1 #!/usr/bin/gawk -f
2 # SPDX-License-Identifier: GPL-2.0
3 # generate_builtin_ranges.awk: Generate address range data for builtin modules
4 # Written by Kris Van Hees <kris.van.hees@oracle.com>
5 #
6 # Usage: generate_builtin_ranges.awk modules.builtin vmlinux.map \
7 #		vmlinux.o.map > modules.builtin.ranges
8 #
9 
10 # Return the module name(s) (if any) associated with the given object.
11 #
12 # If we have seen this object before, return information from the cache.
13 # Otherwise, retrieve it from the corresponding .cmd file.
14 #
15 function get_module_info(fn, mod, obj, s) {
16 	if (fn in omod)
17 		return omod[fn];
18 
19 	if (match(fn, /\/[^/]+$/) == 0)
20 		return "";
21 
22 	obj = fn;
23 	mod = "";
24 	fn = substr(fn, 1, RSTART) "." substr(fn, RSTART + 1) ".cmd";
25 	if (getline s <fn == 1) {
26 		if (match(s, /DKBUILD_MODFILE=['"]+[^'"]+/) > 0) {
27 			mod = substr(s, RSTART + 16, RLENGTH - 16);
28 			gsub(/['"]/, "", mod);
29 		} else if (match(s, /RUST_MODFILE=[^ ]+/) > 0)
30 			mod = substr(s, RSTART + 13, RLENGTH - 13);
31 	}
32 	close(fn);
33 
34 	# A single module (common case) also reflects objects that are not part
35 	# of a module.  Some of those objects have names that are also a module
36 	# name (e.g. core).  We check the associated module file name, and if
37 	# they do not match, the object is not part of a module.
38 	if (mod !~ / /) {
39 		if (!(mod in mods))
40 			mod = "";
41 	}
42 
43 	gsub(/([^/ ]*\/)+/, "", mod);
44 	gsub(/-/, "_", mod);
45 
46 	# At this point, mod is a single (valid) module name, or a list of
47 	# module names (that do not need validation).
48 	omod[obj] = mod;
49 
50 	return mod;
51 }
52 
53 # Update the ranges entry for the given module 'mod' in section 'osect'.
54 #
55 # We use a modified absolute start address (soff + base) as index because we
56 # may need to insert an anchor record later that must be at the start of the
57 # section data, and the first module may very well start at the same address.
58 # So, we use (addr << 1) + 1 to allow a possible anchor record to be placed at
59 # (addr << 1).  This is safe because the index is only used to sort the entries
60 # before writing them out.
61 #
62 function update_entry(osect, mod, soff, eoff, sect, idx) {
63 	sect = sect_in[osect];
64 	idx = sprintf("%016x", (soff + sect_base[osect]) * 2 + 1);
65 	entries[idx] = sprintf("%s %08x-%08x %s", sect, soff, eoff, mod);
66 	count[sect]++;
67 }
68 
69 # (1) Build a lookup map of built-in module names.
70 #
71 # The first file argument is used as input (modules.builtin).
72 #
73 # Lines will be like:
74 #	kernel/crypto/lzo-rle.ko
75 # and we record the object name "crypto/lzo-rle".
76 #
77 ARGIND == 1 {
78 	sub(/kernel\//, "");			# strip off "kernel/" prefix
79 	sub(/\.ko$/, "");			# strip off .ko suffix
80 
81 	mods[$1] = 1;
82 	next;
83 }
84 
85 # (2) Collect address information for each section.
86 #
87 # The second file argument is used as input (vmlinux.map).
88 #
89 # We collect the base address of the section in order to convert all addresses
90 # in the section into offset values.
91 #
92 # We collect the address of the anchor (or first symbol in the section if there
93 # is no explicit anchor) to allow users of the range data to calculate address
94 # ranges based on the actual load address of the section in the running kernel.
