1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8  *
9  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11  * hash device. Setting this greatly improves performance when data and hash
12  * are on the same disk on different partitions on devices with poor random
13  * access behavior.
14  */
15 
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include "dm-audit.h"
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22 #include <linux/scatterlist.h>
23 #include <linux/string.h>
24 #include <linux/jump_label.h>
25 #include <linux/security.h>
26 
27 #define DM_MSG_PREFIX			"verity"
28 
29 #define DM_VERITY_ENV_LENGTH		42
30 #define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
31 
32 #define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
33 
34 #define DM_VERITY_MAX_CORRUPTED_ERRS	100
35 
36 #define DM_VERITY_OPT_LOGGING		"ignore_corruption"
37 #define DM_VERITY_OPT_RESTART		"restart_on_corruption"
38 #define DM_VERITY_OPT_PANIC		"panic_on_corruption"
39 #define DM_VERITY_OPT_ERROR_RESTART	"restart_on_error"
40 #define DM_VERITY_OPT_ERROR_PANIC	"panic_on_error"
41 #define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
42 #define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
43 #define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
44 
45 #define DM_VERITY_OPTS_MAX		(5 + DM_VERITY_OPTS_FEC + \
46 					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
47 
48 static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
49 
50 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
51 
52 static DEFINE_STATIC_KEY_FALSE(use_bh_wq_enabled);
53 
54 /* Is at least one dm-verity instance using ahash_tfm instead of shash_tfm? */
55 static DEFINE_STATIC_KEY_FALSE(ahash_enabled);
56 
57 struct dm_verity_prefetch_work {
58 	struct work_struct work;
59 	struct dm_verity *v;
60 	unsigned short ioprio;
61 	sector_t block;
62 	unsigned int n_blocks;
63 };
64 
65 /*
66  * Auxiliary structure appended to each dm-bufio buffer. If the value
67  * hash_verified is nonzero, hash of the block has been verified.
68  *
69  * The variable hash_verified is set to 0 when allocating the buffer, then
70  * it can be changed to 1 and it is never reset to 0 again.
71  *
72  * There is no lock around this value, a race condition can at worst cause
73  * that multiple processes verify the hash of the same buffer simultaneously
74  * and write 1 to hash_verified simultaneously.
75  * This condition is harmless, so we don't need locking.
76  */
77 struct buffer_aux {
78 	int hash_verified;
79 };
80 
81 /*
82  * Initialize struct buffer_aux for a freshly created buffer.
83  */
dm_bufio_alloc_callback(struct dm_buffer * buf)84 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
85 {
86 	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
87 
88 	aux->hash_verified = 0;
89 }
90 
91 /*
92  * Translate input sector number to the sector number on the target device.
93  */
verity_map_sector(struct dm_verity * v,sector_t bi_sector)94 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
95 {
96 	return v->data_start + dm_target_offset(v->ti, bi_sector);
97 }
98 
99 /*
100  * Return hash position of a specified block at a specified tree level
101  * (0 is the lowest level).
102  * The lowest "hash_per_block_bits"-bits of the result denote hash position
103  * inside a hash block. The remaining bits denote location of the hash block.
104  */
verity_position_at_level(struct dm_verity * v,sector_t block,int level)105 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
106 					 int level)
107 {
108 	return block >> (level * v->hash_per_block_bits);
109 }
110 
verity_ahash_update(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,struct crypto_wait * wait)111 static int verity_ahash_update(struct dm_verity *v, struct ahash_request *req,
112 				const u8 *data, size_t len,
113 				struct crypto_wait *wait)
114 {
115 	struct scatterlist sg;
116 
117 	if (likely(!is_vmalloc_addr(data))) {
118 		sg_init_one(&sg, data, len);
119 		ahash_request_set_crypt(req, &sg, NULL, len);
120 		return crypto_wait_req(crypto_ahash_update(req), wait);
121 	}
122 
123 	do {
124 		int r;
125 		size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
126 
127 		flush_kernel_vmap_range((void *)data, this_step);
128 		sg_init_table(&sg, 1);
129 		sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
130 		ahash_request_set_crypt(req, &sg, NULL, this_step);
131 		r = crypto_wait_req(crypto_ahash_update(req), wait);
132 		if (unlikely(r))
133 			return r;
134 		data += this_step;
135 		len -= this_step;
136 	} while (len);
137 
138 	return 0;
139 }
140 
141 /*
142  * Wrapper for crypto_ahash_init, which handles verity salting.
143  */
verity_ahash_init(struct dm_verity * v,struct ahash_request * req,struct crypto_wait * wait,bool may_sleep)144 static int verity_ahash_init(struct dm_verity *v, struct ahash_request *req,
145 				struct crypto_wait *wait, bool may_sleep)
146 {
147 	int r;
148 
149 	ahash_request_set_tfm(req, v->ahash_tfm);
150 	ahash_request_set_callback(req,
151 		may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0,
152 		crypto_req_done, (void *)wait);
153 	crypto_init_wait(wait);
154 
155 	r = crypto_wait_req(crypto_ahash_init(req), wait);
156 
157 	if (unlikely(r < 0)) {
158 		if (r != -ENOMEM)
159 			DMERR("crypto_ahash_init failed: %d", r);
160 		return r;
161 	}
162 
163 	if (likely(v->salt_size && (v->version >= 1)))
164 		r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
165 
166 	return r;
167 }
168 
verity_ahash_final(struct dm_verity * v,struct ahash_request * req,u8 * digest,struct crypto_wait * wait)169 static int verity_ahash_final(struct dm_verity *v, struct ahash_request *req,
170 			      u8 *digest, struct crypto_wait *wait)
171 {
172 	int r;
173 
174 	if (unlikely(v->salt_size && (!v->version))) {
175 		r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
176 
177 		if (r < 0) {
178 			DMERR("%s failed updating salt: %d", __func__, r);
179 			goto out;
180 		}
181 	}
182 
183 	ahash_request_set_crypt(req, NULL, digest, 0);
184 	r = crypto_wait_req(crypto_ahash_final(req), wait);
185 out:
186 	return r;
187 }
188 
verity_hash(struct dm_verity * v,struct dm_verity_io * io,const u8 * data,size_t len,u8 * digest,bool may_sleep)189 int verity_hash(struct dm_verity *v, struct dm_verity_io *io,
190 		const u8 *data, size_t len, u8 *digest, bool may_sleep)
191 {
192 	int r;
193 
194 	if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm) {
195 		struct ahash_request *req = verity_io_hash_req(v, io);
196 		struct crypto_wait wait;
197 
198 		r = verity_ahash_init(v, req, &wait, may_sleep) ?:
199 		    verity_ahash_update(v, req, data, len, &wait) ?:
200 		    verity_ahash_final(v, req, digest, &wait);
201 	} else {
202 		struct shash_desc *desc = verity_io_hash_req(v, io);
203 
204 		desc->tfm = v->shash_tfm;
205 		r = crypto_shash_import(desc, v->initial_hashstate) ?:
206 		    crypto_shash_finup(desc, data, len, digest);
207 	}
208 	if (unlikely(r))
209 		DMERR("Error hashing block: %d", r);
210 	return r;
211 }
212 
verity_hash_at_level(struct dm_verity * v,sector_t block,int level,sector_t * hash_block,unsigned int * offset)213 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
214 				 sector_t *hash_block, unsigned int *offset)
215 {
216 	sector_t position = verity_position_at_level(v, block, level);
217 	unsigned int idx;
218 
219 	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
220 
221 	if (!offset)
222 		return;
223 
224 	idx = position & ((1 << v->hash_per_block_bits) - 1);
225 	if (!v->version)
226 		*offset = idx * v->digest_size;
227 	else
228 		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
229 }
230 
231 /*
232  * Handle verification errors.
