1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitfield.h>
18 #include <linux/bitops.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 #include <linux/semaphore.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/genalloc.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/firmware.h>
30 #include <linux/slab.h>
31 #include <linux/platform_device.h>
32 #include <linux/dmaengine.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_dma.h>
36 #include <linux/workqueue.h>
37 
38 #include <asm/irq.h>
39 #include <linux/dma/imx-dma.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43 
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR		0x000
49 #define SDMA_H_INTR		0x004
50 #define SDMA_H_STATSTOP		0x008
51 #define SDMA_H_START		0x00c
52 #define SDMA_H_EVTOVR		0x010
53 #define SDMA_H_DSPOVR		0x014
54 #define SDMA_H_HOSTOVR		0x018
55 #define SDMA_H_EVTPEND		0x01c
56 #define SDMA_H_DSPENBL		0x020
57 #define SDMA_H_RESET		0x024
58 #define SDMA_H_EVTERR		0x028
59 #define SDMA_H_INTRMSK		0x02c
60 #define SDMA_H_PSW		0x030
61 #define SDMA_H_EVTERRDBG	0x034
62 #define SDMA_H_CONFIG		0x038
63 #define SDMA_ONCE_ENB		0x040
64 #define SDMA_ONCE_DATA		0x044
65 #define SDMA_ONCE_INSTR		0x048
66 #define SDMA_ONCE_STAT		0x04c
67 #define SDMA_ONCE_CMD		0x050
68 #define SDMA_EVT_MIRROR		0x054
69 #define SDMA_ILLINSTADDR	0x058
70 #define SDMA_CHN0ADDR		0x05c
71 #define SDMA_ONCE_RTB		0x060
72 #define SDMA_XTRIG_CONF1	0x070
73 #define SDMA_XTRIG_CONF2	0x074
74 #define SDMA_CHNENBL0_IMX35	0x200
75 #define SDMA_CHNENBL0_IMX31	0x080
76 #define SDMA_CHNPRI_0		0x100
77 #define SDMA_DONE0_CONFIG	0x1000
78 
79 /*
80  * Buffer descriptor status values.
81  */
82 #define BD_DONE  0x01
83 #define BD_WRAP  0x02
84 #define BD_CONT  0x04
85 #define BD_INTR  0x08
86 #define BD_RROR  0x10
87 #define BD_LAST  0x20
88 #define BD_EXTD  0x80
89 
90 /*
91  * Data Node descriptor status values.
92  */
93 #define DND_END_OF_FRAME  0x80
94 #define DND_END_OF_XFER   0x40
95 #define DND_DONE          0x20
96 #define DND_UNUSED        0x01
97 
98 /*
99  * IPCV2 descriptor status values.
100  */
101 #define BD_IPCV2_END_OF_FRAME  0x40
102 
103 #define IPCV2_MAX_NODES        50
104 /*
105  * Error bit set in the CCB status field by the SDMA,
106  * in setbd routine, in case of a transfer error
107  */
108 #define DATA_ERROR  0x10000000
109 
110 /*
111  * Buffer descriptor commands.
112  */
113 #define C0_ADDR             0x01
114 #define C0_LOAD             0x02
115 #define C0_DUMP             0x03
116 #define C0_SETCTX           0x07
117 #define C0_GETCTX           0x03
118 #define C0_SETDM            0x01
119 #define C0_SETPM            0x04
120 #define C0_GETDM            0x02
121 #define C0_GETPM            0x08
122 /*
123  * Change endianness indicator in the BD command field
124  */
125 #define CHANGE_ENDIANNESS   0x80
126 
127 /*
128  *  p_2_p watermark_level description
129  *	Bits		Name			Description
130  *	0-7		Lower WML		Lower watermark level
131  *	8		PS			1: Pad Swallowing
132  *						0: No Pad Swallowing
133  *	9		PA			1: Pad Adding
134  *						0: No Pad Adding
135  *	10		SPDIF			If this bit is set both source
136  *						and destination are on SPBA
137  *	11		Source Bit(SP)		1: Source on SPBA
138  *						0: Source on AIPS
139  *	12		Destination Bit(DP)	1: Destination on SPBA
140  *						0: Destination on AIPS
141  *	13		Source FIFO		1: Source is dual FIFO
142  *						0: Source is single FIFO
143  *	14		Destination FIFO	1: Destination is dual FIFO
144  *						0: Destination is single FIFO
145  *	15		---------		MUST BE 0
146  *	16-23		Higher WML		HWML
147  *	24-27		N			Total number of samples after
148  *						which Pad adding/Swallowing
149  *						must be done. It must be odd.
150  *	28		Lower WML Event(LWE)	SDMA events reg to check for
151  *						LWML event mask
152  *						0: LWE in EVENTS register
153  *						1: LWE in EVENTS2 register
154  *	29		Higher WML Event(HWE)	SDMA events reg to check for
155  *						HWML event mask
156  *						0: HWE in EVENTS register
157  *						1: HWE in EVENTS2 register
158  *	30		---------		MUST BE 0
159  *	31		CONT			1: Amount of samples to be
160  *						transferred is unknown and
161  *						script will keep on
162  *						transferring samples as long as
163  *						both events are detected and
164  *						script must be manually stopped
165  *						by the application
166  *						0: The amount of samples to be
167  *						transferred is equal to the
168  *						count field of mode word
169  */
170 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
171 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
176 #define SDMA_WATERMARK_LEVEL_SD		BIT(13)
177 #define SDMA_WATERMARK_LEVEL_DD		BIT(14)
178 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
179 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
180 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
181 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
182 
183 #define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
184 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
185 				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
186 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
187 
188 #define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
189 				 BIT(DMA_MEM_TO_DEV) | \
190 				 BIT(DMA_DEV_TO_DEV))
191 
192 #define SDMA_WATERMARK_LEVEL_N_FIFOS	GENMASK(15, 12)
193 #define SDMA_WATERMARK_LEVEL_OFF_FIFOS  GENMASK(19, 16)
194 #define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO   GENMASK(31, 28)
195 #define SDMA_WATERMARK_LEVEL_SW_DONE	BIT(23)
196 
197 #define SDMA_DONE0_CONFIG_DONE_SEL	BIT(7)
198 #define SDMA_DONE0_CONFIG_DONE_DIS	BIT(6)
199 
200 /*
201  * struct sdma_script_start_addrs - SDMA script start pointers
202  *
203  * start addresses of the different functions in the physical
204  * address space of the SDMA engine.
205  */
206 struct sdma_script_start_addrs {
207 	s32 ap_2_ap_addr;
208 	s32 ap_2_bp_addr;
209 	s32 ap_2_ap_fixed_addr;
210 	s32 bp_2_ap_addr;
211 	s32 loopback_on_dsp_side_addr;
212 	s32 mcu_interrupt_only_addr;
213 	s32 firi_2_per_addr;
214 	s32 firi_2_mcu_addr;
215 	s32 per_2_firi_addr;
216 	s32 mcu_2_firi_addr;
217 	s32 uart_2_per_addr;
218 	s32 uart_2_mcu_addr;
219 	s32 per_2_app_addr;
220 	s32 mcu_2_app_addr;
221 	s32 per_2_per_addr;
222 	s32 uartsh_2_per_addr;
223 	s32 uartsh_2_mcu_addr;
224 	s32 per_2_shp_addr;
225 	s32 mcu_2_shp_addr;
226 	s32 ata_2_mcu_addr;
227 	s32 mcu_2_ata_addr;
228 	s32 app_2_per_addr;
229 	s32 app_2_mcu_addr;
230 	s32 shp_2_per_addr;
231 	s32 shp_2_mcu_addr;
232 	s32 mshc_2_mcu_addr;
233 	s32 mcu_2_mshc_addr;
234 	s32 spdif_2_mcu_addr;
235 	s32 mcu_2_spdif_addr;
236 	s32 asrc_2_mcu_addr;
237 	s32 ext_mem_2_ipu_addr;
238 	s32 descrambler_addr;
239 	s32 dptc_dvfs_addr;
240 	s32 utra_addr;
241 	s32 ram_code_start_addr;
242 	/* End of v1 array */
243 	union {	s32 v1_end; s32 mcu_2_ssish_addr; };
244 	s32 ssish_2_mcu_addr;
245 	s32 hdmi_dma_addr;
246 	/* End of v2 array */
247 	union { s32 v2_end; s32 zcanfd_2_mcu_addr; };
248 	s32 zqspi_2_mcu_addr;
249 	s32 mcu_2_ecspi_addr;
250 	s32 mcu_2_sai_addr;
251 	s32 sai_2_mcu_addr;
252 	s32 uart_2_mcu_rom_addr;
253 	s32 uartsh_2_mcu_rom_addr;
254 	s32 i2c_2_mcu_addr;
255 	s32 mcu_2_i2c_addr;
256 	/* End of v3 array */
257 	union { s32 v3_end; s32 mcu_2_zqspi_addr; };
258 	/* End of v4 array */
259 	s32 v4_end[0];
260 };
261 
262 /*
263  * Mode/Count of data node descriptors - IPCv2
264  */
265 struct sdma_mode_count {
266 #define SDMA_BD_MAX_CNT	0xffff
267 	u32 count   : 16; /* size of the buffer pointed by this BD */
268 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
269 	u32 command :  8; /* command mostly used for channel 0 */
270 };
271 
272 /*
273  * Buffer descriptor
274  */
275 struct sdma_buffer_descriptor {
276 	struct sdma_mode_count  mode;
277 	u32 buffer_addr;	/* address of the buffer described */
278 	u32 ext_buffer_addr;	/* extended buffer address */
279 } __attribute__ ((packed));
280 
281 /**
282  * struct sdma_channel_control - Channel control Block
283  *
284  * @current_bd_ptr:	current buffer descriptor processed
285  * @base_bd_ptr:	first element of buffer descriptor array
286  * @unused:		padding. The SDMA engine expects an array of 128 byte
287  *			control blocks
288  */
289 struct sdma_channel_control {
290 	u32 current_bd_ptr;
291 	u32 base_bd_ptr;
292 	u32 unused[2];
293 } __attribute__ ((packed));
294 
295 /**
296  * struct sdma_state_registers - SDMA context for a channel
297  *
298  * @pc:		program counter
299  * @unused1:	unused
300  * @t:		test bit: status of arithmetic & test instruction
301  * @rpc:	return program counter
302  * @unused0:	unused
303  * @sf:		source fault while loading data
304  * @spc:	loop start program counter
305  * @unused2:	unused
306  * @df:		destination fault while storing data
307  * @epc:	loop end program counter
308  * @lm:		loop mode
309  */
310 struct sdma_state_registers {
311 	u32 pc     :14;
312 	u32 unused1: 1;
313 	u32 t      : 1;
314 	u32 rpc    :14;
315 	u32 unused0: 1;
316 	u32 sf     : 1;
317 	u32 spc    :14;
318 	u32 unused2: 1;
319 	u32 df     : 1;
320 	u32 epc    :14;
321 	u32 lm     : 2;
322 } __attribute__ ((packed));
323 
324 /**
325  * struct sdma_context_data - sdma context specific to a channel
326  *
327  * @channel_state:	channel state bits
328  * @gReg:		general registers
329  * @mda:		burst dma destination address register
330  * @msa:		burst dma source address register
331  * @ms:			burst dma status register
332  * @md:			burst dma data register
333  * @pda:		peripheral dma destination address register
334  * @psa:		peripheral dma source address register
335  * @ps:			peripheral dma status register
336  * @pd:			peripheral dma data register
337  * @ca:			CRC polynomial register
338  * @cs:			CRC accumulator register
339  * @dda:		dedicated core destination address register
340  * @dsa:		dedicated core source address register
341  * @ds:			dedicated core status register
342  * @dd:			dedicated core data register
343  * @scratch0:		1st word of dedicated ram for context switch
344  * @scratch1:		2nd word of dedicated ram for context switch
345  * @scratch2:		3rd word of dedicated ram for context switch
346  * @scratch3:		4th word of dedicated ram for context switch
347  * @scratch4:		5th word of dedicated ram for context switch
348  * @scratch5:		6th word of dedicated ram for context switch
349  * @scratch6:		7th word of dedicated ram for context switch
350  * @scratch7:		8th word of dedicated ram for context switch
351  */
352 struct sdma_context_data {
353 	struct sdma_state_registers  channel_state;
354 	u32  gReg[8];
355 	u32  mda;
356 	u32  msa;
357 	u32  ms;
358 	u32  md;
359 	u32  pda;
360 	u32  psa;
361 	u32  ps;
362 	u32  pd;
363 	u32  ca;
364 	u32  cs;
365 	u32  dda;
366 	u32  dsa;
367 	u32  ds;
368 	u32  dd;
369 	u32  scratch0;
370 	u32  scratch1;
371 	u32  scratch2;
372 	u32  scratch3;
373 	u32  scratch4;
374 	u32  scratch5;
375 	u32  scratch6;
376 	u32  scratch7;
377 } __attribute__ ((packed));
378 
379 
380 struct sdma_engine;
381 
382 /**
383  * struct sdma_desc - descriptor structor for one transfer
384  * @vd:			descriptor for virt dma
385  * @num_bd:		number of descriptors currently handling
386  * @bd_phys:		physical address of bd
387  * @buf_tail:		ID of the buffer that was processed
388  * @buf_ptail:		ID of the previous buffer that was processed
389  * @period_len:		period length, used in cyclic.
