1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/pci.h>
27 #include <linux/errno.h>
28 #include <linux/acpi.h>
29 #include <linux/hash.h>
30 #include <linux/cpufreq.h>
31 #include <linux/log2.h>
32 #include <linux/dmi.h>
33 #include <linux/atomic.h>
34 #include <linux/crc16.h>
35 
36 #include "kfd_priv.h"
37 #include "kfd_crat.h"
38 #include "kfd_topology.h"
39 #include "kfd_device_queue_manager.h"
40 #include "kfd_svm.h"
41 #include "kfd_debug.h"
42 #include "amdgpu_amdkfd.h"
43 #include "amdgpu_ras.h"
44 #include "amdgpu.h"
45 
46 /* topology_device_list - Master list of all topology devices */
47 static struct list_head topology_device_list;
48 static struct kfd_system_properties sys_props;
49 
50 static DECLARE_RWSEM(topology_lock);
51 static uint32_t topology_crat_proximity_domain;
52 
kfd_topology_device_by_proximity_domain_no_lock(uint32_t proximity_domain)53 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
54 						uint32_t proximity_domain)
55 {
56 	struct kfd_topology_device *top_dev;
57 	struct kfd_topology_device *device = NULL;
58 
59 	list_for_each_entry(top_dev, &topology_device_list, list)
60 		if (top_dev->proximity_domain == proximity_domain) {
61 			device = top_dev;
62 			break;
63 		}
64 
65 	return device;
66 }
67 
kfd_topology_device_by_proximity_domain(uint32_t proximity_domain)68 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
69 						uint32_t proximity_domain)
70 {
71 	struct kfd_topology_device *device = NULL;
72 
73 	down_read(&topology_lock);
74 
75 	device = kfd_topology_device_by_proximity_domain_no_lock(
76 							proximity_domain);
77 	up_read(&topology_lock);
78 
79 	return device;
80 }
81 
kfd_topology_device_by_id(uint32_t gpu_id)82 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
83 {
84 	struct kfd_topology_device *top_dev = NULL;
85 	struct kfd_topology_device *ret = NULL;
86 
87 	down_read(&topology_lock);
88 
89 	list_for_each_entry(top_dev, &topology_device_list, list)
90 		if (top_dev->gpu_id == gpu_id) {
91 			ret = top_dev;
92 			break;
93 		}
94 
95 	up_read(&topology_lock);
96 
97 	return ret;
98 }
99 
kfd_device_by_id(uint32_t gpu_id)100 struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
101 {
102 	struct kfd_topology_device *top_dev;
103 
104 	top_dev = kfd_topology_device_by_id(gpu_id);
105 	if (!top_dev)
106 		return NULL;
107 
108 	return top_dev->gpu;
109 }
110 
kfd_device_by_pci_dev(const struct pci_dev * pdev)111 struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev)
112 {
113 	struct kfd_topology_device *top_dev;
114 	struct kfd_node *device = NULL;
115 
116 	down_read(&topology_lock);
117 
118 	list_for_each_entry(top_dev, &topology_device_list, list)
119 		if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) {
120 			device = top_dev->gpu;
121 			break;
122 		}
123 
124 	up_read(&topology_lock);
125 
126 	return device;
127 }
128 
129 /* Called with write topology_lock acquired */
kfd_release_topology_device(struct kfd_topology_device * dev)130 static void kfd_release_topology_device(struct kfd_topology_device *dev)
131 {
132 	struct kfd_mem_properties *mem;
133 	struct kfd_cache_properties *cache;
134 	struct kfd_iolink_properties *iolink;
135 	struct kfd_iolink_properties *p2plink;
136 	struct kfd_perf_properties *perf;
137 
138 	list_del(&dev->list);
139 
140 	while (dev->mem_props.next != &dev->mem_props) {
141 		mem = container_of(dev->mem_props.next,
142 				struct kfd_mem_properties, list);
143 		list_del(&mem->list);
144 		kfree(mem);
145 	}
146 
147 	while (dev->cache_props.next != &dev->cache_props) {
148 		cache = container_of(dev->cache_props.next,
149 				struct kfd_cache_properties, list);
150 		list_del(&cache->list);
151 		kfree(cache);
152 	}
153 
154 	while (dev->io_link_props.next != &dev->io_link_props) {
155 		iolink = container_of(dev->io_link_props.next,
156 				struct kfd_iolink_properties, list);
157 		list_del(&iolink->list);
158 		kfree(iolink);
159 	}
160 
161 	while (dev->p2p_link_props.next != &dev->p2p_link_props) {
162 		p2plink = container_of(dev->p2p_link_props.next,
163 				struct kfd_iolink_properties, list);
164 		list_del(&p2plink->list);
165 		kfree(p2plink);
166 	}
167 
168 	while (dev->perf_props.next != &dev->perf_props) {
169 		perf = container_of(dev->perf_props.next,
170 				struct kfd_perf_properties, list);
171 		list_del(&perf->list);
172 		kfree(perf);
173 	}
174 
175 	kfree(dev);
176 }
177 
kfd_release_topology_device_list(struct list_head * device_list)178 void kfd_release_topology_device_list(struct list_head *device_list)
179 {
180 	struct kfd_topology_device *dev;
181 
182 	while (!list_empty(device_list)) {
183 		dev = list_first_entry(device_list,
184 				       struct kfd_topology_device, list);
185 		kfd_release_topology_device(dev);
186 	}
187 }
188 
kfd_release_live_view(void)189 static void kfd_release_live_view(void)
190 {
191 	kfd_release_topology_device_list(&topology_device_list);
192 	memset(&sys_props, 0, sizeof(sys_props));
193 }
194 
kfd_create_topology_device(struct list_head * device_list)195 struct kfd_topology_device *kfd_create_topology_device(
196 				struct list_head *device_list)
197 {
198 	struct kfd_topology_device *dev;
199 
200 	dev = kfd_alloc_struct(dev);
201 	if (!dev) {
202 		pr_err("No memory to allocate a topology device");
203 		return NULL;
204 	}
205 
206 	INIT_LIST_HEAD(&dev->mem_props);
207 	INIT_LIST_HEAD(&dev->cache_props);
208 	INIT_LIST_HEAD(&dev->io_link_props);
209 	INIT_LIST_HEAD(&dev->p2p_link_props);
210 	INIT_LIST_HEAD(&dev->perf_props);
211 
212 	list_add_tail(&dev->list, device_list);
213 
214 	return dev;
215 }
216 
217 
218 #define sysfs_show_gen_prop(buffer, offs, fmt, ...)		\
219 		(offs += snprintf(buffer+offs, PAGE_SIZE-offs,	\
220 				  fmt, __VA_ARGS__))
221 #define sysfs_show_32bit_prop(buffer, offs, name, value) \
222 		sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
223 #define sysfs_show_64bit_prop(buffer, offs, name, value) \
224 		sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
225 #define sysfs_show_32bit_val(buffer, offs, value) \
226 		sysfs_show_gen_prop(buffer, offs, "%u\n", value)
227 #define sysfs_show_str_val(buffer, offs, value) \
228 		sysfs_show_gen_prop(buffer, offs, "%s\n", value)
229 
sysprops_show(struct kobject * kobj,struct attribute * attr,char * buffer)230 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
231 		char *buffer)
232 {
233 	int offs = 0;
234 
235 	/* Making sure that the buffer is an empty string */
236 	buffer[0] = 0;
237 
238 	if (attr == &sys_props.attr_genid) {
239 		sysfs_show_32bit_val(buffer, offs,
240 				     sys_props.generation_count);
241 	} else if (attr == &sys_props.attr_props) {
242 		sysfs_show_64bit_prop(buffer, offs, "platform_oem",
243 				      sys_props.platform_oem);
244 		sysfs_show_64bit_prop(buffer, offs, "platform_id",
245 				      sys_props.platform_id);
246 		sysfs_show_64bit_prop(buffer, offs, "platform_rev",
247 				      sys_props.platform_rev);
248 	} else {
249 		offs = -EINVAL;
250 	}
251 
252 	return offs;
253 }
254 
kfd_topology_kobj_release(struct kobject * kobj)255 static void kfd_topology_kobj_release(struct kobject *kobj)
256 {
257 	kfree(kobj);
258 }
259 
260 static const struct sysfs_ops sysprops_ops = {
261 	.show = sysprops_show,
262 };
263 
264 static const struct kobj_type sysprops_type = {
265 	.release = kfd_topology_kobj_release,
266 	.sysfs_ops = &sysprops_ops,
267 };
268 
iolink_show(struct kobject * kobj,struct attribute * attr,char * buffer)269 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
270 		char *buffer)
271 {
272 	int offs = 0;
273 	struct kfd_iolink_properties *iolink;
274 
275 	/* Making sure that the buffer is an empty string */
276 	buffer[0] = 0;
277 
278 	iolink = container_of(attr, struct kfd_iolink_properties, attr);
279 	if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
280 		return -EPERM;
281 	sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
282 	sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
283 	sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
284 	sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
285 	sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
286 	sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
287 	sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
288 	sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
289 	sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
290 			      iolink->min_bandwidth);
291 	sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
292 			      iolink->max_bandwidth);
293 	sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
294 			      iolink->rec_transfer_size);
295 	sysfs_show_32bit_prop(buffer, offs, "recommended_sdma_engine_id_mask",
296 			      iolink->rec_sdma_eng_id_mask);
297 	sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
298 
299 	return offs;
300 }
301 
302 static const struct sysfs_ops iolink_ops = {
303 	.show = iolink_show,
304 };
305 
306 static const struct kobj_type iolink_type = {
307 	.release = kfd_topology_kobj_release,
308 	.sysfs_ops = &iolink_ops,
309 };
310 
mem_show(struct kobject * kobj,struct attribute * attr,char * buffer)311 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
312 		char *buffer)
313 {
314 	int offs = 0;
315 	struct kfd_mem_properties *mem;
316 
317 	/* Making sure that the buffer is an empty string */
318 	buffer[0] = 0;
319 
320 	mem = container_of(attr, struct kfd_mem_properties, attr);
321 	if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
322 		return -EPERM;
323 	sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
324 	sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
325 			      mem->size_in_bytes);
326 	sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
327 	sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
328 	sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
329 			      mem->mem_clk_max);
330 
331 	return offs;
332 }
333 
334 static const struct sysfs_ops mem_ops = {
335 	.show = mem_show,
336 };
337 
338 static const struct kobj_type mem_type = {
339 	.release = kfd_topology_kobj_release,
340 	.sysfs_ops = &mem_ops,
341 };
342 
kfd_cache_show(struct kobject * kobj,struct attribute * attr,char * buffer)343 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