95 #
96 # We collect the start address of any sub-section (section included in the top
97 # level section being processed).  This is needed when the final linking was
98 # done using vmlinux.a because then the list of objects contained in each
99 # section is to be obtained from vmlinux.o.map.  The offset of the sub-section
100 # is recorded here, to be used as an addend when processing vmlinux.o.map
101 # later.
102 #
103 
104 # Both GNU ld and LLVM lld linker map format are supported by converting LLVM
105 # lld linker map records into equivalent GNU ld linker map records.
106 #
107 # The first record of the vmlinux.map file provides enough information to know
108 # which format we are dealing with.
109 #
110 ARGIND == 2 && FNR == 1 && NF == 7 && $1 == "VMA" && $7 == "Symbol" {
111 	map_is_lld = 1;
112 	if (dbg)
113 		printf "NOTE: %s uses LLVM lld linker map format\n", FILENAME >"/dev/stderr";
114 	next;
115 }
116 
117 # (LLD) Convert a section record fronm lld format to ld format.
118 #
119 # lld: ffffffff82c00000          2c00000   2493c0  8192 .data
120 #  ->
121 # ld:  .data           0xffffffff82c00000   0x2493c0 load address 0x0000000002c00000
122 #
123 ARGIND == 2 && map_is_lld && NF == 5 && /[0-9] [^ ]+$/ {
124 	$0 = $5 " 0x"$1 " 0x"$3 " load address 0x"$2;
125 }
126 
127 # (LLD) Convert an anchor record from lld format to ld format.
128 #
129 # lld: ffffffff81000000          1000000        0     1         _text = .
130 #  ->
131 # ld:                  0xffffffff81000000                _text = .
132 #
133 ARGIND == 2 && map_is_lld && !anchor && NF == 7 && raw_addr == "0x"$1 && $6 == "=" && $7 == "." {
134 	$0 = "  0x"$1 " " $5 " = .";
135 }
136 
137 # (LLD) Convert an object record from lld format to ld format.
138 #
139 # lld:            11480            11480     1f07    16         vmlinux.a(arch/x86/events/amd/uncore.o):(.text)
140 #  ->
141 # ld:   .text          0x0000000000011480     0x1f07 arch/x86/events/amd/uncore.o
142 #
143 ARGIND == 2 && map_is_lld && NF == 5 && $5 ~ /:\(/ {
144 	gsub(/\)/, "");
145 	sub(/ vmlinux\.a\(/, " ");
146 	sub(/:\(/, " ");
147 	$0 = " "$6 " 0x"$1 " 0x"$3 " " $5;
148 }
149 
150 # (LLD) Convert a symbol record from lld format to ld format.
151 #
152 # We only care about these while processing a section for which no anchor has
153 # been determined yet.
154 #
155 # lld: ffffffff82a859a4          2a859a4        0     1                 btf_ksym_iter_id
156 #  ->
157 # ld:                  0xffffffff82a859a4                btf_ksym_iter_id
158 #
159 ARGIND == 2 && map_is_lld && sect && !anchor && NF == 5 && $5 ~ /^[_A-Za-z][_A-Za-z0-9]*$/ {
160 	$0 = "  0x"$1 " " $5;
161 }
162 
163 # (LLD) We do not need any other ldd linker map records.
164 #
165 ARGIND == 2 && map_is_lld && /^[0-9a-f]{16} / {
166 	next;
167 }
168 
169 # (LD) Section records with just the section name at the start of the line
170 #      need to have the next line pulled in to determine whether it is a
171 #      loadable section.  If it is, the next line will contains a hex value
172 #      as first and second items.
173 #
174 ARGIND == 2 && !map_is_lld && NF == 1 && /^[^ ]/ {
175 	s = $0;
176 	getline;
177 	if ($1 !~ /^0x/ || $2 !~ /^0x/)
178 		next;
179 
180 	$0 = s " " $0;
181 }
182 
183 # (LD) Object records with just the section name denote records with a long
184 #      section name for which the remainder of the record can be found on the
185 #      next line.
186 #
187 # (This is also needed for vmlinux.o.map, when used.)
