1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include <linux/pci.h>
25
26 #include "amdgpu.h"
27 #include "amdgpu_ih.h"
28 #include "vid.h"
29
30 #include "oss/oss_3_0_d.h"
31 #include "oss/oss_3_0_sh_mask.h"
32
33 #include "bif/bif_5_1_d.h"
34 #include "bif/bif_5_1_sh_mask.h"
35
36 /*
37 * Interrupts
38 * Starting with r6xx, interrupts are handled via a ring buffer.
39 * Ring buffers are areas of GPU accessible memory that the GPU
40 * writes interrupt vectors into and the host reads vectors out of.
41 * There is a rptr (read pointer) that determines where the
42 * host is currently reading, and a wptr (write pointer)
43 * which determines where the GPU has written. When the
44 * pointers are equal, the ring is idle. When the GPU
45 * writes vectors to the ring buffer, it increments the
46 * wptr. When there is an interrupt, the host then starts
47 * fetching commands and processing them until the pointers are
48 * equal again at which point it updates the rptr.
49 */
50
51 static void tonga_ih_set_interrupt_funcs(struct amdgpu_device *adev);
52
53 /**
54 * tonga_ih_enable_interrupts - Enable the interrupt ring buffer
55 *
56 * @adev: amdgpu_device pointer
57 *
58 * Enable the interrupt ring buffer (VI).
59 */
tonga_ih_enable_interrupts(struct amdgpu_device * adev)60 static void tonga_ih_enable_interrupts(struct amdgpu_device *adev)
61 {
62 u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
63
64 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 1);
65 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, ENABLE_INTR, 1);
66 WREG32(mmIH_RB_CNTL, ih_rb_cntl);
67 adev->irq.ih.enabled = true;
68 }
69
70 /**
71 * tonga_ih_disable_interrupts - Disable the interrupt ring buffer
72 *
73 * @adev: amdgpu_device pointer
74 *
75 * Disable the interrupt ring buffer (VI).
76 */
tonga_ih_disable_interrupts(struct amdgpu_device * adev)77 static void tonga_ih_disable_interrupts(struct amdgpu_device *adev)
78 {
79 u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
80
81 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 0);
82 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, ENABLE_INTR, 0);
83 WREG32(mmIH_RB_CNTL, ih_rb_cntl);
84 /* set rptr, wptr to 0 */
85 WREG32(mmIH_RB_RPTR, 0);
86 WREG32(mmIH_RB_WPTR, 0);
87 adev->irq.ih.enabled = false;
88 adev->irq.ih.rptr = 0;
89 }
90
91 /**
92 * tonga_ih_irq_init - init and enable the interrupt ring
93 *
94 * @adev: amdgpu_device pointer
95 *
96 * Allocate a ring buffer for the interrupt controller,
97 * enable the RLC, disable interrupts, enable the IH
98 * ring buffer and enable it (VI).
99 * Called at device load and reume.
100 * Returns 0 for success, errors for failure.
101 */
tonga_ih_irq_init(struct amdgpu_device * adev)102 static int tonga_ih_irq_init(struct amdgpu_device *adev)
103 {
104 u32 interrupt_cntl, ih_rb_cntl, ih_doorbell_rtpr;
105 struct amdgpu_ih_ring *ih = &adev->irq.ih;
106 int rb_bufsz;
107
108 /* disable irqs */
109 tonga_ih_disable_interrupts(adev);
110
111 /* setup interrupt control */
112 WREG32(mmINTERRUPT_CNTL2, adev->dummy_page_addr >> 8);
113 interrupt_cntl = RREG32(mmINTERRUPT_CNTL);
114 /* INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=0 - dummy read disabled with msi, enabled without msi
115 * INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=1 - dummy read controlled by IH_DUMMY_RD_EN
116 */
117 interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_DUMMY_RD_OVERRIDE, 0);
118 /* INTERRUPT_CNTL__IH_REQ_NONSNOOP_EN_MASK=1 if ring is in non-cacheable memory, e.g., vram */
119 interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_REQ_NONSNOOP_EN, 0);
120 WREG32(mmINTERRUPT_CNTL, interrupt_cntl);
121
122 /* Ring Buffer base. [39:8] of 40-bit address of the beginning of the ring buffer*/
123 WREG32(mmIH_RB_BASE, ih->gpu_addr >> 8);
124
125 rb_bufsz = order_base_2(adev->irq.ih.ring_size / 4);
