1  // SPDX-License-Identifier: MIT
2  //
3  // Copyright 2024 Advanced Micro Devices, Inc.
4  
5  #include "dcn401_optc.h"
6  #include "dcn30/dcn30_optc.h"
7  #include "dcn31/dcn31_optc.h"
8  #include "dcn32/dcn32_optc.h"
9  #include "reg_helper.h"
10  #include "dc.h"
11  #include "dcn_calc_math.h"
12  #include "dc_dmub_srv.h"
13  
14  #define REG(reg)\
15  	optc1->tg_regs->reg
16  
17  #define CTX \
18  	optc1->base.ctx
19  
20  #undef FN
21  #define FN(reg_name, field_name) \
22  	optc1->tg_shift->field_name, optc1->tg_mask->field_name
23  
24  /*
25   * OPTC uses ODM_MEM sub block to merge pixel data coming from different OPPs
26   * into unified memory location per horizontal line. ODM_MEM contains shared
27   * memory resources global to the ASIC. Each memory resource is capable of
28   * storing 2048 pixels independent from actual pixel data size. Total number of
29   * memory allocated must be even. The memory resource allocation is described in
30   * a memory bit map per OPTC instance. Driver has to make sure that there is no
31   * double allocation across different OPTC instances. Bit offset in the map
32   * represents memory instance id. Driver allocates a memory instance to the
33   * current OPTC by setting the bit with offset associated with the desired
34   * memory instance to 1 in the current OPTC memory map register.
35   *
36   * It is upto software to decide how to allocate the shared memory resources
37   * across different OPTC instances. Driver understands that the total number
38   * of memory available is always 2 times the max number of OPP pipes. So each
39   * OPP pipe can be mapped 2 pieces of memory. However there exists cases such as
40   * 11520x2160 which could use 6 pieces of memory for 2 OPP pipes i.e. 3 pieces
41   * for each OPP pipe.
42   *
43   * Driver will reserve the first and second preferred memory instances for each
44   * OPP pipe. For example, OPP0's first and second preferred memory is ODM_MEM0
45   * and ODM_MEM1. OPP1's first and second preferred memory is  ODM_MEM2 and
46   * ODM_MEM3 so on so forth.
47   *
48   * Driver will first allocate from first preferred memory instances associated
49   * with current OPP pipes in use. If needed driver will then allocate from
50   * second preferred memory instances associated with current OPP pipes in use.
51   * Finally if still needed, driver will allocate from second preferred memory
52   * instances not associated with current OPP pipes. So if memory instances are
53   * enough other OPTCs can still allocate from their OPPs' first preferred memory
54   * instances without worrying about double allocation.
55   */
56  
decide_odm_mem_bit_map(int * opp_id,int opp_cnt,int h_active)57  static uint32_t decide_odm_mem_bit_map(int *opp_id, int opp_cnt, int h_active)
58  {
59  	bool first_preferred_memory_for_opp[MAX_PIPES] = {0};
60  	bool second_preferred_memory_for_opp[MAX_PIPES] = {0};
61  	uint32_t memory_bit_map = 0;
62  	int total_required = ((h_active + 4095) / 4096) * 2;
63  	int total_allocated = 0;
64  	int i;
65  
66  	for (i = 0; i < opp_cnt; i++) {
67  		first_preferred_memory_for_opp[opp_id[i]] = true;
68  		total_allocated++;
69  		if (total_required == total_allocated)
70  			break;
71  	}
72  
73  	if (total_required > total_allocated) {
74  		for (i = 0; i < opp_cnt; i++) {
75  			second_preferred_memory_for_opp[opp_id[i]] = true;
76  			total_allocated++;
77  			if (total_required == total_allocated)
78  				break;
79  		}
80  	}
81  