344 		char *buffer)
345 {
346 	int offs = 0;
347 	uint32_t i, j;
348 	struct kfd_cache_properties *cache;
349 
350 	/* Making sure that the buffer is an empty string */
351 	buffer[0] = 0;
352 	cache = container_of(attr, struct kfd_cache_properties, attr);
353 	if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
354 		return -EPERM;
355 	sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
356 			cache->processor_id_low);
357 	sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
358 	sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
359 	sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
360 			      cache->cacheline_size);
361 	sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
362 			      cache->cachelines_per_tag);
363 	sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
364 	sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
365 	sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
366 
367 	offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
368 	for (i = 0; i < cache->sibling_map_size; i++)
369 		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
370 			/* Check each bit */
371 			offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
372 						(cache->sibling_map[i] >> j) & 1);
373 
374 	/* Replace the last "," with end of line */
375 	buffer[offs-1] = '\n';
376 	return offs;
377 }
378 
379 static const struct sysfs_ops cache_ops = {
380 	.show = kfd_cache_show,
381 };
382 
383 static const struct kobj_type cache_type = {
384 	.release = kfd_topology_kobj_release,
385 	.sysfs_ops = &cache_ops,
386 };
387 
388 /****** Sysfs of Performance Counters ******/
389 
390 struct kfd_perf_attr {
391 	struct kobj_attribute attr;
392 	uint32_t data;
393 };
394 
perf_show(struct kobject * kobj,struct kobj_attribute * attrs,char * buf)395 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
396 			char *buf)
397 {
398 	int offs = 0;
399 	struct kfd_perf_attr *attr;
400 
401 	buf[0] = 0;
402 	attr = container_of(attrs, struct kfd_perf_attr, attr);
403 	if (!attr->data) /* invalid data for PMC */
404 		return 0;
405 	else
406 		return sysfs_show_32bit_val(buf, offs, attr->data);
407 }
408 
409 #define KFD_PERF_DESC(_name, _data)			\
410 {							\
411 	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
412 	.data = _data,					\
413 }
414 
415 static struct kfd_perf_attr perf_attr_iommu[] = {
416 	KFD_PERF_DESC(max_concurrent, 0),
417 	KFD_PERF_DESC(num_counters, 0),
418 	KFD_PERF_DESC(counter_ids, 0),
419 };
420 /****************************************/
421 
node_show(struct kobject * kobj,struct attribute * attr,char * buffer)422 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
423 		char *buffer)
424 {
425 	int offs = 0;
426 	struct kfd_topology_device *dev;
427 	uint32_t log_max_watch_addr;
428 
429 	/* Making sure that the buffer is an empty string */
430 	buffer[0] = 0;
431 
432 	if (strcmp(attr->name, "gpu_id") == 0) {
433 		dev = container_of(attr, struct kfd_topology_device,
434 				attr_gpuid);
435 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
436 			return -EPERM;
437 		return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
438 	}
439 
440 	if (strcmp(attr->name, "name") == 0) {
441 		dev = container_of(attr, struct kfd_topology_device,
442 				attr_name);
443 
444 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
445 			return -EPERM;
446 		return sysfs_show_str_val(buffer, offs, dev->node_props.name);
447 	}
448 
449 	dev = container_of(attr, struct kfd_topology_device,
450 			attr_props);
451 	if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
452 		return -EPERM;
453 	sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
454 			      dev->node_props.cpu_cores_count);
455 	sysfs_show_32bit_prop(buffer, offs, "simd_count",
456 			      dev->gpu ? dev->node_props.simd_count : 0);
457 	sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
458 			      dev->node_props.mem_banks_count);
459 	sysfs_show_32bit_prop(buffer, offs, "caches_count",
460 			      dev->node_props.caches_count);
461 	sysfs_show_32bit_prop(buffer, offs, "io_links_count",
462 			      dev->node_props.io_links_count);
463 	sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
464 			      dev->node_props.p2p_links_count);
465 	sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
466 			      dev->node_props.cpu_core_id_base);
467 	sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
468 			      dev->node_props.simd_id_base);
469 	sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
470 			      dev->node_props.max_waves_per_simd);
471 	sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
472 			      dev->node_props.lds_size_in_kb);
473 	sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
474 			      dev->node_props.gds_size_in_kb);
475 	sysfs_show_32bit_prop(buffer, offs, "num_gws",
476 			      dev->node_props.num_gws);
477 	sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
478 			      dev->node_props.wave_front_size);
479 	sysfs_show_32bit_prop(buffer, offs, "array_count",
480 			      dev->gpu ? (dev->node_props.array_count *
481 					  NUM_XCC(dev->gpu->xcc_mask)) : 0);
482 	sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
483 			      dev->node_props.simd_arrays_per_engine);
484 	sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
485 			      dev->node_props.cu_per_simd_array);
486 	sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
487 			      dev->node_props.simd_per_cu);
488 	sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
489 			      dev->node_props.max_slots_scratch_cu);
490 	sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
491 			      dev->node_props.gfx_target_version);
492 	sysfs_show_32bit_prop(buffer, offs, "vendor_id",
493 			      dev->node_props.vendor_id);
494 	sysfs_show_32bit_prop(buffer, offs, "device_id",
495 			      dev->node_props.device_id);
496 	sysfs_show_32bit_prop(buffer, offs, "location_id",
497 			      dev->node_props.location_id);
498 	sysfs_show_32bit_prop(buffer, offs, "domain",
499 			      dev->node_props.domain);
500 	sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
501 			      dev->node_props.drm_render_minor);
502 	sysfs_show_64bit_prop(buffer, offs, "hive_id",
503 			      dev->node_props.hive_id);
504 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
505 			      dev->node_props.num_sdma_engines);
506 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
507 			      dev->node_props.num_sdma_xgmi_engines);
508 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
509 			      dev->node_props.num_sdma_queues_per_engine);
510 	sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
511 			      dev->node_props.num_cp_queues);
512 
513 	if (dev->gpu) {
514 		log_max_watch_addr =
515 			__ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
516 
517 		if (log_max_watch_addr) {
518 			dev->node_props.capability |=
519 					HSA_CAP_WATCH_POINTS_SUPPORTED;
520 
521 			dev->node_props.capability |=
522 				((log_max_watch_addr <<
523 					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
524 				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
525 		}
526 
527 		if (dev->gpu->adev->asic_type == CHIP_TONGA)
528 			dev->node_props.capability |=
529 					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
530 
531 		sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
532 			dev->node_props.max_engine_clk_fcompute);
533 
534 		sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
535 
536 		sysfs_show_32bit_prop(buffer, offs, "fw_version",
537 				      dev->gpu->kfd->mec_fw_version);
538 		sysfs_show_32bit_prop(buffer, offs, "capability",
539 				      dev->node_props.capability);
540 		sysfs_show_64bit_prop(buffer, offs, "debug_prop",
541 				      dev->node_props.debug_prop);
542 		sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
543 				      dev->gpu->kfd->sdma_fw_version);
544 		sysfs_show_64bit_prop(buffer, offs, "unique_id",
545 				      dev->gpu->adev->unique_id);
546 		sysfs_show_32bit_prop(buffer, offs, "num_xcc",
547 				      NUM_XCC(dev->gpu->xcc_mask));
548 	}
549 
550 	return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
551 				     cpufreq_quick_get_max(0)/1000);
552 }
553 
554 static const struct sysfs_ops node_ops = {
555 	.show = node_show,
556 };
557 
558 static const struct kobj_type node_type = {
559 	.release = kfd_topology_kobj_release,
560 	.sysfs_ops = &node_ops,
561 };
562 
kfd_remove_sysfs_file(struct kobject * kobj,struct attribute * attr)563 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
564 {
565 	sysfs_remove_file(kobj, attr);
566 	kobject_del(kobj);
567 	kobject_put(kobj);
568 }
569 
kfd_remove_sysfs_node_entry(struct kfd_topology_device * dev)570 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
571 {
572 	struct kfd_iolink_properties *p2plink;
573 	struct kfd_iolink_properties *iolink;
574 	struct kfd_cache_properties *cache;
575 	struct kfd_mem_properties *mem;
576 	struct kfd_perf_properties *perf;
577 
578 	if (dev->kobj_iolink) {
579 		list_for_each_entry(iolink, &dev->io_link_props, list)
580 			if (iolink->kobj) {
581 				kfd_remove_sysfs_file(iolink->kobj,
582 							&iolink->attr);
583 				iolink->kobj = NULL;
584 			}
585 		kobject_del(dev->kobj_iolink);
586 		kobject_put(dev->kobj_iolink);
587 		dev->kobj_iolink = NULL;
588 	}
589 
590 	if (dev->kobj_p2plink) {
591 		list_for_each_entry(p2plink, &dev->p2p_link_props, list)
592 			if (p2plink->kobj) {
593 				kfd_remove_sysfs_file(p2plink->kobj,
594 							&p2plink->attr);
595 				p2plink->kobj = NULL;
596 			}
597 		kobject_del(dev->kobj_p2plink);
598 		kobject_put(dev->kobj_p2plink);
599 		dev->kobj_p2plink = NULL;
600 	}
601 
602 	if (dev->kobj_cache) {
603 		list_for_each_entry(cache, &dev->cache_props, list)
604 			if (cache->kobj) {
605 				kfd_remove_sysfs_file(cache->kobj,
606 							&cache->attr);
607 				cache->kobj = NULL;
608 			}
609 		kobject_del(dev->kobj_cache);
610 		kobject_put(dev->kobj_cache);
611 		dev->kobj_cache = NULL;
612 	}
613 
614 	if (dev->kobj_mem) {
615 		list_for_each_entry(mem, &dev->mem_props, list)
616 			if (mem->kobj) {
617 				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
618 				mem->kobj = NULL;
619 			}
620 		kobject_del(dev->kobj_mem);
621 		kobject_put(dev->kobj_mem);