390  * @chn_real_count:	the real count updated from bd->mode.count
391  * @chn_count:		the transfer count set
392  * @sdmac:		sdma_channel pointer
393  * @bd:			pointer of allocate bd
394  */
395 struct sdma_desc {
396 	struct virt_dma_desc	vd;
397 	unsigned int		num_bd;
398 	dma_addr_t		bd_phys;
399 	unsigned int		buf_tail;
400 	unsigned int		buf_ptail;
401 	unsigned int		period_len;
402 	unsigned int		chn_real_count;
403 	unsigned int		chn_count;
404 	struct sdma_channel	*sdmac;
405 	struct sdma_buffer_descriptor *bd;
406 };
407 
408 /**
409  * struct sdma_channel - housekeeping for a SDMA channel
410  *
411  * @vc:			virt_dma base structure
412  * @desc:		sdma description including vd and other special member
413  * @sdma:		pointer to the SDMA engine for this channel
414  * @channel:		the channel number, matches dmaengine chan_id + 1
415  * @direction:		transfer type. Needed for setting SDMA script
416  * @slave_config:	Slave configuration
417  * @peripheral_type:	Peripheral type. Needed for setting SDMA script
418  * @event_id0:		aka dma request line
419  * @event_id1:		for channels that use 2 events
420  * @word_size:		peripheral access size
421  * @pc_from_device:	script address for those device_2_memory
422  * @pc_to_device:	script address for those memory_2_device
423  * @device_to_device:	script address for those device_2_device
424  * @pc_to_pc:		script address for those memory_2_memory
425  * @flags:		loop mode or not
426  * @per_address:	peripheral source or destination address in common case
427  *                      destination address in p_2_p case
428  * @per_address2:	peripheral source address in p_2_p case
429  * @event_mask:		event mask used in p_2_p script
430  * @watermark_level:	value for gReg[7], some script will extend it from
431  *			basic watermark such as p_2_p
432  * @shp_addr:		value for gReg[6]
433  * @per_addr:		value for gReg[2]
434  * @status:		status of dma channel
435  * @data:		specific sdma interface structure
436  * @terminate_worker:	used to call back into terminate work function
437  * @terminated:		terminated list
438  * @is_ram_script:	flag for script in ram
439  * @n_fifos_src:	number of source device fifos
440  * @n_fifos_dst:	number of destination device fifos
441  * @sw_done:		software done flag
442  * @stride_fifos_src:	stride for source device FIFOs
443  * @stride_fifos_dst:	stride for destination device FIFOs
444  * @words_per_fifo:	copy number of words one time for one FIFO
445  */
446 struct sdma_channel {
447 	struct virt_dma_chan		vc;
448 	struct sdma_desc		*desc;
449 	struct sdma_engine		*sdma;
450 	unsigned int			channel;
451 	enum dma_transfer_direction		direction;
452 	struct dma_slave_config		slave_config;
453 	enum sdma_peripheral_type	peripheral_type;
454 	unsigned int			event_id0;
455 	unsigned int			event_id1;
456 	enum dma_slave_buswidth		word_size;
457 	unsigned int			pc_from_device, pc_to_device;
458 	unsigned int			device_to_device;
459 	unsigned int                    pc_to_pc;
460 	unsigned long			flags;
461 	dma_addr_t			per_address, per_address2;
462 	unsigned long			event_mask[2];
463 	unsigned long			watermark_level;
464 	u32				shp_addr, per_addr;
465 	enum dma_status			status;
466 	struct imx_dma_data		data;
467 	struct work_struct		terminate_worker;
468 	struct list_head                terminated;
469 	bool				is_ram_script;
470 	unsigned int			n_fifos_src;
471 	unsigned int			n_fifos_dst;
472 	unsigned int			stride_fifos_src;
473 	unsigned int			stride_fifos_dst;
474 	unsigned int			words_per_fifo;
475 	bool				sw_done;
476 };
477 
478 #define IMX_DMA_SG_LOOP		BIT(0)
479 
480 #define MAX_DMA_CHANNELS 32
481 #define MXC_SDMA_DEFAULT_PRIORITY 1
482 #define MXC_SDMA_MIN_PRIORITY 1
483 #define MXC_SDMA_MAX_PRIORITY 7
484 
485 #define SDMA_FIRMWARE_MAGIC 0x414d4453
486 
487 /**
488  * struct sdma_firmware_header - Layout of the firmware image
489  *
490  * @magic:		"SDMA"
491  * @version_major:	increased whenever layout of struct
492  *			sdma_script_start_addrs changes.
493  * @version_minor:	firmware minor version (for binary compatible changes)
494  * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
495  * @num_script_addrs:	Number of script addresses in this image
496  * @ram_code_start:	offset of SDMA ram image in this firmware image
497  * @ram_code_size:	size of SDMA ram image
498  */
499 struct sdma_firmware_header {
500 	u32	magic;
501 	u32	version_major;
502 	u32	version_minor;
503 	u32	script_addrs_start;
504 	u32	num_script_addrs;
505 	u32	ram_code_start;
506 	u32	ram_code_size;
507 };
508 
509 struct sdma_driver_data {
510 	int chnenbl0;
511 	int num_events;
512 	struct sdma_script_start_addrs	*script_addrs;
513 	bool check_ratio;
514 	/*
515 	 * ecspi ERR009165 fixed should be done in sdma script
516 	 * and it has been fixed in soc from i.mx6ul.
