1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS MMU handling in the KVM module.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/highmem.h>
13 #include <linux/kvm_host.h>
14 #include <linux/uaccess.h>
15 #include <asm/mmu_context.h>
16 #include <asm/pgalloc.h>
17 
18 /*
19  * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
20  * for which pages need to be cached.
21  */
22 #if defined(__PAGETABLE_PMD_FOLDED)
23 #define KVM_MMU_CACHE_MIN_PAGES 1
24 #else
25 #define KVM_MMU_CACHE_MIN_PAGES 2
26 #endif
27 
kvm_mmu_free_memory_caches(struct kvm_vcpu * vcpu)28 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
29 {
30 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
31 }
32 
33 /**
34  * kvm_pgd_init() - Initialise KVM GPA page directory.
35  * @page:	Pointer to page directory (PGD) for KVM GPA.
36  *
37  * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
38  * representing no mappings. This is similar to pgd_init(), however it
39  * initialises all the page directory pointers, not just the ones corresponding
40  * to the userland address space (since it is for the guest physical address
41  * space rather than a virtual address space).
42  */
kvm_pgd_init(void * page)43 static void kvm_pgd_init(void *page)
44 {
45 	unsigned long *p, *end;
46 	unsigned long entry;
47 
48 #ifdef __PAGETABLE_PMD_FOLDED
49 	entry = (unsigned long)invalid_pte_table;
50 #else
51 	entry = (unsigned long)invalid_pmd_table;
52 #endif
53 
54 	p = (unsigned long *)page;
55 	end = p + PTRS_PER_PGD;
56 
57 	do {
58 		p[0] = entry;
59 		p[1] = entry;
60 		p[2] = entry;
61 		p[3] = entry;
62 		p[4] = entry;
63 		p += 8;
64 		p[-3] = entry;
65 		p[-2] = entry;
66 		p[-1] = entry;
67 	} while (p != end);
68 }
69 
70 /**
71  * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
72  *
73  * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
74  * to host physical page mappings.
75  *
76  * Returns:	Pointer to new KVM GPA page directory.
77  *		NULL on allocation failure.
78  */
kvm_pgd_alloc(void)79 pgd_t *kvm_pgd_alloc(void)
80 {
81 	pgd_t *ret;
82 
83 	ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_TABLE_ORDER);
84 	if (ret)
85 		kvm_pgd_init(ret);
86 
87 	return ret;
88 }
89 
90 /**
91  * kvm_mips_walk_pgd() - Walk page table with optional allocation.
92  * @pgd:	Page directory pointer.
93  * @addr:	Address to index page table using.
94  * @cache:	MMU page cache to allocate new page tables from, or NULL.
95  *
96  * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
97  * address @addr. If page tables don't exist for @addr, they will be created
98  * from the MMU cache if @cache is not NULL.
99  *
100  * Returns:	Pointer to pte_t corresponding to @addr.
101  *		NULL if a page table doesn't exist for @addr and !@cache.
102  *		NULL if a page table allocation failed.
103  */
kvm_mips_walk_pgd(pgd_t * pgd,struct kvm_mmu_memory_cache * cache,unsigned long addr)104 static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
105 				unsigned long addr)
106 {
107 	p4d_t *p4d;
108 	pud_t *pud;
109 	pmd_t *pmd;
110 
111 	pgd += pgd_index(addr);
112 	if (pgd_none(*pgd)) {
113 		/* Not used on MIPS yet */
114 		BUG();
115 		return NULL;
116 	}
117 	p4d = p4d_offset(pgd, addr);
118 	pud = pud_offset(p4d, addr);
119 	if (pud_none(*pud)) {
120 		pmd_t *new_pmd;
121 
122 		if (!cache)
123 			return NULL;
124 		new_pmd = kvm_mmu_memory_cache_alloc(cache);
125 		pmd_init(new_pmd);
126 		pud_populate(NULL, pud, new_pmd);
127 	}
128 	pmd = pmd_offset(pud, addr);
129 	if (pmd_none(*pmd)) {
130 		pte_t *new_pte;
131 
132 		if (!cache)
133 			return NULL;
134 		new_pte = kvm_mmu_memory_cache_alloc(cache);
135 		clear_page(new_pte);
136 		pmd_populate_kernel(NULL, pmd, new_pte);
137 	}
138 	return pte_offset_kernel(pmd, addr);
139 }
140 
141 /* Caller must hold kvm->mm_lock */
kvm_mips_pte_for_gpa(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,unsigned long addr)142 static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
143 				   struct kvm_mmu_memory_cache *cache,
144 				   unsigned long addr)
145 {
146 	return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
147 }
148 
149 /*
150  * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
151  * Flush a range of guest physical address space from the VM's GPA page tables.