233  */
verity_handle_err(struct dm_verity * v,enum verity_block_type type,unsigned long long block)234 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
235 			     unsigned long long block)
236 {
237 	char verity_env[DM_VERITY_ENV_LENGTH];
238 	char *envp[] = { verity_env, NULL };
239 	const char *type_str = "";
240 	struct mapped_device *md = dm_table_get_md(v->ti->table);
241 
242 	/* Corruption should be visible in device status in all modes */
243 	v->hash_failed = true;
244 
245 	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
246 		goto out;
247 
248 	v->corrupted_errs++;
249 
250 	switch (type) {
251 	case DM_VERITY_BLOCK_TYPE_DATA:
252 		type_str = "data";
253 		break;
254 	case DM_VERITY_BLOCK_TYPE_METADATA:
255 		type_str = "metadata";
256 		break;
257 	default:
258 		BUG();
259 	}
260 
261 	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
262 		    type_str, block);
263 
264 	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) {
265 		DMERR("%s: reached maximum errors", v->data_dev->name);
266 		dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0);
267 	}
268 
269 	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
270 		DM_VERITY_ENV_VAR_NAME, type, block);
271 
272 	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
273 
274 out:
275 	if (v->mode == DM_VERITY_MODE_LOGGING)
276 		return 0;
277 
278 	if (v->mode == DM_VERITY_MODE_RESTART)
279 		kernel_restart("dm-verity device corrupted");
280 
281 	if (v->mode == DM_VERITY_MODE_PANIC)
282 		panic("dm-verity device corrupted");
283 
284 	return 1;
285 }
286 
287 /*
288  * Verify hash of a metadata block pertaining to the specified data block
289  * ("block" argument) at a specified level ("level" argument).
290  *
291  * On successful return, verity_io_want_digest(v, io) contains the hash value
292  * for a lower tree level or for the data block (if we're at the lowest level).
293  *
294  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
295  * If "skip_unverified" is false, unverified buffer is hashed and verified
296  * against current value of verity_io_want_digest(v, io).
297  */
verity_verify_level(struct dm_verity * v,struct dm_verity_io * io,sector_t block,int level,bool skip_unverified,u8 * want_digest)298 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
299 			       sector_t block, int level, bool skip_unverified,
300 			       u8 *want_digest)
301 {
302 	struct dm_buffer *buf;
303 	struct buffer_aux *aux;
304 	u8 *data;
305 	int r;
306 	sector_t hash_block;
307 	unsigned int offset;
308 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
309 
310 	verity_hash_at_level(v, block, level, &hash_block, &offset);
311 
312 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
313 		data = dm_bufio_get(v->bufio, hash_block, &buf);
314 		if (data == NULL) {
315 			/*
316 			 * In tasklet and the hash was not in the bufio cache.
317 			 * Return early and resume execution from a work-queue
318 			 * to read the hash from disk.
319 			 */
320 			return -EAGAIN;
321 		}
322 	} else {
323 		data = dm_bufio_read_with_ioprio(v->bufio, hash_block,
324 						&buf, bio_prio(bio));
325 	}
326 
327 	if (IS_ERR(data))
328 		return PTR_ERR(data);
329 
330 	aux = dm_bufio_get_aux_data(buf);
331 
332 	if (!aux->hash_verified) {
333 		if (skip_unverified) {
334 			r = 1;
335 			goto release_ret_r;
336 		}
337 
338 		r = verity_hash(v, io, data, 1 << v->hash_dev_block_bits,
339 				verity_io_real_digest(v, io), !io->in_bh);
340 		if (unlikely(r < 0))
341 			goto release_ret_r;
342 
343 		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
344 				  v->digest_size) == 0))
345 			aux->hash_verified = 1;
346 		else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
347 			/*
348 			 * Error handling code (FEC included) cannot be run in a
349 			 * tasklet since it may sleep, so fallback to work-queue.
350 			 */
351 			r = -EAGAIN;
352 			goto release_ret_r;
353 		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
354 					     hash_block, data) == 0)
355 			aux->hash_verified = 1;
356 		else if (verity_handle_err(v,
357 					   DM_VERITY_BLOCK_TYPE_METADATA,
358 					   hash_block)) {
359 			struct bio *bio;
360 			io->had_mismatch = true;
361 			bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
362 			dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio,
363 					 block, 0);
364 			r = -EIO;
365 			goto release_ret_r;
366 		}
367 	}
368 
369 	data += offset;
370 	memcpy(want_digest, data, v->digest_size);
371 	r = 0;
372 
373 release_ret_r:
374 	dm_bufio_release(buf);
375 	return r;
376 }
377 
378 /*
379  * Find a hash for a given block, write it to digest and verify the integrity
380  * of the hash tree if necessary.
381  */
verity_hash_for_block(struct dm_verity * v,struct dm_verity_io * io,sector_t block,u8 * digest,bool * is_zero)382 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
383 			  sector_t block, u8 *digest, bool *is_zero)
384 {
385 	int r = 0, i;
386 
387 	if (likely(v->levels)) {
388 		/*
389 		 * First, we try to get the requested hash for
390 		 * the current block. If the hash block itself is
391 		 * verified, zero is returned. If it isn't, this
392 		 * function returns 1 and we fall back to whole
393 		 * chain verification.
394 		 */
395 		r = verity_verify_level(v, io, block, 0, true, digest);
396 		if (likely(r <= 0))
397 			goto out;
398 	}
399 
400 	memcpy(digest, v->root_digest, v->digest_size);
401 
402 	for (i = v->levels - 1; i >= 0; i--) {
403 		r = verity_verify_level(v, io, block, i, false, digest);
404 		if (unlikely(r))
405 			goto out;
406 	}
407 out:
408 	if (!r && v->zero_digest)
409 		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
410 	else
411 		*is_zero = false;
412 
413 	return r;
414 }
415 
verity_recheck(struct dm_verity * v,struct dm_verity_io * io,sector_t cur_block,u8 * dest)416 static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
417 				   sector_t cur_block, u8 *dest)
418 {
419 	struct page *page;
420 	void *buffer;
421 	int r;
422 	struct dm_io_request io_req;
423 	struct dm_io_region io_loc;
424 
425 	page = mempool_alloc(&v->recheck_pool, GFP_NOIO);
426 	buffer = page_to_virt(page);
427 
428 	io_req.bi_opf = REQ_OP_READ;
429 	io_req.mem.type = DM_IO_KMEM;
430 	io_req.mem.ptr.addr = buffer;
431 	io_req.notify.fn = NULL;
432 	io_req.client = v->io;
433 	io_loc.bdev = v->data_dev->bdev;
434 	io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
435 	io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
436 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
437 	if (unlikely(r))
438 		goto free_ret;
439 
440 	r = verity_hash(v, io, buffer, 1 << v->data_dev_block_bits,
441 			verity_io_real_digest(v, io), true);
442 	if (unlikely(r))
443 		goto free_ret;
444 
445 	if (memcmp(verity_io_real_digest(v, io),
446 		   verity_io_want_digest(v, io), v->digest_size)) {
447 		r = -EIO;
448 		goto free_ret;
449 	}
450 
451 	memcpy(dest, buffer, 1 << v->data_dev_block_bits);
452 	r = 0;
453 free_ret:
454 	mempool_free(page, &v->recheck_pool);
455 
456 	return r;
457 }
458 
verity_handle_data_hash_mismatch(struct dm_verity * v,struct dm_verity_io * io,struct bio * bio,sector_t blkno,u8 * data)459 static int verity_handle_data_hash_mismatch(struct dm_verity *v,
460 					    struct dm_verity_io *io,
461 					    struct bio *bio, sector_t blkno,
462 					    u8 *data)
463 {
464 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
465 		/*
466 		 * Error handling code (FEC included) cannot be run in the
467 		 * BH workqueue, so fallback to a standard workqueue.