517 	 * please get more information from the below link:
518 	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
519 	 */
520 	bool ecspi_fixed;
521 };
522 
523 struct sdma_engine {
524 	struct device			*dev;
525 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
526 	struct sdma_channel_control	*channel_control;
527 	void __iomem			*regs;
528 	struct sdma_context_data	*context;
529 	dma_addr_t			context_phys;
530 	struct dma_device		dma_device;
531 	struct clk			*clk_ipg;
532 	struct clk			*clk_ahb;
533 	spinlock_t			channel_0_lock;
534 	u32				script_number;
535 	struct sdma_script_start_addrs	*script_addrs;
536 	const struct sdma_driver_data	*drvdata;
537 	u32				spba_start_addr;
538 	u32				spba_end_addr;
539 	unsigned int			irq;
540 	dma_addr_t			bd0_phys;
541 	struct sdma_buffer_descriptor	*bd0;
542 	/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
543 	bool				clk_ratio;
544 	bool                            fw_loaded;
545 	struct gen_pool			*iram_pool;
546 };
547 
548 static int sdma_config_write(struct dma_chan *chan,
549 		       struct dma_slave_config *dmaengine_cfg,
550 		       enum dma_transfer_direction direction);
551 
552 static struct sdma_driver_data sdma_imx31 = {
553 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
554 	.num_events = 32,
555 };
556 
557 static struct sdma_script_start_addrs sdma_script_imx25 = {
558 	.ap_2_ap_addr = 729,
559 	.uart_2_mcu_addr = 904,
560 	.per_2_app_addr = 1255,
561 	.mcu_2_app_addr = 834,
562 	.uartsh_2_mcu_addr = 1120,
563 	.per_2_shp_addr = 1329,
564 	.mcu_2_shp_addr = 1048,
565 	.ata_2_mcu_addr = 1560,
566 	.mcu_2_ata_addr = 1479,
567 	.app_2_per_addr = 1189,
568 	.app_2_mcu_addr = 770,
569 	.shp_2_per_addr = 1407,
570 	.shp_2_mcu_addr = 979,
571 };
572 
573 static struct sdma_driver_data sdma_imx25 = {
574 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
575 	.num_events = 48,
576 	.script_addrs = &sdma_script_imx25,
577 };
578 
579 static struct sdma_driver_data sdma_imx35 = {
580 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
581 	.num_events = 48,
582 };
583 
584 static struct sdma_script_start_addrs sdma_script_imx51 = {
585 	.ap_2_ap_addr = 642,
586 	.uart_2_mcu_addr = 817,
587 	.mcu_2_app_addr = 747,
588 	.mcu_2_shp_addr = 961,
589 	.ata_2_mcu_addr = 1473,
590 	.mcu_2_ata_addr = 1392,
591 	.app_2_per_addr = 1033,
592 	.app_2_mcu_addr = 683,
593 	.shp_2_per_addr = 1251,
594 	.shp_2_mcu_addr = 892,
595 };
596 
597 static struct sdma_driver_data sdma_imx51 = {
598 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
599 	.num_events = 48,
600 	.script_addrs = &sdma_script_imx51,
601 };
602 
603 static struct sdma_script_start_addrs sdma_script_imx53 = {
604 	.ap_2_ap_addr = 642,
605 	.app_2_mcu_addr = 683,
606 	.mcu_2_app_addr = 747,
607 	.uart_2_mcu_addr = 817,
608 	.shp_2_mcu_addr = 891,
609 	.mcu_2_shp_addr = 960,
610 	.uartsh_2_mcu_addr = 1032,
611 	.spdif_2_mcu_addr = 1100,
612 	.mcu_2_spdif_addr = 1134,
613 	.firi_2_mcu_addr = 1193,
614 	.mcu_2_firi_addr = 1290,
615 };
616 
617 static struct sdma_driver_data sdma_imx53 = {
618 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
619 	.num_events = 48,
620 	.script_addrs = &sdma_script_imx53,
621 };
622 
623 static struct sdma_script_start_addrs sdma_script_imx6q = {
624 	.ap_2_ap_addr = 642,
625 	.uart_2_mcu_addr = 817,
626 	.mcu_2_app_addr = 747,
627 	.per_2_per_addr = 6331,
628 	.uartsh_2_mcu_addr = 1032,
629 	.mcu_2_shp_addr = 960,
630 	.app_2_mcu_addr = 683,
631 	.shp_2_mcu_addr = 891,
632 	.spdif_2_mcu_addr = 1100,
633 	.mcu_2_spdif_addr = 1134,
634 };
635 
636 static struct sdma_driver_data sdma_imx6q = {
637 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
638 	.num_events = 48,
639 	.script_addrs = &sdma_script_imx6q,
640 };
641 
642 static struct sdma_driver_data sdma_imx6ul = {
643 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
644 	.num_events = 48,
645 	.script_addrs = &sdma_script_imx6q,
646 	.ecspi_fixed = true,
647 };
648 
649 static struct sdma_script_start_addrs sdma_script_imx7d = {
650 	.ap_2_ap_addr = 644,
651 	.uart_2_mcu_addr = 819,
652 	.mcu_2_app_addr = 749,
653 	.uartsh_2_mcu_addr = 1034,
654 	.mcu_2_shp_addr = 962,
655 	.app_2_mcu_addr = 685,
656 	.shp_2_mcu_addr = 893,
657 	.spdif_2_mcu_addr = 1102,
658 	.mcu_2_spdif_addr = 1136,
659 };
660 
661 static struct sdma_driver_data sdma_imx7d = {
662 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
663 	.num_events = 48,
664 	.script_addrs = &sdma_script_imx7d,
665 };
666 
667 static struct sdma_driver_data sdma_imx8mq = {
668 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
669 	.num_events = 48,
670 	.script_addrs = &sdma_script_imx7d,
671 	.check_ratio = 1,
672 };
673 
674 static const struct of_device_id sdma_dt_ids[] = {
675 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
676 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
677 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
678 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
679 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
680 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
681 	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
682 	{ .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
683 	{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
684 	{ /* sentinel */ }
685 };
686 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
687 
688 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
689 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
690 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
691 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
692 
chnenbl_ofs(struct sdma_engine * sdma,unsigned int event)693 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
694 {
695 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
696 	return chnenbl0 + event * 4;
697 }
698 
sdma_config_ownership(struct sdma_channel * sdmac,bool event_override,bool mcu_override,bool dsp_override)699 static int sdma_config_ownership(struct sdma_channel *sdmac,
700 		bool event_override, bool mcu_override, bool dsp_override)
701 {
702 	struct sdma_engine *sdma = sdmac->sdma;
703 	int channel = sdmac->channel;
704 	unsigned long evt, mcu, dsp;
705 
706 	if (event_override && mcu_override && dsp_override)
707 		return -EINVAL;
708 
709 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
710 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
711 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
712 
713 	if (dsp_override)
714 		__clear_bit(channel, &dsp);
715 	else
716 		__set_bit(channel, &dsp);
717 
718 	if (event_override)
719 		__clear_bit(channel, &evt);
720 	else
721 		__set_bit(channel, &evt);
722 
723 	if (mcu_override)
724 		__clear_bit(channel, &mcu);
725 	else
726 		__set_bit(channel, &mcu);
727 
728 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
729 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
730 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
731 
732 	return 0;
733 }
734 
is_sdma_channel_enabled(struct sdma_engine * sdma,int channel)735 static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
736 {
737 	return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
738 }
739 
sdma_enable_channel(struct sdma_engine * sdma,int channel)740 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
741 {
742 	writel(BIT(channel), sdma->regs + SDMA_H_START);
743 }
744 
745 /*
746  * sdma_run_channel0 - run a channel and wait till it's done
747  */
sdma_run_channel0(struct sdma_engine * sdma)748 static int sdma_run_channel0(struct sdma_engine *sdma)
749 {
750 	int ret;
751 	u32 reg;
752 
753 	sdma_enable_channel(sdma, 0);
754 
755 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
756 						reg, !(reg & 1), 1, 500);
757 	if (ret)
758 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
759 
760 	/* Set bits of CONFIG register with dynamic context switching */
761 	reg = readl(sdma->regs + SDMA_H_CONFIG);
762 	if ((reg & SDMA_H_CONFIG_CSM) == 0) {
763 		reg |= SDMA_H_CONFIG_CSM;
764 		writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
765 	}
766 
767 	return ret;
768 }
769 
sdma_load_script(struct sdma_engine * sdma,void * buf,int size,u32 address)770 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
771 		u32 address)
772 {
773 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
774 	void *buf_virt;
775 	dma_addr_t buf_phys;
776 	int ret;
777 	unsigned long flags;
778 
779 	buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
780 	if (!buf_virt)
781 		return -ENOMEM;
782 
783 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
784 
785 	bd0->mode.command = C0_SETPM;
786 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
787 	bd0->mode.count = size / 2;
788 	bd0->buffer_addr = buf_phys;
789 	bd0->ext_buffer_addr = address;
790 
791 	memcpy(buf_virt, buf, size);
792 
793 	ret = sdma_run_channel0(sdma);
794 
795 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
796 
797 	dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
798 
799 	return ret;
800 }
801 
sdma_event_enable(struct sdma_channel * sdmac,unsigned int event)802 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
803 {
804 	struct sdma_engine *sdma = sdmac->sdma;
805 	int channel = sdmac->channel;
806 	unsigned long val;
807 	u32 chnenbl = chnenbl_ofs(sdma, event);
808 
809 	val = readl_relaxed(sdma->regs + chnenbl);
810 	__set_bit(channel, &val);
811 	writel_relaxed(val, sdma->regs + chnenbl);
812 
813 	/* Set SDMA_DONEx_CONFIG is sw_done enabled */
814 	if (sdmac->sw_done) {
815 		val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG);
816 		val |= SDMA_DONE0_CONFIG_DONE_SEL;
817 		val &= ~SDMA_DONE0_CONFIG_DONE_DIS;
818 		writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG);
819 	}
820 }
821 
sdma_event_disable(struct sdma_channel * sdmac,unsigned int event)822 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
823 {
824 	struct sdma_engine *sdma = sdmac->sdma;
825 	int channel = sdmac->channel;
826 	u32 chnenbl = chnenbl_ofs(sdma, event);
827 	unsigned long val;
828 
829 	val = readl_relaxed(sdma->regs + chnenbl);
830 	__clear_bit(channel, &val);
831 	writel_relaxed(val, sdma->regs + chnenbl);
832 }
833 
to_sdma_desc(struct dma_async_tx_descriptor * t)834 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
835 {
836 	return container_of(t, struct sdma_desc, vd.tx);
837 }
838 
sdma_start_desc(struct sdma_channel * sdmac)839 static void sdma_start_desc(struct sdma_channel *sdmac)
840 {
841 	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
842 	struct sdma_desc *desc;
843 	struct sdma_engine *sdma = sdmac->sdma;
844 	int channel = sdmac->channel;
845 
846 	if (!vd) {
847 		sdmac->desc = NULL;
848 		return;
849 	}
850 	sdmac->desc = desc = to_sdma_desc(&vd->tx);
851 
852 	list_del(&vd->node);
853 
854 	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
855 	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
856 	sdma_enable_channel(sdma, sdmac->channel);
857 }
858 
sdma_update_channel_loop(struct sdma_channel * sdmac)859 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
860 {
861 	struct sdma_buffer_descriptor *bd;
862 	int error = 0;
863 	enum dma_status	old_status = sdmac->status;
864 
865 	/*
866 	 * loop mode. Iterate over descriptors, re-setup them and
867 	 * call callback function.
868 	 */
869 	while (sdmac->desc) {
870 		struct sdma_desc *desc = sdmac->desc;
871 
872 		bd = &desc->bd[desc->buf_tail];
873 
874 		if (bd->mode.status & BD_DONE)
875 			break;
876 
877 		if (bd->mode.status & BD_RROR) {
878 			bd->mode.status &= ~BD_RROR;
879 			sdmac->status = DMA_ERROR;
880 			error = -EIO;
881 		}
882 
883 	       /*
884 		* We use bd->mode.count to calculate the residue, since contains
885 		* the number of bytes present in the current buffer descriptor.
