1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright 2023 Red Hat
4  */
5 
6 #ifndef INDEXER_H
7 #define INDEXER_H
8 
9 #include <linux/mutex.h>
10 #include <linux/sched.h>
11 #include <linux/types.h>
12 #include <linux/wait.h>
13 
14 #include "funnel-queue.h"
15 
16 /*
17  * UDS public API
18  *
19  * The Universal Deduplication System (UDS) is an efficient name-value store. When used for
20  * deduplicating storage, the names are generally hashes of data blocks and the associated data is
21  * where that block is located on the underlying storage medium. The stored names are expected to
22  * be randomly distributed among the space of possible names. If this assumption is violated, the
23  * UDS index will store fewer names than normal but will otherwise continue to work. The data
24  * associated with each name can be any 16-byte value.
25  *
26  * A client must first create an index session to interact with an index. Once created, the session
27  * can be shared among multiple threads or users. When a session is destroyed, it will also close
28  * and save any associated index.
29  *
30  * To make a request, a client must allocate a uds_request structure and set the required fields
31  * before launching it. UDS will invoke the provided callback to complete the request. After the
32  * callback has been called, the uds_request structure can be freed or reused for a new request.
33  * There are five types of requests:
34  *
35  * A UDS_UPDATE request will associate the provided name with the provided data. Any previous data
36  * associated with that name will be discarded.
37  *
38  * A UDS_QUERY request will return the data associated with the provided name, if any. The entry
39  * for the name will also be marked as most recent, as if the data had been updated.
40  *
41  * A UDS_POST request is a combination of UDS_QUERY and UDS_UPDATE. If there is already data
42  * associated with the provided name, that data is returned. If there is no existing association,
43  * the name is associated with the newly provided data. This request is equivalent to a UDS_QUERY
44  * request followed by a UDS_UPDATE request if no data is found, but it is much more efficient.
45  *
46  * A UDS_QUERY_NO_UPDATE request will return the data associated with the provided name, but will
47  * not change the recency of the entry for the name. This request is primarily useful for testing,
48  * to determine whether an entry exists without changing the internal state of the index.
49  *
50  * A UDS_DELETE request removes any data associated with the provided name. This operation is
51  * generally not necessary, because the index will automatically discard its oldest entries once it
52  * becomes full.
53  */
54 
55 /* General UDS constants and structures */
56 
57 enum uds_request_type {
58 	/* Create or update the mapping for a name, and make the name most recent. */
59 	UDS_UPDATE,
60 
61 	/* Return any mapped data for a name, and make the name most recent. */
62 	UDS_QUERY,
63 
64 	/*
65 	 * Return any mapped data for a name, or map the provided data to the name if there is no
66 	 * current data, and make the name most recent.
67 	 */
68 	UDS_POST,
69 
70 	/* Return any mapped data for a name without updating its recency. */
71 	UDS_QUERY_NO_UPDATE,
72 
73 	/* Remove any mapping for a name. */
74 	UDS_DELETE,
75 
76 };
77 
78 enum uds_open_index_type {
79 	/* Create a new index. */
80 	UDS_CREATE,
81 
82 	/* Load an existing index and try to recover if necessary. */
83 	UDS_LOAD,
84 
85 	/* Load an existing index, but only if it was saved cleanly. */
86 	UDS_NO_REBUILD,
87 };
88 
89 enum {
90 	/* The record name size in bytes */
91 	UDS_RECORD_NAME_SIZE = 16,
92 	/* The maximum record data size in bytes */
93 	UDS_RECORD_DATA_SIZE = 16,
94 };
95 
96 /*
97  * A type representing a UDS memory configuration which is either a positive integer number of
98  * gigabytes or one of the six special constants for configurations smaller than one gigabyte.