468 		 */
469 		return -EAGAIN;
470 	}
471 	if (verity_recheck(v, io, blkno, data) == 0) {
472 		if (v->validated_blocks)
473 			set_bit(blkno, v->validated_blocks);
474 		return 0;
475 	}
476 #if defined(CONFIG_DM_VERITY_FEC)
477 	if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, blkno,
478 			      data) == 0)
479 		return 0;
480 #endif
481 	if (bio->bi_status)
482 		return -EIO; /* Error correction failed; Just return error */
483 
484 	if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, blkno)) {
485 		io->had_mismatch = true;
486 		dm_audit_log_bio(DM_MSG_PREFIX, "verify-data", bio, blkno, 0);
487 		return -EIO;
488 	}
489 	return 0;
490 }
491 
492 /*
493  * Verify one "dm_verity_io" structure.
494  */
verity_verify_io(struct dm_verity_io * io)495 static int verity_verify_io(struct dm_verity_io *io)
496 {
497 	struct dm_verity *v = io->v;
498 	const unsigned int block_size = 1 << v->data_dev_block_bits;
499 	struct bvec_iter iter_copy;
500 	struct bvec_iter *iter;
501 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
502 	unsigned int b;
503 
504 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
505 		/*
506 		 * Copy the iterator in case we need to restart
507 		 * verification in a work-queue.
508 		 */
509 		iter_copy = io->iter;
510 		iter = &iter_copy;
511 	} else
512 		iter = &io->iter;
513 
514 	for (b = 0; b < io->n_blocks;
515 	     b++, bio_advance_iter(bio, iter, block_size)) {
516 		int r;
517 		sector_t cur_block = io->block + b;
518 		bool is_zero;
519 		struct bio_vec bv;
520 		void *data;
521 
522 		if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
523 		    likely(test_bit(cur_block, v->validated_blocks)))
524 			continue;
525 
526 		r = verity_hash_for_block(v, io, cur_block,
527 					  verity_io_want_digest(v, io),
528 					  &is_zero);
529 		if (unlikely(r < 0))
530 			return r;
531 
532 		bv = bio_iter_iovec(bio, *iter);
533 		if (unlikely(bv.bv_len < block_size)) {
534 			/*
535 			 * Data block spans pages.  This should not happen,
536 			 * since dm-verity sets dma_alignment to the data block
537 			 * size minus 1, and dm-verity also doesn't allow the
538 			 * data block size to be greater than PAGE_SIZE.
539 			 */
540 			DMERR_LIMIT("unaligned io (data block spans pages)");
541 			return -EIO;
542 		}
543 
544 		data = bvec_kmap_local(&bv);
545 
546 		if (is_zero) {
547 			/*
548 			 * If we expect a zero block, don't validate, just
549 			 * return zeros.
550 			 */
551 			memset(data, 0, block_size);
552 			kunmap_local(data);
553 			continue;
554 		}
555 
556 		r = verity_hash(v, io, data, block_size,
557 				verity_io_real_digest(v, io), !io->in_bh);
558 		if (unlikely(r < 0)) {
559 			kunmap_local(data);
560 			return r;
561 		}
562 
563 		if (likely(memcmp(verity_io_real_digest(v, io),
564 				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
565 			if (v->validated_blocks)
566 				set_bit(cur_block, v->validated_blocks);
567 			kunmap_local(data);
568 			continue;
569 		}
570 		r = verity_handle_data_hash_mismatch(v, io, bio, cur_block,
571 						     data);
572 		kunmap_local(data);
573 		if (unlikely(r))
574 			return r;
575 	}
576 
577 	return 0;
578 }
579 
580 /*
581  * Skip verity work in response to I/O error when system is shutting down.
582  */
verity_is_system_shutting_down(void)583 static inline bool verity_is_system_shutting_down(void)
584 {
585 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
586 		|| system_state == SYSTEM_RESTART;
587 }
588 
restart_io_error(struct work_struct * w)589 static void restart_io_error(struct work_struct *w)
590 {
591 	kernel_restart("dm-verity device has I/O error");
592 }
593 
594 /*
595  * End one "io" structure with a given error.
596  */
verity_finish_io(struct dm_verity_io * io,blk_status_t status)597 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
598 {
599 	struct dm_verity *v = io->v;
600 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
601 
602 	bio->bi_end_io = io->orig_bi_end_io;
603 	bio->bi_status = status;
604 
605 	if (!static_branch_unlikely(&use_bh_wq_enabled) || !io->in_bh)
606 		verity_fec_finish_io(io);
607 
608 	if (unlikely(status != BLK_STS_OK) &&
609 	    unlikely(!(bio->bi_opf & REQ_RAHEAD)) &&
610 	    !io->had_mismatch &&
611 	    !verity_is_system_shutting_down()) {
612 		if (v->error_mode == DM_VERITY_MODE_PANIC) {
613 			panic("dm-verity device has I/O error");
614 		}
615 		if (v->error_mode == DM_VERITY_MODE_RESTART) {
616 			static DECLARE_WORK(restart_work, restart_io_error);
617 			queue_work(v->verify_wq, &restart_work);
618 			/*
619 			 * We deliberately don't call bio_endio here, because
620 			 * the machine will be restarted anyway.
621 			 */
622 			return;
623 		}
624 	}
625 
626 	bio_endio(bio);
627 }
628 
verity_work(struct work_struct * w)629 static void verity_work(struct work_struct *w)
630 {
631 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
632 
633 	io->in_bh = false;
634 
635 	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
636 }
637 
verity_bh_work(struct work_struct * w)638 static void verity_bh_work(struct work_struct *w)
639 {
640 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, bh_work);
641 	int err;
642 
643 	io->in_bh = true;
644 	err = verity_verify_io(io);
645 	if (err == -EAGAIN || err == -ENOMEM) {
646 		/* fallback to retrying with work-queue */
647 		INIT_WORK(&io->work, verity_work);
648 		queue_work(io->v->verify_wq, &io->work);
649 		return;
650 	}
651 
652 	verity_finish_io(io, errno_to_blk_status(err));
653 }
654 
verity_end_io(struct bio * bio)655 static void verity_end_io(struct bio *bio)
656 {
657 	struct dm_verity_io *io = bio->bi_private;
658 
659 	if (bio->bi_status &&
660 	    (!verity_fec_is_enabled(io->v) ||
661 	     verity_is_system_shutting_down() ||
662 	     (bio->bi_opf & REQ_RAHEAD))) {
663 		verity_finish_io(io, bio->bi_status);
664 		return;
665 	}
666 
667 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->v->use_bh_wq) {
668 		INIT_WORK(&io->bh_work, verity_bh_work);
669 		queue_work(system_bh_wq, &io->bh_work);
670 	} else {
671 		INIT_WORK(&io->work, verity_work);
672 		queue_work(io->v->verify_wq, &io->work);
673 	}
674 }
675 
676 /*
677  * Prefetch buffers for the specified io.
678  * The root buffer is not prefetched, it is assumed that it will be cached
679  * all the time.
