore(&rc_map->lock, flags);
459 return retval;
460 }
461
462 /**
463 * ir_setkeytable() - sets several entries in the scancode->keycode table
464 * @dev: the struct rc_dev device descriptor
465 * @from: the struct rc_map to copy entries from
466 *
467 * This routine is used to handle table initialization.
468 *
469 * return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
470 */
ir_setkeytable(struct rc_dev * dev,const struct rc_map * from)471 static int ir_setkeytable(struct rc_dev *dev, const struct rc_map *from)
472 {
473 struct rc_map *rc_map = &dev->rc_map;
474 unsigned int i, index;
475 int rc;
476
477 rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
478 from->size);
479 if (rc)
480 return rc;
481
482 for (i = 0; i < from->size; i++) {
483 index = ir_establish_scancode(dev, rc_map,
484 from->scan[i].scancode, false);
485 if (index >= rc_map->len) {
486 rc = -ENOMEM;
487 break;
488 }
489
490 ir_update_mapping(dev, rc_map, index,
491 from->scan[i].keycode);
492 }
493
494 if (rc)
495 ir_free_table(rc_map);
496
497 return rc;
498 }
499
rc_map_cmp(const void * key,const void * elt)500 static int rc_map_cmp(const void *key, const void *elt)
501 {
502 const u64 *scancode = key;
503 const struct rc_map_table *e = elt;
504
505 if (*scancode < e->scancode)
506 return -1;
507 else if (*scancode > e->scancode)
508 return 1;
509 return 0;
510 }
511
512 /**
513 * ir_lookup_by_scancode() - locate mapping by scancode
514 * @rc_map: the struct rc_map to search
515 * @scancode: scancode to look for in the table
516 *
517 * This routine performs binary search in RC keykeymap table for
518 * given scancode.
519 *
520 * return: index in the table, -1U if not found
521 */
ir_lookup_by_scancode(const struct rc_map * rc_map,u64 scancode)522 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
523 u64 scancode)
524 {
525 struct rc_map_table *res;
526
527 res = bsearch(&scancode, rc_map->scan, rc_map->len,
528 sizeof(struct rc_map_table), rc_map_cmp);
529 if (!res)
530 return -1U;
531 else
532 return res - rc_map->scan;
533 }
534
535 /**
536 * ir_getkeycode() - get a keycode from the scancode->keycode table
537 * @idev: the struct input_dev device descriptor
538 * @ke: Input keymap entry
539 *
540 * This routine is used to handle evdev EVIOCGKEY ioctl.
541 *
542 * return: always returns zero.
543 */
ir_getkeycode(struct input_dev * idev,struct input_keymap_entry * ke)544 static int ir_getkeycode(struct input_dev *idev,
545 struct input_keymap_entry *ke)
546 {
547 struct rc_dev *rdev = input_get_drvdata(idev);
548 struct rc_map *rc_map = &rdev->rc_map;
549 struct rc_map_table *entry;
550 unsigned long flags;
551 unsigned int index;
552 u64 scancode;
553 int retval;
554
555 spin_lock_irqsave(&rc_map->lock, flags);
556
557 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
558 index = ke->index;
559 } else {
560 retval = scancode_to_u64(ke, &scancode);
561 if (retval)
562 goto out;
563
564 index = ir_lookup_by_scancode(rc_map, scancode);
565 }
566
567 if (index < rc_map->len) {
568 entry = &rc_map->scan[index];
569
570 ke->index = index;
571 ke->keycode = entry->keycode;
572 ke->len = sizeof(entry->scancode);
573 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
574 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
575 /*
576 * We do not really know the valid range of scancodes
577 * so let's respond with KEY_RESERVED to anything we
578 * do not have mapping for [yet].
579 */
580 ke->index = index;
581 ke->keycode = KEY_RESERVED;
582 } else {
583 retval = -EINVAL;
584 goto out;
585 }
586
587 retval = 0;
588
589 out:
590 spin_unlock_irqrestore(&rc_map->lock, flags);
591 return retval;
592 }
593
594 /**
595 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
596 * @dev: the struct rc_dev descriptor of the device
597 * @scancode: the scancode to look for
598 *
599 * This routine is used by drivers which need to convert a scancode to a
600 * keycode. Normally it should not be used since drivers should have no
601 * interest in keycodes.
602 *
603 * return: the corresponding keycode, or KEY_RESERVED
604 */
rc_g_keycode_from_table(struct rc_dev * dev,u64 scancode)605 u32 rc_g_keycode_from_table(struct rc_dev *dev, u64 scancode)
606 {
607 struct rc_map *rc_map = &dev->rc_map;
608 unsigned int keycode;
609 unsigned int index;
610 unsigned long flags;
611
612 spin_lock_irqsave(&rc_map->lock, flags);
613
614 index = ir_lookup_by_scancode(rc_map, scancode);
615 keycode = index < rc_map->len ?
616 rc_map->scan[index].keycode : KEY_RESERVED;
617
618 spin_unlock_irqrestore(&rc_map->lock, flags);
619
620 if (keycode != KEY_RESERVED)
621 dev_dbg(&dev->dev, "%s: scancode 0x%04llx keycode 0x%02x\n",
622 dev->device_name, scancode, keycode);
623
624 return keycode;
625 }
626 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
627
628 /**
629 * ir_do_keyup() - internal function to signal the release of a keypress
630 * @dev: the struct rc_dev descriptor of the device
631 * @sync: whether or not to call input_sync
632 *
633 * This function is used internally to release a keypress, it must be
634 * called with keylock held.
635 */
ir_do_keyup(struct rc_dev * dev,bool sync)636 static void ir_do_keyup(struct rc_dev *dev, bool sync)
637 {
638 if (!dev->keypressed)
639 return;
640
641 dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
642 del_timer(&dev->timer_repeat);
643 input_report_key(dev->input_dev, dev->last_keycode, 0);
644 led_trigger_event(led_feedback, LED_OFF);
645 if (sync)
646 input_sync(dev->input_dev);
647 dev->keypressed = false;
648 }
649
650 /**
651 * rc_keyup() - signals the release of a keypress
652 * @dev: the struct rc_dev descriptor of the device
653 *
654 * This routine is used to signal that a key has been released on the
655 * remote control.
656 */
rc_keyup(struct rc_dev * dev)657 void rc_keyup(struct rc_dev *dev)
658 {
659 unsigned long flags;
660
661 spin_lock_irqsave(&dev->keylock, flags);
662 ir_do_keyup(dev, true);
663 spin_unlock_irqrestore(&dev->keylock, flags);
664 }
665 EXPORT_SYMBOL_GPL(rc_keyup);
666
667 /**
668 * ir_timer_keyup() - generates a keyup event after a timeout
669 *
670 * @t: a pointer to the struct timer_list
671 *
672 * This routine will generate a keyup event some time after a keydown event
673 * is generated when no further activity has been detected.