126 ih_rb_cntl = REG_SET_FIELD(0, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1);
127 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_SIZE, rb_bufsz);
128 /* Ring Buffer write pointer writeback. If enabled, IH_RB_WPTR register value is written to memory */
129 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, WPTR_WRITEBACK_ENABLE, 1);
130 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, MC_VMID, 0);
131
132 if (adev->irq.msi_enabled)
133 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RPTR_REARM, 1);
134
135 WREG32(mmIH_RB_CNTL, ih_rb_cntl);
136
137 /* set the writeback address whether it's enabled or not */
138 WREG32(mmIH_RB_WPTR_ADDR_LO, lower_32_bits(ih->wptr_addr));
139 WREG32(mmIH_RB_WPTR_ADDR_HI, upper_32_bits(ih->wptr_addr) & 0xFF);
140
141 /* set rptr, wptr to 0 */
142 WREG32(mmIH_RB_RPTR, 0);
143 WREG32(mmIH_RB_WPTR, 0);
144
145 ih_doorbell_rtpr = RREG32(mmIH_DOORBELL_RPTR);
146 if (adev->irq.ih.use_doorbell) {
147 ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
148 OFFSET, adev->irq.ih.doorbell_index);
149 ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
150 ENABLE, 1);
151 } else {
152 ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
153 ENABLE, 0);
154 }
155 WREG32(mmIH_DOORBELL_RPTR, ih_doorbell_rtpr);
156
157 pci_set_master(adev->pdev);
158
159 /* enable interrupts */
160 tonga_ih_enable_interrupts(adev);
161
162 return 0;
163 }
164
165 /**
166 * tonga_ih_irq_disable - disable interrupts
167 *
168 * @adev: amdgpu_device pointer
169 *
170 * Disable interrupts on the hw (VI).
171 */
tonga_ih_irq_disable(struct amdgpu_device * adev)172 static void tonga_ih_irq_disable(struct amdgpu_device *adev)
173 {
174 tonga_ih_disable_interrupts(adev);
175
176 /* Wait and acknowledge irq */
177 mdelay(1);
178 }
179
180 /**
181 * tonga_ih_get_wptr - get the IH ring buffer wptr
182 *
183 * @adev: amdgpu_device pointer
184 * @ih: IH ring buffer to fetch wptr
185 *
186 * Get the IH ring buffer wptr from either the register
187 * or the writeback memory buffer (VI). Also check for
188 * ring buffer overflow and deal with it.
189 * Used by cz_irq_process(VI).
190 * Returns the value of the wptr.
191 */
tonga_ih_get_wptr(struct amdgpu_device * adev,struct amdgpu_ih_ring * ih)192 static u32 tonga_ih_get_wptr(struct amdgpu_device *adev,
193 struct amdgpu_ih_ring *ih)
194 {
195 u32 wptr, tmp;
196
197 wptr = le32_to_cpu(*ih->wptr_cpu);
198
199 if (!REG_GET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW))
200 goto out;
201
202 /* Double check that the overflow wasn't already cleared. */
203 wptr = RREG32(mmIH_RB_WPTR);
204
205 if (!REG_GET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW))
206 goto out;
207
208 wptr = REG_SET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW, 0);
209
210 /* When a ring buffer overflow happen start parsing interrupt
211 * from the last not overwritten vector (wptr + 16). Hopefully
212 * this should allow us to catchup.
213 */
214
215 dev_warn(adev->dev, "IH ring buffer overflow (0x%08X, 0x%08X, 0x%08X)\n",
216 wptr, ih->rptr, (wptr + 16) & ih->ptr_mask);
217 ih->rptr = (wptr + 16) & ih->ptr_mask;
218 tmp = RREG32(mmIH_RB_CNTL);
219 tmp = REG_SET_FIELD(tmp, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1);
220 WREG32(mmIH_RB_CNTL, tmp);
221
222 /* Unset the CLEAR_OVERFLOW bit immediately so new overflows
223 * can be detected.
224 */
225 tmp = REG_SET_FIELD(tmp, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 0);
226 WREG32(mmIH_RB_CNTL, tmp);
227
228 out:
229 return (wptr & ih->ptr_mask);
230 }
231
232 /**
233 * tonga_ih_decode_iv - decode an interrupt vector
234 *
235 * @adev: amdgpu_device pointer
236 * @ih: IH ring buffer to decode
237 * @entry: IV entry to place decoded information into
238 *
239 * Decodes the interrupt vector at the current rptr
240 * position and also advance the position.