82  	if (total_required > total_allocated) {
83  		for (i = 0; i < MAX_PIPES; i++) {
84  			if (second_preferred_memory_for_opp[i] == false) {
85  				second_preferred_memory_for_opp[i] = true;
86  				total_allocated++;
87  				if (total_required == total_allocated)
88  					break;
89  			}
90  		}
91  	}
92  	ASSERT(total_required == total_allocated);
93  
94  	for (i = 0; i < MAX_PIPES; i++) {
95  		if (first_preferred_memory_for_opp[i])
96  			memory_bit_map |= 0x1 << (i * 2);
97  		if (second_preferred_memory_for_opp[i])
98  			memory_bit_map |= 0x2 << (i * 2);
99  	}
100  
101  	return memory_bit_map;
102  }
103  
optc401_set_odm_combine(struct timing_generator * optc,int * opp_id,int opp_cnt,int segment_width,int last_segment_width)104  static void optc401_set_odm_combine(struct timing_generator *optc, int *opp_id,
105  		int opp_cnt, int segment_width, int last_segment_width)
106  {
107  	struct optc *optc1 = DCN10TG_FROM_TG(optc);
108  	uint32_t h_active = segment_width * (opp_cnt - 1) + last_segment_width;
109  	uint32_t odm_mem_bit_map = decide_odm_mem_bit_map(
110  			opp_id, opp_cnt, h_active);
111  
112  	REG_SET(OPTC_MEMORY_CONFIG, 0,
113  		OPTC_MEM_SEL, odm_mem_bit_map);
114  
115  	switch (opp_cnt) {
116  	case 2: /* ODM Combine 2:1 */
117  		REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0,
118  				OPTC_NUM_OF_INPUT_SEGMENT, 1,
119  				OPTC_SEG0_SRC_SEL, opp_id[0],
120  				OPTC_SEG1_SRC_SEL, opp_id[1]);
121  		REG_UPDATE(OPTC_WIDTH_CONTROL,
122  					OPTC_SEGMENT_WIDTH, segment_width);
123  
124  		REG_UPDATE(OTG_H_TIMING_CNTL,
125  				OTG_H_TIMING_DIV_MODE, H_TIMING_DIV_BY2);
126  		break;
127  	case 3: /* ODM Combine 3:1 */
128  		REG_SET_4(OPTC_DATA_SOURCE_SELECT, 0,
129  				OPTC_NUM_OF_INPUT_SEGMENT, 2,
130  				OPTC_SEG0_SRC_SEL, opp_id[0],
131  				OPTC_SEG1_SRC_SEL, opp_id[1],
132  				OPTC_SEG2_SRC_SEL, opp_id[2]);
133  		REG_UPDATE(OPTC_WIDTH_CONTROL,
134  				OPTC_SEGMENT_WIDTH, segment_width);
135  		REG_UPDATE(OPTC_WIDTH_CONTROL2,
136  				OPTC_SEGMENT_WIDTH_LAST,
137  				last_segment_width);
138  		/* In ODM combine 3:1 mode ODM packs 4 pixels per data transfer
139  		 * so OTG_H_TIMING_DIV_MODE should be configured to
140  		 * H_TIMING_DIV_BY4 even though ODM combines 3 OPP inputs, it
141  		 * outputs 4 pixels from single OPP at a time.
142  		 */
143  		REG_UPDATE(OTG_H_TIMING_CNTL,
144  				OTG_H_TIMING_DIV_MODE, H_TIMING_DIV_BY4);
145  		break;
146  	case 4: /* ODM Combine 4:1 */
147  		REG_SET_5(OPTC_DATA_SOURCE_SELECT, 0,
148  				OPTC_NUM_OF_INPUT_SEGMENT, 3,
149  				OPTC_SEG0_SRC_SEL, opp_id[0],
150  				OPTC_SEG1_SRC_SEL, opp_id[1],
151  				OPTC_SEG2_SRC_SEL, opp_id[2],
152  				OPTC_SEG3_SRC_SEL, opp_id[3]);
153  		REG_UPDATE(OPTC_WIDTH_CONTROL,
154  					OPTC_SEGMENT_WIDTH, segment_width);
155  		REG_UPDATE(OTG_H_TIMING_CNTL,
156  				OTG_H_TIMING_DIV_MODE, H_TIMING_DIV_BY4);
157  		break;
158  	default:
159  		ASSERT(false);
160  	}
161  ;
162  	optc1->opp_count = opp_cnt;
163  }
164  
optc401_set_h_timing_div_manual_mode(struct timing_generator * optc,bool manual_mode)165  static void optc401_set_h_timing_div_manual_mode(struct timing_generator *optc, bool manual_mode)
166  {
167  	struct optc *optc1 = DCN10TG_FROM_TG(optc);
168  
169  	REG_UPDATE(OTG_H_TIMING_CNTL,
170  			OTG_H_TIMING_DIV_MODE_MANUAL, manual_mode ? 1 : 0);
171  }
172  /**
173   * optc401_enable_crtc() - Enable CRTC
174   * @optc: Pointer to the timing generator structure
175   *
176   * This function calls ASIC Control Object to enable Timing generator.