188 #
189 ARGIND >= 2 && !map_is_lld && NF == 1 && /^ [^ \*]/ {
190 	s = $0;
191 	getline;
192 	$0 = s " " $0;
193 }
194 
195 # Beginning a new section - done with the previous one (if any).
196 #
197 ARGIND == 2 && /^[^ ]/ {
198 	sect = 0;
199 }
200 
201 # Process a loadable section (we only care about .-sections).
202 #
203 # Record the section name and its base address.
204 # We also record the raw (non-stripped) address of the section because it can
205 # be used to identify an anchor record.
206 #
207 # Note:
208 # Since some AWK implementations cannot handle large integers, we strip off the
209 # first 4 hex digits from the address.  This is safe because the kernel space
210 # is not large enough for addresses to extend into those digits.  The portion
211 # to strip off is stored in addr_prefix as a regexp, so further clauses can
212 # perform a simple substitution to do the address stripping.
213 #
214 ARGIND == 2 && /^\./ {
215 	# Explicitly ignore a few sections that are not relevant here.
216 	if ($1 ~ /^\.orc_/ || $1 ~ /_sites$/ || $1 ~ /\.percpu/)
217 		next;
218 
219 	# Sections with a 0-address can be ignored as well.
220 	if ($2 ~ /^0x0+$/)
221 		next;
222 
223 	raw_addr = $2;
224 	addr_prefix = "^" substr($2, 1, 6);
225 	base = $2;
226 	sub(addr_prefix, "0x", base);
227 	base = strtonum(base);
228 	sect = $1;
229 	anchor = 0;
230 	sect_base[sect] = base;
231 	sect_size[sect] = strtonum($3);
232 
233 	if (dbg)
234 		printf "[%s] BASE   %016x\n", sect, base >"/dev/stderr";
235 
236 	next;
237 }
238 
239 # If we are not in a section we care about, we ignore the record.
240 #
241 ARGIND == 2 && !sect {
242 	next;
243 }
244 
245 # Record the first anchor symbol for the current section.
246 #
247 # An anchor record for the section bears the same raw address as the section
248 # record.
249 #
250 ARGIND == 2 && !anchor && NF == 4 && raw_addr == $1 && $3 == "=" && $4 == "." {
251 	anchor = sprintf("%s %08x-%08x = %s", sect, 0, 0, $2);
252 	sect_anchor[sect] = anchor;
253 
254 	if (dbg)
255 		printf "[%s] ANCHOR %016x = %s (.)\n", sect, 0, $2 >"/dev/stderr";
256 
257 	next;
258 }
259 
260 # If no anchor record was found for the current section, use the first symbol
261 # in the section as anchor.
262 #
263 ARGIND == 2 && !anchor && NF == 2 && $1 ~ /^0x/ && $2 !~ /^0x/ {
264 	addr = $1;
265 	sub(addr_prefix, "0x", addr);
266 	addr = strtonum(addr) - base;
267 	anchor = sprintf("%s %08x-%08x = %s", sect, addr, addr, $2);
268 	sect_anchor[sect] = anchor;
269 
270 	if (dbg)
271 		printf "[%s] ANCHOR %016x = %s\n", sect, addr, $2 >"/dev/stderr";
272 
273 	next;
274 }
275 
276 # The first occurrence of a section name in an object record establishes the
277 # addend (often 0) for that section.  This information is needed to handle
278 # sections that get combined in the final linking of vmlinux (e.g. .head.text
279 # getting included at the start of .text).
280 #
281 # If the section does not have a base yet, use the base of the encapsulating
282 # section.