886 		*/
887 
888 		desc->chn_real_count = bd->mode.count;
889 		bd->mode.count = desc->period_len;
890 		desc->buf_ptail = desc->buf_tail;
891 		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
892 
893 		/*
894 		 * The callback is called from the interrupt context in order
895 		 * to reduce latency and to avoid the risk of altering the
896 		 * SDMA transaction status by the time the client tasklet is
897 		 * executed.
898 		 */
899 		spin_unlock(&sdmac->vc.lock);
900 		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
901 		spin_lock(&sdmac->vc.lock);
902 
903 		/* Assign buffer ownership to SDMA */
904 		bd->mode.status |= BD_DONE;
905 
906 		if (error)
907 			sdmac->status = old_status;
908 	}
909 
910 	/*
911 	 * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
912 	 * owned buffer is available (i.e. BD_DONE was set too late).
913 	 */
914 	if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
915 		dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
916 		sdma_enable_channel(sdmac->sdma, sdmac->channel);
917 	}
918 }
919 
mxc_sdma_handle_channel_normal(struct sdma_channel * data)920 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
921 {
922 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
923 	struct sdma_buffer_descriptor *bd;
924 	int i, error = 0;
925 
926 	sdmac->desc->chn_real_count = 0;
927 	/*
928 	 * non loop mode. Iterate over all descriptors, collect
929 	 * errors and call callback function
930 	 */
931 	for (i = 0; i < sdmac->desc->num_bd; i++) {
932 		bd = &sdmac->desc->bd[i];
933 
934 		if (bd->mode.status & (BD_DONE | BD_RROR))
935 			error = -EIO;
936 		sdmac->desc->chn_real_count += bd->mode.count;
937 	}
938 
939 	if (error)
940 		sdmac->status = DMA_ERROR;
941 	else
942 		sdmac->status = DMA_COMPLETE;
943 }
944 
sdma_int_handler(int irq,void * dev_id)945 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
946 {
947 	struct sdma_engine *sdma = dev_id;
948 	unsigned long stat;
949 
950 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
951 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
952 	/* channel 0 is special and not handled here, see run_channel0() */
953 	stat &= ~1;
954 
955 	while (stat) {
956 		int channel = fls(stat) - 1;
957 		struct sdma_channel *sdmac = &sdma->channel[channel];
958 		struct sdma_desc *desc;
959 
960 		spin_lock(&sdmac->vc.lock);
961 		desc = sdmac->desc;
962 		if (desc) {
963 			if (sdmac->flags & IMX_DMA_SG_LOOP) {
964 				if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
965 					sdma_update_channel_loop(sdmac);
966 				else
967 					vchan_cyclic_callback(&desc->vd);
968 			} else {
969 				mxc_sdma_handle_channel_normal(sdmac);
970 				vchan_cookie_complete(&desc->vd);
971 				sdma_start_desc(sdmac);
972 			}
973 		}
974 
975 		spin_unlock(&sdmac->vc.lock);
976 		__clear_bit(channel, &stat);
977 	}
978 
979 	return IRQ_HANDLED;
980 }
981 
982 /*
983  * sets the pc of SDMA script according to the peripheral type
984  */
sdma_get_pc(struct sdma_channel * sdmac,enum sdma_peripheral_type peripheral_type)985 static int sdma_get_pc(struct sdma_channel *sdmac,
986 		enum sdma_peripheral_type peripheral_type)
987 {
988 	struct sdma_engine *sdma = sdmac->sdma;
989 	int per_2_emi = 0, emi_2_per = 0;
990 	/*
991 	 * These are needed once we start to support transfers between
992 	 * two peripherals or memory-to-memory transfers
993 	 */
994 	int per_2_per = 0, emi_2_emi = 0;
995 
996 	sdmac->pc_from_device = 0;
997 	sdmac->pc_to_device = 0;
998 	sdmac->device_to_device = 0;
999 	sdmac->pc_to_pc = 0;
1000 	sdmac->is_ram_script = false;
1001 
1002 	switch (peripheral_type) {
1003 	case IMX_DMATYPE_MEMORY:
1004 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
1005 		break;
1006 	case IMX_DMATYPE_DSP:
1007 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
1008 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
1009 		break;
1010 	case IMX_DMATYPE_FIRI:
1011 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
1012 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
1013 		break;
1014 	case IMX_DMATYPE_UART:
1015 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
1016 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1017 		break;
1018 	case IMX_DMATYPE_UART_SP:
1019 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
1020 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1021 		break;
1022 	case IMX_DMATYPE_ATA:
1023 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
1024 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
1025 		break;
1026 	case IMX_DMATYPE_CSPI:
1027 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1028 
1029 		/* Use rom script mcu_2_app if ERR009165 fixed */
1030 		if (sdmac->sdma->drvdata->ecspi_fixed) {
1031 			emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1032 		} else {
1033 			emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
1034 			sdmac->is_ram_script = true;
1035 		}
1036 
1037 		break;
1038 	case IMX_DMATYPE_EXT:
1039 	case IMX_DMATYPE_SSI:
1040 	case IMX_DMATYPE_SAI:
1041 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1042 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1043 		break;
1044 	case IMX_DMATYPE_SSI_DUAL:
1045 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
1046 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
1047 		sdmac->is_ram_script = true;
1048 		break;
1049 	case IMX_DMATYPE_SSI_SP:
1050 	case IMX_DMATYPE_MMC:
1051 	case IMX_DMATYPE_SDHC:
1052 	case IMX_DMATYPE_CSPI_SP:
1053 	case IMX_DMATYPE_ESAI:
1054 	case IMX_DMATYPE_MSHC_SP:
1055 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1056 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1057 		break;
1058 	case IMX_DMATYPE_ASRC:
1059 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1060 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1061 		per_2_per = sdma->script_addrs->per_2_per_addr;
1062 		sdmac->is_ram_script = true;
1063 		break;
1064 	case IMX_DMATYPE_ASRC_SP:
1065 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1066 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1067 		per_2_per = sdma->script_addrs->per_2_per_addr;
1068 		break;
1069 	case IMX_DMATYPE_MSHC:
1070 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1071 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1072 		break;
1073 	case IMX_DMATYPE_CCM:
1074 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1075 		break;
1076 	case IMX_DMATYPE_SPDIF:
1077 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1078 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1079 		break;
1080 	case IMX_DMATYPE_IPU_MEMORY:
1081 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1082 		break;
1083 	case IMX_DMATYPE_MULTI_SAI:
1084 		per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
1085 		emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
1086 		break;
1087 	case IMX_DMATYPE_I2C:
1088 		per_2_emi = sdma->script_addrs->i2c_2_mcu_addr;
1089 		emi_2_per = sdma->script_addrs->mcu_2_i2c_addr;
1090 		sdmac->is_ram_script = true;
1091 		break;
1092 	case IMX_DMATYPE_HDMI:
1093 		emi_2_per = sdma->script_addrs->hdmi_dma_addr;
1094 		sdmac->is_ram_script = true;
1095 		break;
1096 	default:
1097 		dev_err(sdma->dev, "Unsupported transfer type %d\n",
1098 			peripheral_type);
1099 		return -EINVAL;
1100 	}
1101 
1102 	sdmac->pc_from_device = per_2_emi;
1103 	sdmac->pc_to_device = emi_2_per;
1104 	sdmac->device_to_device = per_2_per;
1105 	sdmac->pc_to_pc = emi_2_emi;
1106 
1107 	return 0;
1108 }
1109 
sdma_load_context(struct sdma_channel * sdmac)1110 static int sdma_load_context(struct sdma_channel *sdmac)
1111 {
1112 	struct sdma_engine *sdma = sdmac->sdma;
1113 	int channel = sdmac->channel;
1114 	int load_address;
1115 	struct sdma_context_data *context = sdma->context;
1116 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1117 	int ret;
1118 	unsigned long flags;
1119 
1120 	if (sdmac->direction == DMA_DEV_TO_MEM)
1121 		load_address = sdmac->pc_from_device;
1122 	else if (sdmac->direction == DMA_DEV_TO_DEV)
1123 		load_address = sdmac->device_to_device;
1124 	else if (sdmac->direction == DMA_MEM_TO_MEM)
1125 		load_address = sdmac->pc_to_pc;
1126 	else
1127 		load_address = sdmac->pc_to_device;
1128 
1129 	if (load_address < 0)
1130 		return load_address;
1131 
1132 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1133 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1134 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1135 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1136 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1137 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1138 
1139 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
1140 
1141 	memset(context, 0, sizeof(*context));
1142 	context->channel_state.pc = load_address;
1143 
1144 	/* Send by context the event mask,base address for peripheral
1145 	 * and watermark level
1146 	 */
1147 	if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1148 		context->gReg[4] = sdmac->per_addr;
1149 		context->gReg[6] = sdmac->shp_addr;
1150 	} else {
1151 		context->gReg[0] = sdmac->event_mask[1];
1152 		context->gReg[1] = sdmac->event_mask[0];
1153 		context->gReg[2] = sdmac->per_addr;
1154 		context->gReg[6] = sdmac->shp_addr;
1155 		context->gReg[7] = sdmac->watermark_level;
1156 	}
1157 
1158 	bd0->mode.command = C0_SETDM;
1159 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1160 	bd0->mode.count = sizeof(*context) / 4;
1161 	bd0->buffer_addr = sdma->context_phys;
1162 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1163 	ret = sdma_run_channel0(sdma);
1164 
1165 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1166 
1167 	return ret;
1168 }
1169 
to_sdma_chan(struct dma_chan * chan)1170 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1171 {
1172 	return container_of(chan, struct sdma_channel, vc.chan);
1173 }
1174 
sdma_disable_channel(struct dma_chan * chan)1175 static int sdma_disable_channel(struct dma_chan *chan)
1176 {
1177 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1178 	struct sdma_engine *sdma = sdmac->sdma;
1179 	int channel = sdmac->channel;
1180 
1181 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1182 	sdmac->status = DMA_ERROR;
1183 
1184 	return 0;
1185 }
sdma_channel_terminate_work(struct work_struct * work)1186 static void sdma_channel_terminate_work(struct work_struct *work)
1187 {
1188 	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1189 						  terminate_worker);
1190 	/*
1191 	 * According to NXP R&D team a delay of one BD SDMA cost time
1192 	 * (maximum is 1ms) should be added after disable of the channel
1193 	 * bit, to ensure SDMA core has really been stopped after SDMA
1194 	 * clients call .device_terminate_all.