177   *
178   * Return: Always returns true
179   */
optc401_enable_crtc(struct timing_generator * optc)180  static bool optc401_enable_crtc(struct timing_generator *optc)
181  {
182  	struct optc *optc1 = DCN10TG_FROM_TG(optc);
183  
184  	/* opp instance for OTG, 1 to 1 mapping and odm will adjust */
185  	REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
186  			OPTC_SEG0_SRC_SEL, optc->inst);
187  
188  	/* VTG enable first is for HW workaround */
189  	REG_UPDATE(CONTROL,
190  			VTG0_ENABLE, 1);
191  
192  	REG_SEQ_START();
193  
194  	/* Enable CRTC */
195  	REG_UPDATE_2(OTG_CONTROL,
196  			OTG_DISABLE_POINT_CNTL, 2,
197  			OTG_MASTER_EN, 1);
198  
199  	REG_SEQ_SUBMIT();
200  	REG_SEQ_WAIT_DONE();
201  
202  	return true;
203  }
204  
205  /* disable_crtc */
optc401_disable_crtc(struct timing_generator * optc)206  static bool optc401_disable_crtc(struct timing_generator *optc)
207  {
208  	struct optc *optc1 = DCN10TG_FROM_TG(optc);
209  
210  	REG_UPDATE_5(OPTC_DATA_SOURCE_SELECT,
211  			OPTC_SEG0_SRC_SEL, 0xf,
212  			OPTC_SEG1_SRC_SEL, 0xf,
213  			OPTC_SEG2_SRC_SEL, 0xf,
214  			OPTC_SEG3_SRC_SEL, 0xf,
215  			OPTC_NUM_OF_INPUT_SEGMENT, 0);
216  
217  	REG_UPDATE(OPTC_MEMORY_CONFIG,
218  			OPTC_MEM_SEL, 0);
219  
220  	/* disable otg request until end of the first line
221  	 * in the vertical blank region
222  	 */
223  	REG_UPDATE(OTG_CONTROL,
224  			OTG_MASTER_EN, 0);
225  
226  	REG_UPDATE(CONTROL,
227  			VTG0_ENABLE, 0);
228  
229  	/* CRTC disabled, so disable  clock. */
230  	REG_WAIT(OTG_CLOCK_CONTROL,
231  			OTG_BUSY, 0,
232  			1, 150000);
233  
234  	return true;
235  }
236  
optc401_phantom_crtc_post_enable(struct timing_generator * optc)237  static void optc401_phantom_crtc_post_enable(struct timing_generator *optc)
238  {
239  	struct optc *optc1 = DCN10TG_FROM_TG(optc);
240  
241  	/* Disable immediately. */
242  	REG_UPDATE_2(OTG_CONTROL, OTG_DISABLE_POINT_CNTL, 0, OTG_MASTER_EN, 0);
243  
244  	/* CRTC disabled, so disable  clock. */
245  	REG_WAIT(OTG_CLOCK_CONTROL, OTG_BUSY, 0, 1, 100000);
246  }
247  
optc401_disable_phantom_otg(struct timing_generator * optc)248  static void optc401_disable_phantom_otg(struct timing_generator *optc)
249  {
250  	struct optc *optc1 = DCN10TG_FROM_TG(optc);
251  
252  	REG_UPDATE_5(OPTC_DATA_SOURCE_SELECT,
253  			OPTC_SEG0_SRC_SEL, 0xf,
254  			OPTC_SEG1_SRC_SEL, 0xf,
255  			OPTC_SEG2_SRC_SEL, 0xf,
256  			OPTC_SEG3_SRC_SEL, 0xf,
257  			OPTC_NUM_OF_INPUT_SEGMENT, 0);
258  
259  	REG_UPDATE(OTG_CONTROL, OTG_MASTER_EN, 0);
260  }
261  
optc401_set_odm_bypass(struct timing_generator * optc,const struct dc_crtc_timing * dc_crtc_timing)262  static void optc401_set_odm_bypass(struct timing_generator *optc,
263  		const struct dc_crtc_timing *dc_crtc_timing)
264  {
265  	struct optc *optc1 = DCN10TG_FROM_TG(optc);
266  	enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
267  
268  	REG_SET_5(OPTC_DATA_SOURCE_SELECT, 0,
269  			OPTC_NUM_OF_INPUT_SEGMENT, 0,
270  			OPTC_SEG0_SRC_SEL, optc->inst,
271  			OPTC_SEG1_SRC_SEL, 0xf,
272  			OPTC_SEG2_SRC_SEL, 0xf,
273  			OPTC_SEG3_SRC_SEL, 0xf
274  			);
275  
276  	h_div = optc->funcs->is_two_pixels_per_container(dc_crtc_timing);
277  	REG_UPDATE(OTG_H_TIMING_CNTL,
278  			OTG_H_TIMING_DIV_MODE, h_div);
279  
280  	REG_SET(OPTC_MEMORY_CONFIG, 0,
281  			OPTC_MEM_SEL, 0);
282  	optc1->opp_count = 1;
283  }
284  
285  /* only to be used when FAMS2 is disabled or unsupported */