680  */
verity_prefetch_io(struct work_struct * work)681 static void verity_prefetch_io(struct work_struct *work)
682 {
683 	struct dm_verity_prefetch_work *pw =
684 		container_of(work, struct dm_verity_prefetch_work, work);
685 	struct dm_verity *v = pw->v;
686 	int i;
687 
688 	for (i = v->levels - 2; i >= 0; i--) {
689 		sector_t hash_block_start;
690 		sector_t hash_block_end;
691 
692 		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
693 		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
694 
695 		if (!i) {
696 			unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
697 
698 			cluster >>= v->data_dev_block_bits;
699 			if (unlikely(!cluster))
700 				goto no_prefetch_cluster;
701 
702 			if (unlikely(cluster & (cluster - 1)))
703 				cluster = 1 << __fls(cluster);
704 
705 			hash_block_start &= ~(sector_t)(cluster - 1);
706 			hash_block_end |= cluster - 1;
707 			if (unlikely(hash_block_end >= v->hash_blocks))
708 				hash_block_end = v->hash_blocks - 1;
709 		}
710 no_prefetch_cluster:
711 		dm_bufio_prefetch_with_ioprio(v->bufio, hash_block_start,
712 					hash_block_end - hash_block_start + 1,
713 					pw->ioprio);
714 	}
715 
716 	kfree(pw);
717 }
718 
verity_submit_prefetch(struct dm_verity * v,struct dm_verity_io * io,unsigned short ioprio)719 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io,
720 				   unsigned short ioprio)
721 {
722 	sector_t block = io->block;
723 	unsigned int n_blocks = io->n_blocks;
724 	struct dm_verity_prefetch_work *pw;
725 
726 	if (v->validated_blocks) {
727 		while (n_blocks && test_bit(block, v->validated_blocks)) {
728 			block++;
729 			n_blocks--;
730 		}
731 		while (n_blocks && test_bit(block + n_blocks - 1,
732 					    v->validated_blocks))
733 			n_blocks--;
734 		if (!n_blocks)
735 			return;
736 	}
737 
738 	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
739 		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
740 
741 	if (!pw)
742 		return;
743 
744 	INIT_WORK(&pw->work, verity_prefetch_io);
745 	pw->v = v;
746 	pw->block = block;
747 	pw->n_blocks = n_blocks;
748 	pw->ioprio = ioprio;
749 	queue_work(v->verify_wq, &pw->work);
750 }
751 
752 /*
753  * Bio map function. It allocates dm_verity_io structure and bio vector and
754  * fills them. Then it issues prefetches and the I/O.
755  */
verity_map(struct dm_target * ti,struct bio * bio)756 static int verity_map(struct dm_target *ti, struct bio *bio)
757 {
758 	struct dm_verity *v = ti->private;
759 	struct dm_verity_io *io;
760 
761 	bio_set_dev(bio, v->data_dev->bdev);
762 	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
763 
764 	if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
765 	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
766 		DMERR_LIMIT("unaligned io");
767 		return DM_MAPIO_KILL;
768 	}
769 
770 	if (bio_end_sector(bio) >>
771 	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
772 		DMERR_LIMIT("io out of range");
773 		return DM_MAPIO_KILL;
774 	}
775 
776 	if (bio_data_dir(bio) == WRITE)
777 		return DM_MAPIO_KILL;
778 
779 	io = dm_per_bio_data(bio, ti->per_io_data_size);
780 	io->v = v;
781 	io->orig_bi_end_io = bio->bi_end_io;
782 	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
783 	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
784 	io->had_mismatch = false;
785 
786 	bio->bi_end_io = verity_end_io;
787 	bio->bi_private = io;
788 	io->iter = bio->bi_iter;
789 
790 	verity_fec_init_io(io);
791 
792 	verity_submit_prefetch(v, io, bio_prio(bio));
793 
794 	submit_bio_noacct(bio);
795 
796 	return DM_MAPIO_SUBMITTED;
797 }
798 
799 /*
800  * Status: V (valid) or C (corruption found)
801  */
verity_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)802 static void verity_status(struct dm_target *ti, status_type_t type,
803 			  unsigned int status_flags, char *result, unsigned int maxlen)
804 {
805 	struct dm_verity *v = ti->private;
806 	unsigned int args = 0;
807 	unsigned int sz = 0;
808 	unsigned int x;
809 
810 	switch (type) {
811 	case STATUSTYPE_INFO:
812 		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
813 		break;
814 	case STATUSTYPE_TABLE:
815 		DMEMIT("%u %s %s %u %u %llu %llu %s ",
816 			v->version,
817 			v->data_dev->name,
818 			v->hash_dev->name,
819 			1 << v->data_dev_block_bits,
820 			1 << v->hash_dev_block_bits,
821 			(unsigned long long)v->data_blocks,
822 			(unsigned long long)v->hash_start,
823 			v->alg_name
824 			);
825 		for (x = 0; x < v->digest_size; x++)
826 			DMEMIT("%02x", v->root_digest[x]);
827 		DMEMIT(" ");
828 		if (!v->salt_size)
829 			DMEMIT("-");
830 		else
831 			for (x = 0; x < v->salt_size; x++)
832 				DMEMIT("%02x", v->salt[x]);
833 		if (v->mode != DM_VERITY_MODE_EIO)
834 			args++;
835 		if (v->error_mode != DM_VERITY_MODE_EIO)
836 			args++;
837 		if (verity_fec_is_enabled(v))
838 			args += DM_VERITY_OPTS_FEC;
839 		if (v->zero_digest)
840 			args++;
841 		if (v->validated_blocks)
842 			args++;
843 		if (v->use_bh_wq)
844 			args++;
845 		if (v->signature_key_desc)
846 			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
847 		if (!args)
848 			return;
849 		DMEMIT(" %u", args);
850 		if (v->mode != DM_VERITY_MODE_EIO) {
851 			DMEMIT(" ");
852 			switch (v->mode) {
853 			case DM_VERITY_MODE_LOGGING:
854 				DMEMIT(DM_VERITY_OPT_LOGGING);
855 				break;
856 			case DM_VERITY_MODE_RESTART:
857 				DMEMIT(DM_VERITY_OPT_RESTART);
858 				break;
859 			case DM_VERITY_MODE_PANIC:
860 				DMEMIT(DM_VERITY_OPT_PANIC);
861 				break;
862 			default:
863 				BUG();
864 			}
865 		}
866 		if (v->error_mode != DM_VERITY_MODE_EIO) {
867 			DMEMIT(" ");
868 			switch (v->error_mode) {
869 			case DM_VERITY_MODE_RESTART:
870 				DMEMIT(DM_VERITY_OPT_ERROR_RESTART);
871 				break;
872 			case DM_VERITY_MODE_PANIC:
873 				DMEMIT(DM_VERITY_OPT_ERROR_PANIC);
874 				break;
875 			default:
876 				BUG();
877 			}
878 		}
879 		if (v->zero_digest)
880 			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
881 		if (v->validated_blocks)
882 			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
883 		if (v->use_bh_wq)
884 			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
885 		sz = verity_fec_status_table(v, sz, result, maxlen);
886 		if (v->signature_key_desc)
887 			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
888 				" %s", v->signature_key_desc);
889 		break;
890 
891 	case STATUSTYPE_IMA:
892 		DMEMIT_TARGET_NAME_VERSION(ti->type);
893 		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
894 		DMEMIT(",verity_version=%u", v->version);
895 		DMEMIT(",data_device_name=%s", v->data_dev->name);
896 		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
897 		DMEMIT(",verity_algorithm=%s", v->alg_name);
898 
899 		DMEMIT(",root_digest=");
900 		for (x = 0; x < v->digest_size; x++)
901 			DMEMIT("%02x", v->root_digest[x]);
902 
903 		DMEMIT(",salt=");
904 		if (!v->salt_size)
905 			DMEMIT("-");
906 		else
907 			for (x = 0; x < v->salt_size; x++)
908 				DMEMIT("%02x", v->salt[x]);
909 