674 */
ir_timer_keyup(struct timer_list * t)675 static void ir_timer_keyup(struct timer_list *t)
676 {
677 struct rc_dev *dev = from_timer(dev, t, timer_keyup);
678 unsigned long flags;
679
680 /*
681 * ir->keyup_jiffies is used to prevent a race condition if a
682 * hardware interrupt occurs at this point and the keyup timer
683 * event is moved further into the future as a result.
684 *
685 * The timer will then be reactivated and this function called
686 * again in the future. We need to exit gracefully in that case
687 * to allow the input subsystem to do its auto-repeat magic or
688 * a keyup event might follow immediately after the keydown.
689 */
690 spin_lock_irqsave(&dev->keylock, flags);
691 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
692 ir_do_keyup(dev, true);
693 spin_unlock_irqrestore(&dev->keylock, flags);
694 }
695
696 /**
697 * ir_timer_repeat() - generates a repeat event after a timeout
698 *
699 * @t: a pointer to the struct timer_list
700 *
701 * This routine will generate a soft repeat event every REP_PERIOD
702 * milliseconds.
703 */
ir_timer_repeat(struct timer_list * t)704 static void ir_timer_repeat(struct timer_list *t)
705 {
706 struct rc_dev *dev = from_timer(dev, t, timer_repeat);
707 struct input_dev *input = dev->input_dev;
708 unsigned long flags;
709
710 spin_lock_irqsave(&dev->keylock, flags);
711 if (dev->keypressed) {
712 input_event(input, EV_KEY, dev->last_keycode, 2);
713 input_sync(input);
714 if (input->rep[REP_PERIOD])
715 mod_timer(&dev->timer_repeat, jiffies +
716 msecs_to_jiffies(input->rep[REP_PERIOD]));
717 }
718 spin_unlock_irqrestore(&dev->keylock, flags);
719 }
720
repeat_period(int protocol)721 static unsigned int repeat_period(int protocol)
722 {
723 if (protocol >= ARRAY_SIZE(protocols))
724 return 100;
725
726 return protocols[protocol].repeat_period;
727 }
728
729 /**
730 * rc_repeat() - signals that a key is still pressed
731 * @dev: the struct rc_dev descriptor of the device
732 *
733 * This routine is used by IR decoders when a repeat message which does
734 * not include the necessary bits to reproduce the scancode has been
735 * received.
736 */
rc_repeat(struct rc_dev * dev)737 void rc_repeat(struct rc_dev *dev)
738 {
739 unsigned long flags;
740 unsigned int timeout = usecs_to_jiffies(dev->timeout) +
741 msecs_to_jiffies(repeat_period(dev->last_protocol));
742 struct lirc_scancode sc = {
743 .scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
744 .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
745 .flags = LIRC_SCANCODE_FLAG_REPEAT |
746 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
747 };
748
749 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
750 lirc_scancode_event(dev, &sc);
751
752 spin_lock_irqsave(&dev->keylock, flags);
753
754 if (dev->last_scancode <= U32_MAX) {
755 input_event(dev->input_dev, EV_MSC, MSC_SCAN,
756 dev->last_scancode);
757 input_sync(dev->input_dev);
758 }
759
760 if (dev->keypressed) {
761 dev->keyup_jiffies = jiffies + timeout;
762 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
763 }
764
765 spin_unlock_irqrestore(&dev->keylock, flags);
766 }
767 EXPORT_SYMBOL_GPL(rc_repeat);
768
769 /**
770 * ir_do_keydown() - internal function to process a keypress
771 * @dev: the struct rc_dev descriptor of the device
772 * @protocol: the protocol of the keypress
773 * @scancode: the scancode of the keypress
774 * @keycode: the keycode of the keypress
775 * @toggle: the toggle value of the keypress
776 *
777 * This function is used internally to register a keypress, it must be
778 * called with keylock held.
779 */
ir_do_keydown(struct rc_dev * dev,enum rc_proto protocol,u64 scancode,u32 keycode,u8 toggle)780 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
781 u64 scancode, u32 keycode, u8 toggle)
782 {
783 bool new_event = (!dev->keypressed ||
784 dev->last_protocol != protocol ||
785 dev->last_scancode != scancode ||
786 dev->last_toggle != toggle);
787 struct lirc_scancode sc = {
788 .scancode = scancode, .rc_proto = protocol,
789 .flags = (toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) |
790 (!new_event ? LIRC_SCANCODE_FLAG_REPEAT : 0),
791 .keycode = keycode
792 };
793
794 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
795 lirc_scancode_event(dev, &sc);
796
797 if (new_event && dev->keypressed)
798 ir_do_keyup(dev, false);
799
800 if (scancode <= U32_MAX)
801 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
802
803 dev->last_protocol = protocol;
804 dev->last_scancode = scancode;
805 dev->last_toggle = toggle;
806 dev->last_keycode = keycode;
807
808 if (new_event && keycode != KEY_RESERVED) {
809 /* Register a keypress */
810 dev->keypressed = true;
811
812 dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08llx\n",
813 dev->device_name, keycode, protocol, scancode);
814 input_report_key(dev->input_dev, keycode, 1);
815
816 led_trigger_event(led_feedback, LED_FULL);
817 }
818
819 /*
820 * For CEC, start sending repeat messages as soon as the first
821 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
822 * is non-zero. Otherwise, the input layer will generate repeat
823 * messages.
824 */
825 if (!new_event && keycode != KEY_RESERVED &&
826 dev->allowed_protocols == RC_PROTO_BIT_CEC &&
827 !timer_pending(&dev->timer_repeat) &&
828 dev->input_dev->rep[REP_PERIOD] &&
829 !dev->input_dev->rep[REP_DELAY]) {
830 input_event(dev->input_dev, EV_KEY, keycode, 2);
831 mod_timer(&dev->timer_repeat, jiffies +
832 msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
833 }
834
835 input_sync(dev->input_dev);
836 }
837
838 /**
839 * rc_keydown() - generates input event for a key press
840 * @dev: the struct rc_dev descriptor of the device
841 * @protocol: the protocol for the keypress
842 * @scancode: the scancode for the keypress
843 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
844 * support toggle values, this should be set to zero)
845 *
846 * This routine is used to signal that a key has been pressed on the
847 * remote control.