622 		dev->kobj_mem = NULL;
623 	}
624 
625 	if (dev->kobj_perf) {
626 		list_for_each_entry(perf, &dev->perf_props, list) {
627 			kfree(perf->attr_group);
628 			perf->attr_group = NULL;
629 		}
630 		kobject_del(dev->kobj_perf);
631 		kobject_put(dev->kobj_perf);
632 		dev->kobj_perf = NULL;
633 	}
634 
635 	if (dev->kobj_node) {
636 		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
637 		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
638 		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
639 		kobject_del(dev->kobj_node);
640 		kobject_put(dev->kobj_node);
641 		dev->kobj_node = NULL;
642 	}
643 }
644 
kfd_build_sysfs_node_entry(struct kfd_topology_device * dev,uint32_t id)645 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
646 		uint32_t id)
647 {
648 	struct kfd_iolink_properties *p2plink;
649 	struct kfd_iolink_properties *iolink;
650 	struct kfd_cache_properties *cache;
651 	struct kfd_mem_properties *mem;
652 	struct kfd_perf_properties *perf;
653 	int ret;
654 	uint32_t i, num_attrs;
655 	struct attribute **attrs;
656 
657 	if (WARN_ON(dev->kobj_node))
658 		return -EEXIST;
659 
660 	/*
661 	 * Creating the sysfs folders
662 	 */
663 	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
664 	if (!dev->kobj_node)
665 		return -ENOMEM;
666 
667 	ret = kobject_init_and_add(dev->kobj_node, &node_type,
668 			sys_props.kobj_nodes, "%d", id);
669 	if (ret < 0) {
670 		kobject_put(dev->kobj_node);
671 		return ret;
672 	}
673 
674 	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
675 	if (!dev->kobj_mem)
676 		return -ENOMEM;
677 
678 	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
679 	if (!dev->kobj_cache)
680 		return -ENOMEM;
681 
682 	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
683 	if (!dev->kobj_iolink)
684 		return -ENOMEM;
685 
686 	dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
687 	if (!dev->kobj_p2plink)
688 		return -ENOMEM;
689 
690 	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
691 	if (!dev->kobj_perf)
692 		return -ENOMEM;
693 
694 	/*
695 	 * Creating sysfs files for node properties
696 	 */
697 	dev->attr_gpuid.name = "gpu_id";
698 	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
699 	sysfs_attr_init(&dev->attr_gpuid);
700 	dev->attr_name.name = "name";
701 	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
702 	sysfs_attr_init(&dev->attr_name);
703 	dev->attr_props.name = "properties";
704 	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
705 	sysfs_attr_init(&dev->attr_props);
706 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
707 	if (ret < 0)
708 		return ret;
709 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
710 	if (ret < 0)
711 		return ret;
712 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
713 	if (ret < 0)
714 		return ret;
715 
716 	i = 0;
717 	list_for_each_entry(mem, &dev->mem_props, list) {
718 		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
719 		if (!mem->kobj)
720 			return -ENOMEM;
721 		ret = kobject_init_and_add(mem->kobj, &mem_type,
722 				dev->kobj_mem, "%d", i);
723 		if (ret < 0) {
724 			kobject_put(mem->kobj);
725 			return ret;
726 		}
727 
728 		mem->attr.name = "properties";
729 		mem->attr.mode = KFD_SYSFS_FILE_MODE;
730 		sysfs_attr_init(&mem->attr);
731 		ret = sysfs_create_file(mem->kobj, &mem->attr);
732 		if (ret < 0)
733 			return ret;
734 		i++;
735 	}
736 
737 	i = 0;
738 	list_for_each_entry(cache, &dev->cache_props, list) {
739 		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
740 		if (!cache->kobj)
741 			return -ENOMEM;
742 		ret = kobject_init_and_add(cache->kobj, &cache_type,
743 				dev->kobj_cache, "%d", i);
744 		if (ret < 0) {
745 			kobject_put(cache->kobj);
746 			return ret;
747 		}
748 
749 		cache->attr.name = "properties";
750 		cache->attr.mode = KFD_SYSFS_FILE_MODE;
751 		sysfs_attr_init(&cache->attr);
752 		ret = sysfs_create_file(cache->kobj, &cache->attr);
753 		if (ret < 0)
754 			return ret;
755 		i++;
756 	}
757 
758 	i = 0;
759 	list_for_each_entry(iolink, &dev->io_link_props, list) {
760 		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
761 		if (!iolink->kobj)
762 			return -ENOMEM;
763 		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
764 				dev->kobj_iolink, "%d", i);
765 		if (ret < 0) {
766 			kobject_put(iolink->kobj);
767 			return ret;
768 		}
769 
770 		iolink->attr.name = "properties";
771 		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
772 		sysfs_attr_init(&iolink->attr);
773 		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
774 		if (ret < 0)
775 			return ret;
776 		i++;
777 	}
778 
779 	i = 0;
780 	list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
781 		p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
782 		if (!p2plink->kobj)
783 			return -ENOMEM;
784 		ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
785 				dev->kobj_p2plink, "%d", i);
786 		if (ret < 0) {
787 			kobject_put(p2plink->kobj);
788 			return ret;
789 		}
790 
791 		p2plink->attr.name = "properties";
792 		p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
793 		sysfs_attr_init(&p2plink->attr);
794 		ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
795 		if (ret < 0)
796 			return ret;
797 		i++;
798 	}
799 
800 	/* All hardware blocks have the same number of attributes. */
801 	num_attrs = ARRAY_SIZE(perf_attr_iommu);
802 	list_for_each_entry(perf, &dev->perf_props, list) {
803 		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
804 			* num_attrs + sizeof(struct attribute_group),
805 			GFP_KERNEL);
806 		if (!perf->attr_group)
807 			return -ENOMEM;
808 
809 		attrs = (struct attribute **)(perf->attr_group + 1);
810 		if (!strcmp(perf->block_name, "iommu")) {
811 		/* Information of IOMMU's num_counters and counter_ids is shown
812 		 * under /sys/bus/event_source/devices/amd_iommu. We don't
813 		 * duplicate here.
814 		 */
815 			perf_attr_iommu[0].data = perf->max_concurrent;
816 			for (i = 0; i < num_attrs; i++)
817 				attrs[i] = &perf_attr_iommu[i].attr.attr;
818 		}
819 		perf->attr_group->name = perf->block_name;
820 		perf->attr_group->attrs = attrs;
821 		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
822 		if (ret < 0)
823 			return ret;
824 	}
825 
826 	return 0;
827 }
828 
829 /* Called with write topology lock acquired */
kfd_build_sysfs_node_tree(void)830 static int kfd_build_sysfs_node_tree(void)
831 {
832 	struct kfd_topology_device *dev;
833 	int ret;
834 	uint32_t i = 0;
835 
836 	list_for_each_entry(dev, &topology_device_list, list) {
837 		ret = kfd_build_sysfs_node_entry(dev, i);
838 		if (ret < 0)
839 			return ret;
840 		i++;
841 	}
842 
843 	return 0;
844 }
845 
846 /* Called with write topology lock acquired */
kfd_remove_sysfs_node_tree(void)847 static void kfd_remove_sysfs_node_tree(void)
848 {
849 	struct kfd_topology_device *dev;
850 
851 	list_for_each_entry(dev, &topology_device_list, list)
852 		kfd_remove_sysfs_node_entry(dev);
853 }
854 
kfd_topology_update_sysfs(void)855 static int kfd_topology_update_sysfs(void)
856 {
857 	int ret;
858 
859 	if (!sys_props.kobj_topology) {
860 		sys_props.kobj_topology =
861 				kfd_alloc_struct(sys_props.kobj_topology);
862 		if (!sys_props.kobj_topology)
863 			return -ENOMEM;
864 
865 		ret = kobject_init_and_add(sys_props.kobj_topology,
866 				&sysprops_type,  &kfd_device->kobj,
867 				"topology");
868 		if (ret < 0) {
869 			kobject_put(sys_props.kobj_topology);
870 			return ret;
871 		}
872 
873 		sys_props.kobj_nodes = kobject_create_and_add("nodes",
874 				sys_props.kobj_topology);
875 		if (!sys_props.kobj_nodes)
876 			return -ENOMEM;
877 
878 		sys_props.attr_genid.name = "generation_id";
879 		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
880 		sysfs_attr_init(&sys_props.attr_genid);
881 		ret = sysfs_create_file(sys_props.kobj_topology,
882 				&sys_props.attr_genid);
883 		if (ret < 0)
884 			return ret;
885 
886 		sys_props.attr_props.name = "system_properties";
887 		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
888 		sysfs_attr_init(&sys_props.attr_props);
889 		ret = sysfs_create_file(sys_props.kobj_topology,
890 				&sys_props.attr_props);
891 		if (ret < 0)
892 			return ret;
893 	}
894 
895 	kfd_remove_sysfs_node_tree();
896 
897 	return kfd_build_sysfs_node_tree();
898 }
899 
kfd_topology_release_sysfs(void)900 static void kfd_topology_release_sysfs(void)
901 {
902 	kfd_remove_sysfs_node_tree();
903 	if (sys_props.kobj_topology) {
904 		sysfs_remove_file(sys_props.kobj_topology,
905 				&sys_props.attr_genid);
906 		sysfs_remove_file(sys_props.kobj_topology,
907 				&sys_props.attr_props);
908 		if (sys_props.kobj_nodes) {
909 			kobject_del(sys_props.kobj_nodes);
910 			kobject_put(sys_props.kobj_nodes);
911 			sys_props.kobj_nodes = NULL;
912 		}
913 		kobject_del(sys_props.kobj_topology);
914 		kobject_put(sys_props.kobj_topology);
915 		sys_props.kobj_topology = NULL;
916 	}
917 }
918 
919 /* Called with write topology_lock acquired */
kfd_topology_update_device_list(struct list_head * temp_list,struct list_head * master_list)920 static void kfd_topology_update_device_list(struct list_head *temp_list,
921 					struct list_head *master_list)
922 {
923 	while (!list_empty(temp_list)) {
924 		list_move_tail(temp_list->next, master_list);
925 		sys_props.num_devices++;
926 	}
927 }
928 
kfd_debug_print_topology(void)929 static void kfd_debug_print_topology(void)
930 {
931 	struct kfd_topology_device *dev;
932 
933 	down_read(&topology_lock);
934 
935 	dev = list_last_entry(&topology_device_list,
936 			struct kfd_topology_device, list);
937 	if (dev) {
938 		if (dev->node_props.cpu_cores_count &&
939 				dev->node_props.simd_count) {
940 			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
941 				dev->node_props.device_id,
942 				dev->node_props.vendor_id);
943 		} else if (dev->node_props.cpu_cores_count)
944 			pr_info("Topology: Add CPU node\n");
945 		else if (dev->node_props.simd_count)
946 			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
947 				dev->node_props.device_id,
948 				dev->node_props.vendor_id);
949 	}
950 	up_read(&topology_lock);
951 }
952 
953 /* Helper function for intializing platform_xx members of
954  * kfd_system_properties. Uses OEM info from the last CPU/APU node.