283 #
284 ARGIND == 2 && sect && NF == 4 && /^ [^ \*]/ && !($1 in sect_addend) {
285 	if (!($1 in sect_base)) {
286 		sect_base[$1] = base;
287 
288 		if (dbg)
289 			printf "[%s] BASE   %016x\n", $1, base >"/dev/stderr";
290 	}
291 
292 	addr = $2;
293 	sub(addr_prefix, "0x", addr);
294 	addr = strtonum(addr);
295 	sect_addend[$1] = addr - sect_base[$1];
296 	sect_in[$1] = sect;
297 
298 	if (dbg)
299 		printf "[%s] ADDEND %016x - %016x = %016x\n",  $1, addr, base, sect_addend[$1] >"/dev/stderr";
300 
301 	# If the object is vmlinux.o then we will need vmlinux.o.map to get the
302 	# actual offsets of objects.
303 	if ($4 == "vmlinux.o")
304 		need_o_map = 1;
305 }
306 
307 # (3) Collect offset ranges (relative to the section base address) for built-in
308 # modules.
309 #
310 # If the final link was done using the actual objects, vmlinux.map contains all
311 # the information we need (see section (3a)).
312 # If linking was done using vmlinux.a as intermediary, we will need to process
313 # vmlinux.o.map (see section (3b)).
314 
315 # (3a) Determine offset range info using vmlinux.map.
316 #
317 # Since we are already processing vmlinux.map, the top level section that is
318 # being processed is already known.  If we do not have a base address for it,
319 # we do not need to process records for it.
320 #
321 # Given the object name, we determine the module(s) (if any) that the current
322 # object is associated with.
323 #
324 # If we were already processing objects for a (list of) module(s):
325 #  - If the current object belongs to the same module(s), update the range data
326 #    to include the current object.
327 #  - Otherwise, ensure that the end offset of the range is valid.
328 #
329 # If the current object does not belong to a built-in module, ignore it.
330 #
331 # If it does, we add a new built-in module offset range record.
332 #
333 ARGIND == 2 && !need_o_map && /^ [^ ]/ && NF == 4 && $3 != "0x0" {
334 	if (!(sect in sect_base))
335 		next;
336 
337 	# Turn the address into an offset from the section base.
338 	soff = $2;
339 	sub(addr_prefix, "0x", soff);
340 	soff = strtonum(soff) - sect_base[sect];
341 	eoff = soff + strtonum($3);
342 
343 	# Determine which (if any) built-in modules the object belongs to.
344 	mod = get_module_info($4);
345 
346 	# If we are processing a built-in module:
347 	#   - If the current object is within the same module, we update its
348 	#     entry by extending the range and move on
349 	#   - Otherwise:
350 	#       + If we are still processing within the same main section, we
351 	#         validate the end offset against the start offset of the
352 	#         current object (e.g. .rodata.str1.[18] objects are often
353 	#         listed with an incorrect size in the linker map)
354 	#       + Otherwise, we validate the end offset against the section
355 	#         size
356 	if (mod_name) {
357 		if (mod == mod_name) {
358 			mod_eoff = eoff;
359 			update_entry(mod_sect, mod_name, mod_soff, eoff);
360 
361 			next;
362 		} else if (sect == sect_in[mod_sect]) {
363 			if (mod_eoff > soff)
364 				update_entry(mod_sect, mod_name, mod_soff, soff);
365 		} else {
366 			v = sect_size[sect_in[mod_sect]];
367 			if (mod_eoff > v)
368 				update_entry(mod_sect, mod_name, mod_soff, v);
369 		}
370 	}
371 
372 	mod_name = mod;
373 
374 	# If we encountered an object that is not part of a built-in module, we
375 	# do not need to record any data.
376 	if (!mod)
377 		next;
378 
379 	# At this point, we encountered the start of a new built-in module.
380 	mod_name = mod;
381 	mod_soff = soff;
382 	mod_eoff = eoff;
383 	mod_sect = $1;
384 	update_entry($1, mod, soff, mod_eoff);
385 
386 	next;
387 }
388 
389 # If we do not need to parse the vmlinux.o.map file, we are done.
390 #
391 ARGIND == 3 && !need_o_map {
392 	if (dbg)
393 		printf "Note: %s is not needed.\n", FILENAME >"/dev/stderr";
394 	exit;
395 }
396 
397 # (3) Collect offset ranges (relative to the section base address) for built-in
398 # modules.