1195 	 */
1196 	usleep_range(1000, 2000);
1197 
1198 	vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1199 }
1200 
sdma_terminate_all(struct dma_chan * chan)1201 static int sdma_terminate_all(struct dma_chan *chan)
1202 {
1203 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1204 	unsigned long flags;
1205 
1206 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1207 
1208 	sdma_disable_channel(chan);
1209 
1210 	if (sdmac->desc) {
1211 		vchan_terminate_vdesc(&sdmac->desc->vd);
1212 		/*
1213 		 * move out current descriptor into terminated list so that
1214 		 * it could be free in sdma_channel_terminate_work alone
1215 		 * later without potential involving next descriptor raised
1216 		 * up before the last descriptor terminated.
1217 		 */
1218 		vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1219 		sdmac->desc = NULL;
1220 		schedule_work(&sdmac->terminate_worker);
1221 	}
1222 
1223 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1224 
1225 	return 0;
1226 }
1227 
sdma_channel_synchronize(struct dma_chan * chan)1228 static void sdma_channel_synchronize(struct dma_chan *chan)
1229 {
1230 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1231 
1232 	vchan_synchronize(&sdmac->vc);
1233 
1234 	flush_work(&sdmac->terminate_worker);
1235 }
1236 
sdma_set_watermarklevel_for_p2p(struct sdma_channel * sdmac)1237 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1238 {
1239 	struct sdma_engine *sdma = sdmac->sdma;
1240 
1241 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1242 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1243 
1244 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1245 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1246 
1247 	if (sdmac->event_id0 > 31)
1248 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1249 
1250 	if (sdmac->event_id1 > 31)
1251 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1252 
1253 	/*
1254 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1255 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1256 	 * r0(event_mask[1]) and r1(event_mask[0]).
1257 	 */
1258 	if (lwml > hwml) {
1259 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1260 						SDMA_WATERMARK_LEVEL_HWML);
1261 		sdmac->watermark_level |= hwml;
1262 		sdmac->watermark_level |= lwml << 16;
1263 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1264 	}
1265 
1266 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1267 			sdmac->per_address2 <= sdma->spba_end_addr)
1268 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1269 
1270 	if (sdmac->per_address >= sdma->spba_start_addr &&
1271 			sdmac->per_address <= sdma->spba_end_addr)
1272 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1273 
1274 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1275 
1276 	/*
1277 	 * Limitation: The p2p script support dual fifos in maximum,
1278 	 * So when fifo number is larger than 1, force enable dual
1279 	 * fifos.
1280 	 */
1281 	if (sdmac->n_fifos_src > 1)
1282 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SD;
1283 	if (sdmac->n_fifos_dst > 1)
1284 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DD;
1285 }
1286 
sdma_set_watermarklevel_for_sais(struct sdma_channel * sdmac)1287 static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
1288 {
1289 	unsigned int n_fifos;
1290 	unsigned int stride_fifos;
1291 	unsigned int words_per_fifo;
1292 
1293 	if (sdmac->sw_done)
1294 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE;
1295 
1296 	if (sdmac->direction == DMA_DEV_TO_MEM) {
1297 		n_fifos = sdmac->n_fifos_src;
1298 		stride_fifos = sdmac->stride_fifos_src;
1299 	} else {
1300 		n_fifos = sdmac->n_fifos_dst;
1301 		stride_fifos = sdmac->stride_fifos_dst;
1302 	}
1303 
1304 	words_per_fifo = sdmac->words_per_fifo;
1305 
1306 	sdmac->watermark_level |=
1307 			FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos);
1308 	sdmac->watermark_level |=
1309 			FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS, stride_fifos);
1310 	if (words_per_fifo)
1311 		sdmac->watermark_level |=
1312 			FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO, (words_per_fifo - 1));
1313 }
1314 
sdma_config_channel(struct dma_chan * chan)1315 static int sdma_config_channel(struct dma_chan *chan)
1316 {
1317 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1318 	int ret;
1319 
1320 	sdma_disable_channel(chan);
1321 
1322 	sdmac->event_mask[0] = 0;
1323 	sdmac->event_mask[1] = 0;
1324 	sdmac->shp_addr = 0;
1325 	sdmac->per_addr = 0;
1326 
1327 	switch (sdmac->peripheral_type) {
1328 	case IMX_DMATYPE_DSP:
1329 		sdma_config_ownership(sdmac, false, true, true);
1330 		break;
1331 	case IMX_DMATYPE_MEMORY:
1332 		sdma_config_ownership(sdmac, false, true, false);
1333 		break;
1334 	default:
1335 		sdma_config_ownership(sdmac, true, true, false);
1336 		break;
1337 	}
1338 
1339 	ret = sdma_get_pc(sdmac, sdmac->peripheral_type);
1340 	if (ret)
1341 		return ret;
1342 
1343 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1344 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1345 		/* Handle multiple event channels differently */
1346 		if (sdmac->event_id1) {
1347 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1348 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1349 				sdma_set_watermarklevel_for_p2p(sdmac);
1350 		} else {
1351 			if (sdmac->peripheral_type ==
1352 					IMX_DMATYPE_MULTI_SAI)
1353 				sdma_set_watermarklevel_for_sais(sdmac);
1354 
1355 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1356 		}
1357 
1358 		/* Address */
1359 		sdmac->shp_addr = sdmac->per_address;
1360 		sdmac->per_addr = sdmac->per_address2;
1361 	} else {
1362 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1363 	}
1364 
1365 	return 0;
1366 }
1367 
sdma_set_channel_priority(struct sdma_channel * sdmac,unsigned int priority)1368 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1369 				     unsigned int priority)
1370 {
1371 	struct sdma_engine *sdma = sdmac->sdma;
1372 	int channel = sdmac->channel;
1373 
1374 	if (priority < MXC_SDMA_MIN_PRIORITY
1375 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1376 		return -EINVAL;
1377 	}
1378 
1379 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1380 
1381 	return 0;
1382 }
1383 
sdma_request_channel0(struct sdma_engine * sdma)1384 static int sdma_request_channel0(struct sdma_engine *sdma)
1385 {
1386 	int ret = -EBUSY;
1387 
1388 	if (sdma->iram_pool)
1389 		sdma->bd0 = gen_pool_dma_alloc(sdma->iram_pool,
1390 					sizeof(struct sdma_buffer_descriptor),
1391 					&sdma->bd0_phys);
1392 	else
1393 		sdma->bd0 = dma_alloc_coherent(sdma->dev,
1394 					sizeof(struct sdma_buffer_descriptor),
1395 					&sdma->bd0_phys, GFP_NOWAIT);
1396 	if (!sdma->bd0) {
1397 		ret = -ENOMEM;
1398 		goto out;
1399 	}
1400 
1401 	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1402 	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1403 
1404 	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1405 	return 0;
1406 out:
1407 
1408 	return ret;
1409 }
1410 
1411 
sdma_alloc_bd(struct sdma_desc * desc)1412 static int sdma_alloc_bd(struct sdma_desc *desc)
1413 {
1414 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1415 	struct sdma_engine *sdma = desc->sdmac->sdma;
1416 	int ret = 0;
1417 
1418 	if (sdma->iram_pool)
1419 		desc->bd = gen_pool_dma_alloc(sdma->iram_pool, bd_size, &desc->bd_phys);
1420 	else
1421 		desc->bd = dma_alloc_coherent(sdma->dev, bd_size, &desc->bd_phys, GFP_NOWAIT);
1422 
1423 	if (!desc->bd) {
1424 		ret = -ENOMEM;
1425 		goto out;
1426 	}
1427 out:
1428 	return ret;
1429 }
1430 
sdma_free_bd(struct sdma_desc * desc)1431 static void sdma_free_bd(struct sdma_desc *desc)
1432 {
1433 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1434 	struct sdma_engine *sdma = desc->sdmac->sdma;
1435 
1436 	if (sdma->iram_pool)
1437 		gen_pool_free(sdma->iram_pool, (unsigned long)desc->bd, bd_size);
1438 	else
1439 		dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd, desc->bd_phys);
1440 }
1441 
sdma_desc_free(struct virt_dma_desc * vd)1442 static void sdma_desc_free(struct virt_dma_desc *vd)
1443 {
1444 	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1445 
1446 	sdma_free_bd(desc);
1447 	kfree(desc);
1448 }
1449 
sdma_alloc_chan_resources(struct dma_chan * chan)1450 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1451 {
1452 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1453 	struct imx_dma_data *data = chan->private;
1454 	struct imx_dma_data mem_data;
1455 	int prio, ret;
1456 
1457 	/*
1458 	 * MEMCPY may never setup chan->private by filter function such as
1459 	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1460 	 * Please note in any other slave case, you have to setup chan->private
1461 	 * with 'struct imx_dma_data' in your own filter function if you want to
1462 	 * request dma channel by dma_request_channel() rather than
1463 	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1464 	 * to warn you to correct your filter function.
