1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright IBM Corp. 2002, 2006
6  *
7  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8  */
9 
10 #define pr_fmt(fmt) "kprobes: " fmt
11 
12 #include <linux/kprobes.h>
13 #include <linux/ptrace.h>
14 #include <linux/preempt.h>
15 #include <linux/stop_machine.h>
16 #include <linux/kdebug.h>
17 #include <linux/uaccess.h>
18 #include <linux/extable.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/hardirq.h>
22 #include <linux/ftrace.h>
23 #include <linux/execmem.h>
24 #include <asm/text-patching.h>
25 #include <asm/set_memory.h>
26 #include <asm/sections.h>
27 #include <asm/dis.h>
28 #include "entry.h"
29 
30 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
31 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
32 
33 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
34 
alloc_insn_page(void)35 void *alloc_insn_page(void)
36 {
37 	void *page;
38 
39 	page = execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE);
40 	if (!page)
41 		return NULL;
42 	set_memory_rox((unsigned long)page, 1);
43 	return page;
44 }
45 
copy_instruction(struct kprobe * p)46 static void copy_instruction(struct kprobe *p)
47 {
48 	kprobe_opcode_t insn[MAX_INSN_SIZE];
49 	s64 disp, new_disp;
50 	u64 addr, new_addr;
51 	unsigned int len;
52 
53 	len = insn_length(*p->addr >> 8);
54 	memcpy(&insn, p->addr, len);
55 	p->opcode = insn[0];
56 	if (probe_is_insn_relative_long(&insn[0])) {
57 		/*
58 		 * For pc-relative instructions in RIL-b or RIL-c format patch
59 		 * the RI2 displacement field. The insn slot for the to be
60 		 * patched instruction is within the same 4GB area like the
61 		 * original instruction. Therefore the new displacement will
62 		 * always fit.
63 		 */
64 		disp = *(s32 *)&insn[1];
65 		addr = (u64)(unsigned long)p->addr;
66 		new_addr = (u64)(unsigned long)p->ainsn.insn;
67 		new_disp = ((addr + (disp * 2)) - new_addr) / 2;
68 		*(s32 *)&insn[1] = new_disp;
69 	}
70 	s390_kernel_write(p->ainsn.insn, &insn, len);
71 }
72 NOKPROBE_SYMBOL(copy_instruction);
73 
74 /* Check if paddr is at an instruction boundary */
can_probe(unsigned long paddr)75 static bool can_probe(unsigned long paddr)
76 {
77 	unsigned long addr, offset = 0;
78 	kprobe_opcode_t insn;
79 	struct kprobe *kp;
80 
81 	if (paddr & 0x01)
82 		return false;
83 
84 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
85 		return false;
86 
87 	/* Decode instructions */
88 	addr = paddr - offset;
89 	while (addr < paddr) {
90 		if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn)))
91 			return false;
92 
93 		if (insn >> 8 == 0) {
94 			if (insn != BREAKPOINT_INSTRUCTION) {
95 				/*
96 				 * Note that QEMU inserts opcode 0x0000 to implement
97 				 * software breakpoints for guests. Since the size of
98 				 * the original instruction is unknown, stop following
99 				 * instructions and prevent setting a kprobe.
100 				 */
101 				return false;
102 			}
103 			/*
104 			 * Check if the instruction has been modified by another
105 			 * kprobe, in which case the original instruction is
106 			 * decoded.
