1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
4 */
5
6 #include <linux/types.h>
7 #include <linux/kprobes.h>
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 #include <linux/kdebug.h>
11 #include <linux/sched.h>
12 #include <linux/uaccess.h>
13 #include <asm/cacheflush.h>
14 #include <asm/current.h>
15 #include <asm/disasm.h>
16
17 #define MIN_STACK_SIZE(addr) min((unsigned long)MAX_STACK_SIZE, \
18 (unsigned long)current_thread_info() + THREAD_SIZE - (addr))
19
20 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
21 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
22
arch_prepare_kprobe(struct kprobe * p)23 int __kprobes arch_prepare_kprobe(struct kprobe *p)
24 {
25 /* Attempt to probe at unaligned address */
26 if ((unsigned long)p->addr & 0x01)
27 return -EINVAL;
28
29 /* Address should not be in exception handling code */
30
31 p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
32 p->opcode = *p->addr;
33
34 return 0;
35 }
36
arch_arm_kprobe(struct kprobe * p)37 void __kprobes arch_arm_kprobe(struct kprobe *p)
38 {
39 *p->addr = UNIMP_S_INSTRUCTION;
40
41 flush_icache_range((unsigned long)p->addr,
42 (unsigned long)p->addr + sizeof(kprobe_opcode_t));
43 }
44
arch_disarm_kprobe(struct kprobe * p)45 void __kprobes arch_disarm_kprobe(struct kprobe *p)
46 {
47 *p->addr = p->opcode;
48
49 flush_icache_range((unsigned long)p->addr,
50 (unsigned long)p->addr + sizeof(kprobe_opcode_t));
51 }
52
arch_remove_kprobe(struct kprobe * p)53 void __kprobes arch_remove_kprobe(struct kprobe *p)
54 {
55 arch_disarm_kprobe(p);
56
57 /* Can we remove the kprobe in the middle of kprobe handling? */
58 if (p->ainsn.t1_addr) {
59 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
60
61 flush_icache_range((unsigned long)p->ainsn.t1_addr,
62 (unsigned long)p->ainsn.t1_addr +
63 sizeof(kprobe_opcode_t));
64
65 p->ainsn.t1_addr = NULL;
66 }
67
68 if (p->ainsn.t2_addr) {
69 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
70
71 flush_icache_range((unsigned long)p->ainsn.t2_addr,
72 (unsigned long)p->ainsn.t2_addr +
73 sizeof(kprobe_opcode_t));
74
75 p->ainsn.t2_addr = NULL;
76 }
77 }
78
save_previous_kprobe(struct kprobe_ctlblk * kcb)79 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
80 {
81 kcb->prev_kprobe.kp = kprobe_running();
82 kcb->prev_kprobe.status = kcb->kprobe_status;
83 }
84
restore_previous_kprobe(struct kprobe_ctlblk * kcb)85 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
86 {
87 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
88 kcb->kprobe_status = kcb->prev_kprobe.status;
89 }
90
set_current_kprobe(struct kprobe * p)91 static inline void __kprobes set_current_kprobe(struct kprobe *p)
92 {
93 __this_cpu_write(current_kprobe, p);
94 }
95
resume_execution(struct kprobe * p,unsigned long addr,struct pt_regs * regs)96 static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
97 struct pt_regs *regs)
98 {
99 /* Remove the trap instructions inserted for single step and
100 * restore the original instructions
101 */
102 if (p->ainsn.t1_addr) {
103 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
104
105 flush_icache_range((unsigned long)p->ainsn.t1_addr,
106 (unsigned long)p->ainsn.t1_addr +
107 sizeof(kprobe_opcode_t));
108
109 p->ainsn.t1_addr = NULL;
110 }
111
112 if (p->ainsn.t2_addr) {
113 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
114
115 flush_icache_range((unsigned long)p->ainsn.t2_addr,
116 (unsigned long)p->ainsn.t2_addr +
117 sizeof(kprobe_opcode_t));
118
119 p->ainsn.t2_addr = NULL;
120 }
121
122 return;
123 }
124
setup_singlestep(struct kprobe * p,struct pt_regs * regs)125 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
126 {
127 unsigned long next_pc;
128 unsigned long tgt_if_br = 0;
129 int is_branch;
130 unsigned long bta;
131
132 /* Copy the opcode back to the kprobe location and execute the
133 * instruction. Because of this we will not be able to get into the
134 * same kprobe until this kprobe is done
135 */
136 *(p->addr) = p->opcode;
137
138 flush_icache_range((unsigned long)p->addr,