152  */
153 
kvm_mips_flush_gpa_pte(pte_t * pte,unsigned long start_gpa,unsigned long end_gpa)154 static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
155 				   unsigned long end_gpa)
156 {
157 	int i_min = pte_index(start_gpa);
158 	int i_max = pte_index(end_gpa);
159 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
160 	int i;
161 
162 	for (i = i_min; i <= i_max; ++i) {
163 		if (!pte_present(pte[i]))
164 			continue;
165 
166 		set_pte(pte + i, __pte(0));
167 	}
168 	return safe_to_remove;
169 }
170 
kvm_mips_flush_gpa_pmd(pmd_t * pmd,unsigned long start_gpa,unsigned long end_gpa)171 static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
172 				   unsigned long end_gpa)
173 {
174 	pte_t *pte;
175 	unsigned long end = ~0ul;
176 	int i_min = pmd_index(start_gpa);
177 	int i_max = pmd_index(end_gpa);
178 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
179 	int i;
180 
181 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
182 		if (!pmd_present(pmd[i]))
183 			continue;
184 
185 		pte = pte_offset_kernel(pmd + i, 0);
186 		if (i == i_max)
187 			end = end_gpa;
188 
189 		if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
190 			pmd_clear(pmd + i);
191 			pte_free_kernel(NULL, pte);
192 		} else {
193 			safe_to_remove = false;
194 		}
195 	}
196 	return safe_to_remove;
197 }
198 
kvm_mips_flush_gpa_pud(pud_t * pud,unsigned long start_gpa,unsigned long end_gpa)199 static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
200 				   unsigned long end_gpa)
201 {
202 	pmd_t *pmd;
203 	unsigned long end = ~0ul;
204 	int i_min = pud_index(start_gpa);
205 	int i_max = pud_index(end_gpa);
206 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
207 	int i;
208 
209 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
210 		if (!pud_present(pud[i]))
211 			continue;
212 
213 		pmd = pmd_offset(pud + i, 0);
214 		if (i == i_max)
215 			end = end_gpa;
216 
217 		if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
218 			pud_clear(pud + i);
219 			pmd_free(NULL, pmd);
220 		} else {
221 			safe_to_remove = false;
222 		}
223 	}
224 	return safe_to_remove;
225 }
226 
kvm_mips_flush_gpa_pgd(pgd_t * pgd,unsigned long start_gpa,unsigned long end_gpa)227 static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
228 				   unsigned long end_gpa)
229 {
230 	p4d_t *p4d;
231 	pud_t *pud;
232 	unsigned long end = ~0ul;
233 	int i_min = pgd_index(start_gpa);
234 	int i_max = pgd_index(end_gpa);
235 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
236 	int i;
237 
238 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
239 		if (!pgd_present(pgd[i]))
240 			continue;
241 
242 		p4d = p4d_offset(pgd, 0);
243 		pud = pud_offset(p4d + i, 0);
244 		if (i == i_max)
245 			end = end_gpa;
246 
247 		if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
248 			pgd_clear(pgd + i);
249 			pud_free(NULL, pud);
250 		} else {
251 			safe_to_remove = false;
252 		}
253 	}
254 	return safe_to_remove;
255 }
256 
257 /**
258  * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
259  * @kvm:	KVM pointer.
260  * @start_gfn:	Guest frame number of first page in GPA range to flush.
261  * @end_gfn:	Guest frame number of last page in GPA range to flush.