848 */
rc_keydown(struct rc_dev * dev,enum rc_proto protocol,u64 scancode,u8 toggle)849 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u64 scancode,
850 u8 toggle)
851 {
852 unsigned long flags;
853 u32 keycode = rc_g_keycode_from_table(dev, scancode);
854
855 spin_lock_irqsave(&dev->keylock, flags);
856 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
857
858 if (dev->keypressed) {
859 dev->keyup_jiffies = jiffies + usecs_to_jiffies(dev->timeout) +
860 msecs_to_jiffies(repeat_period(protocol));
861 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
862 }
863 spin_unlock_irqrestore(&dev->keylock, flags);
864 }
865 EXPORT_SYMBOL_GPL(rc_keydown);
866
867 /**
868 * rc_keydown_notimeout() - generates input event for a key press without
869 * an automatic keyup event at a later time
870 * @dev: the struct rc_dev descriptor of the device
871 * @protocol: the protocol for the keypress
872 * @scancode: the scancode for the keypress
873 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
874 * support toggle values, this should be set to zero)
875 *
876 * This routine is used to signal that a key has been pressed on the
877 * remote control. The driver must manually call rc_keyup() at a later stage.
878 */
rc_keydown_notimeout(struct rc_dev * dev,enum rc_proto protocol,u64 scancode,u8 toggle)879 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
880 u64 scancode, u8 toggle)
881 {
882 unsigned long flags;
883 u32 keycode = rc_g_keycode_from_table(dev, scancode);
884
885 spin_lock_irqsave(&dev->keylock, flags);
886 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
887 spin_unlock_irqrestore(&dev->keylock, flags);
888 }
889 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
890
891 /**
892 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
893 * For nec, it should do the opposite of ir_nec_bytes_to_scancode()
894 * @proto: protocol
895 * @scancode: scancode
896 */
rc_validate_scancode(enum rc_proto proto,u32 scancode)897 bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
898 {
899 switch (proto) {
900 /*
901 * NECX has a 16-bit address; if the lower 8 bits match the upper
902 * 8 bits inverted, then the address would match regular nec.
903 */
904 case RC_PROTO_NECX:
905 if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
906 return false;
907 break;
908 /*
909 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
910 * of the command match the upper 8 bits inverted, then it would
911 * be either NEC or NECX.
912 */
913 case RC_PROTO_NEC32:
914 if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
915 return false;
916 break;
917 /*
918 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
919 * is regular mode-6a 32 bit
920 */
921 case RC_PROTO_RC6_MCE:
922 if ((scancode & 0xffff0000) != 0x800f0000)
923 return false;
924 break;
925 case RC_PROTO_RC6_6A_32:
926 if ((scancode & 0xffff0000) == 0x800f0000)
927 return false;
928 break;
929 default:
930 break;
931 }
932
933 return true;
934 }
935
936 /**
937 * rc_validate_filter() - checks that the scancode and mask are valid and
938 * provides sensible defaults
939 * @dev: the struct rc_dev descriptor of the device
940 * @filter: the scancode and mask
941 *
942 * return: 0 or -EINVAL if the filter is not valid
943 */
rc_validate_filter(struct rc_dev * dev,struct rc_scancode_filter * filter)944 static int rc_validate_filter(struct rc_dev *dev,
945 struct rc_scancode_filter *filter)
946 {
947 u32 mask, s = filter->data;
948 enum rc_proto protocol = dev->wakeup_protocol;
949
950 if (protocol >= ARRAY_SIZE(protocols))
951 return -EINVAL;
952
953 mask = protocols[protocol].scancode_bits;
954
955 if (!rc_validate_scancode(protocol, s))
956 return -EINVAL;
957
958 filter->data &= mask;
959 filter->mask &= mask;
960
961 /*
962 * If we have to raw encode the IR for wakeup, we cannot have a mask
963 */
964 if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
965 return -EINVAL;
966
967 return 0;
968 }
969
rc_open(struct rc_dev * rdev)970 int rc_open(struct rc_dev *rdev)
971 {
972 int rval = 0;
973
974 if (!rdev)
975 return -EINVAL;
976
977 mutex_lock(&rdev->lock);
978
979 if (!rdev->registered) {
980 rval = -ENODEV;
981 } else {
982 if (!rdev->users++ && rdev->open)
983 rval = rdev->open(rdev);
984
985 if (rval)
986 rdev->users--;
987 }
988
989 mutex_unlock(&rdev->lock);
990
991 return rval;
992 }
993
ir_open(struct input_dev * idev)994 static int ir_open(struct input_dev *idev)
995 {
996 struct rc_dev *rdev = input_get_drvdata(idev);
997
998 return rc_open(rdev);
999 }
1000
rc_close(struct rc_dev * rdev)1001 void rc_close(struct rc_dev *rdev)
1002 {
1003 if (rdev) {
1004 mutex_lock(&rdev->lock);
1005
1006 if (!--rdev->users && rdev->close && rdev->registered)
1007 rdev->close(rdev);
1008
1009 mutex_unlock(&rdev->lock);
1010 }
1011 }
1012
ir_close(struct input_dev * idev)1013 static void ir_close(struct input_dev *idev)
1014 {
1015 struct rc_dev *rdev = input_get_drvdata(idev);
1016 rc_close(rdev);
1017 }
1018
1019 /* class for /sys/class/rc */
rc_devnode(const struct device * dev,umode_t * mode)1020 static char *rc_devnode(const struct device *dev, umode_t *mode)
1021 {
1022 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
1023 }
1024
1025 static struct class rc_class = {
1026 .name = "rc",
1027 .devnode = rc_devnode,
1028 };
1029
1030 /*
1031 * These are the protocol textual descriptions that are
1032 * used by the sysfs protocols file. Note that the order
1033 * of the entries is relevant.
1034 */
1035 static const struct {
1036 u64 type;
1037 const char *name;
1038 const char *module_name;
1039 } proto_names[] = {
1040 { RC_PROTO_BIT_NONE, "none", NULL },
1041 { RC_PROTO_BIT_OTHER, "other", NULL },
1042 { RC_PROTO_BIT_UNKNOWN, "unknown", NULL },
1043 { RC_PROTO_BIT_RC5 |
1044 RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" },
1045 { RC_PROTO_BIT_NEC |
1046 RC_PROTO_BIT_NECX |
1047 RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" },
1048 { RC_PROTO_BIT_RC6_0 |
1049 RC_PROTO_BIT_RC6_6A_20 |
1050 RC_PROTO_BIT_RC6_6A_24 |
1051 RC_PROTO_BIT_RC6_6A_32 |
1052 RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" },
1053 { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" },
1054 { RC_PROTO_BIT_SONY12 |
1055 RC_PROTO_BIT_SONY15 |
1056 RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" },
1057 { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" },
1058 { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" },
1059 { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" },
1060 { RC_PROTO_BIT_MCIR2_KBD |
1061 RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" },
1062 { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" },
1063 { RC_PROTO_BIT_CEC, "cec", NULL },
1064 { RC_PROTO_BIT_IMON, "imon", "ir-imon-decoder" },
1065 { RC_PROTO_BIT_RCMM12 |
1066 RC_PROTO_BIT_RCMM24 |
1067 RC_PROTO_BIT_RCMM32, "rc-mm", "ir-rcmm-decoder" },
1068 { RC_PROTO_BIT_XBOX_DVD, "xbox-dvd", NULL },
1069 };
1070
1071 /**
1072 * struct rc_filter_attribute - Device attribute relating to a filter type.