1465 	 */
1466 	if (!data) {
1467 		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1468 		mem_data.priority = 2;
1469 		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1470 		mem_data.dma_request = 0;
1471 		mem_data.dma_request2 = 0;
1472 		data = &mem_data;
1473 
1474 		ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1475 		if (ret)
1476 			return ret;
1477 	}
1478 
1479 	switch (data->priority) {
1480 	case DMA_PRIO_HIGH:
1481 		prio = 3;
1482 		break;
1483 	case DMA_PRIO_MEDIUM:
1484 		prio = 2;
1485 		break;
1486 	case DMA_PRIO_LOW:
1487 	default:
1488 		prio = 1;
1489 		break;
1490 	}
1491 
1492 	sdmac->peripheral_type = data->peripheral_type;
1493 	sdmac->event_id0 = data->dma_request;
1494 	sdmac->event_id1 = data->dma_request2;
1495 
1496 	ret = clk_enable(sdmac->sdma->clk_ipg);
1497 	if (ret)
1498 		return ret;
1499 	ret = clk_enable(sdmac->sdma->clk_ahb);
1500 	if (ret)
1501 		goto disable_clk_ipg;
1502 
1503 	ret = sdma_set_channel_priority(sdmac, prio);
1504 	if (ret)
1505 		goto disable_clk_ahb;
1506 
1507 	return 0;
1508 
1509 disable_clk_ahb:
1510 	clk_disable(sdmac->sdma->clk_ahb);
1511 disable_clk_ipg:
1512 	clk_disable(sdmac->sdma->clk_ipg);
1513 	return ret;
1514 }
1515 
sdma_free_chan_resources(struct dma_chan * chan)1516 static void sdma_free_chan_resources(struct dma_chan *chan)
1517 {
1518 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1519 	struct sdma_engine *sdma = sdmac->sdma;
1520 
1521 	sdma_terminate_all(chan);
1522 
1523 	sdma_channel_synchronize(chan);
1524 
1525 	sdma_event_disable(sdmac, sdmac->event_id0);
1526 	if (sdmac->event_id1)
1527 		sdma_event_disable(sdmac, sdmac->event_id1);
1528 
1529 	sdmac->event_id0 = 0;
1530 	sdmac->event_id1 = 0;
1531 
1532 	sdma_set_channel_priority(sdmac, 0);
1533 
1534 	clk_disable(sdma->clk_ipg);
1535 	clk_disable(sdma->clk_ahb);
1536 }
1537 
sdma_transfer_init(struct sdma_channel * sdmac,enum dma_transfer_direction direction,u32 bds)1538 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1539 				enum dma_transfer_direction direction, u32 bds)
1540 {
1541 	struct sdma_desc *desc;
1542 
1543 	if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1544 		dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1545 		goto err_out;
1546 	}
1547 
1548 	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1549 	if (!desc)
1550 		goto err_out;
1551 
1552 	sdmac->status = DMA_IN_PROGRESS;
1553 	sdmac->direction = direction;
1554 	sdmac->flags = 0;
1555 
1556 	desc->chn_count = 0;
1557 	desc->chn_real_count = 0;
1558 	desc->buf_tail = 0;
1559 	desc->buf_ptail = 0;
1560 	desc->sdmac = sdmac;
1561 	desc->num_bd = bds;
1562 
1563 	if (bds && sdma_alloc_bd(desc))
1564 		goto err_desc_out;
1565 
1566 	/* No slave_config called in MEMCPY case, so do here */
1567 	if (direction == DMA_MEM_TO_MEM)
1568 		sdma_config_ownership(sdmac, false, true, false);
1569 
1570 	if (sdma_load_context(sdmac))
1571 		goto err_bd_out;
1572 
1573 	return desc;
1574 
1575 err_bd_out:
1576 	sdma_free_bd(desc);
1577 err_desc_out:
1578 	kfree(desc);
1579 err_out:
1580 	return NULL;
1581 }
1582 
sdma_prep_memcpy(struct dma_chan * chan,dma_addr_t dma_dst,dma_addr_t dma_src,size_t len,unsigned long flags)1583 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1584 		struct dma_chan *chan, dma_addr_t dma_dst,
1585 		dma_addr_t dma_src, size_t len, unsigned long flags)
1586 {
1587 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1588 	struct sdma_engine *sdma = sdmac->sdma;
1589 	int channel = sdmac->channel;
1590 	size_t count;
1591 	int i = 0, param;
1592 	struct sdma_buffer_descriptor *bd;
1593 	struct sdma_desc *desc;
1594 
1595 	if (!chan || !len)
1596 		return NULL;
1597 
1598 	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1599 		&dma_src, &dma_dst, len, channel);
1600 
1601 	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1602 					len / SDMA_BD_MAX_CNT + 1);
1603 	if (!desc)
1604 		return NULL;
1605 
1606 	do {
1607 		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1608 		bd = &desc->bd[i];
1609 		bd->buffer_addr = dma_src;
1610 		bd->ext_buffer_addr = dma_dst;
1611 		bd->mode.count = count;
1612 		desc->chn_count += count;
1613 		bd->mode.command = 0;
1614 
1615 		dma_src += count;
1616 		dma_dst += count;
1617 		len -= count;
1618 		i++;
1619 
1620 		param = BD_DONE | BD_EXTD | BD_CONT;
1621 		/* last bd */
1622 		if (!len) {
1623 			param |= BD_INTR;
1624 			param |= BD_LAST;
1625 			param &= ~BD_CONT;
1626 		}
1627 
1628 		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1629 				i, count, bd->buffer_addr,
1630 				param & BD_WRAP ? "wrap" : "",
1631 				param & BD_INTR ? " intr" : "");
1632 
1633 		bd->mode.status = param;
1634 	} while (len);
1635 
1636 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1637 }
1638 
sdma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1639 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1640 		struct dma_chan *chan, struct scatterlist *sgl,
1641 		unsigned int sg_len, enum dma_transfer_direction direction,
1642 		unsigned long flags, void *context)
1643 {
1644 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1645 	struct sdma_engine *sdma = sdmac->sdma;
1646 	int i, count;
1647 	int channel = sdmac->channel;
1648 	struct scatterlist *sg;
1649 	struct sdma_desc *desc;
1650 
1651 	sdma_config_write(chan, &sdmac->slave_config, direction);
1652 
1653 	desc = sdma_transfer_init(sdmac, direction, sg_len);
1654 	if (!desc)
1655 		goto err_out;
1656 
1657 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1658 			sg_len, channel);
1659 
1660 	for_each_sg(sgl, sg, sg_len, i) {
1661 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1662 		int param;
1663 
1664 		bd->buffer_addr = sg->dma_address;
1665 
1666 		count = sg_dma_len(sg);
1667 
1668 		if (count > SDMA_BD_MAX_CNT) {
1669 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1670 					channel, count, SDMA_BD_MAX_CNT);
1671 			goto err_bd_out;
1672 		}
1673 
1674 		bd->mode.count = count;
1675 		desc->chn_count += count;
1676 
1677 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1678 			goto err_bd_out;
1679 
1680 		switch (sdmac->word_size) {
1681 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1682 			bd->mode.command = 0;
1683 			if (count & 3 || sg->dma_address & 3)
1684 				goto err_bd_out;
1685 			break;
1686 		case DMA_SLAVE_BUSWIDTH_3_BYTES:
1687 			bd->mode.command = 3;
1688 			break;
1689 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1690 			bd->mode.command = 2;
1691 			if (count & 1 || sg->dma_address & 1)
1692 				goto err_bd_out;
1693 			break;
1694 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1695 			bd->mode.command = 1;
1696 			break;
1697 		default:
1698 			goto err_bd_out;
1699 		}
1700 
1701 		param = BD_DONE | BD_EXTD | BD_CONT;
1702 
1703 		if (i + 1 == sg_len) {
1704 			param |= BD_INTR;
1705 			param |= BD_LAST;
1706 			param &= ~BD_CONT;
1707 		}
1708 
1709 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1710 				i, count, (u64)sg->dma_address,
1711 				param & BD_WRAP ? "wrap" : "",
1712 				param & BD_INTR ? " intr" : "");
1713 
1714 		bd->mode.status = param;
1715 	}
1716 
1717 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1718 err_bd_out:
1719 	sdma_free_bd(desc);
1720 	kfree(desc);
1721 err_out:
1722 	sdmac->status = DMA_ERROR;
1723 	return NULL;
1724 }
1725 
sdma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t dma_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)1726 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1727 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1728 		size_t period_len, enum dma_transfer_direction direction,
1729 		unsigned long flags)
1730 {
1731 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1732 	struct sdma_engine *sdma = sdmac->sdma;
1733 	int num_periods = 0;
1734 	int channel = sdmac->channel;
1735 	int i = 0, buf = 0;
1736 	struct sdma_desc *desc;
1737 
1738 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1739 
1740 	if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
1741 		num_periods = buf_len / period_len;
1742 
1743 	sdma_config_write(chan, &sdmac->slave_config, direction);
1744 
1745 	desc = sdma_transfer_init(sdmac, direction, num_periods);
1746 	if (!desc)
1747 		goto err_out;
1748 
1749 	desc->period_len = period_len;
1750 
1751 	sdmac->flags |= IMX_DMA_SG_LOOP;
1752 
1753 	if (period_len > SDMA_BD_MAX_CNT) {
1754 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1755 				channel, period_len, SDMA_BD_MAX_CNT);
1756 		goto err_bd_out;
1757 	}
1758 
1759 	if (sdmac->peripheral_type == IMX_DMATYPE_HDMI)
1760 		return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1761 
1762 	while (buf < buf_len) {
1763 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1764 		int param;
1765 
1766 		bd->buffer_addr = dma_addr;
1767 
1768 		bd->mode.count = period_len;
1769 
1770 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1771 			goto err_bd_out;
1772 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1773 			bd->mode.command = 0;
1774 		else
1775 			bd->mode.command = sdmac->word_size;
1776 
1777 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1778 		if (i + 1 == num_periods)
1779 			param |= BD_WRAP;
1780 
1781 		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1782 				i, period_len, (u64)dma_addr,
1783 				param & BD_WRAP ? "wrap" : "",
1784 				param & BD_INTR ? " intr" : "");
1785 
1786 		bd->mode.status = param;
1787 
1788 		dma_addr += period_len;
1789 		buf += period_len;
1790 
1791 		i++;
1792 	}
1793 
1794 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1795 err_bd_out:
1796 	sdma_free_bd(desc);
1797 	kfree(desc);
1798 err_out:
1799 	sdmac->status = DMA_ERROR;
1800 	return NULL;
1801 }
1802 
sdma_config_write(struct dma_chan * chan,struct dma_slave_config * dmaengine_cfg,enum dma_transfer_direction direction)1803 static int sdma_config_write(struct dma_chan *chan,
1804 		       struct dma_slave_config *dmaengine_cfg,
1805 		       enum dma_transfer_direction direction)
1806 {
1807 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1808 
1809 	if (direction == DMA_DEV_TO_MEM) {
1810 		sdmac->per_address = dmaengine_cfg->src_addr;
1811 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1812 			dmaengine_cfg->src_addr_width;
1813 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1814 	} else if (direction == DMA_DEV_TO_DEV) {
1815 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1816 		sdmac->per_address = dmaengine_cfg->dst_addr;
1817 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1818 			SDMA_WATERMARK_LEVEL_LWML;
1819 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1820 			SDMA_WATERMARK_LEVEL_HWML;
1821 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1822 	} else if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1823 		sdmac->per_address = dmaengine_cfg->dst_addr;
1824 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1825 		sdmac->watermark_level = 0;
1826 	} else {
1827 		sdmac->per_address = dmaengine_cfg->dst_addr;
1828 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1829 			dmaengine_cfg->dst_addr_width;
1830 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1831 	}
1832 	sdmac->direction = direction;
1833 	return sdma_config_channel(chan);
1834 }
1835 
sdma_config(struct dma_chan * chan,struct dma_slave_config * dmaengine_cfg)1836 static int sdma_config(struct dma_chan *chan,
1837 		       struct dma_slave_config *dmaengine_cfg)
1838 {
1839 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1840 	struct sdma_engine *sdma = sdmac->sdma;
1841 
1842 	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1843 
1844 	if (dmaengine_cfg->peripheral_config) {
1845 		struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config;
1846 		if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) {
1847 			dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n",
1848 				dmaengine_cfg->peripheral_size,
1849 				sizeof(struct sdma_peripheral_config));
1850 			return -EINVAL;
1851 		}
1852 		sdmac->n_fifos_src = sdmacfg->n_fifos_src;
1853 		sdmac->n_fifos_dst = sdmacfg->n_fifos_dst;