910 		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
911 		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
912 		if (v->signature_key_desc)
913 			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
914 
915 		if (v->mode != DM_VERITY_MODE_EIO) {
916 			DMEMIT(",verity_mode=");
917 			switch (v->mode) {
918 			case DM_VERITY_MODE_LOGGING:
919 				DMEMIT(DM_VERITY_OPT_LOGGING);
920 				break;
921 			case DM_VERITY_MODE_RESTART:
922 				DMEMIT(DM_VERITY_OPT_RESTART);
923 				break;
924 			case DM_VERITY_MODE_PANIC:
925 				DMEMIT(DM_VERITY_OPT_PANIC);
926 				break;
927 			default:
928 				DMEMIT("invalid");
929 			}
930 		}
931 		if (v->error_mode != DM_VERITY_MODE_EIO) {
932 			DMEMIT(",verity_error_mode=");
933 			switch (v->error_mode) {
934 			case DM_VERITY_MODE_RESTART:
935 				DMEMIT(DM_VERITY_OPT_ERROR_RESTART);
936 				break;
937 			case DM_VERITY_MODE_PANIC:
938 				DMEMIT(DM_VERITY_OPT_ERROR_PANIC);
939 				break;
940 			default:
941 				DMEMIT("invalid");
942 			}
943 		}
944 		DMEMIT(";");
945 		break;
946 	}
947 }
948 
verity_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev)949 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
950 {
951 	struct dm_verity *v = ti->private;
952 
953 	*bdev = v->data_dev->bdev;
954 
955 	if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
956 		return 1;
957 	return 0;
958 }
959 
verity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)960 static int verity_iterate_devices(struct dm_target *ti,
961 				  iterate_devices_callout_fn fn, void *data)
962 {
963 	struct dm_verity *v = ti->private;
964 
965 	return fn(ti, v->data_dev, v->data_start, ti->len, data);
966 }
967 
verity_io_hints(struct dm_target * ti,struct queue_limits * limits)968 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
969 {
970 	struct dm_verity *v = ti->private;
971 
972 	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
973 		limits->logical_block_size = 1 << v->data_dev_block_bits;
974 
975 	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
976 		limits->physical_block_size = 1 << v->data_dev_block_bits;
977 
978 	limits->io_min = limits->logical_block_size;
979 
980 	/*
981 	 * Similar to what dm-crypt does, opt dm-verity out of support for
982 	 * direct I/O that is aligned to less than the traditional direct I/O
983 	 * alignment requirement of logical_block_size.  This prevents dm-verity
984 	 * data blocks from crossing pages, eliminating various edge cases.
985 	 */
986 	limits->dma_alignment = limits->logical_block_size - 1;
987 }
988 
989 #ifdef CONFIG_SECURITY
990 
verity_init_sig(struct dm_verity * v,const void * sig,size_t sig_size)991 static int verity_init_sig(struct dm_verity *v, const void *sig,
992 			   size_t sig_size)
993 {
994 	v->sig_size = sig_size;
995 
996 	if (sig) {
997 		v->root_digest_sig = kmemdup(sig, v->sig_size, GFP_KERNEL);
998 		if (!v->root_digest_sig)
999 			return -ENOMEM;
1000 	}
1001 
1002 	return 0;
1003 }
1004 
verity_free_sig(struct dm_verity * v)1005 static void verity_free_sig(struct dm_verity *v)
1006 {
1007 	kfree(v->root_digest_sig);
1008 }
1009 
1010 #else
1011 
verity_init_sig(struct dm_verity * v,const void * sig,size_t sig_size)1012 static inline int verity_init_sig(struct dm_verity *v, const void *sig,
1013 				  size_t sig_size)
1014 {
1015 	return 0;
1016 }
1017 
verity_free_sig(struct dm_verity * v)1018 static inline void verity_free_sig(struct dm_verity *v)
1019 {
1020 }
1021 
1022 #endif /* CONFIG_SECURITY */
1023 
verity_dtr(struct dm_target * ti)1024 static void verity_dtr(struct dm_target *ti)
1025 {
1026 	struct dm_verity *v = ti->private;
1027 
1028 	if (v->verify_wq)
1029 		destroy_workqueue(v->verify_wq);
1030 
1031 	mempool_exit(&v->recheck_pool);
1032 	if (v->io)
1033 		dm_io_client_destroy(v->io);
1034 
1035 	if (v->bufio)
1036 		dm_bufio_client_destroy(v->bufio);
1037 
1038 	kvfree(v->validated_blocks);
1039 	kfree(v->salt);
1040 	kfree(v->initial_hashstate);
1041 	kfree(v->root_digest);
1042 	kfree(v->zero_digest);
1043 	verity_free_sig(v);
1044 
1045 	if (v->ahash_tfm) {
1046 		static_branch_dec(&ahash_enabled);
1047 		crypto_free_ahash(v->ahash_tfm);
1048 	} else {
1049 		crypto_free_shash(v->shash_tfm);
1050 	}
1051 
1052 	kfree(v->alg_name);
1053 
1054 	if (v->hash_dev)
1055 		dm_put_device(ti, v->hash_dev);
1056 
1057 	if (v->data_dev)
1058 		dm_put_device(ti, v->data_dev);
1059 
1060 	verity_fec_dtr(v);
1061 
1062 	kfree(v->signature_key_desc);
1063 
1064 	if (v->use_bh_wq)
1065 		static_branch_dec(&use_bh_wq_enabled);
1066 
1067 	kfree(v);
1068 
1069 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
1070 }
1071 
verity_alloc_most_once(struct dm_verity * v)1072 static int verity_alloc_most_once(struct dm_verity *v)
1073 {
1074 	struct dm_target *ti = v->ti;
1075 
1076 	/* the bitset can only handle INT_MAX blocks */
1077 	if (v->data_blocks > INT_MAX) {
1078 		ti->error = "device too large to use check_at_most_once";
1079 		return -E2BIG;
1080 	}
1081 
1082 	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
1083 				       sizeof(unsigned long),
1084 				       GFP_KERNEL);
1085 	if (!v->validated_blocks) {
1086 		ti->error = "failed to allocate bitset for check_at_most_once";
1087 		return -ENOMEM;
1088 	}
1089 
1090 	return 0;
1091 }
1092 
verity_alloc_zero_digest(struct dm_verity * v)1093 static int verity_alloc_zero_digest(struct dm_verity *v)
1094 {
1095 	int r = -ENOMEM;
1096 	struct dm_verity_io *io;
1097 	u8 *zero_data;
1098 
1099 	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1100 
1101 	if (!v->zero_digest)
1102 		return r;
1103 
1104 	io = kmalloc(sizeof(*io) + v->hash_reqsize, GFP_KERNEL);
1105 
1106 	if (!io)
1107 		return r; /* verity_dtr will free zero_digest */
1108 
1109 	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1110 
1111 	if (!zero_data)
1112 		goto out;
1113 
1114 	r = verity_hash(v, io, zero_data, 1 << v->data_dev_block_bits,
1115 			v->zero_digest, true);
1116 
1117 out:
1118 	kfree(io);
1119 	kfree(zero_data);
1120 
1121 	return r;
1122 }
1123 
verity_is_verity_mode(const char * arg_name)1124 static inline bool verity_is_verity_mode(const char *arg_name)
1125 {
1126 	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1127 		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1128 		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1129 }
1130 
verity_parse_verity_mode(struct dm_verity * v,const char * arg_name)1131 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1132 {
1133 	if (v->mode)
1134 		return -EINVAL;
1135 
1136 	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1137 		v->mode = DM_VERITY_MODE_LOGGING;
1138 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1139 		v->mode = DM_VERITY_MODE_RESTART;
1140 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1141 		v->mode = DM_VERITY_MODE_PANIC;
1142 
1143 	return 0;
1144 }
1145 
verity_is_verity_error_mode(const char * arg_name)1146 static inline bool verity_is_verity_error_mode(const char *arg_name)