1073 * @attr: Device attribute.
1074 * @type: Filter type.
1075 * @mask: false for filter value, true for filter mask.
1076 */
1077 struct rc_filter_attribute {
1078 struct device_attribute attr;
1079 enum rc_filter_type type;
1080 bool mask;
1081 };
1082 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1083
1084 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
1085 struct rc_filter_attribute dev_attr_##_name = { \
1086 .attr = __ATTR(_name, _mode, _show, _store), \
1087 .type = (_type), \
1088 .mask = (_mask), \
1089 }
1090
1091 /**
1092 * show_protocols() - shows the current IR protocol(s)
1093 * @device: the device descriptor
1094 * @mattr: the device attribute struct
1095 * @buf: a pointer to the output buffer
1096 *
1097 * This routine is a callback routine for input read the IR protocol type(s).
1098 * it is triggered by reading /sys/class/rc/rc?/protocols.
1099 * It returns the protocol names of supported protocols.
1100 * Enabled protocols are printed in brackets.
1101 *
1102 * dev->lock is taken to guard against races between
1103 * store_protocols and show_protocols.
1104 */
show_protocols(struct device * device,struct device_attribute * mattr,char * buf)1105 static ssize_t show_protocols(struct device *device,
1106 struct device_attribute *mattr, char *buf)
1107 {
1108 struct rc_dev *dev = to_rc_dev(device);
1109 u64 allowed, enabled;
1110 char *tmp = buf;
1111 int i;
1112
1113 mutex_lock(&dev->lock);
1114
1115 enabled = dev->enabled_protocols;
1116 allowed = dev->allowed_protocols;
1117 if (dev->raw && !allowed)
1118 allowed = ir_raw_get_allowed_protocols();
1119
1120 mutex_unlock(&dev->lock);
1121
1122 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1123 __func__, (long long)allowed, (long long)enabled);
1124
1125 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1126 if (allowed & enabled & proto_names[i].type)
1127 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1128 else if (allowed & proto_names[i].type)
1129 tmp += sprintf(tmp, "%s ", proto_names[i].name);
1130
1131 if (allowed & proto_names[i].type)
1132 allowed &= ~proto_names[i].type;
1133 }
1134
1135 #ifdef CONFIG_LIRC
1136 if (dev->driver_type == RC_DRIVER_IR_RAW)
1137 tmp += sprintf(tmp, "[lirc] ");
1138 #endif
1139
1140 if (tmp != buf)
1141 tmp--;
1142 *tmp = '\n';
1143
1144 return tmp + 1 - buf;
1145 }
1146
1147 /**
1148 * parse_protocol_change() - parses a protocol change request
1149 * @dev: rc_dev device
1150 * @protocols: pointer to the bitmask of current protocols
1151 * @buf: pointer to the buffer with a list of changes
1152 *
1153 * Writing "+proto" will add a protocol to the protocol mask.
1154 * Writing "-proto" will remove a protocol from protocol mask.
1155 * Writing "proto" will enable only "proto".
1156 * Writing "none" will disable all protocols.
1157 * Returns the number of changes performed or a negative error code.
1158 */
parse_protocol_change(struct rc_dev * dev,u64 * protocols,const char * buf)1159 static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1160 const char *buf)
1161 {
1162 const char *tmp;
1163 unsigned count = 0;
1164 bool enable, disable;
1165 u64 mask;
1166 int i;
1167
1168 while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1169 if (!*tmp)
1170 break;
1171
1172 if (*tmp == '+') {
1173 enable = true;
1174 disable = false;
1175 tmp++;
1176 } else if (*tmp == '-') {
1177 enable = false;
1178 disable = true;
1179 tmp++;
1180 } else {
1181 enable = false;
1182 disable = false;
1183 }
1184
1185 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1186 if (!strcasecmp(tmp, proto_names[i].name)) {
1187 mask = proto_names[i].type;
1188 break;
1189 }
1190 }
1191
1192 if (i == ARRAY_SIZE(proto_names)) {
1193 if (!strcasecmp(tmp, "lirc"))
1194 mask = 0;
1195 else {
1196 dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1197 tmp);
1198 return -EINVAL;
1199 }
1200 }
1201
1202 count++;
1203
1204 if (enable)
1205 *protocols |= mask;
1206 else if (disable)
1207 *protocols &= ~mask;
1208 else
1209 *protocols = mask;
1210 }
1211
1212 if (!count) {
1213 dev_dbg(&dev->dev, "Protocol not specified\n");
1214 return -EINVAL;
1215 }
1216
1217 return count;
1218 }
1219
ir_raw_load_modules(u64 * protocols)1220 void ir_raw_load_modules(u64 *protocols)
1221 {
1222 u64 available;
1223 int i, ret;
1224
1225 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1226 if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1227 proto_names[i].type & (RC_PROTO_BIT_OTHER |
1228 RC_PROTO_BIT_UNKNOWN))
1229 continue;
1230
1231 available = ir_raw_get_allowed_protocols();
1232 if (!(*protocols & proto_names[i].type & ~available))
1233 continue;
1234
1235 if (!proto_names[i].module_name) {
1236 pr_err("Can't enable IR protocol %s\n",
1237 proto_names[i].name);
1238 *protocols &= ~proto_names[i].type;
1239 continue;
1240 }
1241
1242 ret = request_module("%s", proto_names[i].module_name);
1243 if (ret < 0) {
1244 pr_err("Couldn't load IR protocol module %s\n",
1245 proto_names[i].module_name);
1246 *protocols &= ~proto_names[i].type;
1247 continue;
1248 }
1249 msleep(20);
1250 available = ir_raw_get_allowed_protocols();
1251 if (!(*protocols & proto_names[i].type & ~available))
1252 continue;
1253
1254 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1255 proto_names[i].module_name,
1256 proto_names[i].name);
1257 *protocols &= ~proto_names[i].type;
1258 }
1259 }
1260
1261 /**
1262 * store_protocols() - changes the current/wakeup IR protocol(s)
1263 * @device: the device descriptor
1264 * @mattr: the device attribute struct
1265 * @buf: a pointer to the input buffer
1266 * @len: length of the input buffer
1267 *
1268 * This routine is for changing the IR protocol type.