262  *
263  * Flushes a range of GPA mappings from the GPA page tables.
264  *
265  * The caller must hold the @kvm->mmu_lock spinlock.
266  *
267  * Returns:	Whether its safe to remove the top level page directory because
268  *		all lower levels have been removed.
269  */
kvm_mips_flush_gpa_pt(struct kvm * kvm,gfn_t start_gfn,gfn_t end_gfn)270 bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
271 {
272 	return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
273 				      start_gfn << PAGE_SHIFT,
274 				      end_gfn << PAGE_SHIFT);
275 }
276 
277 #define BUILD_PTE_RANGE_OP(name, op)					\
278 static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,	\
279 				 unsigned long end)			\
280 {									\
281 	int ret = 0;							\
282 	int i_min = pte_index(start);				\
283 	int i_max = pte_index(end);					\
284 	int i;								\
285 	pte_t old, new;							\
286 									\
287 	for (i = i_min; i <= i_max; ++i) {				\
288 		if (!pte_present(pte[i]))				\
289 			continue;					\
290 									\
291 		old = pte[i];						\
292 		new = op(old);						\
293 		if (pte_val(new) == pte_val(old))			\
294 			continue;					\
295 		set_pte(pte + i, new);					\
296 		ret = 1;						\
297 	}								\
298 	return ret;							\
299 }									\
300 									\
301 /* returns true if anything was done */					\
302 static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,	\
303 				 unsigned long end)			\
304 {									\
305 	int ret = 0;							\
306 	pte_t *pte;							\
307 	unsigned long cur_end = ~0ul;					\
308 	int i_min = pmd_index(start);				\
309 	int i_max = pmd_index(end);					\
310 	int i;								\
311 									\
312 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
313 		if (!pmd_present(pmd[i]))				\
314 			continue;					\
315 									\
316 		pte = pte_offset_kernel(pmd + i, 0);				\
317 		if (i == i_max)						\
318 			cur_end = end;					\
319 									\
320 		ret |= kvm_mips_##name##_pte(pte, start, cur_end);	\
321 	}								\
322 	return ret;							\
323 }									\
324 									\
325 static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,	\
326 				 unsigned long end)			\
327 {									\
328 	int ret = 0;							\
329 	pmd_t *pmd;							\
330 	unsigned long cur_end = ~0ul;					\
331 	int i_min = pud_index(start);				\
332 	int i_max = pud_index(end);					\
333 	int i;								\
334 									\
335 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
336 		if (!pud_present(pud[i]))				\
337 			continue;					\
338 									\
339 		pmd = pmd_offset(pud + i, 0);				\
340 		if (i == i_max)						\
341 			cur_end = end;					\
342 									\
343 		ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);	\
344 	}								\
345 	return ret;							\
346 }									\
347 									\
348 static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,	\
349 				 unsigned long end)			\
350 {									\
351 	int ret = 0;							\
352 	p4d_t *p4d;							\
353 	pud_t *pud;							\
354 	unsigned long cur_end = ~0ul;					\
355 	int i_min = pgd_index(start);					\
356 	int i_max = pgd_index(end);					\
357 	int i;								\
358 									\
359 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
360 		if (!pgd_present(pgd[i]))				\
361 			continue;					\
362 									\
363 		p4d = p4d_offset(pgd, 0);				\
364 		pud = pud_offset(p4d + i, 0);				\
365 		if (i == i_max)						\
366 			cur_end = end;					\
367 									\
368 		ret |= kvm_mips_##name##_pud(pud, start, cur_end);	\
369 	}								\
370 	return ret;							\
371 }
372 
373 /*
374  * kvm_mips_mkclean_gpa_pt.
375  * Mark a range of guest physical address space clean (writes fault) in the VM's
376  * GPA page table to allow dirty page tracking.
377  */
378 
BUILD_PTE_RANGE_OP(mkclean,pte_mkclean)379 BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
380 
381 /**
382  * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
383  * @kvm:	KVM pointer.
384  * @start_gfn:	Guest frame number of first page in GPA range to flush.