107 			 */
108 			kp = get_kprobe((void *)addr);
109 			if (!kp) {
110 				/* not a kprobe */
111 				return false;
112 			}
113 			insn = kp->opcode;
114 		}
115 		addr += insn_length(insn >> 8);
116 	}
117 	return addr == paddr;
118 }
119 
arch_prepare_kprobe(struct kprobe * p)120 int arch_prepare_kprobe(struct kprobe *p)
121 {
122 	if (!can_probe((unsigned long)p->addr))
123 		return -EINVAL;
124 	/* Make sure the probe isn't going on a difficult instruction */
125 	if (probe_is_prohibited_opcode(p->addr))
126 		return -EINVAL;
127 	p->ainsn.insn = get_insn_slot();
128 	if (!p->ainsn.insn)
129 		return -ENOMEM;
130 	copy_instruction(p);
131 	return 0;
132 }
133 NOKPROBE_SYMBOL(arch_prepare_kprobe);
134 
135 struct swap_insn_args {
136 	struct kprobe *p;
137 	unsigned int arm_kprobe : 1;
138 };
139 
swap_instruction(void * data)140 static int swap_instruction(void *data)
141 {
142 	struct swap_insn_args *args = data;
143 	struct kprobe *p = args->p;
144 	u16 opc;
145 
146 	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
147 	s390_kernel_write(p->addr, &opc, sizeof(opc));
148 	return 0;
149 }
150 NOKPROBE_SYMBOL(swap_instruction);
151 
arch_arm_kprobe(struct kprobe * p)152 void arch_arm_kprobe(struct kprobe *p)
153 {
154 	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
155 
156 	if (MACHINE_HAS_SEQ_INSN) {
157 		swap_instruction(&args);
158 		text_poke_sync();
159 	} else {
160 		stop_machine_cpuslocked(swap_instruction, &args, NULL);
161 	}
162 }
163 NOKPROBE_SYMBOL(arch_arm_kprobe);
164 
arch_disarm_kprobe(struct kprobe * p)165 void arch_disarm_kprobe(struct kprobe *p)
166 {
167 	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
168 
169 	if (MACHINE_HAS_SEQ_INSN) {
170 		swap_instruction(&args);
171 		text_poke_sync();
172 	} else {
173 		stop_machine_cpuslocked(swap_instruction, &args, NULL);
174 	}
175 }
176 NOKPROBE_SYMBOL(arch_disarm_kprobe);
177 
arch_remove_kprobe(struct kprobe * p)178 void arch_remove_kprobe(struct kprobe *p)
179 {
180 	if (!p->ainsn.insn)
181 		return;
182 	free_insn_slot(p->ainsn.insn, 0);
183 	p->ainsn.insn = NULL;
184 }
185 NOKPROBE_SYMBOL(arch_remove_kprobe);
186 
enable_singlestep(struct kprobe_ctlblk * kcb,struct pt_regs * regs,unsigned long ip)187 static void enable_singlestep(struct kprobe_ctlblk *kcb,
188 			      struct pt_regs *regs,
189 			      unsigned long ip)
190 {
191 	union {
192 		struct ctlreg regs[3];
193 		struct {
194 			struct ctlreg control;
195 			struct ctlreg start;
196 			struct ctlreg end;
197 		};
198 	} per_kprobe;
199 
200 	/* Set up the PER control registers %cr9-%cr11 */
201 	per_kprobe.control.val = PER_EVENT_IFETCH;
202 	per_kprobe.start.val = ip;
203 	per_kprobe.end.val = ip;
204 
205 	/* Save control regs and psw mask */
206 	__local_ctl_store(9, 11, kcb->kprobe_saved_ctl);
207 	kcb->kprobe_saved_imask = regs->psw.mask &
208 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
209 
210 	/* Set PER control regs, turns on single step for the given address */
211 	__local_ctl_load(9, 11, per_kprobe.regs);
212 	regs->psw.mask |= PSW_MASK_PER;
213 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
214 	regs->psw.addr = ip;
215 }
216 NOKPROBE_SYMBOL(enable_singlestep);
217 
disable_singlestep(struct kprobe_ctlblk * kcb,struct pt_regs * regs,unsigned long ip)218 static void disable_singlestep(struct kprobe_ctlblk *kcb,
219 			       struct pt_regs *regs,
220 			       unsigned long ip)
221 {
222 	/* Restore control regs and psw mask, set new psw address */
223 	__local_ctl_load(9, 11, kcb->kprobe_saved_ctl);
224 	regs->psw.mask &= ~PSW_MASK_PER;
225 	regs->psw.mask |= kcb->kprobe_saved_imask;
226 	regs->psw.addr = ip;
227 }
228 NOKPROBE_SYMBOL(disable_singlestep);
229 
230 /*
231  * Activate a kprobe by storing its pointer to current_kprobe. The
232  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
233  * two kprobes can be active, see KPROBE_REENTER.
234  */
push_kprobe(struct kprobe_ctlblk * kcb,struct kprobe * p)235 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
236 {
237 	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
238 	kcb->prev_kprobe.status = kcb->kprobe_status;
239 	__this_cpu_write(current_kprobe, p);
240 }
241 NOKPROBE_SYMBOL(push_kprobe);
242 
243 /*
244  * Deactivate a kprobe by backing up to the previous state. If the
245  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
246  * for any other state prev_kprobe.kp will be NULL.