241 */
tonga_ih_decode_iv(struct amdgpu_device * adev,struct amdgpu_ih_ring * ih,struct amdgpu_iv_entry * entry)242 static void tonga_ih_decode_iv(struct amdgpu_device *adev,
243 struct amdgpu_ih_ring *ih,
244 struct amdgpu_iv_entry *entry)
245 {
246 /* wptr/rptr are in bytes! */
247 u32 ring_index = ih->rptr >> 2;
248 uint32_t dw[4];
249
250 dw[0] = le32_to_cpu(ih->ring[ring_index + 0]);
251 dw[1] = le32_to_cpu(ih->ring[ring_index + 1]);
252 dw[2] = le32_to_cpu(ih->ring[ring_index + 2]);
253 dw[3] = le32_to_cpu(ih->ring[ring_index + 3]);
254
255 entry->client_id = AMDGPU_IRQ_CLIENTID_LEGACY;
256 entry->src_id = dw[0] & 0xff;
257 entry->src_data[0] = dw[1] & 0xfffffff;
258 entry->ring_id = dw[2] & 0xff;
259 entry->vmid = (dw[2] >> 8) & 0xff;
260 entry->pasid = (dw[2] >> 16) & 0xffff;
261
262 /* wptr/rptr are in bytes! */
263 ih->rptr += 16;
264 }
265
266 /**
267 * tonga_ih_set_rptr - set the IH ring buffer rptr
268 *
269 * @adev: amdgpu_device pointer
270 * @ih: IH ring buffer to set rptr
271 *
272 * Set the IH ring buffer rptr.
273 */
tonga_ih_set_rptr(struct amdgpu_device * adev,struct amdgpu_ih_ring * ih)274 static void tonga_ih_set_rptr(struct amdgpu_device *adev,
275 struct amdgpu_ih_ring *ih)
276 {
277 if (ih->use_doorbell) {
278 /* XXX check if swapping is necessary on BE */
279 *ih->rptr_cpu = ih->rptr;
280 WDOORBELL32(ih->doorbell_index, ih->rptr);
281 } else {
282 WREG32(mmIH_RB_RPTR, ih->rptr);
283 }
284 }
285
tonga_ih_early_init(void * handle)286 static int tonga_ih_early_init(void *handle)
287 {
288 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
289 int ret;
290
291 ret = amdgpu_irq_add_domain(adev);
292 if (ret)
293 return ret;
294
295 tonga_ih_set_interrupt_funcs(adev);
296
297 return 0;
298 }
299
tonga_ih_sw_init(void * handle)300 static int tonga_ih_sw_init(void *handle)
301 {
302 int r;
303 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
304
305 r = amdgpu_ih_ring_init(adev, &adev->irq.ih, 64 * 1024, true);
306 if (r)
307 return r;
308
309 adev->irq.ih.use_doorbell = true;
310 adev->irq.ih.doorbell_index = adev->doorbell_index.ih;
311
312 r = amdgpu_irq_init(adev);
313
314 return r;
315 }
316
tonga_ih_sw_fini(void * handle)317 static int tonga_ih_sw_fini(void *handle)
318 {
319 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
320
321 amdgpu_irq_fini_sw(adev);
322 amdgpu_irq_remove_domain(adev);
323
324 return 0;
325 }
326
tonga_ih_hw_init(void * handle)327 static int tonga_ih_hw_init(void *handle)
328 {
329 int r;
330 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
331
332 r = tonga_ih_irq_init(adev);
333 if (r)
334 return r;
335
336 return 0;
337 }
338
tonga_ih_hw_fini(void * handle)339 static int tonga_ih_hw_fini(void *handle)
340 {
341 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
342
343 tonga_ih_irq_disable(adev);
344
345 return 0;
346 }
347
tonga_ih_suspend(void * handle)348 static int tonga_ih_suspend(void *handle)
349 {
350 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
351
352 return tonga_ih_hw_fini(adev);
353 }
354
tonga_ih_resume(void * handle)355 static int tonga_ih_resume(void *handle)
356 {
357 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
358
359 return tonga_ih_hw_init(adev);
360 }
361
tonga_ih_is_idle(void * handle)362 static bool tonga_ih_is_idle(void *handle)
363 {
364 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
365 u32 tmp = RREG32(mmSRBM_STATUS);
366
367 if (REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY))
368 return false;
369
370 return true;
371 }
372
tonga_ih_wait_for_idle(void * handle)373 static int tonga_ih_wait_for_idle(void *handle)
374 {
375 unsigned i;
376 u32 tmp;
377 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
378
379 for (i = 0; i < adev->usec_timeout; i++) {