955  */
kfd_update_system_properties(void)956 static void kfd_update_system_properties(void)
957 {
958 	struct kfd_topology_device *dev;
959 
960 	down_read(&topology_lock);
961 	dev = list_last_entry(&topology_device_list,
962 			struct kfd_topology_device, list);
963 	if (dev) {
964 		sys_props.platform_id = dev->oem_id64;
965 		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
966 		sys_props.platform_rev = dev->oem_revision;
967 	}
968 	up_read(&topology_lock);
969 }
970 
find_system_memory(const struct dmi_header * dm,void * private)971 static void find_system_memory(const struct dmi_header *dm,
972 	void *private)
973 {
974 	struct kfd_mem_properties *mem;
975 	u16 mem_width, mem_clock;
976 	struct kfd_topology_device *kdev =
977 		(struct kfd_topology_device *)private;
978 	const u8 *dmi_data = (const u8 *)(dm + 1);
979 
980 	if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
981 		mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
982 		mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
983 		list_for_each_entry(mem, &kdev->mem_props, list) {
984 			if (mem_width != 0xFFFF && mem_width != 0)
985 				mem->width = mem_width;
986 			if (mem_clock != 0)
987 				mem->mem_clk_max = mem_clock;
988 		}
989 	}
990 }
991 
992 /* kfd_add_non_crat_information - Add information that is not currently
993  *	defined in CRAT but is necessary for KFD topology
994  * @dev - topology device to which addition info is added
995  */
kfd_add_non_crat_information(struct kfd_topology_device * kdev)996 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
997 {
998 	/* Check if CPU only node. */
999 	if (!kdev->gpu) {
1000 		/* Add system memory information */
1001 		dmi_walk(find_system_memory, kdev);
1002 	}
1003 	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
1004 }
1005 
kfd_topology_init(void)1006 int kfd_topology_init(void)
1007 {
1008 	void *crat_image = NULL;
1009 	size_t image_size = 0;
1010 	int ret;
1011 	struct list_head temp_topology_device_list;
1012 	int cpu_only_node = 0;
1013 	struct kfd_topology_device *kdev;
1014 	int proximity_domain;
1015 
1016 	/* topology_device_list - Master list of all topology devices
1017 	 * temp_topology_device_list - temporary list created while parsing CRAT
1018 	 * or VCRAT. Once parsing is complete the contents of list is moved to
1019 	 * topology_device_list
1020 	 */
1021 
1022 	/* Initialize the head for the both the lists */
1023 	INIT_LIST_HEAD(&topology_device_list);
1024 	INIT_LIST_HEAD(&temp_topology_device_list);
1025 	init_rwsem(&topology_lock);
1026 
1027 	memset(&sys_props, 0, sizeof(sys_props));
1028 
1029 	/* Proximity domains in ACPI CRAT tables start counting at
1030 	 * 0. The same should be true for virtual CRAT tables created
1031 	 * at this stage. GPUs added later in kfd_topology_add_device
1032 	 * use a counter.
1033 	 */
1034 	proximity_domain = 0;
1035 
1036 	ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1037 					    COMPUTE_UNIT_CPU, NULL,
1038 					    proximity_domain);
1039 	cpu_only_node = 1;
1040 	if (ret) {
1041 		pr_err("Error creating VCRAT table for CPU\n");
1042 		return ret;
1043 	}
1044 
1045 	ret = kfd_parse_crat_table(crat_image,
1046 				   &temp_topology_device_list,
1047 				   proximity_domain);
1048 	if (ret) {
1049 		pr_err("Error parsing VCRAT table for CPU\n");
1050 		goto err;
1051 	}
1052 
1053 	kdev = list_first_entry(&temp_topology_device_list,
1054 				struct kfd_topology_device, list);
1055 
1056 	down_write(&topology_lock);
1057 	kfd_topology_update_device_list(&temp_topology_device_list,
1058 					&topology_device_list);
1059 	topology_crat_proximity_domain = sys_props.num_devices-1;
1060 	ret = kfd_topology_update_sysfs();
1061 	up_write(&topology_lock);
1062 
1063 	if (!ret) {
1064 		sys_props.generation_count++;
1065 		kfd_update_system_properties();
1066 		kfd_debug_print_topology();
1067 	} else
1068 		pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1069 
1070 	/* For nodes with GPU, this information gets added
1071 	 * when GPU is detected (kfd_topology_add_device).
1072 	 */
1073 	if (cpu_only_node) {
1074 		/* Add additional information to CPU only node created above */
1075 		down_write(&topology_lock);
1076 		kdev = list_first_entry(&topology_device_list,
1077 				struct kfd_topology_device, list);
1078 		up_write(&topology_lock);
1079 		kfd_add_non_crat_information(kdev);
1080 	}
1081 
1082 err:
1083 	kfd_destroy_crat_image(crat_image);
1084 	return ret;
1085 }
1086 
kfd_topology_shutdown(void)1087 void kfd_topology_shutdown(void)
1088 {
1089 	down_write(&topology_lock);
1090 	kfd_topology_release_sysfs();
1091 	kfd_release_live_view();
1092 	up_write(&topology_lock);
1093 }
1094 
kfd_generate_gpu_id(struct kfd_node * gpu)1095 static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1096 {
1097 	uint32_t gpu_id;
1098 	uint32_t buf[8];
1099 	uint64_t local_mem_size;
1100 	struct kfd_topology_device *dev;
1101 	bool is_unique;
1102 	uint8_t *crc_buf;
1103 
1104 	if (!gpu)
1105 		return 0;
1106 
1107 	crc_buf = (uint8_t *)&buf;
1108 	local_mem_size = gpu->local_mem_info.local_mem_size_private +
1109 			gpu->local_mem_info.local_mem_size_public;
1110 	buf[0] = gpu->adev->pdev->devfn;
1111 	buf[1] = gpu->adev->pdev->subsystem_vendor |
1112 		(gpu->adev->pdev->subsystem_device << 16);
1113 	buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1114 	buf[3] = gpu->adev->pdev->device;
1115 	buf[4] = gpu->adev->pdev->bus->number;
1116 	buf[5] = lower_32_bits(local_mem_size);
1117 	buf[6] = upper_32_bits(local_mem_size);
1118 	buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1119 
1120 	gpu_id = crc16(0, crc_buf, sizeof(buf)) &
1121 		 ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1122 
1123 	/* There is a very small possibility when generating a
1124 	 * 16 (KFD_GPU_ID_HASH_WIDTH) bit value from 8 word buffer
1125 	 * that the value could be 0 or non-unique. So, check if
1126 	 * it is unique and non-zero. If not unique increment till
1127 	 * unique one is found. In case of overflow, restart from 1
1128 	 */
1129 
1130 	down_read(&topology_lock);
1131 	do {
1132 		is_unique = true;
1133 		if (!gpu_id)
1134 			gpu_id = 1;
1135 		list_for_each_entry(dev, &topology_device_list, list) {
1136 			if (dev->gpu && dev->gpu_id == gpu_id) {
1137 				is_unique = false;
1138 				break;
1139 			}
1140 		}
1141 		if (unlikely(!is_unique))
1142 			gpu_id = (gpu_id + 1) &
1143 				  ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1144 	} while (!is_unique);
1145 	up_read(&topology_lock);
1146 
1147 	return gpu_id;
1148 }
1149 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1150  *		the GPU device is not already present in the topology device
1151  *		list then return NULL. This means a new topology device has to
1152  *		be created for this GPU.
1153  */
kfd_assign_gpu(struct kfd_node * gpu)1154 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1155 {
1156 	struct kfd_topology_device *dev;
1157 	struct kfd_topology_device *out_dev = NULL;
1158 	struct kfd_mem_properties *mem;
1159 	struct kfd_cache_properties *cache;
1160 	struct kfd_iolink_properties *iolink;
1161 	struct kfd_iolink_properties *p2plink;
1162 
1163 	list_for_each_entry(dev, &topology_device_list, list) {
1164 		/* Discrete GPUs need their own topology device list
1165 		 * entries. Don't assign them to CPU/APU nodes.
1166 		 */
1167 		if (dev->node_props.cpu_cores_count)
1168 			continue;
1169 
1170 		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1171 			dev->gpu = gpu;
1172 			out_dev = dev;
1173 
1174 			list_for_each_entry(mem, &dev->mem_props, list)
1175 				mem->gpu = dev->gpu;
1176 			list_for_each_entry(cache, &dev->cache_props, list)
1177 				cache->gpu = dev->gpu;
1178 			list_for_each_entry(iolink, &dev->io_link_props, list)
1179 				iolink->gpu = dev->gpu;
1180 			list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1181 				p2plink->gpu = dev->gpu;
1182 			break;
1183 		}
1184 	}
1185 	return out_dev;
1186 }
1187 
kfd_notify_gpu_change(uint32_t gpu_id,int arrival)1188 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1189 {
1190 	/*
1191 	 * TODO: Generate an event for thunk about the arrival/removal
1192 	 * of the GPU
1193 	 */
1194 }
1195 
1196 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1197  *		patch this after CRAT parsing.
1198  */
kfd_fill_mem_clk_max_info(struct kfd_topology_device * dev)1199 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1200 {
1201 	struct kfd_mem_properties *mem;
1202 	struct kfd_local_mem_info local_mem_info;
1203 
1204 	if (!dev)
1205 		return;
1206 
1207 	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1208 	 * single bank of VRAM local memory.