247  */
pop_kprobe(struct kprobe_ctlblk * kcb)248 static void pop_kprobe(struct kprobe_ctlblk *kcb)
249 {
250 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
251 	kcb->kprobe_status = kcb->prev_kprobe.status;
252 	kcb->prev_kprobe.kp = NULL;
253 }
254 NOKPROBE_SYMBOL(pop_kprobe);
255 
kprobe_reenter_check(struct kprobe_ctlblk * kcb,struct kprobe * p)256 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
257 {
258 	switch (kcb->kprobe_status) {
259 	case KPROBE_HIT_SSDONE:
260 	case KPROBE_HIT_ACTIVE:
261 		kprobes_inc_nmissed_count(p);
262 		break;
263 	case KPROBE_HIT_SS:
264 	case KPROBE_REENTER:
265 	default:
266 		/*
267 		 * A kprobe on the code path to single step an instruction
268 		 * is a BUG. The code path resides in the .kprobes.text
269 		 * section and is executed with interrupts disabled.
270 		 */
271 		pr_err("Failed to recover from reentered kprobes.\n");
272 		dump_kprobe(p);
273 		BUG();
274 	}
275 }
276 NOKPROBE_SYMBOL(kprobe_reenter_check);
277 
kprobe_handler(struct pt_regs * regs)278 static int kprobe_handler(struct pt_regs *regs)
279 {
280 	struct kprobe_ctlblk *kcb;
281 	struct kprobe *p;
282 
283 	/*
284 	 * We want to disable preemption for the entire duration of kprobe
285 	 * processing. That includes the calls to the pre/post handlers
286 	 * and single stepping the kprobe instruction.
287 	 */
288 	preempt_disable();
289 	kcb = get_kprobe_ctlblk();
290 	p = get_kprobe((void *)(regs->psw.addr - 2));
291 
292 	if (p) {
293 		if (kprobe_running()) {
294 			/*
295 			 * We have hit a kprobe while another is still
296 			 * active. This can happen in the pre and post
297 			 * handler. Single step the instruction of the
298 			 * new probe but do not call any handler function
299 			 * of this secondary kprobe.
300 			 * push_kprobe and pop_kprobe saves and restores
301 			 * the currently active kprobe.
302 			 */
303 			kprobe_reenter_check(kcb, p);
304 			push_kprobe(kcb, p);
305 			kcb->kprobe_status = KPROBE_REENTER;
306 		} else {
307 			/*
308 			 * If we have no pre-handler or it returned 0, we
309 			 * continue with single stepping. If we have a
310 			 * pre-handler and it returned non-zero, it prepped
311 			 * for changing execution path, so get out doing
312 			 * nothing more here.
313 			 */
314 			push_kprobe(kcb, p);
315 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
316 			if (p->pre_handler && p->pre_handler(p, regs)) {
317 				pop_kprobe(kcb);
318 				preempt_enable_no_resched();
319 				return 1;
320 			}
321 			kcb->kprobe_status = KPROBE_HIT_SS;
322 		}
323 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
324 		return 1;
325 	} /* else:
326 	   * No kprobe at this address and no active kprobe. The trap has
327 	   * not been caused by a kprobe breakpoint. The race of breakpoint
328 	   * vs. kprobe remove does not exist because on s390 as we use
329 	   * stop_machine to arm/disarm the breakpoints.
330 	   */
331 	preempt_enable_no_resched();
332 	return 0;
333 }
334 NOKPROBE_SYMBOL(kprobe_handler);
335 
336 /*
337  * Called after single-stepping.  p->addr is the address of the
338  * instruction whose first byte has been replaced by the "breakpoint"
339  * instruction.  To avoid the SMP problems that can occur when we
340  * temporarily put back the original opcode to single-step, we
341  * single-stepped a copy of the instruction.  The address of this
342  * copy is p->ainsn.insn.