1147 {
1148 	return (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART) ||
1149 		!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC));
1150 }
1151 
verity_parse_verity_error_mode(struct dm_verity * v,const char * arg_name)1152 static int verity_parse_verity_error_mode(struct dm_verity *v, const char *arg_name)
1153 {
1154 	if (v->error_mode)
1155 		return -EINVAL;
1156 
1157 	if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART))
1158 		v->error_mode = DM_VERITY_MODE_RESTART;
1159 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC))
1160 		v->error_mode = DM_VERITY_MODE_PANIC;
1161 
1162 	return 0;
1163 }
1164 
verity_parse_opt_args(struct dm_arg_set * as,struct dm_verity * v,struct dm_verity_sig_opts * verify_args,bool only_modifier_opts)1165 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1166 				 struct dm_verity_sig_opts *verify_args,
1167 				 bool only_modifier_opts)
1168 {
1169 	int r = 0;
1170 	unsigned int argc;
1171 	struct dm_target *ti = v->ti;
1172 	const char *arg_name;
1173 
1174 	static const struct dm_arg _args[] = {
1175 		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1176 	};
1177 
1178 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1179 	if (r)
1180 		return -EINVAL;
1181 
1182 	if (!argc)
1183 		return 0;
1184 
1185 	do {
1186 		arg_name = dm_shift_arg(as);
1187 		argc--;
1188 
1189 		if (verity_is_verity_mode(arg_name)) {
1190 			if (only_modifier_opts)
1191 				continue;
1192 			r = verity_parse_verity_mode(v, arg_name);
1193 			if (r) {
1194 				ti->error = "Conflicting error handling parameters";
1195 				return r;
1196 			}
1197 			continue;
1198 
1199 		} else if (verity_is_verity_error_mode(arg_name)) {
1200 			if (only_modifier_opts)
1201 				continue;
1202 			r = verity_parse_verity_error_mode(v, arg_name);
1203 			if (r) {
1204 				ti->error = "Conflicting error handling parameters";
1205 				return r;
1206 			}
1207 			continue;
1208 
1209 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1210 			if (only_modifier_opts)
1211 				continue;
1212 			r = verity_alloc_zero_digest(v);
1213 			if (r) {
1214 				ti->error = "Cannot allocate zero digest";
1215 				return r;
1216 			}
1217 			continue;
1218 
1219 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1220 			if (only_modifier_opts)
1221 				continue;
1222 			r = verity_alloc_most_once(v);
1223 			if (r)
1224 				return r;
1225 			continue;
1226 
1227 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1228 			v->use_bh_wq = true;
1229 			static_branch_inc(&use_bh_wq_enabled);
1230 			continue;
1231 
1232 		} else if (verity_is_fec_opt_arg(arg_name)) {
1233 			if (only_modifier_opts)
1234 				continue;
1235 			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1236 			if (r)
1237 				return r;
1238 			continue;
1239 
1240 		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1241 			if (only_modifier_opts)
1242 				continue;
1243 			r = verity_verify_sig_parse_opt_args(as, v,
1244 							     verify_args,
1245 							     &argc, arg_name);
1246 			if (r)
1247 				return r;
1248 			continue;
1249 
1250 		} else if (only_modifier_opts) {
1251 			/*
1252 			 * Ignore unrecognized opt, could easily be an extra
1253 			 * argument to an option whose parsing was skipped.
1254 			 * Normal parsing (@only_modifier_opts=false) will
1255 			 * properly parse all options (and their extra args).
1256 			 */
1257 			continue;
1258 		}
1259 
1260 		DMERR("Unrecognized verity feature request: %s", arg_name);
1261 		ti->error = "Unrecognized verity feature request";
1262 		return -EINVAL;
1263 	} while (argc && !r);
1264 
1265 	return r;
1266 }
1267 
verity_setup_hash_alg(struct dm_verity * v,const char * alg_name)1268 static int verity_setup_hash_alg(struct dm_verity *v, const char *alg_name)
1269 {
1270 	struct dm_target *ti = v->ti;
1271 	struct crypto_ahash *ahash;
1272 	struct crypto_shash *shash = NULL;
1273 	const char *driver_name;
1274 
1275 	v->alg_name = kstrdup(alg_name, GFP_KERNEL);
1276 	if (!v->alg_name) {
1277 		ti->error = "Cannot allocate algorithm name";
1278 		return -ENOMEM;
1279 	}
1280 
1281 	/*
1282 	 * Allocate the hash transformation object that this dm-verity instance
1283 	 * will use.  The vast majority of dm-verity users use CPU-based
1284 	 * hashing, so when possible use the shash API to minimize the crypto
1285 	 * API overhead.  If the ahash API resolves to a different driver
1286 	 * (likely an off-CPU hardware offload), use ahash instead.  Also use
1287 	 * ahash if the obsolete dm-verity format with the appended salt is
1288 	 * being used, so that quirk only needs to be handled in one place.
1289 	 */
1290 	ahash = crypto_alloc_ahash(alg_name, 0,
1291 				   v->use_bh_wq ? CRYPTO_ALG_ASYNC : 0);
1292 	if (IS_ERR(ahash)) {
1293 		ti->error = "Cannot initialize hash function";
1294 		return PTR_ERR(ahash);
1295 	}
1296 	driver_name = crypto_ahash_driver_name(ahash);
1297 	if (v->version >= 1 /* salt prepended, not appended? */) {
1298 		shash = crypto_alloc_shash(alg_name, 0, 0);
1299 		if (!IS_ERR(shash) &&
1300 		    strcmp(crypto_shash_driver_name(shash), driver_name) != 0) {
1301 			/*
1302 			 * ahash gave a different driver than shash, so probably
1303 			 * this is a case of real hardware offload.  Use ahash.
1304 			 */
1305 			crypto_free_shash(shash);
1306 			shash = NULL;
1307 		}
1308 	}
1309 	if (!IS_ERR_OR_NULL(shash)) {
1310 		crypto_free_ahash(ahash);
1311 		ahash = NULL;
1312 		v->shash_tfm = shash;
1313 		v->digest_size = crypto_shash_digestsize(shash);
1314 		v->hash_reqsize = sizeof(struct shash_desc) +
1315 				  crypto_shash_descsize(shash);
1316 		DMINFO("%s using shash \"%s\"", alg_name, driver_name);
1317 	} else {
1318 		v->ahash_tfm = ahash;
1319 		static_branch_inc(&ahash_enabled);
1320 		v->digest_size = crypto_ahash_digestsize(ahash);
1321 		v->hash_reqsize = sizeof(struct ahash_request) +
1322 				  crypto_ahash_reqsize(ahash);
1323 		DMINFO("%s using ahash \"%s\"", alg_name, driver_name);
1324 	}
1325 	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1326 		ti->error = "Digest size too big";
1327 		return -EINVAL;
1328 	}
1329 	return 0;
1330 }
1331 
verity_setup_salt_and_hashstate(struct dm_verity * v,const char * arg)1332 static int verity_setup_salt_and_hashstate(struct dm_verity *v, const char *arg)
1333 {
1334 	struct dm_target *ti = v->ti;
1335 
1336 	if (strcmp(arg, "-") != 0) {
1337 		v->salt_size = strlen(arg) / 2;
1338 		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1339 		if (!v->salt) {
1340 			ti->error = "Cannot allocate salt";
1341 			return -ENOMEM;
1342 		}
1343 		if (strlen(arg) != v->salt_size * 2 ||
1344 		    hex2bin(v->salt, arg, v->salt_size)) {
1345 			ti->error = "Invalid salt";
1346 			return -EINVAL;
1347 		}
1348 	}
1349 	if (v->shash_tfm) {
1350 		SHASH_DESC_ON_STACK(desc, v->shash_tfm);
1351 		int r;
1352 
1353 		/*
1354 		 * Compute the pre-salted hash state that can be passed to
1355 		 * crypto_shash_import() for each block later.