optc401_setup_manual_trigger(struct timing_generator * optc)286  void optc401_setup_manual_trigger(struct timing_generator *optc)
287  {
288  	struct optc *optc1 = DCN10TG_FROM_TG(optc);
289  	struct dc *dc = optc->ctx->dc;
290  
291  	if (dc->caps.dmub_caps.fams_ver == 1 && !dc->debug.disable_fams)
292  		/* FAMS */
293  		dc_dmub_srv_set_drr_manual_trigger_cmd(dc, optc->inst);
294  	else {
295  		/*
296  		 * MIN_MASK_EN is gone and MASK is now always enabled.
297  		 *
298  		 * To get it to it work with manual trigger we need to make sure
299  		 * we program the correct bit.
300  		 */
301  		REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
302  				OTG_V_TOTAL_MIN_SEL, 1,
303  				OTG_V_TOTAL_MAX_SEL, 1,
304  				OTG_FORCE_LOCK_ON_EVENT, 0,
305  				OTG_SET_V_TOTAL_MIN_MASK, (1 << 1)); /* TRIGA */
306  	}
307  }
308  
optc401_set_drr(struct timing_generator * optc,const struct drr_params * params)309  void optc401_set_drr(
310  	struct timing_generator *optc,
311  	const struct drr_params *params)
312  {
313  	struct optc *optc1 = DCN10TG_FROM_TG(optc);
314  	struct dc *dc = optc->ctx->dc;
315  	struct drr_params amended_params = { 0 };
316  	bool program_manual_trigger = false;
317  
318  	if (dc->caps.dmub_caps.fams_ver >= 2 && dc->debug.fams2_config.bits.enable) {
319  		if (params != NULL &&
320  				params->vertical_total_max > 0 &&
321  				params->vertical_total_min > 0) {
322  			amended_params.vertical_total_max = params->vertical_total_max - 1;
323  			amended_params.vertical_total_min = params->vertical_total_min - 1;
324  			if (params->vertical_total_mid != 0) {
325  				amended_params.vertical_total_mid = params->vertical_total_mid - 1;
326  				amended_params.vertical_total_mid_frame_num = params->vertical_total_mid_frame_num;
327  			}
328  			program_manual_trigger = true;
329  		}
330  
331  		dc_dmub_srv_fams2_drr_update(dc, optc->inst,
332  				amended_params.vertical_total_min,
333  				amended_params.vertical_total_max,
334  				amended_params.vertical_total_mid,
335  				amended_params.vertical_total_mid_frame_num,
336  				program_manual_trigger);
337  	} else {
338  		if (params != NULL &&
339  			params->vertical_total_max > 0 &&
340  			params->vertical_total_min > 0) {
341  
342  			if (params->vertical_total_mid != 0) {
343  
344  				REG_SET(OTG_V_TOTAL_MID, 0,
345  					OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
346  
347  				REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
348  						OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
349  						OTG_VTOTAL_MID_FRAME_NUM,
350  						(uint8_t)params->vertical_total_mid_frame_num);
351  
352  			}
353  
354  			optc->funcs->set_vtotal_min_max(optc, params->vertical_total_min - 1, params->vertical_total_max - 1);
355  			optc401_setup_manual_trigger(optc);
356  		} else {
357  			REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
358  					OTG_SET_V_TOTAL_MIN_MASK, 0,
359  					OTG_V_TOTAL_MIN_SEL, 0,
360  					OTG_V_TOTAL_MAX_SEL, 0,
361  					OTG_FORCE_LOCK_ON_EVENT, 0);
362  
363  			optc->funcs->set_vtotal_min_max(optc, 0, 0);
364  		}
365  	}
366  }
367  
optc401_set_out_mux(struct timing_generator * optc,enum otg_out_mux_dest dest)368  static void optc401_set_out_mux(struct timing_generator *optc, enum otg_out_mux_dest dest)
369  {
370  	struct optc *optc1 = DCN10TG_FROM_TG(optc);
371  
372  	/* 00 - OTG_CONTROL_OTG_OUT_MUX_0 : Connects to DIO.