1269 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1270 * See parse_protocol_change() for the valid commands.
1271 * Returns @len on success or a negative error code.
1272 *
1273 * dev->lock is taken to guard against races between
1274 * store_protocols and show_protocols.
1275 */
store_protocols(struct device * device,struct device_attribute * mattr,const char * buf,size_t len)1276 static ssize_t store_protocols(struct device *device,
1277 struct device_attribute *mattr,
1278 const char *buf, size_t len)
1279 {
1280 struct rc_dev *dev = to_rc_dev(device);
1281 u64 *current_protocols;
1282 struct rc_scancode_filter *filter;
1283 u64 old_protocols, new_protocols;
1284 ssize_t rc;
1285
1286 dev_dbg(&dev->dev, "Normal protocol change requested\n");
1287 current_protocols = &dev->enabled_protocols;
1288 filter = &dev->scancode_filter;
1289
1290 if (!dev->change_protocol) {
1291 dev_dbg(&dev->dev, "Protocol switching not supported\n");
1292 return -EINVAL;
1293 }
1294
1295 mutex_lock(&dev->lock);
1296 if (!dev->registered) {
1297 mutex_unlock(&dev->lock);
1298 return -ENODEV;
1299 }
1300
1301 old_protocols = *current_protocols;
1302 new_protocols = old_protocols;
1303 rc = parse_protocol_change(dev, &new_protocols, buf);
1304 if (rc < 0)
1305 goto out;
1306
1307 if (dev->driver_type == RC_DRIVER_IR_RAW)
1308 ir_raw_load_modules(&new_protocols);
1309
1310 rc = dev->change_protocol(dev, &new_protocols);
1311 if (rc < 0) {
1312 dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1313 (long long)new_protocols);
1314 goto out;
1315 }
1316
1317 if (new_protocols != old_protocols) {
1318 *current_protocols = new_protocols;
1319 dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1320 (long long)new_protocols);
1321 }
1322
1323 /*
1324 * If a protocol change was attempted the filter may need updating, even
1325 * if the actual protocol mask hasn't changed (since the driver may have
1326 * cleared the filter).
1327 * Try setting the same filter with the new protocol (if any).
1328 * Fall back to clearing the filter.
1329 */
1330 if (dev->s_filter && filter->mask) {
1331 if (new_protocols)
1332 rc = dev->s_filter(dev, filter);
1333 else
1334 rc = -1;
1335
1336 if (rc < 0) {
1337 filter->data = 0;
1338 filter->mask = 0;
1339 dev->s_filter(dev, filter);
1340 }
1341 }
1342
1343 rc = len;
1344
1345 out:
1346 mutex_unlock(&dev->lock);
1347 return rc;
1348 }
1349
1350 /**
1351 * show_filter() - shows the current scancode filter value or mask
1352 * @device: the device descriptor
1353 * @attr: the device attribute struct
1354 * @buf: a pointer to the output buffer
1355 *
1356 * This routine is a callback routine to read a scancode filter value or mask.
1357 * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1358 * It prints the current scancode filter value or mask of the appropriate filter
1359 * type in hexadecimal into @buf and returns the size of the buffer.
1360 *
1361 * Bits of the filter value corresponding to set bits in the filter mask are
1362 * compared against input scancodes and non-matching scancodes are discarded.
1363 *
1364 * dev->lock is taken to guard against races between
1365 * store_filter and show_filter.
1366 */
show_filter(struct device * device,struct device_attribute * attr,char * buf)1367 static ssize_t show_filter(struct device *device,
1368 struct device_attribute *attr,
1369 char *buf)
1370 {
1371 struct rc_dev *dev = to_rc_dev(device);
1372 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1373 struct rc_scancode_filter *filter;
1374 u32 val;
1375
1376 mutex_lock(&dev->lock);
1377
1378 if (fattr->type == RC_FILTER_NORMAL)
1379 filter = &dev->scancode_filter;
1380 else
1381 filter = &dev->scancode_wakeup_filter;
1382
1383 if (fattr->mask)
1384 val = filter->mask;
1385 else
1386 val = filter->data;
1387 mutex_unlock(&dev->lock);
1388
1389 return sprintf(buf, "%#x\n", val);
1390 }
1391
1392 /**
1393 * store_filter() - changes the scancode filter value
1394 * @device: the device descriptor
1395 * @attr: the device attribute struct
1396 * @buf: a pointer to the input buffer
1397 * @len: length of the input buffer
1398 *
1399 * This routine is for changing a scancode filter value or mask.
1400 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1401 * Returns -EINVAL if an invalid filter value for the current protocol was
1402 * specified or if scancode filtering is not supported by the driver, otherwise
1403 * returns @len.
1404 *
1405 * Bits of the filter value corresponding to set bits in the filter mask are
1406 * compared against input scancodes and non-matching scancodes are discarded.
1407 *
1408 * dev->lock is taken to guard against races between
1409 * store_filter and show_filter.
1410 */
store_filter(struct device * device,struct device_attribute * attr,const char * buf,size_t len)1411 static ssize_t store_filter(struct device *device,
1412 struct device_attribute *attr,
1413 const char *buf, size_t len)
1414 {
1415 struct rc_dev *dev = to_rc_dev(device);
1416 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1417 struct rc_scancode_filter new_filter, *filter;
1418 int ret;
1419 unsigned long val;
1420 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1421
1422 ret = kstrtoul(buf, 0, &val);
1423 if (ret < 0)
1424 return ret;
1425
1426 if (fattr->type == RC_FILTER_NORMAL) {
1427 set_filter = dev->s_filter;
1428 filter = &dev->scancode_filter;
1429 } else {
1430 set_filter = dev->s_wakeup_filter;
1431 filter = &dev->scancode_wakeup_filter;
1432 }
1433
1434 if (!set_filter)
1435 return -EINVAL;
1436
1437 mutex_lock(&dev->lock);
1438 if (!dev->registered) {
1439 mutex_unlock(&dev->lock);
1440 return -ENODEV;
1441 }
1442
1443 new_filter = *filter;
1444 if (fattr->mask)
1445 new_filter.mask = val;
1446 else
1447 new_filter.data = val;
1448
1449 if (fattr->type == RC_FILTER_WAKEUP) {
1450 /*
1451 * Refuse to set a filter unless a protocol is enabled
1452 * and the filter is valid for that protocol
1453 */
1454 if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1455 ret = rc_validate_filter(dev, &new_filter);
1456 else
1457 ret = -EINVAL;
1458
1459 if (ret != 0)
1460 goto unlock;
1461 }
1462
1463 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1464 val) {
1465 /* refuse to set a filter unless a protocol is enabled */
1466 ret = -EINVAL;
1467 goto unlock;
1468 }
1469
1470 ret = set_filter(dev, &new_filter);
1471 if (ret < 0)
1472 goto unlock;
1473
1474 *filter = new_filter;
1475
1476 unlock:
1477 mutex_unlock(&dev->lock);
1478 return (ret < 0) ? ret : len;
1479 }
1480
1481 /**
1482 * show_wakeup_protocols() - shows the wakeup IR protocol
1483 * @device: the device descriptor
1484 * @mattr: the device attribute struct
1485 * @buf: a pointer to the output buffer
1486 *
1487 * This routine is a callback routine for input read the IR protocol type(s).