1356 		 */
1357 		v->initial_hashstate = kmalloc(
1358 			crypto_shash_statesize(v->shash_tfm), GFP_KERNEL);
1359 		if (!v->initial_hashstate) {
1360 			ti->error = "Cannot allocate initial hash state";
1361 			return -ENOMEM;
1362 		}
1363 		desc->tfm = v->shash_tfm;
1364 		r = crypto_shash_init(desc) ?:
1365 		    crypto_shash_update(desc, v->salt, v->salt_size) ?:
1366 		    crypto_shash_export(desc, v->initial_hashstate);
1367 		if (r) {
1368 			ti->error = "Cannot set up initial hash state";
1369 			return r;
1370 		}
1371 	}
1372 	return 0;
1373 }
1374 
1375 /*
1376  * Target parameters:
1377  *	<version>	The current format is version 1.
1378  *			Vsn 0 is compatible with original Chromium OS releases.
1379  *	<data device>
1380  *	<hash device>
1381  *	<data block size>
1382  *	<hash block size>
1383  *	<the number of data blocks>
1384  *	<hash start block>
1385  *	<algorithm>
1386  *	<digest>
1387  *	<salt>		Hex string or "-" if no salt.
1388  */
verity_ctr(struct dm_target * ti,unsigned int argc,char ** argv)1389 static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1390 {
1391 	struct dm_verity *v;
1392 	struct dm_verity_sig_opts verify_args = {0};
1393 	struct dm_arg_set as;
1394 	unsigned int num;
1395 	unsigned long long num_ll;
1396 	int r;
1397 	int i;
1398 	sector_t hash_position;
1399 	char dummy;
1400 	char *root_hash_digest_to_validate;
1401 
1402 	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1403 	if (!v) {
1404 		ti->error = "Cannot allocate verity structure";
1405 		return -ENOMEM;
1406 	}
1407 	ti->private = v;
1408 	v->ti = ti;
1409 
1410 	r = verity_fec_ctr_alloc(v);
1411 	if (r)
1412 		goto bad;
1413 
1414 	if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) {
1415 		ti->error = "Device must be readonly";
1416 		r = -EINVAL;
1417 		goto bad;
1418 	}
1419 
1420 	if (argc < 10) {
1421 		ti->error = "Not enough arguments";
1422 		r = -EINVAL;
1423 		goto bad;
1424 	}
1425 
1426 	/* Parse optional parameters that modify primary args */
1427 	if (argc > 10) {
1428 		as.argc = argc - 10;
1429 		as.argv = argv + 10;
1430 		r = verity_parse_opt_args(&as, v, &verify_args, true);
1431 		if (r < 0)
1432 			goto bad;
1433 	}
1434 
1435 	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1436 	    num > 1) {
1437 		ti->error = "Invalid version";
1438 		r = -EINVAL;
1439 		goto bad;
1440 	}
1441 	v->version = num;
1442 
1443 	r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev);
1444 	if (r) {
1445 		ti->error = "Data device lookup failed";
1446 		goto bad;
1447 	}
1448 
1449 	r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev);
1450 	if (r) {
1451 		ti->error = "Hash device lookup failed";
1452 		goto bad;
1453 	}
1454 
1455 	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1456 	    !num || (num & (num - 1)) ||
1457 	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1458 	    num > PAGE_SIZE) {
1459 		ti->error = "Invalid data device block size";
1460 		r = -EINVAL;
1461 		goto bad;
1462 	}
1463 	v->data_dev_block_bits = __ffs(num);
1464 
1465 	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1466 	    !num || (num & (num - 1)) ||
1467 	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1468 	    num > INT_MAX) {
1469 		ti->error = "Invalid hash device block size";
1470 		r = -EINVAL;
1471 		goto bad;
1472 	}
1473 	v->hash_dev_block_bits = __ffs(num);
1474 
1475 	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1476 	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1477 	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1478 		ti->error = "Invalid data blocks";
1479 		r = -EINVAL;
1480 		goto bad;
1481 	}
1482 	v->data_blocks = num_ll;
1483 
1484 	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1485 		ti->error = "Data device is too small";
1486 		r = -EINVAL;
1487 		goto bad;
1488 	}
1489 
1490 	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1491 	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1492 	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1493 		ti->error = "Invalid hash start";
1494 		r = -EINVAL;
1495 		goto bad;
1496 	}
1497 	v->hash_start = num_ll;
1498 
1499 	r = verity_setup_hash_alg(v, argv[7]);
1500 	if (r)
1501 		goto bad;
1502 
1503 	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1504 	if (!v->root_digest) {
1505 		ti->error = "Cannot allocate root digest";
1506 		r = -ENOMEM;
1507 		goto bad;
1508 	}
1509 	if (strlen(argv[8]) != v->digest_size * 2 ||
1510 	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1511 		ti->error = "Invalid root digest";
1512 		r = -EINVAL;
1513 		goto bad;
1514 	}
1515 	root_hash_digest_to_validate = argv[8];
1516 
1517 	r = verity_setup_salt_and_hashstate(v, argv[9]);
1518 	if (r)
1519 		goto bad;
1520 
1521 	argv += 10;
1522 	argc -= 10;
1523 
1524 	/* Optional parameters */
1525 	if (argc) {
1526 		as.argc = argc;
1527 		as.argv = argv;
1528 		r = verity_parse_opt_args(&as, v, &verify_args, false);
1529 		if (r < 0)
1530 			goto bad;
1531 	}
1532 
1533 	/* Root hash signature is  a optional parameter*/
1534 	r = verity_verify_root_hash(root_hash_digest_to_validate,
1535 				    strlen(root_hash_digest_to_validate),
1536 				    verify_args.sig,
1537 				    verify_args.sig_size);
1538 	if (r < 0) {
1539 		ti->error = "Root hash verification failed";
1540 		goto bad;
1541 	}
1542 
1543 	r = verity_init_sig(v, verify_args.sig, verify_args.sig_size);
1544 	if (r < 0) {
1545 		ti->error = "Cannot allocate root digest signature";
1546 		goto bad;
1547 	}
1548 
1549 	v->hash_per_block_bits =
1550 		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1551 
1552 	v->levels = 0;
1553 	if (v->data_blocks)
1554 		while (v->hash_per_block_bits * v->levels < 64 &&
1555 		       (unsigned long long)(v->data_blocks - 1) >>
1556 		       (v->hash_per_block_bits * v->levels))
1557 			v->levels++;
1558 
1559 	if (v->levels > DM_VERITY_MAX_LEVELS) {
1560 		ti->error = "Too many tree levels";
1561 		r = -E2BIG;
1562 		goto bad;
1563 	}
1564 
1565 	hash_position = v->hash_start;
1566 	for (i = v->levels - 1; i >= 0; i--) {
1567 		sector_t s;
1568 
1569 		v->hash_level_block[i] = hash_position;
1570 		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1571 					>> ((i + 1) * v->hash_per_block_bits);
1572 		if (hash_position + s < hash_position) {
1573 			ti->error = "Hash device offset overflow";
1574 			r = -E2BIG;
1575 			goto bad;
1576 		}
1577 		hash_position += s;
1578 	}
1579 	v->hash_blocks = hash_position;
1580 
1581 	r = mempool_init_page_pool(&v->recheck_pool, 1, 0);
1582 	if (unlikely(r)) {
1583 		ti->error = "Cannot allocate mempool";
1584 		goto bad;
1585 	}
1586 
1587 	v->io = dm_io_client_create();
1588 	if (IS_ERR(v->io)) {
1589 		r = PTR_ERR(v->io);
1590 		v->io = NULL;
1591 		ti->error = "Cannot allocate dm io";
1592 		goto bad;
1593 	}
1594 
1595 	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1596 		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1597 		dm_bufio_alloc_callback, NULL,
1598 		v->use_bh_wq ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1599 	if (IS_ERR(v->bufio)) {
1600 		ti->error = "Cannot initialize dm-bufio";
1601 		r = PTR_ERR(v->bufio);
1602 		v->bufio = NULL;
1603 		goto bad;
1604 	}
1605 
1606 	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1607 		ti->error = "Hash device is too small";
1608 		r = -E2BIG;
1609 		goto bad;
1610 	}
1611 
1612 	/*
1613 	 * Using WQ_HIGHPRI improves throughput and completion latency by
1614 	 * reducing wait times when reading from a dm-verity device.