373  	   01 - OTG_CONTROL_OTG_OUT_MUX_1 : Reserved.
374  	   02 - OTG_CONTROL_OTG_OUT_MUX_2 : Connects to HPO.
375  	*/
376  	REG_UPDATE(OTG_CONTROL, OTG_OUT_MUX, dest);
377  }
378  
optc401_set_vtotal_min_max(struct timing_generator * optc,int vtotal_min,int vtotal_max)379  void optc401_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max)
380  {
381  	struct dc *dc = optc->ctx->dc;
382  
383  	if (dc->caps.dmub_caps.fams_ver >= 2 && dc->debug.fams2_config.bits.enable) {
384  		/* FAMS2 */
385  		dc_dmub_srv_fams2_drr_update(dc, optc->inst,
386  				vtotal_min,
387  				vtotal_max,
388  				0,
389  				0,
390  				false);
391  	} else if (dc->caps.dmub_caps.fams_ver == 1 && !dc->debug.disable_fams) {
392  		/* FAMS */
393  		dc_dmub_srv_drr_update_cmd(dc, optc->inst, vtotal_min, vtotal_max);
394  	} else {
395  		optc1_set_vtotal_min_max(optc, vtotal_min, vtotal_max);
396  	}
397  }
398  
optc401_program_global_sync(struct timing_generator * optc,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width,int pstate_keepout)399  static void optc401_program_global_sync(
400  		struct timing_generator *optc,
401  		int vready_offset,
402  		int vstartup_start,
403  		int vupdate_offset,
404  		int vupdate_width,
405  		int pstate_keepout)
406  {
407  	struct optc *optc1 = DCN10TG_FROM_TG(optc);
408  
409  	optc1->vready_offset = vready_offset;
410  	optc1->vstartup_start = vstartup_start;
411  	optc1->vupdate_offset = vupdate_offset;
412  	optc1->vupdate_width = vupdate_width;
413  	optc1->pstate_keepout = pstate_keepout;
414  
415  	if (optc1->vstartup_start == 0) {
416  		BREAK_TO_DEBUGGER();
417  		return;
418  	}
419  
420  	REG_SET(OTG_VSTARTUP_PARAM, 0,
421  		VSTARTUP_START, optc1->vstartup_start);
422  
423  	REG_SET_2(OTG_VUPDATE_PARAM, 0,
424  			VUPDATE_OFFSET, optc1->vupdate_offset,
425  			VUPDATE_WIDTH, optc1->vupdate_width);
426  
427  	REG_SET(OTG_VREADY_PARAM, 0,
428  			VREADY_OFFSET, optc1->vready_offset);
429  
430  	REG_UPDATE(OTG_PSTATE_REGISTER, OTG_PSTATE_KEEPOUT_START, pstate_keepout);
431  }
432  
433  static struct timing_generator_funcs dcn401_tg_funcs = {
434  		.validate_timing = optc1_validate_timing,
435  		.program_timing = optc1_program_timing,
436  		.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
437  		.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
438  		.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
439  		.program_global_sync = optc401_program_global_sync,
440  		.enable_crtc = optc401_enable_crtc,
441  		.disable_crtc = optc401_disable_crtc,
442  		.phantom_crtc_post_enable = optc401_phantom_crtc_post_enable,
443  		.disable_phantom_crtc = optc401_disable_phantom_otg,
444  		/* used by enable_timing_synchronization. Not need for FPGA */
445  		.is_counter_moving = optc1_is_counter_moving,
446  		.get_position = optc1_get_position,
447  		.get_frame_count = optc1_get_vblank_counter,
448  		.get_scanoutpos = optc1_get_crtc_scanoutpos,
449  		.get_otg_active_size = optc1_get_otg_active_size,