343  */
resume_execution(struct kprobe * p,struct pt_regs * regs)344 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
345 {
346 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
347 	unsigned long ip = regs->psw.addr;
348 	int fixup = probe_get_fixup_type(p->ainsn.insn);
349 
350 	if (fixup & FIXUP_PSW_NORMAL)
351 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
352 
353 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
354 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
355 		if (ip - (unsigned long) p->ainsn.insn == ilen)
356 			ip = (unsigned long) p->addr + ilen;
357 	}
358 
359 	if (fixup & FIXUP_RETURN_REGISTER) {
360 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
361 		regs->gprs[reg] += (unsigned long) p->addr -
362 				   (unsigned long) p->ainsn.insn;
363 	}
364 
365 	disable_singlestep(kcb, regs, ip);
366 }
367 NOKPROBE_SYMBOL(resume_execution);
368 
post_kprobe_handler(struct pt_regs * regs)369 static int post_kprobe_handler(struct pt_regs *regs)
370 {
371 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
372 	struct kprobe *p = kprobe_running();
373 
374 	if (!p)
375 		return 0;
376 
377 	resume_execution(p, regs);
378 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
379 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
380 		p->post_handler(p, regs, 0);
381 	}
382 	pop_kprobe(kcb);
383 	preempt_enable_no_resched();
384 
385 	/*
386 	 * if somebody else is singlestepping across a probe point, psw mask
387 	 * will have PER set, in which case, continue the remaining processing
388 	 * of do_single_step, as if this is not a probe hit.
389 	 */
390 	if (regs->psw.mask & PSW_MASK_PER)
391 		return 0;
392 
393 	return 1;
394 }
395 NOKPROBE_SYMBOL(post_kprobe_handler);
396 
kprobe_trap_handler(struct pt_regs * regs,int trapnr)397 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
398 {
399 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
400 	struct kprobe *p = kprobe_running();
401 
402 	switch(kcb->kprobe_status) {
403 	case KPROBE_HIT_SS:
404 	case KPROBE_REENTER:
405 		/*
406 		 * We are here because the instruction being single
407 		 * stepped caused a page fault. We reset the current
408 		 * kprobe and the nip points back to the probe address
409 		 * and allow the page fault handler to continue as a
410 		 * normal page fault.
411 		 */
412 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
413 		pop_kprobe(kcb);
414 		preempt_enable_no_resched();
415 		break;
416 	case KPROBE_HIT_ACTIVE:
417 	case KPROBE_HIT_SSDONE:
418 		/*
419 		 * In case the user-specified fault handler returned
420 		 * zero, try to fix up.
421 		 */
422 		if (fixup_exception(regs))
423 			return 1;
424 		/*
425 		 * fixup_exception() could not handle it,
426 		 * Let do_page_fault() fix it.
427 		 */
428 		break;
429 	default:
430 		break;
431 	}
432 	return 0;
433 }
434 NOKPROBE_SYMBOL(kprobe_trap_handler);
435 
kprobe_fault_handler(struct pt_regs * regs,int trapnr)436 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
437 {
438 	int ret;
439 
440 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
441 		local_irq_disable();
442 	ret = kprobe_trap_handler(regs, trapnr);
443 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
444 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
445 	return ret;
446 }
447 NOKPROBE_SYMBOL(kprobe_fault_handler);
448 
449 /*
450  * Wrapper routine to for handling exceptions.
451  */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)452 int kprobe_exceptions_notify(struct notifier_block *self,
453 			     unsigned long val, void *data)
454 {
455 	struct die_args *args = (struct die_args *) data;
456 	struct pt_regs *regs = args->regs;
457 	int ret = NOTIFY_DONE;
458 
459 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
460 		local_irq_disable();
461 
462 	switch (val) {
463 	case DIE_BPT:
464 		if (kprobe_handler(regs))
465 			ret = NOTIFY_STOP;
466 		break;
467 	case DIE_SSTEP:
468 		if (post_kprobe_handler(regs))
469 			ret = NOTIFY_STOP;
470 		break;
471 	case DIE_TRAP:
472 		if (!preemptible() && kprobe_running() &&
473 		    kprobe_trap_handler(regs, args->trapnr))
474 			ret = NOTIFY_STOP;
475 		break;
476 	default:
477 		break;
478 	}
479 
480 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
481 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
482 
483 	return ret;
484 }
485 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
486 
arch_init_kprobes(void)487 int __init arch_init_kprobes(void)
488 {
489 	return 0;
490 }
491 
arch_trampoline_kprobe(struct kprobe * p)492 int arch_trampoline_kprobe(struct kprobe *p)
493 {
494 	return 0;
495 }
496 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
497