1488 * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols.
1489 * It returns the protocol names of supported protocols.
1490 * The enabled protocols are printed in brackets.
1491 *
1492 * dev->lock is taken to guard against races between
1493 * store_wakeup_protocols and show_wakeup_protocols.
1494 */
show_wakeup_protocols(struct device * device,struct device_attribute * mattr,char * buf)1495 static ssize_t show_wakeup_protocols(struct device *device,
1496 struct device_attribute *mattr,
1497 char *buf)
1498 {
1499 struct rc_dev *dev = to_rc_dev(device);
1500 u64 allowed;
1501 enum rc_proto enabled;
1502 char *tmp = buf;
1503 int i;
1504
1505 mutex_lock(&dev->lock);
1506
1507 allowed = dev->allowed_wakeup_protocols;
1508 enabled = dev->wakeup_protocol;
1509
1510 mutex_unlock(&dev->lock);
1511
1512 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1513 __func__, (long long)allowed, enabled);
1514
1515 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1516 if (allowed & (1ULL << i)) {
1517 if (i == enabled)
1518 tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1519 else
1520 tmp += sprintf(tmp, "%s ", protocols[i].name);
1521 }
1522 }
1523
1524 if (tmp != buf)
1525 tmp--;
1526 *tmp = '\n';
1527
1528 return tmp + 1 - buf;
1529 }
1530
1531 /**
1532 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1533 * @device: the device descriptor
1534 * @mattr: the device attribute struct
1535 * @buf: a pointer to the input buffer
1536 * @len: length of the input buffer
1537 *
1538 * This routine is for changing the IR protocol type.
1539 * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols.
1540 * Returns @len on success or a negative error code.
1541 *
1542 * dev->lock is taken to guard against races between
1543 * store_wakeup_protocols and show_wakeup_protocols.
1544 */
store_wakeup_protocols(struct device * device,struct device_attribute * mattr,const char * buf,size_t len)1545 static ssize_t store_wakeup_protocols(struct device *device,
1546 struct device_attribute *mattr,
1547 const char *buf, size_t len)
1548 {
1549 struct rc_dev *dev = to_rc_dev(device);
1550 enum rc_proto protocol = RC_PROTO_UNKNOWN;
1551 ssize_t rc;
1552 u64 allowed;
1553 int i;
1554
1555 mutex_lock(&dev->lock);
1556 if (!dev->registered) {
1557 mutex_unlock(&dev->lock);
1558 return -ENODEV;
1559 }
1560
1561 allowed = dev->allowed_wakeup_protocols;
1562
1563 if (!sysfs_streq(buf, "none")) {
1564 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1565 if ((allowed & (1ULL << i)) &&
1566 sysfs_streq(buf, protocols[i].name)) {
1567 protocol = i;
1568 break;
1569 }
1570 }
1571
1572 if (i == ARRAY_SIZE(protocols)) {
1573 rc = -EINVAL;
1574 goto out;
1575 }
1576
1577 if (dev->encode_wakeup) {
1578 u64 mask = 1ULL << protocol;
1579
1580 ir_raw_load_modules(&mask);
1581 if (!mask) {
1582 rc = -EINVAL;
1583 goto out;
1584 }
1585 }
1586 }
1587
1588 if (dev->wakeup_protocol != protocol) {
1589 dev->wakeup_protocol = protocol;
1590 dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
1591
1592 if (protocol == RC_PROTO_RC6_MCE)
1593 dev->scancode_wakeup_filter.data = 0x800f0000;
1594 else
1595 dev->scancode_wakeup_filter.data = 0;
1596 dev->scancode_wakeup_filter.mask = 0;
1597
1598 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1599 if (rc == 0)
1600 rc = len;
1601 } else {
1602 rc = len;
1603 }
1604
1605 out:
1606 mutex_unlock(&dev->lock);
1607 return rc;
1608 }
1609
rc_dev_release(struct device * device)1610 static void rc_dev_release(struct device *device)
1611 {
1612 struct rc_dev *dev = to_rc_dev(device);
1613
1614 kfree(dev);
1615 }
1616
rc_dev_uevent(const struct device * device,struct kobj_uevent_env * env)1617 static int rc_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1618 {
1619 struct rc_dev *dev = to_rc_dev(device);
1620 int ret = 0;
1621
1622 mutex_lock(&dev->lock);
1623
1624 if (!dev->registered)
1625 ret = -ENODEV;
1626 if (ret == 0 && dev->rc_map.name)
1627 ret = add_uevent_var(env, "NAME=%s", dev->rc_map.name);
1628 if (ret == 0 && dev->driver_name)
1629 ret = add_uevent_var(env, "DRV_NAME=%s", dev->driver_name);
1630 if (ret == 0 && dev->device_name)
1631 ret = add_uevent_var(env, "DEV_NAME=%s", dev->device_name);
1632
1633 mutex_unlock(&dev->lock);
1634
1635 return ret;
1636 }
1637
1638 /*
1639 * Static device attribute struct with the sysfs attributes for IR's
1640 */
1641 static struct device_attribute dev_attr_ro_protocols =
1642 __ATTR(protocols, 0444, show_protocols, NULL);
1643 static struct device_attribute dev_attr_rw_protocols =
1644 __ATTR(protocols, 0644, show_protocols, store_protocols);
1645 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1646 store_wakeup_protocols);
1647 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1648 show_filter, store_filter, RC_FILTER_NORMAL, false);
1649 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1650 show_filter, store_filter, RC_FILTER_NORMAL, true);
1651 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1652 show_filter, store_filter, RC_FILTER_WAKEUP, false);
1653 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1654 show_filter, store_filter, RC_FILTER_WAKEUP, true);
1655
1656 static struct attribute *rc_dev_rw_protocol_attrs[] = {
1657 &dev_attr_rw_protocols.attr,
1658 NULL,
1659 };
1660
1661 static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1662 .attrs = rc_dev_rw_protocol_attrs,
1663 };
1664
1665 static struct attribute *rc_dev_ro_protocol_attrs[] = {
1666 &dev_attr_ro_protocols.attr,
1667 NULL,
1668 };
1669
1670 static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1671 .attrs = rc_dev_ro_protocol_attrs,