99  */
100 typedef int uds_memory_config_size_t;
101 
102 enum {
103 	/* The maximum configurable amount of memory */
104 	UDS_MEMORY_CONFIG_MAX = 1024,
105 	/* Flag indicating that the index has one less chapter than usual */
106 	UDS_MEMORY_CONFIG_REDUCED = 0x1000,
107 	UDS_MEMORY_CONFIG_REDUCED_MAX = 1024 + UDS_MEMORY_CONFIG_REDUCED,
108 	/* Special values indicating sizes less than 1 GB */
109 	UDS_MEMORY_CONFIG_256MB = -256,
110 	UDS_MEMORY_CONFIG_512MB = -512,
111 	UDS_MEMORY_CONFIG_768MB = -768,
112 	UDS_MEMORY_CONFIG_REDUCED_256MB = -1280,
113 	UDS_MEMORY_CONFIG_REDUCED_512MB = -1536,
114 	UDS_MEMORY_CONFIG_REDUCED_768MB = -1792,
115 };
116 
117 struct uds_record_name {
118 	unsigned char name[UDS_RECORD_NAME_SIZE];
119 };
120 
121 struct uds_record_data {
122 	unsigned char data[UDS_RECORD_DATA_SIZE];
123 };
124 
125 struct uds_volume_record {
126 	struct uds_record_name name;
127 	struct uds_record_data data;
128 };
129 
130 struct uds_parameters {
131 	/* The block_device used for storage */
132 	struct block_device *bdev;
133 	/* The maximum allowable size of the index on storage */
134 	size_t size;
135 	/* The offset where the index should start */
136 	off_t offset;
137 	/* The maximum memory allocation, in GB */
138 	uds_memory_config_size_t memory_size;
139 	/* Whether the index should include sparse chapters */
140 	bool sparse;
141 	/* A 64-bit nonce to validate the index */
142 	u64 nonce;
143 	/* The number of threads used to process index requests */
144 	unsigned int zone_count;
145 	/* The number of threads used to read volume pages */
146 	unsigned int read_threads;
147 };
148 
149 /*
150  * These statistics capture characteristics of the current index, including resource usage and
151  * requests processed since the index was opened.
152  */
153 struct uds_index_stats {
154 	/* The total number of records stored in the index */
155 	u64 entries_indexed;
156 	/* An estimate of the index's memory usage, in bytes */
157 	u64 memory_used;
158 	/* The number of collisions recorded in the volume index */
159 	u64 collisions;
160 	/* The number of entries discarded from the index since startup */
161 	u64 entries_discarded;
162 	/* The time at which these statistics were fetched */
163 	s64 current_time;
164 	/* The number of post calls that found an existing entry */
165 	u64 posts_found;
166 	/* The number of post calls that added an entry */
167 	u64 posts_not_found;
168 	/*
169 	 * The number of post calls that found an existing entry that is current enough to only
170 	 * exist in memory and not have been committed to disk yet
171 	 */
172 	u64 in_memory_posts_found;
173 	/*
174 	 * The number of post calls that found an existing entry in the dense portion of the index
175 	 */
176 	u64 dense_posts_found;
177 	/*
178 	 * The number of post calls that found an existing entry in the sparse portion of the index
179 	 */
180 	u64 sparse_posts_found;
181 	/* The number of update calls that updated an existing entry */
182 	u64 updates_found;
183 	/* The number of update calls that added a new entry */
184 	u64 updates_not_found;
185 	/* The number of delete requests that deleted an existing entry */
186 	u64 deletions_found;
187 	/* The number of delete requests that did nothing */
188 	u64 deletions_not_found;
189 	/* The number of query calls that found existing entry */
190 	u64 queries_found;
191 	/* The number of query calls that did not find an entry */
192 	u64 queries_not_found;
193 	/* The total number of requests processed */
194 	u64 requests;
195 };
196 
197 enum uds_index_region {
198 	/* No location information has been determined */
199 	UDS_LOCATION_UNKNOWN = 0,
200 	/* The index page entry has been found */
201 	UDS_LOCATION_INDEX_PAGE_LOOKUP,
202 	/* The record page entry has been found */
203 	UDS_LOCATION_RECORD_PAGE_LOOKUP,
204 	/* The record is not in the index */
205 	UDS_LOCATION_UNAVAILABLE,
206 	/* The record was found in the open chapter */
207 	UDS_LOCATION_IN_OPEN_CHAPTER,
208 	/* The record was found in the dense part of the index */
209 	UDS_LOCATION_IN_DENSE,
210 	/* The record was found in the sparse part of the index */
211 	UDS_LOCATION_IN_SPARSE,
212 } __packed;
213 
214 /* Zone message requests are used to communicate between index zones. */
215 enum uds_zone_message_type {
216 	/* A standard request with no message */
217 	UDS_MESSAGE_NONE = 0,
218 	/* Add a chapter to the sparse chapter index cache */
219 	UDS_MESSAGE_SPARSE_CACHE_BARRIER,
220 	/* Close a chapter to keep the zone from falling behind */
221 	UDS_MESSAGE_ANNOUNCE_CHAPTER_CLOSED,
222 } __packed;
223 
224 struct uds_zone_message {
225 	/* The type of message, determining how it will be processed */
226 	enum uds_zone_message_type type;
227 	/* The virtual chapter number to which the message applies */
228 	u64 virtual_chapter;
229 };
230 
231 struct uds_index_session;
232 struct uds_index;
233 struct uds_request;
234 
235 /* Once this callback has been invoked, the uds_request structure can be reused or freed. */
236 typedef void (*uds_request_callback_fn)(struct uds_request *request);
237 
238 struct uds_request {
239 	/* These input fields must be set before launching a request. */
240 
241 	/* The name of the record to look up or create */
242 	struct uds_record_name record_name;
243 	/* New data to associate with the record name, if applicable */
244 	struct uds_record_data new_metadata;
245 	/* A callback to invoke when the request is complete */
246 	uds_request_callback_fn callback;
247 	/* The index session that will manage this request */
248 	struct uds_index_session *session;
249 	/* The type of operation to perform, as describe above */
250 	enum uds_request_type type;
251 
252 	/* These output fields are set when a request is complete. */
253 
254 	/* The existing data associated with the request name, if any */
255 	struct uds_record_data old_metadata;
256 	/* Either UDS_SUCCESS or an error code for the request */
257 	int status;
258 	/* True if the record name had an existing entry in the index */
259 	bool found;
260 
261 	/*
262 	 * The remaining fields are used internally and should not be altered by clients. The index
263 	 * relies on zone_number being the first field in this section.