450  		.set_early_control = optc1_set_early_control,
451  		/* used by enable_timing_synchronization. Not need for FPGA */
452  		.wait_for_state = optc1_wait_for_state,
453  		.set_blank_color = optc3_program_blank_color,
454  		.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
455  		.triplebuffer_lock = optc3_triplebuffer_lock,
456  		.triplebuffer_unlock = optc2_triplebuffer_unlock,
457  		.enable_reset_trigger = optc1_enable_reset_trigger,
458  		.enable_crtc_reset = optc1_enable_crtc_reset,
459  		.disable_reset_trigger = optc1_disable_reset_trigger,
460  		.lock = optc3_lock,
461  		.unlock = optc1_unlock,
462  		.lock_doublebuffer_enable = optc3_lock_doublebuffer_enable,
463  		.lock_doublebuffer_disable = optc3_lock_doublebuffer_disable,
464  		.enable_optc_clock = optc1_enable_optc_clock,
465  		.set_drr = optc401_set_drr,
466  		.get_last_used_drr_vtotal = optc2_get_last_used_drr_vtotal,
467  		.set_vtotal_min_max = optc401_set_vtotal_min_max,
468  		.set_static_screen_control = optc1_set_static_screen_control,
469  		.program_stereo = optc1_program_stereo,
470  		.is_stereo_left_eye = optc1_is_stereo_left_eye,
471  		.tg_init = optc3_tg_init,
472  		.is_tg_enabled = optc1_is_tg_enabled,
473  		.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
474  		.clear_optc_underflow = optc1_clear_optc_underflow,
475  		.setup_global_swap_lock = NULL,
476  		.get_crc = optc1_get_crc,
477  		.configure_crc = optc1_configure_crc,
478  		.set_dsc_config = optc3_set_dsc_config,
479  		.get_dsc_status = optc2_get_dsc_status,
480  		.set_dwb_source = NULL,
481  		.set_odm_bypass = optc401_set_odm_bypass,
482  		.set_odm_combine = optc401_set_odm_combine,
483  		.wait_odm_doublebuffer_pending_clear = optc32_wait_odm_doublebuffer_pending_clear,
484  		.set_h_timing_div_manual_mode = optc401_set_h_timing_div_manual_mode,
485  		.get_optc_source = optc2_get_optc_source,
486  		.set_out_mux = optc401_set_out_mux,
487  		.set_drr_trigger_window = optc3_set_drr_trigger_window,
488  		.set_vtotal_change_limit = optc3_set_vtotal_change_limit,
489  		.set_gsl = optc2_set_gsl,
490  		.set_gsl_source_select = optc2_set_gsl_source_select,
491  		.set_vtg_params = optc1_set_vtg_params,
492  		.program_manual_trigger = optc2_program_manual_trigger,
493  		.setup_manual_trigger = optc2_setup_manual_trigger,
494  		.get_hw_timing = optc1_get_hw_timing,
495  		.is_two_pixels_per_container = optc1_is_two_pixels_per_container,
496  		.get_double_buffer_pending = optc32_get_double_buffer_pending,
497  };
498  
dcn401_timing_generator_init(struct optc * optc1)499  void dcn401_timing_generator_init(struct optc *optc1)
500  {
501  	optc1->base.funcs = &dcn401_tg_funcs;
502  
503  	optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
504  	optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
505  
506  	optc1->min_h_blank = 32;
507  	optc1->min_v_blank = 3;
508  	optc1->min_v_blank_interlace = 5;
509  	optc1->min_h_sync_width = 4;
510  	optc1->min_v_sync_width = 1;
511  }
512  
513