1209 	 * for dGPUs - VCRAT reports only one bank of Local Memory
1210 	 * for APUs - If CRAT from ACPI reports more than one bank, then
1211 	 *	all the banks will report the same mem_clk_max information
1212 	 */
1213 	amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1214 					 dev->gpu->xcp);
1215 
1216 	list_for_each_entry(mem, &dev->mem_props, list)
1217 		mem->mem_clk_max = local_mem_info.mem_clk_max;
1218 }
1219 
kfd_set_iolink_no_atomics(struct kfd_topology_device * dev,struct kfd_topology_device * target_gpu_dev,struct kfd_iolink_properties * link)1220 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1221 					struct kfd_topology_device *target_gpu_dev,
1222 					struct kfd_iolink_properties *link)
1223 {
1224 	/* xgmi always supports atomics between links. */
1225 	if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1226 		return;
1227 
1228 	/* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1229 	if (target_gpu_dev) {
1230 		uint32_t cap;
1231 
1232 		pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1233 				PCI_EXP_DEVCAP2, &cap);
1234 
1235 		if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1236 			     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1237 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1238 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1239 	/* set gpu (dev) flags. */
1240 	} else {
1241 		if (!dev->gpu->kfd->pci_atomic_requested ||
1242 				dev->gpu->adev->asic_type == CHIP_HAWAII)
1243 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1244 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1245 	}
1246 }
1247 
kfd_set_iolink_non_coherent(struct kfd_topology_device * to_dev,struct kfd_iolink_properties * outbound_link,struct kfd_iolink_properties * inbound_link)1248 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1249 		struct kfd_iolink_properties *outbound_link,
1250 		struct kfd_iolink_properties *inbound_link)
1251 {
1252 	/* CPU -> GPU with PCIe */
1253 	if (!to_dev->gpu &&
1254 	    inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1255 		inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1256 
1257 	if (to_dev->gpu) {
1258 		/* GPU <-> GPU with PCIe and
1259 		 * Vega20 with XGMI
1260 		 */
1261 		if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1262 		    (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1263 		    KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1264 			outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1265 			inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1266 		}
1267 	}
1268 }
1269 
1270 #define REC_SDMA_NUM_GPU	8
1271 static const int rec_sdma_eng_map[REC_SDMA_NUM_GPU][REC_SDMA_NUM_GPU] = {
1272 							{ -1, 14, 12, 2, 4, 8, 10, 6 },
1273 							{ 14, -1, 2, 10, 8, 4, 6, 12 },
1274 							{ 10, 2, -1, 12, 14, 6, 4, 8 },
1275 							{ 2, 12, 10, -1, 6, 14, 8, 4 },
1276 							{ 4, 8, 14, 6, -1, 10, 12, 2 },
1277 							{ 8, 4, 6, 14, 12, -1, 2, 10 },
1278 							{ 10, 6, 4, 8, 12, 2, -1, 14 },
1279 							{ 6, 12, 8, 4, 2, 10, 14, -1 }};
1280 
kfd_set_recommended_sdma_engines(struct kfd_topology_device * to_dev,struct kfd_iolink_properties * outbound_link,struct kfd_iolink_properties * inbound_link)1281 static void kfd_set_recommended_sdma_engines(struct kfd_topology_device *to_dev,
1282 					     struct kfd_iolink_properties *outbound_link,
1283 					     struct kfd_iolink_properties *inbound_link)
1284 {
1285 	struct kfd_node *gpu = outbound_link->gpu;
1286 	struct amdgpu_device *adev = gpu->adev;
1287 	int num_xgmi_nodes = adev->gmc.xgmi.num_physical_nodes;
1288 	bool support_rec_eng = !amdgpu_sriov_vf(adev) && to_dev->gpu &&
1289 		adev->aid_mask && num_xgmi_nodes && gpu->kfd->num_nodes == 1 &&
1290 		kfd_get_num_xgmi_sdma_engines(gpu) >= 14 &&
1291 		(!(adev->flags & AMD_IS_APU) && num_xgmi_nodes == 8);
1292 
1293 	if (support_rec_eng) {
1294 		int src_socket_id = adev->gmc.xgmi.physical_node_id;
1295 		int dst_socket_id = to_dev->gpu->adev->gmc.xgmi.physical_node_id;
1296 
1297 		outbound_link->rec_sdma_eng_id_mask =
1298 			1 << rec_sdma_eng_map[src_socket_id][dst_socket_id];
1299 		inbound_link->rec_sdma_eng_id_mask =
1300 			1 << rec_sdma_eng_map[dst_socket_id][src_socket_id];
1301 	} else {
1302 		int num_sdma_eng = kfd_get_num_sdma_engines(gpu);
1303 		int i, eng_offset = 0;
1304 
1305 		if (outbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1306 		    kfd_get_num_xgmi_sdma_engines(gpu) && to_dev->gpu) {
1307 			eng_offset = num_sdma_eng;
1308 			num_sdma_eng = kfd_get_num_xgmi_sdma_engines(gpu);
1309 		}
1310 
1311 		for (i = 0; i < num_sdma_eng; i++) {
1312 			outbound_link->rec_sdma_eng_id_mask |= (1 << (i + eng_offset));
1313 			inbound_link->rec_sdma_eng_id_mask |= (1 << (i + eng_offset));
1314 		}
1315 	}
1316 }
1317 
kfd_fill_iolink_non_crat_info(struct kfd_topology_device * dev)1318 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1319 {
1320 	struct kfd_iolink_properties *link, *inbound_link;
1321 	struct kfd_topology_device *peer_dev;
1322 
1323 	if (!dev || !dev->gpu)
1324 		return;
1325 
1326 	/* GPU only creates direct links so apply flags setting to all */
1327 	list_for_each_entry(link, &dev->io_link_props, list) {
1328 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1329 		kfd_set_iolink_no_atomics(dev, NULL, link);
1330 		peer_dev = kfd_topology_device_by_proximity_domain(
1331 				link->node_to);
1332 
1333 		if (!peer_dev)
1334 			continue;
1335 
1336 		/* Include the CPU peer in GPU hive if connected over xGMI. */
1337 		if (!peer_dev->gpu &&
1338 		    link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1339 			/*
1340 			 * If the GPU is not part of a GPU hive, use its pci
1341 			 * device location as the hive ID to bind with the CPU.
1342 			 */
1343 			if (!dev->node_props.hive_id)
1344 				dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1345 			peer_dev->node_props.hive_id = dev->node_props.hive_id;
1346 		}
1347 
1348 		list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1349 									list) {
1350 			if (inbound_link->node_to != link->node_from)
1351 				continue;
1352 
1353 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1354 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1355 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1356 			kfd_set_recommended_sdma_engines(peer_dev, link, inbound_link);
1357 		}
1358 	}
1359 
1360 	/* Create indirect links so apply flags setting to all */
1361 	list_for_each_entry(link, &dev->p2p_link_props, list) {
1362 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1363 		kfd_set_iolink_no_atomics(dev, NULL, link);
1364 		peer_dev = kfd_topology_device_by_proximity_domain(
1365 				link->node_to);
1366 
1367 		if (!peer_dev)
1368 			continue;
1369 
1370 		list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1371 									list) {
1372 			if (inbound_link->node_to != link->node_from)
1373 				continue;
1374 
1375 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1376 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1377 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1378 		}
1379 	}
1380 }
1381 
kfd_build_p2p_node_entry(struct kfd_topology_device * dev,struct kfd_iolink_properties * p2plink)1382 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1383 				struct kfd_iolink_properties *p2plink)
1384 {
1385 	int ret;
1386 
1387 	p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1388 	if (!p2plink->kobj)
1389 		return -ENOMEM;
1390 
1391 	ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1392 			dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1393 	if (ret < 0) {
1394 		kobject_put(p2plink->kobj);
1395 		return ret;
1396 	}
1397 
1398 	p2plink->attr.name = "properties";
1399 	p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1400 	sysfs_attr_init(&p2plink->attr);
1401 	ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1402 	if (ret < 0)
1403 		return ret;
1404 
1405 	return 0;
1406 }
1407 
kfd_create_indirect_link_prop(struct kfd_topology_device * kdev,int gpu_node)1408 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1409 {
1410 	struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1411 	struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1412 	struct kfd_topology_device *cpu_dev;
1413 	int ret = 0;
1414 	int i, num_cpu;
1415 
1416 	num_cpu = 0;
1417 	list_for_each_entry(cpu_dev, &topology_device_list, list) {
1418 		if (cpu_dev->gpu)
1419 			break;
1420 		num_cpu++;
1421 	}
1422 
1423 	if (list_empty(&kdev->io_link_props))
1424 		return -ENODATA;
1425 
1426 	gpu_link = list_first_entry(&kdev->io_link_props,
1427 				    struct kfd_iolink_properties, list);
1428 
1429 	for (i = 0; i < num_cpu; i++) {
1430 		/* CPU <--> GPU */
1431 		if (gpu_link->node_to == i)
1432 			continue;
1433 
1434 		/* find CPU <-->  CPU links */
1435 		cpu_link = NULL;
1436 		cpu_dev = kfd_topology_device_by_proximity_domain(i);
1437 		if (cpu_dev) {
1438 			list_for_each_entry(tmp_link,
1439 					&cpu_dev->io_link_props, list) {
1440 				if (tmp_link->node_to == gpu_link->node_to) {
1441 					cpu_link = tmp_link;
1442 					break;
1443 				}
1444 			}
1445 		}
1446 
1447 		if (!cpu_link)
1448 			return -ENOMEM;
1449 
1450 		/* CPU <--> CPU <--> GPU, GPU node*/
1451 		props = kfd_alloc_struct(props);
1452 		if (!props)
1453 			return -ENOMEM;
1454 
1455 		memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1456 		props->weight = gpu_link->weight + cpu_link->weight;
1457 		props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1458 		props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1459 		props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1460 		props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1461 
1462 		props->node_from = gpu_node;
1463 		props->node_to = i;
1464 		kdev->node_props.p2p_links_count++;
1465 		list_add_tail(&props->list, &kdev->p2p_link_props);
1466 		ret = kfd_build_p2p_node_entry(kdev, props);
1467 		if (ret < 0)
1468 			return ret;
1469 
1470 		/* for small Bar, no CPU --> GPU in-direct links */
1471 		if (kfd_dev_is_large_bar(kdev->gpu)) {
1472 			/* CPU <--> CPU <--> GPU, CPU node*/
1473 			props2 = kfd_alloc_struct(props2);
1474 			if (!props2)
1475 				return -ENOMEM;
1476 
1477 			memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1478 			props2->node_from = i;
1479 			props2->node_to = gpu_node;
1480 			props2->kobj = NULL;
1481 			cpu_dev->node_props.p2p_links_count++;
1482 			list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1483 			ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1484 			if (ret < 0)
1485 				return ret;
1486 		}
1487 	}
1488 	return ret;
1489 }
1490 
1491 #if defined(CONFIG_HSA_AMD_P2P)
kfd_add_peer_prop(struct kfd_topology_device * kdev,struct kfd_topology_device * peer,int from,int to)1492 static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1493 		struct kfd_topology_device *peer, int from, int to)