385  * @end_gfn:	Guest frame number of last page in GPA range to flush.
386  *
387  * Make a range of GPA mappings clean so that guest writes will fault and
388  * trigger dirty page logging.
389  *
390  * The caller must hold the @kvm->mmu_lock spinlock.
391  *
392  * Returns:	Whether any GPA mappings were modified, which would require
393  *		derived mappings (GVA page tables & TLB enties) to be
394  *		invalidated.
395  */
396 int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
397 {
398 	return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
399 				    start_gfn << PAGE_SHIFT,
400 				    end_gfn << PAGE_SHIFT);
401 }
402 
403 /**
404  * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
405  * @kvm:	The KVM pointer
406  * @slot:	The memory slot associated with mask
407  * @gfn_offset:	The gfn offset in memory slot
408  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
409  *		slot to be write protected
410  *
411  * Walks bits set in mask write protects the associated pte's. Caller must
412  * acquire @kvm->mmu_lock.
413  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)414 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
415 		struct kvm_memory_slot *slot,
416 		gfn_t gfn_offset, unsigned long mask)
417 {
418 	gfn_t base_gfn = slot->base_gfn + gfn_offset;
419 	gfn_t start = base_gfn +  __ffs(mask);
420 	gfn_t end = base_gfn + __fls(mask);
421 
422 	kvm_mips_mkclean_gpa_pt(kvm, start, end);
423 }
424 
425 /*
426  * kvm_mips_mkold_gpa_pt.
427  * Mark a range of guest physical address space old (all accesses fault) in the
428  * VM's GPA page table to allow detection of commonly used pages.
429  */
430 
BUILD_PTE_RANGE_OP(mkold,pte_mkold)431 BUILD_PTE_RANGE_OP(mkold, pte_mkold)
432 
433 static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
434 				 gfn_t end_gfn)
435 {
436 	return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
437 				  start_gfn << PAGE_SHIFT,
438 				  end_gfn << PAGE_SHIFT);
439 }
440 
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)441 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
442 {
443 	kvm_mips_flush_gpa_pt(kvm, range->start, range->end);
444 	return true;
445 }
446 
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)447 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
448 {
449 	return kvm_mips_mkold_gpa_pt(kvm, range->start, range->end);
450 }
451 
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)452 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
453 {
454 	gpa_t gpa = range->start << PAGE_SHIFT;
455 	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
456 
457 	if (!gpa_pte)
458 		return false;
459 	return pte_young(*gpa_pte);
460 }
461 
462 /**
463  * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
464  * @vcpu:		VCPU pointer.
465  * @gpa:		Guest physical address of fault.
466  * @write_fault:	Whether the fault was due to a write.
467  * @out_entry:		New PTE for @gpa (written on success unless NULL).
468  * @out_buddy:		New PTE for @gpa's buddy (written on success unless
469  *			NULL).
470  *
471  * Perform fast path GPA fault handling, doing all that can be done without
472  * calling into KVM. This handles marking old pages young (for idle page
473  * tracking), and dirtying of clean pages (for dirty page logging).
474  *
475  * Returns:	0 on success, in which case we can update derived mappings and
476  *		resume guest execution.
477  *		-EFAULT on failure due to absent GPA mapping or write to
478  *		read-only page, in which case KVM must be consulted.