399 #
400 
401 # (LLD) Convert an object record from lld format to ld format.
402 #
403 ARGIND == 3 && map_is_lld && NF == 5 && $5 ~ /:\(/ {
404 	gsub(/\)/, "");
405 	sub(/:\(/, " ");
406 
407 	sect = $6;
408 	if (!(sect in sect_addend))
409 		next;
410 
411 	sub(/ vmlinux\.a\(/, " ");
412 	$0 = " "sect " 0x"$1 " 0x"$3 " " $5;
413 }
414 
415 # (3b) Determine offset range info using vmlinux.o.map.
416 #
417 # If we do not know an addend for the object's section, we are interested in
418 # anything within that section.
419 #
420 # Determine the top-level section that the object's section was included in
421 # during the final link.  This is the section name offset range data will be
422 # associated with for this object.
423 #
424 # The remainder of the processing of the current object record follows the
425 # procedure outlined in (3a).
426 #
427 ARGIND == 3 && /^ [^ ]/ && NF == 4 && $3 != "0x0" {
428 	osect = $1;
429 	if (!(osect in sect_addend))
430 		next;
431 
432 	# We need to work with the main section.
433 	sect = sect_in[osect];
434 
435 	# Turn the address into an offset from the section base.
436 	soff = $2;
437 	sub(addr_prefix, "0x", soff);
438 	soff = strtonum(soff) + sect_addend[osect];
439 	eoff = soff + strtonum($3);
440 
441 	# Determine which (if any) built-in modules the object belongs to.
442 	mod = get_module_info($4);
443 
444 	# If we are processing a built-in module:
445 	#   - If the current object is within the same module, we update its
446 	#     entry by extending the range and move on
447 	#   - Otherwise:
448 	#       + If we are still processing within the same main section, we
449 	#         validate the end offset against the start offset of the
450 	#         current object (e.g. .rodata.str1.[18] objects are often
451 	#         listed with an incorrect size in the linker map)
452 	#       + Otherwise, we validate the end offset against the section
453 	#         size
454 	if (mod_name) {
455 		if (mod == mod_name) {
456 			mod_eoff = eoff;
457 			update_entry(mod_sect, mod_name, mod_soff, eoff);
458 
459 			next;
460 		} else if (sect == sect_in[mod_sect]) {
461 			if (mod_eoff > soff)
462 				update_entry(mod_sect, mod_name, mod_soff, soff);
463 		} else {
464 			v = sect_size[sect_in[mod_sect]];
465 			if (mod_eoff > v)
466 				update_entry(mod_sect, mod_name, mod_soff, v);
467 		}
468 	}
469 
470 	mod_name = mod;
471 
472 	# If we encountered an object that is not part of a built-in module, we
473 	# do not need to record any data.
474 	if (!mod)
475 		next;
476 
477 	# At this point, we encountered the start of a new built-in module.
478 	mod_name = mod;
479 	mod_soff = soff;
480 	mod_eoff = eoff;
481 	mod_sect = osect;
482 	update_entry(osect, mod, soff, mod_eoff);
483 
484 	next;
485 }
486 
487 # (4) Generate the output.
488 #
489 # Anchor records are added for each section that contains offset range data
490 # records.  They are added at an adjusted section base address (base << 1) to
491 # ensure they come first in the second records (see update_entry() above for
492 # more information).
493 #
494 # All entries are sorted by (adjusted) address to ensure that the output can be
495 # parsed in strict ascending address order.
496 #
497 END {
498 	for (sect in count) {
499 		if (sect in sect_anchor) {
500 			idx = sprintf("%016x", sect_base[sect] * 2);
501 			entries[idx] = sect_anchor[sect];
502 		}
503 	}
504 
505 	n = asorti(entries, indices);
506 	for (i = 1; i <= n; i++)
507 		print entries[indices[i]];
508 }
509