380 /* read MC_STATUS */
381 tmp = RREG32(mmSRBM_STATUS);
382 if (!REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY))
383 return 0;
384 udelay(1);
385 }
386 return -ETIMEDOUT;
387 }
388
tonga_ih_check_soft_reset(void * handle)389 static bool tonga_ih_check_soft_reset(void *handle)
390 {
391 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
392 u32 srbm_soft_reset = 0;
393 u32 tmp = RREG32(mmSRBM_STATUS);
394
395 if (tmp & SRBM_STATUS__IH_BUSY_MASK)
396 srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET,
397 SOFT_RESET_IH, 1);
398
399 if (srbm_soft_reset) {
400 adev->irq.srbm_soft_reset = srbm_soft_reset;
401 return true;
402 } else {
403 adev->irq.srbm_soft_reset = 0;
404 return false;
405 }
406 }
407
tonga_ih_pre_soft_reset(void * handle)408 static int tonga_ih_pre_soft_reset(void *handle)
409 {
410 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
411
412 if (!adev->irq.srbm_soft_reset)
413 return 0;
414
415 return tonga_ih_hw_fini(adev);
416 }
417
tonga_ih_post_soft_reset(void * handle)418 static int tonga_ih_post_soft_reset(void *handle)
419 {
420 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
421
422 if (!adev->irq.srbm_soft_reset)
423 return 0;
424
425 return tonga_ih_hw_init(adev);
426 }
427
tonga_ih_soft_reset(void * handle)428 static int tonga_ih_soft_reset(void *handle)
429 {
430 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
431 u32 srbm_soft_reset;
432
433 if (!adev->irq.srbm_soft_reset)
434 return 0;
435 srbm_soft_reset = adev->irq.srbm_soft_reset;
436
437 if (srbm_soft_reset) {
438 u32 tmp;
439
440 tmp = RREG32(mmSRBM_SOFT_RESET);
441 tmp |= srbm_soft_reset;
442 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
443 WREG32(mmSRBM_SOFT_RESET, tmp);
444 tmp = RREG32(mmSRBM_SOFT_RESET);
445
446 udelay(50);
447
448 tmp &= ~srbm_soft_reset;
449 WREG32(mmSRBM_SOFT_RESET, tmp);
450 tmp = RREG32(mmSRBM_SOFT_RESET);
451
452 /* Wait a little for things to settle down */
453 udelay(50);
454 }
455
456 return 0;
457 }
458
tonga_ih_set_clockgating_state(void * handle,enum amd_clockgating_state state)459 static int tonga_ih_set_clockgating_state(void *handle,
460 enum amd_clockgating_state state)
461 {
462 return 0;
463 }
464
tonga_ih_set_powergating_state(void * handle,enum amd_powergating_state state)465 static int tonga_ih_set_powergating_state(void *handle,
466 enum amd_powergating_state state)
467 {
468 return 0;
469 }
470
471 static const struct amd_ip_funcs tonga_ih_ip_funcs = {
472 .name = "tonga_ih",
473 .early_init = tonga_ih_early_init,
474 .late_init = NULL,
475 .sw_init = tonga_ih_sw_init,
476 .sw_fini = tonga_ih_sw_fini,
477 .hw_init = tonga_ih_hw_init,
478 .hw_fini = tonga_ih_hw_fini,
479 .suspend = tonga_ih_suspend,
480 .resume = tonga_ih_resume,
481 .is_idle = tonga_ih_is_idle,
482 .wait_for_idle = tonga_ih_wait_for_idle,
483 .check_soft_reset = tonga_ih_check_soft_reset,
484 .pre_soft_reset = tonga_ih_pre_soft_reset,
485 .soft_reset = tonga_ih_soft_reset,
486 .post_soft_reset = tonga_ih_post_soft_reset,
487 .set_clockgating_state = tonga_ih_set_clockgating_state,
488 .set_powergating_state = tonga_ih_set_powergating_state,
489 .dump_ip_state = NULL,
490 .print_ip_state = NULL,
491 };
492
493 static const struct amdgpu_ih_funcs tonga_ih_funcs = {
494 .get_wptr = tonga_ih_get_wptr,
495 .decode_iv = tonga_ih_decode_iv,
496 .set_rptr = tonga_ih_set_rptr
497 };
498
tonga_ih_set_interrupt_funcs(struct amdgpu_device * adev)499 static void tonga_ih_set_interrupt_funcs(struct amdgpu_device *adev)
500 {
501 adev->irq.ih_funcs = &tonga_ih_funcs;
502 }
503
504 const struct amdgpu_ip_block_version tonga_ih_ip_block = {
505 .type = AMD_IP_BLOCK_TYPE_IH,
506 .major = 3,
507 .minor = 0,
508 .rev = 0,
509 .funcs = &tonga_ih_ip_funcs,
510 };
511