139 (unsigned long)p->addr + sizeof(kprobe_opcode_t));
140
141 /* Now we insert the trap at the next location after this instruction to
142 * single step. If it is a branch we insert the trap at possible branch
143 * targets
144 */
145
146 bta = regs->bta;
147
148 if (regs->status32 & 0x40) {
149 /* We are in a delay slot with the branch taken */
150
151 next_pc = bta & ~0x01;
152
153 if (!p->ainsn.is_short) {
154 if (bta & 0x01)
155 regs->blink += 2;
156 else {
157 /* Branch not taken */
158 next_pc += 2;
159
160 /* next pc is taken from bta after executing the
161 * delay slot instruction
162 */
163 regs->bta += 2;
164 }
165 }
166
167 is_branch = 0;
168 } else
169 is_branch =
170 disasm_next_pc((unsigned long)p->addr, regs,
171 (struct callee_regs *) current->thread.callee_reg,
172 &next_pc, &tgt_if_br);
173
174 p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
175 p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
176 *(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;
177
178 flush_icache_range((unsigned long)p->ainsn.t1_addr,
179 (unsigned long)p->ainsn.t1_addr +
180 sizeof(kprobe_opcode_t));
181
182 if (is_branch) {
183 p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
184 p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
185 *(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;
186
187 flush_icache_range((unsigned long)p->ainsn.t2_addr,
188 (unsigned long)p->ainsn.t2_addr +
189 sizeof(kprobe_opcode_t));
190 }
191 }
192
193 static int
arc_kprobe_handler(unsigned long addr,struct pt_regs * regs)194 __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
195 {
196 struct kprobe *p;
197 struct kprobe_ctlblk *kcb;
198
199 preempt_disable();
200
201 kcb = get_kprobe_ctlblk();
202 p = get_kprobe((unsigned long *)addr);
203
204 if (p) {
205 /*
206 * We have reentered the kprobe_handler, since another kprobe
207 * was hit while within the handler, we save the original
208 * kprobes and single step on the instruction of the new probe
209 * without calling any user handlers to avoid recursive
210 * kprobes.
211 */
212 if (kprobe_running()) {
213 save_previous_kprobe(kcb);
214 set_current_kprobe(p);
215 kprobes_inc_nmissed_count(p);
216 setup_singlestep(p, regs);
217 kcb->kprobe_status = KPROBE_REENTER;
218 return 1;
219 }
220
221 set_current_kprobe(p);
222 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
223
224 /* If we have no pre-handler or it returned 0, we continue with
225 * normal processing. If we have a pre-handler and it returned
226 * non-zero - which means user handler setup registers to exit
227 * to another instruction, we must skip the single stepping.
228 */
229 if (!p->pre_handler || !p->pre_handler(p, regs)) {
230 setup_singlestep(p, regs);
231 kcb->kprobe_status = KPROBE_HIT_SS;
232 } else {
233 reset_current_kprobe();
234 preempt_enable_no_resched();
235 }
236
237 return 1;
238 }
239
240 /* no_kprobe: */
241 preempt_enable_no_resched();
242 return 0;
243 }
244
245 static int
arc_post_kprobe_handler(unsigned long addr,struct pt_regs * regs)246 __kprobes arc_post_kprobe_handler(unsigned long addr, struct pt_regs *regs)
247 {
248 struct kprobe *cur = kprobe_running();
249 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
250
251 if (!cur)
252 return 0;
253
254 resume_execution(cur, addr, regs);
255
256 /* Rearm the kprobe */
257 arch_arm_kprobe(cur);
258
259 /*
260 * When we return from trap instruction we go to the next instruction
261 * We restored the actual instruction in resume_exectuiont and we to
262 * return to the same address and execute it
263 */
264 regs->ret = addr;
265
266 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
267 kcb->kprobe_status = KPROBE_HIT_SSDONE;
268 cur->post_handler(cur, regs, 0);
269 }
270
271 if (kcb->kprobe_status == KPROBE_REENTER) {
272 restore_previous_kprobe(kcb);
273 goto out;
274 }
275
276 reset_current_kprobe();
277
278 out:
279 preempt_enable_no_resched();
280 return 1;
281 }
282
283 /*
284 * Fault can be for the instruction being single stepped or for the
285 * pre/post handlers in the module.