264 	 */
265 
266 	/* The number of the zone which will process this request*/
267 	unsigned int zone_number;
268 	/* A link for adding a request to a lock-free queue */
269 	struct funnel_queue_entry queue_link;
270 	/* A link for adding a request to a standard linked list */
271 	struct uds_request *next_request;
272 	/* A pointer to the index processing this request */
273 	struct uds_index *index;
274 	/* Control message for coordinating between zones */
275 	struct uds_zone_message zone_message;
276 	/* If true, process request immediately by waking the worker thread */
277 	bool unbatched;
278 	/* If true, continue this request before processing newer requests */
279 	bool requeued;
280 	/* The virtual chapter containing the record name, if known */
281 	u64 virtual_chapter;
282 	/* The region of the index containing the record name */
283 	enum uds_index_region location;
284 };
285 
286 /* Compute the number of bytes needed to store an index. */
287 int __must_check uds_compute_index_size(const struct uds_parameters *parameters,
288 					u64 *index_size);
289 
290 /* A session is required for most index operations. */
291 int __must_check uds_create_index_session(struct uds_index_session **session);
292 
293 /* Destroying an index session also closes and saves the associated index. */
294 int uds_destroy_index_session(struct uds_index_session *session);
295 
296 /*
297  * Create or open an index with an existing session. This operation fails if the index session is
298  * suspended, or if there is already an open index.
299  */
300 int __must_check uds_open_index(enum uds_open_index_type open_type,
301 				const struct uds_parameters *parameters,
302 				struct uds_index_session *session);
303 
304 /*
305  * Wait until all callbacks for index operations are complete, and prevent new index operations
306  * from starting. New index operations will fail with EBUSY until the session is resumed. Also
307  * optionally saves the index.
308  */
309 int __must_check uds_suspend_index_session(struct uds_index_session *session, bool save);
310 
311 /*
312  * Allow new index operations for an index, whether it was suspended or not. If the index is
313  * suspended and the supplied block device differs from the current backing store, the index will
314  * start using the new backing store instead.
315  */
316 int __must_check uds_resume_index_session(struct uds_index_session *session,
317 					  struct block_device *bdev);
318 
319 /* Wait until all outstanding index operations are complete. */
320 int __must_check uds_flush_index_session(struct uds_index_session *session);
321 
322 /* Close an index. This operation fails if the index session is suspended. */
323 int __must_check uds_close_index(struct uds_index_session *session);
324 
325 /* Get index statistics since the last time the index was opened. */
326 int __must_check uds_get_index_session_stats(struct uds_index_session *session,
327 					     struct uds_index_stats *stats);
328 
329 /* This function will fail if any required field of the request is not set. */
330 int __must_check uds_launch_request(struct uds_request *request);
331 
332 struct cond_var {
333 	wait_queue_head_t wait_queue;
334 };
335 
uds_init_cond(struct cond_var * cv)336 static inline void uds_init_cond(struct cond_var *cv)
337 {
338 	init_waitqueue_head(&cv->wait_queue);
339 }
340 
uds_signal_cond(struct cond_var * cv)341 static inline void uds_signal_cond(struct cond_var *cv)
342 {
343 	wake_up(&cv->wait_queue);
344 }
345 
uds_broadcast_cond(struct cond_var * cv)346 static inline void uds_broadcast_cond(struct cond_var *cv)
347 {
348 	wake_up_all(&cv->wait_queue);
349 }
350 
351 void uds_wait_cond(struct cond_var *cv, struct mutex *mutex);
352 
353 #endif /* INDEXER_H */
354