1672 };
1673
1674 static struct attribute *rc_dev_filter_attrs[] = {
1675 &dev_attr_filter.attr.attr,
1676 &dev_attr_filter_mask.attr.attr,
1677 NULL,
1678 };
1679
1680 static const struct attribute_group rc_dev_filter_attr_grp = {
1681 .attrs = rc_dev_filter_attrs,
1682 };
1683
1684 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1685 &dev_attr_wakeup_filter.attr.attr,
1686 &dev_attr_wakeup_filter_mask.attr.attr,
1687 &dev_attr_wakeup_protocols.attr,
1688 NULL,
1689 };
1690
1691 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1692 .attrs = rc_dev_wakeup_filter_attrs,
1693 };
1694
1695 static const struct device_type rc_dev_type = {
1696 .release = rc_dev_release,
1697 .uevent = rc_dev_uevent,
1698 };
1699
rc_allocate_device(enum rc_driver_type type)1700 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1701 {
1702 struct rc_dev *dev;
1703
1704 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1705 if (!dev)
1706 return NULL;
1707
1708 if (type != RC_DRIVER_IR_RAW_TX) {
1709 dev->input_dev = input_allocate_device();
1710 if (!dev->input_dev) {
1711 kfree(dev);
1712 return NULL;
1713 }
1714
1715 dev->input_dev->getkeycode = ir_getkeycode;
1716 dev->input_dev->setkeycode = ir_setkeycode;
1717 input_set_drvdata(dev->input_dev, dev);
1718
1719 dev->timeout = IR_DEFAULT_TIMEOUT;
1720 timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1721 timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1722
1723 spin_lock_init(&dev->rc_map.lock);
1724 spin_lock_init(&dev->keylock);
1725 }
1726 mutex_init(&dev->lock);
1727
1728 dev->dev.type = &rc_dev_type;
1729 dev->dev.class = &rc_class;
1730 device_initialize(&dev->dev);
1731
1732 dev->driver_type = type;
1733
1734 __module_get(THIS_MODULE);
1735 return dev;
1736 }
1737 EXPORT_SYMBOL_GPL(rc_allocate_device);
1738
rc_free_device(struct rc_dev * dev)1739 void rc_free_device(struct rc_dev *dev)
1740 {
1741 if (!dev)
1742 return;
1743
1744 input_free_device(dev->input_dev);
1745
1746 put_device(&dev->dev);
1747
1748 /* kfree(dev) will be called by the callback function
1749 rc_dev_release() */
1750
1751 module_put(THIS_MODULE);
1752 }
1753 EXPORT_SYMBOL_GPL(rc_free_device);
1754
devm_rc_alloc_release(struct device * dev,void * res)1755 static void devm_rc_alloc_release(struct device *dev, void *res)
1756 {
1757 rc_free_device(*(struct rc_dev **)res);
1758 }
1759
devm_rc_allocate_device(struct device * dev,enum rc_driver_type type)1760 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1761 enum rc_driver_type type)
1762 {
1763 struct rc_dev **dr, *rc;
1764
1765 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1766 if (!dr)
1767 return NULL;
1768
1769 rc = rc_allocate_device(type);
1770 if (!rc) {
1771 devres_free(dr);
1772 return NULL;
1773 }
1774
1775 rc->dev.parent = dev;
1776 rc->managed_alloc = true;
1777 *dr = rc;
1778 devres_add(dev, dr);
1779
1780 return rc;
1781 }
1782 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1783
rc_prepare_rx_device(struct rc_dev * dev)1784 static int rc_prepare_rx_device(struct rc_dev *dev)
1785 {
1786 int rc;
1787 struct rc_map *rc_map;
1788 u64 rc_proto;
1789
1790 if (!dev->map_name)
1791 return -EINVAL;
1792
1793 rc_map = rc_map_get(dev->map_name);
1794 if (!rc_map)
1795 rc_map = rc_map_get(RC_MAP_EMPTY);
1796 if (!rc_map || !rc_map->scan || rc_map->size == 0)
1797 return -EINVAL;
1798
1799 rc = ir_setkeytable(dev, rc_map);
1800 if (rc)
1801 return rc;
1802
1803 rc_proto = BIT_ULL(rc_map->rc_proto);
1804
1805 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1806 dev->enabled_protocols = dev->allowed_protocols;
1807
1808 if (dev->driver_type == RC_DRIVER_IR_RAW)
1809 ir_raw_load_modules(&rc_proto);
1810
1811 if (dev->change_protocol) {
1812 rc = dev->change_protocol(dev, &rc_proto);
1813 if (rc < 0)
1814 goto out_table;
1815 dev->enabled_protocols = rc_proto;
1816 }
1817
1818 /* Keyboard events */
1819 set_bit(EV_KEY, dev->input_dev->evbit);
1820 set_bit(EV_REP, dev->input_dev->evbit);
1821 set_bit(EV_MSC, dev->input_dev->evbit);
1822 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1823
1824 /* Pointer/mouse events */
1825 set_bit(INPUT_PROP_POINTING_STICK, dev->input_dev->propbit);
1826 set_bit(EV_REL, dev->input_dev->evbit);
1827 set_bit(REL_X, dev->input_dev->relbit);
1828 set_bit(REL_Y, dev->input_dev->relbit);
1829
1830 if (dev->open)
1831 dev->input_dev->open = ir_open;
1832 if (dev->close)
1833 dev->input_dev->close = ir_close;
1834
1835 dev->input_dev->dev.parent = &dev->dev;
1836 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1837 dev->input_dev->phys = dev->input_phys;
1838 dev->input_dev->name = dev->device_name;
1839
1840 return 0;
1841
1842 out_table:
1843 ir_free_table(&dev->rc_map);
1844
1845 return rc;
1846 }
1847
rc_setup_rx_device(struct rc_dev * dev)1848 static int rc_setup_rx_device(struct rc_dev *dev)
1849 {
1850 int rc;
1851
1852 /* rc_open will be called here */
1853 rc = input_register_device(dev->input_dev);
1854 if (rc)
1855 return rc;
1856
1857 /*
1858 * Default delay of 250ms is too short for some protocols, especially
1859 * since the timeout is currently set to 250ms. Increase it to 500ms,
1860 * to avoid wrong repetition of the keycodes. Note that this must be
1861 * set after the call to input_register_device().
1862 */
1863 if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1864 dev->input_dev->rep[REP_DELAY] = 0;
1865 else
1866 dev->input_dev->rep[REP_DELAY] = 500;
1867
1868 /*
1869 * As a repeat event on protocols like RC-5 and NEC take as long as
1870 * 110/114ms, using 33ms as a repeat period is not the right thing
1871 * to do.