479  */
_kvm_mips_map_page_fast(struct kvm_vcpu * vcpu,unsigned long gpa,bool write_fault,pte_t * out_entry,pte_t * out_buddy)480 static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
481 				   bool write_fault,
482 				   pte_t *out_entry, pte_t *out_buddy)
483 {
484 	struct kvm *kvm = vcpu->kvm;
485 	gfn_t gfn = gpa >> PAGE_SHIFT;
486 	pte_t *ptep;
487 	kvm_pfn_t pfn = 0;	/* silence bogus GCC warning */
488 	bool pfn_valid = false;
489 	int ret = 0;
490 
491 	spin_lock(&kvm->mmu_lock);
492 
493 	/* Fast path - just check GPA page table for an existing entry */
494 	ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
495 	if (!ptep || !pte_present(*ptep)) {
496 		ret = -EFAULT;
497 		goto out;
498 	}
499 
500 	/* Track access to pages marked old */
501 	if (!pte_young(*ptep)) {
502 		set_pte(ptep, pte_mkyoung(*ptep));
503 		pfn = pte_pfn(*ptep);
504 		pfn_valid = true;
505 		/* call kvm_set_pfn_accessed() after unlock */
506 	}
507 	if (write_fault && !pte_dirty(*ptep)) {
508 		if (!pte_write(*ptep)) {
509 			ret = -EFAULT;
510 			goto out;
511 		}
512 
513 		/* Track dirtying of writeable pages */
514 		set_pte(ptep, pte_mkdirty(*ptep));
515 		pfn = pte_pfn(*ptep);
516 		mark_page_dirty(kvm, gfn);
517 		kvm_set_pfn_dirty(pfn);
518 	}
519 
520 	if (out_entry)
521 		*out_entry = *ptep;
522 	if (out_buddy)
523 		*out_buddy = *ptep_buddy(ptep);
524 
525 out:
526 	spin_unlock(&kvm->mmu_lock);
527 	if (pfn_valid)
528 		kvm_set_pfn_accessed(pfn);
529 	return ret;
530 }
531 
532 /**
533  * kvm_mips_map_page() - Map a guest physical page.
534  * @vcpu:		VCPU pointer.
535  * @gpa:		Guest physical address of fault.
536  * @write_fault:	Whether the fault was due to a write.
537  * @out_entry:		New PTE for @gpa (written on success unless NULL).
538  * @out_buddy:		New PTE for @gpa's buddy (written on success unless
539  *			NULL).
540  *
541  * Handle GPA faults by creating a new GPA mapping (or updating an existing
542  * one).
543  *
544  * This takes care of marking pages young or dirty (idle/dirty page tracking),
545  * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
546  * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
547  * caller.
548  *
549  * Returns:	0 on success, in which case the caller may use the @out_entry
550  *		and @out_buddy PTEs to update derived mappings and resume guest
551  *		execution.
552  *		-EFAULT if there is no memory region at @gpa or a write was
553  *		attempted to a read-only memory region. This is usually handled
554  *		as an MMIO access.
555  */
kvm_mips_map_page(struct kvm_vcpu * vcpu,unsigned long gpa,bool write_fault,pte_t * out_entry,pte_t * out_buddy)556 static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
557 			     bool write_fault,
558 			     pte_t *out_entry, pte_t *out_buddy)
559 {
560 	struct kvm *kvm = vcpu->kvm;
561 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
562 	gfn_t gfn = gpa >> PAGE_SHIFT;
563 	int srcu_idx, err;
564 	kvm_pfn_t pfn;
565 	pte_t *ptep, entry;
566 	bool writeable;
567 	unsigned long prot_bits;
568 	unsigned long mmu_seq;
569 
570 	/* Try the fast path to handle old / clean pages */
571 	srcu_idx = srcu_read_lock(&kvm->srcu);
572 	err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
573 				      out_buddy);
574 	if (!err)
575 		goto out;
576 
577 	/* We need a minimum of cached pages ready for page table creation */
578 	err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
579 	if (err)
580 		goto out;
581 
582 retry:
583 	/*
584 	 * Used to check for invalidations in progress, of the pfn that is
585 	 * returned by pfn_to_pfn_prot below.
586 	 */
587 	mmu_seq = kvm->mmu_invalidate_seq;
588 	/*
589 	 * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads
590 	 * in gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
591 	 * risk the page we get a reference to getting unmapped before we have a
592 	 * chance to grab the mmu_lock without mmu_invalidate_retry() noticing.
593 	 *
594 	 * This smp_rmb() pairs with the effective smp_wmb() of the combination
595 	 * of the pte_unmap_unlock() after the PTE is zapped, and the
596 	 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
597 	 * mmu_invalidate_seq is incremented.