1494 {
1495 	struct kfd_iolink_properties *props = NULL;
1496 	struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1497 	struct kfd_topology_device *cpu_dev;
1498 	int ret = 0;
1499 
1500 	if (!amdgpu_device_is_peer_accessible(
1501 				kdev->gpu->adev,
1502 				peer->gpu->adev))
1503 		return ret;
1504 
1505 	if (list_empty(&kdev->io_link_props))
1506 		return -ENODATA;
1507 
1508 	iolink1 = list_first_entry(&kdev->io_link_props,
1509 				   struct kfd_iolink_properties, list);
1510 
1511 	if (list_empty(&peer->io_link_props))
1512 		return -ENODATA;
1513 
1514 	iolink2 = list_first_entry(&peer->io_link_props,
1515 				   struct kfd_iolink_properties, list);
1516 
1517 	props = kfd_alloc_struct(props);
1518 	if (!props)
1519 		return -ENOMEM;
1520 
1521 	memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1522 
1523 	props->weight = iolink1->weight + iolink2->weight;
1524 	props->min_latency = iolink1->min_latency + iolink2->min_latency;
1525 	props->max_latency = iolink1->max_latency + iolink2->max_latency;
1526 	props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1527 	props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1528 
1529 	if (iolink1->node_to != iolink2->node_to) {
1530 		/* CPU->CPU  link*/
1531 		cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1532 		if (cpu_dev) {
1533 			list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) {
1534 				if (iolink3->node_to != iolink2->node_to)
1535 					continue;
1536 
1537 				props->weight += iolink3->weight;
1538 				props->min_latency += iolink3->min_latency;
1539 				props->max_latency += iolink3->max_latency;
1540 				props->min_bandwidth = min(props->min_bandwidth,
1541 							   iolink3->min_bandwidth);
1542 				props->max_bandwidth = min(props->max_bandwidth,
1543 							   iolink3->max_bandwidth);
1544 				break;
1545 			}
1546 		} else {
1547 			WARN(1, "CPU node not found");
1548 		}
1549 	}
1550 
1551 	props->node_from = from;
1552 	props->node_to = to;
1553 	peer->node_props.p2p_links_count++;
1554 	list_add_tail(&props->list, &peer->p2p_link_props);
1555 	ret = kfd_build_p2p_node_entry(peer, props);
1556 
1557 	return ret;
1558 }
1559 #endif
1560 
kfd_dev_create_p2p_links(void)1561 static int kfd_dev_create_p2p_links(void)
1562 {
1563 	struct kfd_topology_device *dev;
1564 	struct kfd_topology_device *new_dev;
1565 #if defined(CONFIG_HSA_AMD_P2P)
1566 	uint32_t i;
1567 #endif
1568 	uint32_t k;
1569 	int ret = 0;
1570 
1571 	k = 0;
1572 	list_for_each_entry(dev, &topology_device_list, list)
1573 		k++;
1574 	if (k < 2)
1575 		return 0;
1576 
1577 	new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1578 	if (WARN_ON(!new_dev->gpu))
1579 		return 0;
1580 
1581 	k--;
1582 
1583 	/* create in-direct links */
1584 	ret = kfd_create_indirect_link_prop(new_dev, k);
1585 	if (ret < 0)
1586 		goto out;
1587 
1588 	/* create p2p links */
1589 #if defined(CONFIG_HSA_AMD_P2P)
1590 	i = 0;
1591 	list_for_each_entry(dev, &topology_device_list, list) {
1592 		if (dev == new_dev)
1593 			break;
1594 		if (!dev->gpu || !dev->gpu->adev ||
1595 		    (dev->gpu->kfd->hive_id &&
1596 		     dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id))
1597 			goto next;
1598 
1599 		/* check if node(s) is/are peer accessible in one direction or bi-direction */
1600 		ret = kfd_add_peer_prop(new_dev, dev, i, k);
1601 		if (ret < 0)
1602 			goto out;
1603 
1604 		ret = kfd_add_peer_prop(dev, new_dev, k, i);
1605 		if (ret < 0)
1606 			goto out;
1607 next:
1608 		i++;
1609 	}
1610 #endif
1611 
1612 out:
1613 	return ret;
1614 }
1615 
1616 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_l1_pcache(struct kfd_cache_properties ** props_ext,struct kfd_gpu_cache_info * pcache_info,int cu_bitmask,int cache_type,unsigned int cu_processor_id,int cu_block)1617 static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1618 				struct kfd_gpu_cache_info *pcache_info,
1619 				int cu_bitmask,
1620 				int cache_type, unsigned int cu_processor_id,
1621 				int cu_block)
1622 {
1623 	unsigned int cu_sibling_map_mask;
1624 	int first_active_cu;
1625 	struct kfd_cache_properties *pcache = NULL;
1626 
1627 	cu_sibling_map_mask = cu_bitmask;
1628 	cu_sibling_map_mask >>= cu_block;
1629 	cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1630 	first_active_cu = ffs(cu_sibling_map_mask);
1631 
1632 	/* CU could be inactive. In case of shared cache find the first active
1633 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1634 	 * inactive active skip it
1635 	 */
1636 	if (first_active_cu) {
1637 		pcache = kfd_alloc_struct(pcache);
1638 		if (!pcache)
1639 			return -ENOMEM;
1640 
1641 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1642 		pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1643 		pcache->cache_level = pcache_info[cache_type].cache_level;
1644 		pcache->cache_size = pcache_info[cache_type].cache_size;
1645 		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1646 
1647 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1648 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1649 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1650 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1651 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1652 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1653 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1654 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1655 
1656 		/* Sibling map is w.r.t processor_id_low, so shift out
1657 		 * inactive CU
1658 		 */
1659 		cu_sibling_map_mask =
1660 			cu_sibling_map_mask >> (first_active_cu - 1);
1661 
1662 		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1663 		pcache->sibling_map[1] =
1664 				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1665 		pcache->sibling_map[2] =
1666 				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1667 		pcache->sibling_map[3] =
1668 				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1669 
1670 		pcache->sibling_map_size = 4;
1671 		*props_ext = pcache;
1672 
1673 		return 0;
1674 	}
1675 	return 1;
1676 }
1677 
1678 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_l2_l3_pcache(struct kfd_cache_properties ** props_ext,struct kfd_gpu_cache_info * pcache_info,struct amdgpu_cu_info * cu_info,struct amdgpu_gfx_config * gfx_info,int cache_type,unsigned int cu_processor_id,struct kfd_node * knode)1679 static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1680 				struct kfd_gpu_cache_info *pcache_info,
1681 				struct amdgpu_cu_info *cu_info,
1682 				struct amdgpu_gfx_config *gfx_info,
1683 				int cache_type, unsigned int cu_processor_id,
1684 				struct kfd_node *knode)
1685 {
1686 	unsigned int cu_sibling_map_mask;
1687 	int first_active_cu;
1688 	int i, j, k, xcc, start, end;
1689 	int num_xcc = NUM_XCC(knode->xcc_mask);
1690 	struct kfd_cache_properties *pcache = NULL;
1691 	enum amdgpu_memory_partition mode;
1692 	struct amdgpu_device *adev = knode->adev;
1693 
1694 	start = ffs(knode->xcc_mask) - 1;
1695 	end = start + num_xcc;
1696 	cu_sibling_map_mask = cu_info->bitmap[start][0][0];
1697 	cu_sibling_map_mask &=
1698 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1699 	first_active_cu = ffs(cu_sibling_map_mask);
1700 
1701 	/* CU could be inactive. In case of shared cache find the first active
1702 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1703 	 * inactive active skip it
1704 	 */
1705 	if (first_active_cu) {
1706 		pcache = kfd_alloc_struct(pcache);
1707 		if (!pcache)
1708 			return -ENOMEM;
1709 
1710 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1711 		pcache->processor_id_low = cu_processor_id
1712 					+ (first_active_cu - 1);
1713 		pcache->cache_level = pcache_info[cache_type].cache_level;
1714 		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1715 
1716 		if (KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 3) ||
1717 		    KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 4))
1718 			mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1719 		else
1720 			mode = UNKNOWN_MEMORY_PARTITION_MODE;
1721 
1722 		pcache->cache_size = pcache_info[cache_type].cache_size;
1723 		/* Partition mode only affects L3 cache size */
1724 		if (mode && pcache->cache_level == 3)
1725 			pcache->cache_size /= mode;
1726 
1727 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1728 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1729 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1730 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1731 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1732 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1733 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1734 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1735 
1736 		/* Sibling map is w.r.t processor_id_low, so shift out
1737 		 * inactive CU
1738 		 */
1739 		cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1740 		k = 0;
1741 
1742 		for (xcc = start; xcc < end; xcc++) {
1743 			for (i = 0; i < gfx_info->max_shader_engines; i++) {
1744 				for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1745 					pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1746 					pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1747 					pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1748 					pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1749 					k += 4;
1750 
1751 					cu_sibling_map_mask = cu_info->bitmap[xcc][i % 4][j + i / 4];
1752 					cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1753 				}
1754 			}
1755 		}
1756 		pcache->sibling_map_size = k;
1757 		*props_ext = pcache;
1758 		return 0;
1759 	}
1760 	return 1;
1761 }
1762 
1763 #define KFD_MAX_CACHE_TYPES 6
1764 
1765 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1766  * tables
1767  */
kfd_fill_cache_non_crat_info(struct kfd_topology_device * dev,struct kfd_node * kdev)1768 static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1769 {
1770 	struct kfd_gpu_cache_info *pcache_info = NULL;
1771 	int i, j, k, xcc, start, end;
1772 	int ct = 0;
1773 	unsigned int cu_processor_id;
1774 	int ret;
1775 	unsigned int num_cu_shared;
1776 	struct amdgpu_cu_info *cu_info = &kdev->adev->gfx.cu_info;
1777 	struct amdgpu_gfx_config *gfx_info = &kdev->adev->gfx.config;
1778 	int gpu_processor_id;
1779 	struct kfd_cache_properties *props_ext;
1780 	int num_of_entries = 0;
1781 	int num_of_cache_types = 0;
1782 	struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1783 
1784 
1785 	gpu_processor_id = dev->node_props.simd_id_base;
1786 
1787 	memset(cache_info, 0, sizeof(cache_info));
1788 	pcache_info = cache_info;
1789 	num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1790 	if (!num_of_cache_types) {
1791 		pr_warn("no cache info found\n");
1792 		return;
1793 	}
1794 
1795 	/* For each type of cache listed in the kfd_gpu_cache_info table,
1796 	 * go through all available Compute Units.