286 * This is applicable for applications like user probes, where we have the
287 * probe in user space and the handlers in the kernel
288 */
289
kprobe_fault_handler(struct pt_regs * regs,unsigned long trapnr)290 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
291 {
292 struct kprobe *cur = kprobe_running();
293 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
294
295 switch (kcb->kprobe_status) {
296 case KPROBE_HIT_SS:
297 case KPROBE_REENTER:
298 /*
299 * We are here because the instruction being single stepped
300 * caused the fault. We reset the current kprobe and allow the
301 * exception handler as if it is regular exception. In our
302 * case it doesn't matter because the system will be halted
303 */
304 resume_execution(cur, (unsigned long)cur->addr, regs);
305
306 if (kcb->kprobe_status == KPROBE_REENTER)
307 restore_previous_kprobe(kcb);
308 else
309 reset_current_kprobe();
310
311 preempt_enable_no_resched();
312 break;
313
314 case KPROBE_HIT_ACTIVE:
315 case KPROBE_HIT_SSDONE:
316 /*
317 * We are here because the instructions in the pre/post handler
318 * caused the fault.
319 */
320
321 /*
322 * In case the user-specified fault handler returned zero,
323 * try to fix up.
324 */
325 if (fixup_exception(regs))
326 return 1;
327
328 /*
329 * fixup_exception() could not handle it,
330 * Let do_page_fault() fix it.
331 */
332 break;
333
334 default:
335 break;
336 }
337 return 0;
338 }
339
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)340 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
341 unsigned long val, void *data)
342 {
343 struct die_args *args = data;
344 unsigned long addr = args->err;
345 int ret = NOTIFY_DONE;
346
347 switch (val) {
348 case DIE_IERR:
349 if (arc_kprobe_handler(addr, args->regs))
350 return NOTIFY_STOP;
351 break;
352
353 case DIE_TRAP:
354 if (arc_post_kprobe_handler(addr, args->regs))
355 return NOTIFY_STOP;
356 break;
357
358 default:
359 break;
360 }
361
362 return ret;
363 }
364
kretprobe_trampoline_holder(void)365 static void __used kretprobe_trampoline_holder(void)
366 {
367 __asm__ __volatile__(".global __kretprobe_trampoline\n"
368 "__kretprobe_trampoline:\n"
369 "nop\n");
370 }
371
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)372 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
373 struct pt_regs *regs)
374 {
375
376 ri->ret_addr = (kprobe_opcode_t *) regs->blink;
377 ri->fp = NULL;
378
379 /* Replace the return addr with trampoline addr */
380 regs->blink = (unsigned long)&__kretprobe_trampoline;
381 }
382
trampoline_probe_handler(struct kprobe * p,struct pt_regs * regs)383 static int __kprobes trampoline_probe_handler(struct kprobe *p,
384 struct pt_regs *regs)
385 {
386 regs->ret = __kretprobe_trampoline_handler(regs, NULL);
387
388 /* By returning a non zero value, we are telling the kprobe handler
389 * that we don't want the post_handler to run
390 */
391 return 1;
392 }
393
394 static struct kprobe trampoline_p = {
395 .addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
396 .pre_handler = trampoline_probe_handler
397 };
398
arch_init_kprobes(void)399 int __init arch_init_kprobes(void)
400 {
401 /* Registering the trampoline code for the kret probe */
402 return register_kprobe(&trampoline_p);
403 }
404
arch_trampoline_kprobe(struct kprobe * p)405 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
406 {
407 if (p->addr == (kprobe_opcode_t *) &__kretprobe_trampoline)
408 return 1;
409
410 return 0;
411 }
412
trap_is_kprobe(unsigned long address,struct pt_regs * regs)413 void trap_is_kprobe(unsigned long address, struct pt_regs *regs)
414 {
415 notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP);
416 }
417