598 	 */
599 	smp_rmb();
600 
601 	/* Slow path - ask KVM core whether we can access this GPA */
602 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
603 	if (is_error_noslot_pfn(pfn)) {
604 		err = -EFAULT;
605 		goto out;
606 	}
607 
608 	spin_lock(&kvm->mmu_lock);
609 	/* Check if an invalidation has taken place since we got pfn */
610 	if (mmu_invalidate_retry(kvm, mmu_seq)) {
611 		/*
612 		 * This can happen when mappings are changed asynchronously, but
613 		 * also synchronously if a COW is triggered by
614 		 * gfn_to_pfn_prot().
615 		 */
616 		spin_unlock(&kvm->mmu_lock);
617 		kvm_release_pfn_clean(pfn);
618 		goto retry;
619 	}
620 
621 	/* Ensure page tables are allocated */
622 	ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
623 
624 	/* Set up the PTE */
625 	prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
626 	if (writeable) {
627 		prot_bits |= _PAGE_WRITE;
628 		if (write_fault) {
629 			prot_bits |= __WRITEABLE;
630 			mark_page_dirty(kvm, gfn);
631 			kvm_set_pfn_dirty(pfn);
632 		}
633 	}
634 	entry = pfn_pte(pfn, __pgprot(prot_bits));
635 
636 	/* Write the PTE */
637 	set_pte(ptep, entry);
638 
639 	err = 0;
640 	if (out_entry)
641 		*out_entry = *ptep;
642 	if (out_buddy)
643 		*out_buddy = *ptep_buddy(ptep);
644 
645 	spin_unlock(&kvm->mmu_lock);
646 	kvm_release_pfn_clean(pfn);
647 	kvm_set_pfn_accessed(pfn);
648 out:
649 	srcu_read_unlock(&kvm->srcu, srcu_idx);
650 	return err;
651 }
652 
kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,struct kvm_vcpu * vcpu,bool write_fault)653 int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
654 				      struct kvm_vcpu *vcpu,
655 				      bool write_fault)
656 {
657 	int ret;
658 
659 	ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
660 	if (ret)
661 		return ret;
662 
663 	/* Invalidate this entry in the TLB */
664 	return kvm_vz_host_tlb_inv(vcpu, badvaddr);
665 }
666 
667 /**
668  * kvm_mips_migrate_count() - Migrate timer.
669  * @vcpu:	Virtual CPU.
670  *
671  * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
672  * if it was running prior to being cancelled.
673  *
674  * Must be called when the VCPU is migrated to a different CPU to ensure that
675  * timer expiry during guest execution interrupts the guest and causes the
676  * interrupt to be delivered in a timely manner.
677  */
kvm_mips_migrate_count(struct kvm_vcpu * vcpu)678 static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
679 {
680 	if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
681 		hrtimer_restart(&vcpu->arch.comparecount_timer);
682 }
683 
684 /* Restore ASID once we are scheduled back after preemption */
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)685 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
686 {
687 	unsigned long flags;
688 
689 	kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
690 
691 	local_irq_save(flags);
692 
693 	vcpu->cpu = cpu;
694 	if (vcpu->arch.last_sched_cpu != cpu) {
695 		kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
696 			  vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
697 		/*
698 		 * Migrate the timer interrupt to the current CPU so that it
699 		 * always interrupts the guest and synchronously triggers a
700 		 * guest timer interrupt.
701 		 */
702 		kvm_mips_migrate_count(vcpu);
703 	}
704 
705 	/* restore guest state to registers */
706 	kvm_mips_callbacks->vcpu_load(vcpu, cpu);
707 
708 	local_irq_restore(flags);
709 }
710 
711 /* ASID can change if another task is scheduled during preemption */
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)712 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
713 {
714 	unsigned long flags;
715 	int cpu;
716 
717 	local_irq_save(flags);
718 
719 	cpu = smp_processor_id();
720 	vcpu->arch.last_sched_cpu = cpu;
721 	vcpu->cpu = -1;
722 
723 	/* save guest state in registers */
724 	kvm_mips_callbacks->vcpu_put(vcpu, cpu);
725 
726 	local_irq_restore(flags);
727 }
728