1872 */
1873 dev->input_dev->rep[REP_PERIOD] = 125;
1874
1875 return 0;
1876 }
1877
rc_free_rx_device(struct rc_dev * dev)1878 static void rc_free_rx_device(struct rc_dev *dev)
1879 {
1880 if (!dev)
1881 return;
1882
1883 if (dev->input_dev) {
1884 input_unregister_device(dev->input_dev);
1885 dev->input_dev = NULL;
1886 }
1887
1888 ir_free_table(&dev->rc_map);
1889 }
1890
rc_register_device(struct rc_dev * dev)1891 int rc_register_device(struct rc_dev *dev)
1892 {
1893 const char *path;
1894 int attr = 0;
1895 int minor;
1896 int rc;
1897
1898 if (!dev)
1899 return -EINVAL;
1900
1901 minor = ida_alloc_max(&rc_ida, RC_DEV_MAX - 1, GFP_KERNEL);
1902 if (minor < 0)
1903 return minor;
1904
1905 dev->minor = minor;
1906 dev_set_name(&dev->dev, "rc%u", dev->minor);
1907 dev_set_drvdata(&dev->dev, dev);
1908
1909 dev->dev.groups = dev->sysfs_groups;
1910 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1911 dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1912 else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1913 dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1914 if (dev->s_filter)
1915 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1916 if (dev->s_wakeup_filter)
1917 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1918 dev->sysfs_groups[attr++] = NULL;
1919
1920 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1921 rc = ir_raw_event_prepare(dev);
1922 if (rc < 0)
1923 goto out_minor;
1924 }
1925
1926 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1927 rc = rc_prepare_rx_device(dev);
1928 if (rc)
1929 goto out_raw;
1930 }
1931
1932 dev->registered = true;
1933
1934 rc = device_add(&dev->dev);
1935 if (rc)
1936 goto out_rx_free;
1937
1938 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1939 dev_info(&dev->dev, "%s as %s\n",
1940 dev->device_name ?: "Unspecified device", path ?: "N/A");
1941 kfree(path);
1942
1943 /*
1944 * once the input device is registered in rc_setup_rx_device,
1945 * userspace can open the input device and rc_open() will be called
1946 * as a result. This results in driver code being allowed to submit
1947 * keycodes with rc_keydown, so lirc must be registered first.
1948 */
1949 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1950 rc = lirc_register(dev);
1951 if (rc < 0)
1952 goto out_dev;
1953 }
1954
1955 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1956 rc = rc_setup_rx_device(dev);
1957 if (rc)
1958 goto out_lirc;
1959 }
1960
1961 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1962 rc = ir_raw_event_register(dev);
1963 if (rc < 0)
1964 goto out_rx;
1965 }
1966
1967 dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1968 dev->driver_name ? dev->driver_name : "unknown");
1969
1970 return 0;
1971
1972 out_rx:
1973 rc_free_rx_device(dev);
1974 out_lirc:
1975 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1976 lirc_unregister(dev);
1977 out_dev:
1978 device_del(&dev->dev);
1979 out_rx_free:
1980 ir_free_table(&dev->rc_map);
1981 out_raw:
1982 ir_raw_event_free(dev);
1983 out_minor:
1984 ida_free(&rc_ida, minor);
1985 return rc;
1986 }
1987 EXPORT_SYMBOL_GPL(rc_register_device);
1988
devm_rc_release(struct device * dev,void * res)1989 static void devm_rc_release(struct device *dev, void *res)
1990 {
1991 rc_unregister_device(*(struct rc_dev **)res);
1992 }
1993
devm_rc_register_device(struct device * parent,struct rc_dev * dev)1994 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1995 {
1996 struct rc_dev **dr;
1997 int ret;
1998
1999 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
2000 if (!dr)
2001 return -ENOMEM;
2002
2003 ret = rc_register_device(dev);
2004 if (ret) {
2005 devres_free(dr);
2006 return ret;
2007 }
2008
2009 *dr = dev;
2010 devres_add(parent, dr);
2011
2012 return 0;
2013 }
2014 EXPORT_SYMBOL_GPL(devm_rc_register_device);
2015
rc_unregister_device(struct rc_dev * dev)2016 void rc_unregister_device(struct rc_dev *dev)
2017 {
2018 if (!dev)
2019 return;
2020
2021 if (dev->driver_type == RC_DRIVER_IR_RAW)
2022 ir_raw_event_unregister(dev);
2023
2024 del_timer_sync(&dev->timer_keyup);
2025 del_timer_sync(&dev->timer_repeat);
2026
2027 mutex_lock(&dev->lock);
2028 if (dev->users && dev->close)
2029 dev->close(dev);
2030 dev->registered = false;
2031 mutex_unlock(&dev->lock);
2032
2033 rc_free_rx_device(dev);
2034
2035 /*
2036 * lirc device should be freed with dev->registered = false, so
2037 * that userspace polling will get notified.
2038 */
2039 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
2040 lirc_unregister(dev);
2041
2042 device_del(&dev->dev);
2043
2044 ida_free(&rc_ida, dev->minor);
2045
2046 if (!dev->managed_alloc)
2047 rc_free_device(dev);
2048 }
2049
2050 EXPORT_SYMBOL_GPL(rc_unregister_device);
2051
2052 /*
2053 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
2054 */
2055
rc_core_init(void)2056 static int __init rc_core_init(void)
2057 {
2058 int rc = class_register(&rc_class);
2059 if (rc) {
2060 pr_err("rc_core: unable to register rc class\n");
2061 return rc;
2062 }
2063
2064 rc = lirc_dev_init();
2065 if (rc) {
2066 pr_err("rc_core: unable to init lirc\n");
2067 class_unregister(&rc_class);
2068 return rc;
2069 }
2070
2071 led_trigger_register_simple("rc-feedback", &led_feedback);
2072 rc_map_register(&empty_map);
2073 #ifdef CONFIG_MEDIA_CEC_RC
2074 rc_map_register(&cec_map);
2075 #endif
2076
2077 return 0;
2078 }
2079
rc_core_exit(void)2080 static void __exit rc_core_exit(void)
2081 {
2082 lirc_dev_exit();
2083 class_unregister(&rc_class);
2084 led_trigger_unregister_simple(led_feedback);
2085 #ifdef CONFIG_MEDIA_CEC_RC
2086 rc_map_unregister(&cec_map);
2087 #endif
2088 rc_map_unregister(&empty_map);
2089 }
2090
2091 subsys_initcall(rc_core_init);
2092 module_exit(rc_core_exit);
2093
2094 MODULE_AUTHOR("Mauro Carvalho Chehab");
2095 MODULE_DESCRIPTION("Remote Controller core module");
2096 MODULE_LICENSE("GPL v2");
2097