1797 	 * The [i,j,k] loop will
1798 	 *		if kfd_gpu_cache_info.num_cu_shared = 1
1799 	 *			will parse through all available CU
1800 	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
1801 	 *			then it will consider only one CU from
1802 	 *			the shared unit
1803 	 */
1804 	start = ffs(kdev->xcc_mask) - 1;
1805 	end = start + NUM_XCC(kdev->xcc_mask);
1806 
1807 	for (ct = 0; ct < num_of_cache_types; ct++) {
1808 		cu_processor_id = gpu_processor_id;
1809 		if (pcache_info[ct].cache_level == 1) {
1810 			for (xcc = start; xcc < end; xcc++) {
1811 				for (i = 0; i < gfx_info->max_shader_engines; i++) {
1812 					for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1813 						for (k = 0; k < gfx_info->max_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1814 
1815 							ret = fill_in_l1_pcache(&props_ext, pcache_info,
1816 										cu_info->bitmap[xcc][i % 4][j + i / 4], ct,
1817 										cu_processor_id, k);
1818 
1819 							if (ret < 0)
1820 								break;
1821 
1822 							if (!ret) {
1823 								num_of_entries++;
1824 								list_add_tail(&props_ext->list, &dev->cache_props);
1825 							}
1826 
1827 							/* Move to next CU block */
1828 							num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1829 								gfx_info->max_cu_per_sh) ?
1830 								pcache_info[ct].num_cu_shared :
1831 								(gfx_info->max_cu_per_sh - k);
1832 							cu_processor_id += num_cu_shared;
1833 						}
1834 					}
1835 				}
1836 			}
1837 		} else {
1838 			ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1839 						   cu_info, gfx_info, ct, cu_processor_id, kdev);
1840 
1841 			if (ret < 0)
1842 				break;
1843 
1844 			if (!ret) {
1845 				num_of_entries++;
1846 				list_add_tail(&props_ext->list, &dev->cache_props);
1847 			}
1848 		}
1849 	}
1850 	dev->node_props.caches_count += num_of_entries;
1851 	pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1852 }
1853 
kfd_topology_add_device_locked(struct kfd_node * gpu,struct kfd_topology_device ** dev)1854 static int kfd_topology_add_device_locked(struct kfd_node *gpu,
1855 					  struct kfd_topology_device **dev)
1856 {
1857 	int proximity_domain = ++topology_crat_proximity_domain;
1858 	struct list_head temp_topology_device_list;
1859 	void *crat_image = NULL;
1860 	size_t image_size = 0;
1861 	int res;
1862 
1863 	res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1864 					    COMPUTE_UNIT_GPU, gpu,
1865 					    proximity_domain);
1866 	if (res) {
1867 		dev_err(gpu->adev->dev, "Error creating VCRAT\n");
1868 		topology_crat_proximity_domain--;
1869 		goto err;
1870 	}
1871 
1872 	INIT_LIST_HEAD(&temp_topology_device_list);
1873 
1874 	res = kfd_parse_crat_table(crat_image,
1875 				   &temp_topology_device_list,
1876 				   proximity_domain);
1877 	if (res) {
1878 		dev_err(gpu->adev->dev, "Error parsing VCRAT\n");
1879 		topology_crat_proximity_domain--;
1880 		goto err;
1881 	}
1882 
1883 	kfd_topology_update_device_list(&temp_topology_device_list,
1884 					&topology_device_list);
1885 
1886 	*dev = kfd_assign_gpu(gpu);
1887 	if (WARN_ON(!*dev)) {
1888 		res = -ENODEV;
1889 		goto err;
1890 	}
1891 
1892 	/* Fill the cache affinity information here for the GPUs
1893 	 * using VCRAT
1894 	 */
1895 	kfd_fill_cache_non_crat_info(*dev, gpu);
1896 
1897 	/* Update the SYSFS tree, since we added another topology
1898 	 * device
1899 	 */
1900 	res = kfd_topology_update_sysfs();
1901 	if (!res)
1902 		sys_props.generation_count++;
1903 	else
1904 		dev_err(gpu->adev->dev, "Failed to update GPU to sysfs topology. res=%d\n",
1905 			res);
1906 
1907 err:
1908 	kfd_destroy_crat_image(crat_image);
1909 	return res;
1910 }
1911 
kfd_topology_set_dbg_firmware_support(struct kfd_topology_device * dev)1912 static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1913 {
1914 	bool firmware_supported = true;
1915 
1916 	if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1917 			KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1918 		uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1919 						AMDGPU_MES_API_VERSION_MASK) >>
1920 						AMDGPU_MES_API_VERSION_SHIFT;
1921 		uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1922 						AMDGPU_MES_VERSION_MASK;
1923 
1924 		firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1925 		goto out;
1926 	}
1927 
1928 	/*
1929 	 * Note: Any unlisted devices here are assumed to support exception handling.
1930 	 * Add additional checks here as needed.
1931 	 */
1932 	switch (KFD_GC_VERSION(dev->gpu)) {
1933 	case IP_VERSION(9, 0, 1):
1934 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1935 		break;
1936 	case IP_VERSION(9, 1, 0):
1937 	case IP_VERSION(9, 2, 1):
1938 	case IP_VERSION(9, 2, 2):
1939 	case IP_VERSION(9, 3, 0):
1940 	case IP_VERSION(9, 4, 0):
1941 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1942 		break;
1943 	case IP_VERSION(9, 4, 1):
1944 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1945 		break;
1946 	case IP_VERSION(9, 4, 2):
1947 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1948 		break;
1949 	case IP_VERSION(10, 1, 10):
1950 	case IP_VERSION(10, 1, 2):
1951 	case IP_VERSION(10, 1, 1):
1952 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1953 		break;
1954 	case IP_VERSION(10, 3, 0):
1955 	case IP_VERSION(10, 3, 2):
1956 	case IP_VERSION(10, 3, 1):
1957 	case IP_VERSION(10, 3, 4):
1958 	case IP_VERSION(10, 3, 5):
1959 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1960 		break;
1961 	case IP_VERSION(10, 1, 3):
1962 	case IP_VERSION(10, 3, 3):
1963 		firmware_supported = false;
1964 		break;
1965 	default:
1966 		break;
1967 	}
1968 
1969 out:
1970 	if (firmware_supported)
1971 		dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1972 }
1973 
kfd_topology_set_capabilities(struct kfd_topology_device * dev)1974 static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1975 {
1976 	dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1977 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1978 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1979 
1980 	dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
1981 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
1982 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
1983 
1984 	if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
1985 		dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
1986 
1987 	if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
1988 		if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3) ||
1989 		    KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 4))
1990 			dev->node_props.debug_prop |=
1991 				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
1992 				HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
1993 		else
1994 			dev->node_props.debug_prop |=
1995 				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
1996 				HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1997 
1998 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
1999 			dev->node_props.capability |=
2000 				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
2001 	} else {
2002 		dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
2003 					HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
2004 
2005 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0))
2006 			dev->node_props.capability |=
2007 				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
2008 
2009 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(12, 0, 0))
2010 			dev->node_props.capability |=
2011 				HSA_CAP_TRAP_DEBUG_PRECISE_ALU_OPERATIONS_SUPPORTED;
2012 	}
2013 
2014 	kfd_topology_set_dbg_firmware_support(dev);
2015 }
2016 
kfd_topology_add_device(struct kfd_node * gpu)2017 int kfd_topology_add_device(struct kfd_node *gpu)
2018 {
2019 	uint32_t gpu_id;
2020 	struct kfd_topology_device *dev;
2021 	int res = 0;
2022 	int i;
2023 	const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
2024 	struct amdgpu_gfx_config *gfx_info = &gpu->adev->gfx.config;
2025 	struct amdgpu_cu_info *cu_info = &gpu->adev->gfx.cu_info;
2026 
2027 	if (gpu->xcp && !gpu->xcp->ddev) {
2028 		dev_warn(gpu->adev->dev,
2029 			 "Won't add GPU to topology since it has no drm node assigned.");
2030 		return 0;
2031 	} else {
2032 		dev_dbg(gpu->adev->dev, "Adding new GPU to topology\n");
2033 	}
2034 
2035 	/* Check to see if this gpu device exists in the topology_device_list.