1854 		sdmac->stride_fifos_src = sdmacfg->stride_fifos_src;
1855 		sdmac->stride_fifos_dst = sdmacfg->stride_fifos_dst;
1856 		sdmac->words_per_fifo = sdmacfg->words_per_fifo;
1857 		sdmac->sw_done = sdmacfg->sw_done;
1858 	}
1859 
1860 	/* Set ENBLn earlier to make sure dma request triggered after that */
1861 	if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1862 		return -EINVAL;
1863 	sdma_event_enable(sdmac, sdmac->event_id0);
1864 
1865 	if (sdmac->event_id1) {
1866 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1867 			return -EINVAL;
1868 		sdma_event_enable(sdmac, sdmac->event_id1);
1869 	}
1870 
1871 	return 0;
1872 }
1873 
sdma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1874 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1875 				      dma_cookie_t cookie,
1876 				      struct dma_tx_state *txstate)
1877 {
1878 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1879 	struct sdma_desc *desc = NULL;
1880 	u32 residue;
1881 	struct virt_dma_desc *vd;
1882 	enum dma_status ret;
1883 	unsigned long flags;
1884 
1885 	ret = dma_cookie_status(chan, cookie, txstate);
1886 	if (ret == DMA_COMPLETE || !txstate)
1887 		return ret;
1888 
1889 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1890 
1891 	vd = vchan_find_desc(&sdmac->vc, cookie);
1892 	if (vd)
1893 		desc = to_sdma_desc(&vd->tx);
1894 	else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1895 		desc = sdmac->desc;
1896 
1897 	if (desc) {
1898 		if (sdmac->flags & IMX_DMA_SG_LOOP)
1899 			residue = (desc->num_bd - desc->buf_ptail) *
1900 				desc->period_len - desc->chn_real_count;
1901 		else
1902 			residue = desc->chn_count - desc->chn_real_count;
1903 	} else {
1904 		residue = 0;
1905 	}
1906 
1907 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1908 
1909 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1910 			 residue);
1911 
1912 	return sdmac->status;
1913 }
1914 
sdma_issue_pending(struct dma_chan * chan)1915 static void sdma_issue_pending(struct dma_chan *chan)
1916 {
1917 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1918 	unsigned long flags;
1919 
1920 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1921 	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1922 		sdma_start_desc(sdmac);
1923 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1924 }
1925 
1926 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	\
1927 (offsetof(struct sdma_script_start_addrs, v1_end) / sizeof(s32))
1928 
1929 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 \
1930 (offsetof(struct sdma_script_start_addrs, v2_end) / sizeof(s32))
1931 
1932 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 \
1933 (offsetof(struct sdma_script_start_addrs, v3_end) / sizeof(s32))
1934 
1935 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 \
1936 (offsetof(struct sdma_script_start_addrs, v4_end) / sizeof(s32))
1937 
sdma_add_scripts(struct sdma_engine * sdma,const struct sdma_script_start_addrs * addr)1938 static void sdma_add_scripts(struct sdma_engine *sdma,
1939 			     const struct sdma_script_start_addrs *addr)
1940 {
1941 	s32 *addr_arr = (u32 *)addr;
1942 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1943 	int i;
1944 
1945 	/* use the default firmware in ROM if missing external firmware */
1946 	if (!sdma->script_number)
1947 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1948 
1949 	if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1950 				  / sizeof(s32)) {
1951 		dev_err(sdma->dev,
1952 			"SDMA script number %d not match with firmware.\n",
1953 			sdma->script_number);
1954 		return;
1955 	}
1956 
1957 	for (i = 0; i < sdma->script_number; i++)
1958 		if (addr_arr[i] > 0)
1959 			saddr_arr[i] = addr_arr[i];
1960 
1961 	/*
1962 	 * For compatibility with NXP internal legacy kernel before 4.19 which
1963 	 * is based on uart ram script and mainline kernel based on uart rom
1964 	 * script, both uart ram/rom scripts are present in newer sdma
1965 	 * firmware. Use the rom versions if they are present (V3 or newer).
1966 	 */
1967 	if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
1968 		if (addr->uart_2_mcu_rom_addr)
1969 			sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
1970 		if (addr->uartsh_2_mcu_rom_addr)
1971 			sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
1972 	}
1973 }
1974 
sdma_load_firmware(const struct firmware * fw,void * context)1975 static void sdma_load_firmware(const struct firmware *fw, void *context)
1976 {
1977 	struct sdma_engine *sdma = context;
1978 	const struct sdma_firmware_header *header;
1979 	const struct sdma_script_start_addrs *addr;
1980 	unsigned short *ram_code;
1981 
1982 	if (!fw) {
1983 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1984 		/* In this case we just use the ROM firmware. */
1985 		return;
1986 	}
1987 
1988 	if (fw->size < sizeof(*header))
1989 		goto err_firmware;
1990 
1991 	header = (struct sdma_firmware_header *)fw->data;
1992 
1993 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1994 		goto err_firmware;
1995 	if (header->ram_code_start + header->ram_code_size > fw->size)
1996 		goto err_firmware;
1997 	switch (header->version_major) {
1998 	case 1:
1999 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
2000 		break;
2001 	case 2:
2002 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
2003 		break;
2004 	case 3:
2005 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
2006 		break;
2007 	case 4:
2008 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
2009 		break;
2010 	default:
2011 		dev_err(sdma->dev, "unknown firmware version\n");
2012 		goto err_firmware;
2013 	}
2014 
2015 	addr = (void *)header + header->script_addrs_start;
2016 	ram_code = (void *)header + header->ram_code_start;
2017 
2018 	clk_enable(sdma->clk_ipg);
2019 	clk_enable(sdma->clk_ahb);
2020 	/* download the RAM image for SDMA */
2021 	sdma_load_script(sdma, ram_code,
2022 			 header->ram_code_size,
2023 			 addr->ram_code_start_addr);
2024 	clk_disable(sdma->clk_ipg);
2025 	clk_disable(sdma->clk_ahb);
2026 
2027 	sdma_add_scripts(sdma, addr);
2028 
2029 	sdma->fw_loaded = true;
2030 
2031 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
2032 		 header->version_major,
2033 		 header->version_minor);
2034 
2035 err_firmware:
2036 	release_firmware(fw);
2037 }
2038 
2039 #define EVENT_REMAP_CELLS 3
2040 
sdma_event_remap(struct sdma_engine * sdma)2041 static int sdma_event_remap(struct sdma_engine *sdma)
2042 {
2043 	struct device_node *np = sdma->dev->of_node;
2044 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
2045 	struct property *event_remap;
2046 	struct regmap *gpr;
2047 	char propname[] = "fsl,sdma-event-remap";
2048 	u32 reg, val, shift, num_map, i;
2049 	int ret = 0;
2050 
2051 	if (IS_ERR(np) || !gpr_np)
2052 		goto out;
2053 
2054 	event_remap = of_find_property(np, propname, NULL);
2055 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
2056 	if (!num_map) {
2057 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
2058 		goto out;
2059 	} else if (num_map % EVENT_REMAP_CELLS) {
2060 		dev_err(sdma->dev, "the property %s must modulo %d\n",
2061 				propname, EVENT_REMAP_CELLS);
2062 		ret = -EINVAL;
2063 		goto out;
2064 	}
2065 
2066 	gpr = syscon_node_to_regmap(gpr_np);
2067 	if (IS_ERR(gpr)) {
2068 		dev_err(sdma->dev, "failed to get gpr regmap\n");
2069 		ret = PTR_ERR(gpr);
2070 		goto out;
2071 	}
2072 
2073 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
2074 		ret = of_property_read_u32_index(np, propname, i, &reg);
2075 		if (ret) {
2076 			dev_err(sdma->dev, "failed to read property %s index %d\n",
2077 					propname, i);
2078 			goto out;
2079 		}
2080 
2081 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
2082 		if (ret) {
2083 			dev_err(sdma->dev, "failed to read property %s index %d\n",
2084 					propname, i + 1);
2085 			goto out;
2086 		}
2087 
2088 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
2089 		if (ret) {
2090 			dev_err(sdma->dev, "failed to read property %s index %d\n",
2091 					propname, i + 2);
2092 			goto out;
2093 		}
2094 
2095 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
2096 	}
2097 
2098 out:
2099 	if (gpr_np)
2100 		of_node_put(gpr_np);
2101 
2102 	return ret;
2103 }
2104 
sdma_get_firmware(struct sdma_engine * sdma,const char * fw_name)2105 static int sdma_get_firmware(struct sdma_engine *sdma,
2106 		const char *fw_name)
2107 {
2108 	int ret;
2109 
2110 	ret = firmware_request_nowait_nowarn(THIS_MODULE, fw_name, sdma->dev,
2111 					GFP_KERNEL, sdma, sdma_load_firmware);
2112 
2113 	return ret;
2114 }
2115 
sdma_init(struct sdma_engine * sdma)2116 static int sdma_init(struct sdma_engine *sdma)
2117 {
2118 	int i, ret;
2119 	dma_addr_t ccb_phys;
2120 	int ccbsize;
2121 
2122 	ret = clk_enable(sdma->clk_ipg);
2123 	if (ret)
2124 		return ret;
2125 	ret = clk_enable(sdma->clk_ahb);
2126 	if (ret)
2127 		goto disable_clk_ipg;
2128 
2129 	if (sdma->drvdata->check_ratio &&
2130 	    (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
2131 		sdma->clk_ratio = 1;
2132 
2133 	/* Be sure SDMA has not started yet */
2134 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
2135 
2136 	ccbsize = MAX_DMA_CHANNELS * (sizeof(struct sdma_channel_control)
2137 		  + sizeof(struct sdma_context_data));
2138 
2139 	if (sdma->iram_pool)
2140 		sdma->channel_control = gen_pool_dma_alloc(sdma->iram_pool, ccbsize, &ccb_phys);
2141 	else
2142 		sdma->channel_control = dma_alloc_coherent(sdma->dev, ccbsize, &ccb_phys,
2143 							   GFP_KERNEL);
2144 
2145 	if (!sdma->channel_control) {
2146 		ret = -ENOMEM;
2147 		goto err_dma_alloc;
2148 	}
2149 
2150 	sdma->context = (void *)sdma->channel_control +
2151 		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2152 	sdma->context_phys = ccb_phys +
2153 		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2154 
2155 	/* disable all channels */
2156 	for (i = 0; i < sdma->drvdata->num_events; i++)
2157 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
2158 
2159 	/* All channels have priority 0 */
2160 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
2161 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
2162 
2163 	ret = sdma_request_channel0(sdma);
2164 	if (ret)
2165 		goto err_dma_alloc;
2166 
2167 	sdma_config_ownership(&sdma->channel[0], false, true, false);
2168 
2169 	/* Set Command Channel (Channel Zero) */
2170 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
2171 
2172 	/* Set bits of CONFIG register but with static context switching */
2173 	if (sdma->clk_ratio)
2174 		writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
2175 	else
2176 		writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
2177 
2178 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
2179 
2180 	/* Initializes channel's priorities */
2181 	sdma_set_channel_priority(&sdma->channel[0], 7);
2182 
2183 	clk_disable(sdma->clk_ipg);
2184 	clk_disable(sdma->clk_ahb);
2185 
2186 	return 0;
2187 
2188 err_dma_alloc:
2189 	clk_disable(sdma->clk_ahb);
2190 disable_clk_ipg:
2191 	clk_disable(sdma->clk_ipg);
2192 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2193 	return ret;
2194 }
2195 
sdma_filter_fn(struct dma_chan * chan,void * fn_param)2196 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2197 {
2198 	struct sdma_channel *sdmac = to_sdma_chan(chan);
2199 	struct imx_dma_data *data = fn_param;
2200 
2201 	if (!imx_dma_is_general_purpose(chan))
2202 		return false;
2203 
2204 	sdmac->data = *data;
2205 	chan->private = &sdmac->data;
2206 
2207 	return true;
2208 }
2209 
sdma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2210 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2211 				   struct of_dma *ofdma)
2212 {
2213 	struct sdma_engine *sdma = ofdma->of_dma_data;
2214 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2215 	struct imx_dma_data data;
2216 
2217 	if (dma_spec->args_count != 3)
2218 		return NULL;
2219 
2220 	data.dma_request = dma_spec->args[0];
2221 	data.peripheral_type = dma_spec->args[1];
2222 	data.priority = dma_spec->args[2];
2223 	/*
2224 	 * init dma_request2 to zero, which is not used by the dts.