1615 	 *
1616 	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1617 	 * allows verify_wq to preempt softirq since verification in BH workqueue
1618 	 * will fall-back to using it for error handling (or if the bufio cache
1619 	 * doesn't have required hashes).
1620 	 */
1621 	v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1622 	if (!v->verify_wq) {
1623 		ti->error = "Cannot allocate workqueue";
1624 		r = -ENOMEM;
1625 		goto bad;
1626 	}
1627 
1628 	ti->per_io_data_size = sizeof(struct dm_verity_io) + v->hash_reqsize;
1629 
1630 	r = verity_fec_ctr(v);
1631 	if (r)
1632 		goto bad;
1633 
1634 	ti->per_io_data_size = roundup(ti->per_io_data_size,
1635 				       __alignof__(struct dm_verity_io));
1636 
1637 	verity_verify_sig_opts_cleanup(&verify_args);
1638 
1639 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
1640 
1641 	return 0;
1642 
1643 bad:
1644 
1645 	verity_verify_sig_opts_cleanup(&verify_args);
1646 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
1647 	verity_dtr(ti);
1648 
1649 	return r;
1650 }
1651 
1652 /*
1653  * Get the verity mode (error behavior) of a verity target.
1654  *
1655  * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1656  * target.
1657  */
dm_verity_get_mode(struct dm_target * ti)1658 int dm_verity_get_mode(struct dm_target *ti)
1659 {
1660 	struct dm_verity *v = ti->private;
1661 
1662 	if (!dm_is_verity_target(ti))
1663 		return -EINVAL;
1664 
1665 	return v->mode;
1666 }
1667 
1668 /*
1669  * Get the root digest of a verity target.
1670  *
1671  * Returns a copy of the root digest, the caller is responsible for
1672  * freeing the memory of the digest.
1673  */
dm_verity_get_root_digest(struct dm_target * ti,u8 ** root_digest,unsigned int * digest_size)1674 int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1675 {
1676 	struct dm_verity *v = ti->private;
1677 
1678 	if (!dm_is_verity_target(ti))
1679 		return -EINVAL;
1680 
1681 	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1682 	if (*root_digest == NULL)
1683 		return -ENOMEM;
1684 
1685 	*digest_size = v->digest_size;
1686 
1687 	return 0;
1688 }
1689 
1690 #ifdef CONFIG_SECURITY
1691 
1692 #ifdef CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG
1693 
verity_security_set_signature(struct block_device * bdev,struct dm_verity * v)1694 static int verity_security_set_signature(struct block_device *bdev,
1695 					 struct dm_verity *v)
1696 {
1697 	/*
1698 	 * if the dm-verity target is unsigned, v->root_digest_sig will
1699 	 * be NULL, and the hook call is still required to let LSMs mark
1700 	 * the device as unsigned. This information is crucial for LSMs to
1701 	 * block operations such as execution on unsigned files
1702 	 */
1703 	return security_bdev_setintegrity(bdev,
1704 					  LSM_INT_DMVERITY_SIG_VALID,
1705 					  v->root_digest_sig,
1706 					  v->sig_size);
1707 }
1708 
1709 #else
1710 
verity_security_set_signature(struct block_device * bdev,struct dm_verity * v)1711 static inline int verity_security_set_signature(struct block_device *bdev,
1712 						struct dm_verity *v)
1713 {
1714 	return 0;
1715 }
1716 
1717 #endif /* CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG */
1718 
1719 /*
1720  * Expose verity target's root hash and signature data to LSMs before resume.
1721  *
1722  * Returns 0 on success, or -ENOMEM if the system is out of memory.
1723  */
verity_preresume(struct dm_target * ti)1724 static int verity_preresume(struct dm_target *ti)
1725 {
1726 	struct block_device *bdev;
1727 	struct dm_verity_digest root_digest;
1728 	struct dm_verity *v;
1729 	int r;
1730 
1731 	v = ti->private;
1732 	bdev = dm_disk(dm_table_get_md(ti->table))->part0;
1733 	root_digest.digest = v->root_digest;
1734 	root_digest.digest_len = v->digest_size;
1735 	if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm)
1736 		root_digest.alg = crypto_ahash_alg_name(v->ahash_tfm);
1737 	else
1738 		root_digest.alg = crypto_shash_alg_name(v->shash_tfm);
1739 
1740 	r = security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, &root_digest,
1741 				       sizeof(root_digest));
1742 	if (r)
1743 		return r;
1744 
1745 	r =  verity_security_set_signature(bdev, v);
1746 	if (r)
1747 		goto bad;
1748 
1749 	return 0;
1750 
1751 bad:
1752 
1753 	security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, NULL, 0);
1754 
1755 	return r;
1756 }
1757 
1758 #endif /* CONFIG_SECURITY */
1759 
1760 static struct target_type verity_target = {
1761 	.name		= "verity",
1762 /* Note: the LSMs depend on the singleton and immutable features */
1763 	.features	= DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1764 	.version	= {1, 10, 0},
1765 	.module		= THIS_MODULE,
1766 	.ctr		= verity_ctr,
1767 	.dtr		= verity_dtr,
1768 	.map		= verity_map,
1769 	.status		= verity_status,
1770 	.prepare_ioctl	= verity_prepare_ioctl,
1771 	.iterate_devices = verity_iterate_devices,
1772 	.io_hints	= verity_io_hints,
1773 #ifdef CONFIG_SECURITY
1774 	.preresume	= verity_preresume,
1775 #endif /* CONFIG_SECURITY */
1776 };
1777 module_dm(verity);
1778 
1779 /*
1780  * Check whether a DM target is a verity target.
1781  */
dm_is_verity_target(struct dm_target * ti)1782 bool dm_is_verity_target(struct dm_target *ti)
1783 {
1784 	return ti->type == &verity_target;
1785 }
1786 
1787 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1788 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1789 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1790 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1791 MODULE_LICENSE("GPL");
1792