2036 	 * If so, assign the gpu to that device,
2037 	 * else create a Virtual CRAT for this gpu device and then parse that
2038 	 * CRAT to create a new topology device. Once created assign the gpu to
2039 	 * that topology device
2040 	 */
2041 	down_write(&topology_lock);
2042 	dev = kfd_assign_gpu(gpu);
2043 	if (!dev)
2044 		res = kfd_topology_add_device_locked(gpu, &dev);
2045 	up_write(&topology_lock);
2046 	if (res)
2047 		return res;
2048 
2049 	gpu_id = kfd_generate_gpu_id(gpu);
2050 	dev->gpu_id = gpu_id;
2051 	gpu->id = gpu_id;
2052 
2053 	kfd_dev_create_p2p_links();
2054 
2055 	/* TODO: Move the following lines to function
2056 	 *	kfd_add_non_crat_information
2057 	 */
2058 
2059 	/* Fill-in additional information that is not available in CRAT but
2060 	 * needed for the topology
2061 	 */
2062 	for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
2063 		dev->node_props.name[i] = __tolower(asic_name[i]);
2064 		if (asic_name[i] == '\0')
2065 			break;
2066 	}
2067 	dev->node_props.name[i] = '\0';
2068 
2069 	dev->node_props.simd_arrays_per_engine =
2070 		gfx_info->max_sh_per_se;
2071 
2072 	dev->node_props.gfx_target_version =
2073 				gpu->kfd->device_info.gfx_target_version;
2074 	dev->node_props.vendor_id = gpu->adev->pdev->vendor;
2075 	dev->node_props.device_id = gpu->adev->pdev->device;
2076 	dev->node_props.capability |=
2077 		((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
2078 			HSA_CAP_ASIC_REVISION_MASK);
2079 
2080 	dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
2081 	if (gpu->kfd->num_nodes > 1)
2082 		dev->node_props.location_id |= dev->gpu->node_id;
2083 
2084 	dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
2085 	dev->node_props.max_engine_clk_fcompute =
2086 		amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
2087 	dev->node_props.max_engine_clk_ccompute =
2088 		cpufreq_quick_get_max(0) / 1000;
2089 
2090 	if (gpu->xcp)
2091 		dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
2092 	else
2093 		dev->node_props.drm_render_minor =
2094 				gpu->kfd->shared_resources.drm_render_minor;
2095 
2096 	dev->node_props.hive_id = gpu->kfd->hive_id;
2097 	dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
2098 	dev->node_props.num_sdma_xgmi_engines =
2099 					kfd_get_num_xgmi_sdma_engines(gpu);
2100 	dev->node_props.num_sdma_queues_per_engine =
2101 				gpu->kfd->device_info.num_sdma_queues_per_engine -
2102 				gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
2103 	dev->node_props.num_gws = (dev->gpu->gws &&
2104 		dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
2105 		dev->gpu->adev->gds.gws_size : 0;
2106 	dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2107 
2108 	kfd_fill_mem_clk_max_info(dev);
2109 	kfd_fill_iolink_non_crat_info(dev);
2110 
2111 	switch (dev->gpu->adev->asic_type) {
2112 	case CHIP_KAVERI:
2113 	case CHIP_HAWAII:
2114 	case CHIP_TONGA:
2115 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2116 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2117 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2118 		break;
2119 	case CHIP_CARRIZO:
2120 	case CHIP_FIJI:
2121 	case CHIP_POLARIS10:
2122 	case CHIP_POLARIS11:
2123 	case CHIP_POLARIS12:
2124 	case CHIP_VEGAM:
2125 		pr_debug("Adding doorbell packet type capability\n");
2126 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2127 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2128 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2129 		break;
2130 	default:
2131 		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
2132 			WARN(1, "Unexpected ASIC family %u",
2133 			     dev->gpu->adev->asic_type);
2134 		else
2135 			kfd_topology_set_capabilities(dev);
2136 	}
2137 
2138 	/*
2139 	 * Overwrite ATS capability according to needs_iommu_device to fix
2140 	 * potential missing corresponding bit in CRAT of BIOS.
2141 	 */
2142 	dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
2143 
2144 	/* Fix errors in CZ CRAT.
2145 	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
2146 	 *		because it doesn't consider masked out CUs
2147 	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
2148 	 */
2149 	if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2150 		dev->node_props.simd_count =
2151 			cu_info->simd_per_cu * cu_info->number;
2152 		dev->node_props.max_waves_per_simd = 10;
2153 	}
2154 
2155 	/* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2156 	dev->node_props.capability |=
2157 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2158 		HSA_CAP_SRAM_EDCSUPPORTED : 0;
2159 	dev->node_props.capability |=
2160 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2161 		HSA_CAP_MEM_EDCSUPPORTED : 0;
2162 
2163 	if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2164 		dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2165 			HSA_CAP_RASEVENTNOTIFY : 0;
2166 
2167 	if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2168 		dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2169 
2170 	if (dev->gpu->adev->gmc.is_app_apu ||
2171 		dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2172 		dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
2173 
2174 	kfd_queue_ctx_save_restore_size(dev);
2175 
2176 	kfd_debug_print_topology();
2177 
2178 	kfd_notify_gpu_change(gpu_id, 1);
2179 
2180 	return 0;
2181 }
2182 
2183 /**
2184  * kfd_topology_update_io_links() - Update IO links after device removal.
2185  * @proximity_domain: Proximity domain value of the dev being removed.
2186  *
2187  * The topology list currently is arranged in increasing order of
2188  * proximity domain.
2189  *
2190  * Two things need to be done when a device is removed:
2191  * 1. All the IO links to this device need to be removed.
2192  * 2. All nodes after the current device node need to move
2193  *    up once this device node is removed from the topology
2194  *    list. As a result, the proximity domain values for
2195  *    all nodes after the node being deleted reduce by 1.
2196  *    This would also cause the proximity domain values for
2197  *    io links to be updated based on new proximity domain
2198  *    values.
2199  *
2200  * Context: The caller must hold write topology_lock.
2201  */
kfd_topology_update_io_links(int proximity_domain)2202 static void kfd_topology_update_io_links(int proximity_domain)
2203 {
2204 	struct kfd_topology_device *dev;
2205 	struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2206 
2207 	list_for_each_entry(dev, &topology_device_list, list) {
2208 		if (dev->proximity_domain > proximity_domain)
2209 			dev->proximity_domain--;
2210 
2211 		list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2212 			/*
2213 			 * If there is an io link to the dev being deleted
2214 			 * then remove that IO link also.
2215 			 */
2216 			if (iolink->node_to == proximity_domain) {
2217 				list_del(&iolink->list);
2218 				dev->node_props.io_links_count--;
2219 			} else {
2220 				if (iolink->node_from > proximity_domain)
2221 					iolink->node_from--;
2222 				if (iolink->node_to > proximity_domain)
2223 					iolink->node_to--;
2224 			}
2225 		}
2226 
2227 		list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2228 			/*
2229 			 * If there is a p2p link to the dev being deleted
2230 			 * then remove that p2p link also.
2231 			 */
2232 			if (p2plink->node_to == proximity_domain) {
2233 				list_del(&p2plink->list);
2234 				dev->node_props.p2p_links_count--;
2235 			} else {
2236 				if (p2plink->node_from > proximity_domain)
2237 					p2plink->node_from--;
2238 				if (p2plink->node_to > proximity_domain)
2239 					p2plink->node_to--;
2240 			}
2241 		}
2242 	}
2243 }
2244 
kfd_topology_remove_device(struct kfd_node * gpu)2245 int kfd_topology_remove_device(struct kfd_node *gpu)
2246 {
2247 	struct kfd_topology_device *dev, *tmp;
2248 	uint32_t gpu_id;
2249 	int res = -ENODEV;
2250 	int i = 0;
2251 
2252 	down_write(&topology_lock);
2253 
2254 	list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2255 		if (dev->gpu == gpu) {
2256 			gpu_id = dev->gpu_id;
2257 			kfd_remove_sysfs_node_entry(dev);
2258 			kfd_release_topology_device(dev);
2259 			sys_props.num_devices--;
2260 			kfd_topology_update_io_links(i);
2261 			topology_crat_proximity_domain = sys_props.num_devices-1;
2262 			sys_props.generation_count++;
2263 			res = 0;
2264 			if (kfd_topology_update_sysfs() < 0)
2265 				kfd_topology_release_sysfs();
2266 			break;
2267 		}
2268 		i++;
2269 	}
2270 
2271 	up_write(&topology_lock);
2272 
2273 	if (!res)
2274 		kfd_notify_gpu_change(gpu_id, 0);
2275 
2276 	return res;
2277 }
2278 
2279 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2280  *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
2281  *	returned through @kdev
2282  * Return -	0: On success (@kdev will be NULL for non GPU nodes)
2283  *		-1: If end of list
2284  */
kfd_topology_enum_kfd_devices(uint8_t idx,struct kfd_node ** kdev)2285 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2286 {
2287 
2288 	struct kfd_topology_device *top_dev;
2289 	uint8_t device_idx = 0;
2290 
2291 	*kdev = NULL;
2292 	down_read(&topology_lock);
2293 
2294 	list_for_each_entry(top_dev, &topology_device_list, list) {
2295 		if (device_idx == idx) {
2296 			*kdev = top_dev->gpu;
2297 			up_read(&topology_lock);
2298 			return 0;
2299 		}
2300 
2301 		device_idx++;
2302 	}
2303 
2304 	up_read(&topology_lock);
2305 
2306 	return -1;
2307 
2308 }
2309 
kfd_cpumask_to_apic_id(const struct cpumask * cpumask)2310 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2311 {
2312 	int first_cpu_of_numa_node;
2313 
2314 	if (!cpumask || cpumask == cpu_none_mask)
2315 		return -1;
2316 	first_cpu_of_numa_node = cpumask_first(cpumask);
2317 	if (first_cpu_of_numa_node >= nr_cpu_ids)
2318 		return -1;
2319 #ifdef CONFIG_X86_64
2320 	return cpu_data(first_cpu_of_numa_node).topo.apicid;
2321 #else
2322 	return first_cpu_of_numa_node;
2323 #endif
2324 }
2325 
2326 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2327  *	of the given NUMA node (numa_node_id)
2328  * Return -1 on failure
2329  */
kfd_numa_node_to_apic_id(int numa_node_id)2330 int kfd_numa_node_to_apic_id(int numa_node_id)
2331 {
2332 	if (numa_node_id == -1) {
2333 		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2334 		return kfd_cpumask_to_apic_id(cpu_online_mask);
2335 	}
2336 	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2337 }
2338 
2339 #if defined(CONFIG_DEBUG_FS)
2340 
kfd_debugfs_hqds_by_device(struct seq_file * m,void * data)2341 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2342 {
2343 	struct kfd_topology_device *dev;
2344 	unsigned int i = 0;
2345 	int r = 0;
2346 
2347 	down_read(&topology_lock);
2348 
2349 	list_for_each_entry(dev, &topology_device_list, list) {
2350 		if (!dev->gpu) {
2351 			i++;
2352 			continue;
2353 		}
2354 
2355 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2356 		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2357 		if (r)
2358 			break;
2359 	}
2360 
2361 	up_read(&topology_lock);
2362 
2363 	return r;
2364 }
2365 
kfd_debugfs_rls_by_device(struct seq_file * m,void * data)2366 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2367 {
2368 	struct kfd_topology_device *dev;
2369 	unsigned int i = 0;
2370 	int r = 0;
2371 
2372 	down_read(&topology_lock);
2373 
2374 	list_for_each_entry(dev, &topology_device_list, list) {
2375 		if (!dev->gpu) {
2376 			i++;
2377 			continue;
2378 		}
2379 
2380 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2381 		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2382 		if (r)
2383 			break;
2384 	}
2385 
2386 	up_read(&topology_lock);
2387 
2388 	return r;
2389 }
2390 
2391 #endif
2392