2225 	 * For P2P, dma_request2 is init from dma_request_channel(),
2226 	 * chan->private will point to the imx_dma_data, and in
2227 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2228 	 * be set to sdmac->event_id1.
2229 	 */
2230 	data.dma_request2 = 0;
2231 
2232 	return __dma_request_channel(&mask, sdma_filter_fn, &data,
2233 				     ofdma->of_node);
2234 }
2235 
sdma_probe(struct platform_device * pdev)2236 static int sdma_probe(struct platform_device *pdev)
2237 {
2238 	struct device_node *np = pdev->dev.of_node;
2239 	struct device_node *spba_bus;
2240 	const char *fw_name;
2241 	int ret;
2242 	int irq;
2243 	struct resource spba_res;
2244 	int i;
2245 	struct sdma_engine *sdma;
2246 	s32 *saddr_arr;
2247 
2248 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2249 	if (ret)
2250 		return ret;
2251 
2252 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2253 	if (!sdma)
2254 		return -ENOMEM;
2255 
2256 	spin_lock_init(&sdma->channel_0_lock);
2257 
2258 	sdma->dev = &pdev->dev;
2259 	sdma->drvdata = of_device_get_match_data(sdma->dev);
2260 
2261 	irq = platform_get_irq(pdev, 0);
2262 	if (irq < 0)
2263 		return irq;
2264 
2265 	sdma->regs = devm_platform_ioremap_resource(pdev, 0);
2266 	if (IS_ERR(sdma->regs))
2267 		return PTR_ERR(sdma->regs);
2268 
2269 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2270 	if (IS_ERR(sdma->clk_ipg))
2271 		return PTR_ERR(sdma->clk_ipg);
2272 
2273 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2274 	if (IS_ERR(sdma->clk_ahb))
2275 		return PTR_ERR(sdma->clk_ahb);
2276 
2277 	ret = clk_prepare(sdma->clk_ipg);
2278 	if (ret)
2279 		return ret;
2280 
2281 	ret = clk_prepare(sdma->clk_ahb);
2282 	if (ret)
2283 		goto err_clk;
2284 
2285 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0,
2286 				dev_name(&pdev->dev), sdma);
2287 	if (ret)
2288 		goto err_irq;
2289 
2290 	sdma->irq = irq;
2291 
2292 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2293 	if (!sdma->script_addrs) {
2294 		ret = -ENOMEM;
2295 		goto err_irq;
2296 	}
2297 
2298 	/* initially no scripts available */
2299 	saddr_arr = (s32 *)sdma->script_addrs;
2300 	for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2301 		saddr_arr[i] = -EINVAL;
2302 
2303 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2304 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2305 	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2306 	dma_cap_set(DMA_PRIVATE, sdma->dma_device.cap_mask);
2307 
2308 	INIT_LIST_HEAD(&sdma->dma_device.channels);
2309 	/* Initialize channel parameters */
2310 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2311 		struct sdma_channel *sdmac = &sdma->channel[i];
2312 
2313 		sdmac->sdma = sdma;
2314 
2315 		sdmac->channel = i;
2316 		sdmac->vc.desc_free = sdma_desc_free;
2317 		INIT_LIST_HEAD(&sdmac->terminated);
2318 		INIT_WORK(&sdmac->terminate_worker,
2319 				sdma_channel_terminate_work);
2320 		/*
2321 		 * Add the channel to the DMAC list. Do not add channel 0 though
2322 		 * because we need it internally in the SDMA driver. This also means
2323 		 * that channel 0 in dmaengine counting matches sdma channel 1.
2324 		 */
2325 		if (i)
2326 			vchan_init(&sdmac->vc, &sdma->dma_device);
2327 	}
2328 
2329 	if (np) {
2330 		sdma->iram_pool = of_gen_pool_get(np, "iram", 0);
2331 		if (sdma->iram_pool)
2332 			dev_info(&pdev->dev, "alloc bd from iram.\n");
2333 	}
2334 
2335 	ret = sdma_init(sdma);
2336 	if (ret)
2337 		goto err_init;
2338 
2339 	ret = sdma_event_remap(sdma);
2340 	if (ret)
2341 		goto err_init;
2342 
2343 	if (sdma->drvdata->script_addrs)
2344 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2345 
2346 	sdma->dma_device.dev = &pdev->dev;
2347 
2348 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2349 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2350 	sdma->dma_device.device_tx_status = sdma_tx_status;
2351 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2352 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2353 	sdma->dma_device.device_config = sdma_config;
2354 	sdma->dma_device.device_terminate_all = sdma_terminate_all;
2355 	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2356 	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2357 	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2358 	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2359 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2360 	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2361 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2362 	sdma->dma_device.copy_align = 2;
2363 	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2364 
2365 	platform_set_drvdata(pdev, sdma);
2366 
2367 	ret = dma_async_device_register(&sdma->dma_device);
2368 	if (ret) {
2369 		dev_err(&pdev->dev, "unable to register\n");
2370 		goto err_init;
2371 	}
2372 
2373 	if (np) {
2374 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2375 		if (ret) {
2376 			dev_err(&pdev->dev, "failed to register controller\n");
2377 			goto err_register;
2378 		}
2379 
2380 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2381 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2382 		if (!ret) {
2383 			sdma->spba_start_addr = spba_res.start;
2384 			sdma->spba_end_addr = spba_res.end;
2385 		}
2386 		of_node_put(spba_bus);
2387 	}
2388 
2389 	/*
2390 	 * Because that device tree does not encode ROM script address,
2391 	 * the RAM script in firmware is mandatory for device tree
2392 	 * probe, otherwise it fails.
2393 	 */
2394 	ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2395 				      &fw_name);
2396 	if (ret) {
2397 		dev_warn(&pdev->dev, "failed to get firmware name\n");
2398 	} else {
2399 		ret = sdma_get_firmware(sdma, fw_name);
2400 		if (ret)
2401 			dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2402 	}
2403 
2404 	return 0;
2405 
2406 err_register:
2407 	dma_async_device_unregister(&sdma->dma_device);
2408 err_init:
2409 	kfree(sdma->script_addrs);
2410 err_irq:
2411 	clk_unprepare(sdma->clk_ahb);
2412 err_clk:
2413 	clk_unprepare(sdma->clk_ipg);
2414 	return ret;
2415 }
2416 
sdma_remove(struct platform_device * pdev)2417 static void sdma_remove(struct platform_device *pdev)
2418 {
2419 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2420 	int i;
2421 
2422 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2423 	dma_async_device_unregister(&sdma->dma_device);
2424 	kfree(sdma->script_addrs);
2425 	clk_unprepare(sdma->clk_ahb);
2426 	clk_unprepare(sdma->clk_ipg);
2427 	/* Kill the tasklet */
2428 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2429 		struct sdma_channel *sdmac = &sdma->channel[i];
2430 
2431 		tasklet_kill(&sdmac->vc.task);
2432 		sdma_free_chan_resources(&sdmac->vc.chan);
2433 	}
2434 
2435 	platform_set_drvdata(pdev, NULL);
2436 }
2437 
2438 static struct platform_driver sdma_driver = {
2439 	.driver		= {
2440 		.name	= "imx-sdma",
2441 		.of_match_table = sdma_dt_ids,
2442 	},
2443 	.remove_new	= sdma_remove,
2444 	.probe		= sdma_probe,
2445 };
2446 
2447 module_platform_driver(sdma_driver);
2448 
2449 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2450 MODULE_DESCRIPTION("i.MX SDMA driver");
2451 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2452 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2453 #endif
2454 #if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2455 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2456 #endif
2457 MODULE_LICENSE("GPL");
2458