1 // SPDX-License-Identifier: MIT
2 //
3 // Copyright 2024 Advanced Micro Devices, Inc.
4 
5 #include "dcn401_optc.h"
6 #include "dcn30/dcn30_optc.h"
7 #include "dcn31/dcn31_optc.h"
8 #include "dcn32/dcn32_optc.h"
9 #include "reg_helper.h"
10 #include "dc.h"
11 #include "dcn_calc_math.h"
12 #include "dc_dmub_srv.h"
13 
14 #define REG(reg)\
15 	optc1->tg_regs->reg
16 
17 #define CTX \
18 	optc1->base.ctx
19 
20 #undef FN
21 #define FN(reg_name, field_name) \
22 	optc1->tg_shift->field_name, optc1->tg_mask->field_name
23 
24 /*
25  * OPTC uses ODM_MEM sub block to merge pixel data coming from different OPPs
26  * into unified memory location per horizontal line. ODM_MEM contains shared
27  * memory resources global to the ASIC. Each memory resource is capable of
28  * storing 2048 pixels independent from actual pixel data size. Total number of
29  * memory allocated must be even. The memory resource allocation is described in
30  * a memory bit map per OPTC instance. Driver has to make sure that there is no
31  * double allocation across different OPTC instances. Bit offset in the map
32  * represents memory instance id. Driver allocates a memory instance to the
33  * current OPTC by setting the bit with offset associated with the desired
34  * memory instance to 1 in the current OPTC memory map register.
35  *
36  * It is upto software to decide how to allocate the shared memory resources
37  * across different OPTC instances. Driver understands that the total number
38  * of memory available is always 2 times the max number of OPP pipes. So each
39  * OPP pipe can be mapped 2 pieces of memory. However there exists cases such as
40  * 11520x2160 which could use 6 pieces of memory for 2 OPP pipes i.e. 3 pieces
41  * for each OPP pipe.
42  *
43  * Driver will reserve the first and second preferred memory instances for each
44  * OPP pipe. For example, OPP0's first and second preferred memory is ODM_MEM0
45  * and ODM_MEM1. OPP1's first and second preferred memory is  ODM_MEM2 and
46  * ODM_MEM3 so on so forth.
47  *
48  * Driver will first allocate from first preferred memory instances associated
49  * with current OPP pipes in use. If needed driver will then allocate from
50  * second preferred memory instances associated with current OPP pipes in use.
51  * Finally if still needed, driver will allocate from second preferred memory
52  * instances not associated with current OPP pipes. So if memory instances are
53  * enough other OPTCs can still allocate from their OPPs' first preferred memory
54  * instances without worrying about double allocation.
55  */
56 
decide_odm_mem_bit_map(int * opp_id,int opp_cnt,int h_active)57 static uint32_t decide_odm_mem_bit_map(int *opp_id, int opp_cnt, int h_active)
58 {
59 	bool first_preferred_memory_for_opp[MAX_PIPES] = {0};
60 	bool second_preferred_memory_for_opp[MAX_PIPES] = {0};
61 	uint32_t memory_bit_map = 0;
62 	int total_required = ((h_active + 4095) / 4096) * 2;
63 	int total_allocated = 0;
64 	int i;
65 
66 	for (i = 0; i < opp_cnt; i++) {
67 		first_preferred_memory_for_opp[opp_id[i]] = true;
68 		total_allocated++;
69 		if (total_required == total_allocated)
70 			break;
71 	}
72 
73 	if (total_required > total_allocated) {
74 		for (i = 0; i < opp_cnt; i++) {
75 			second_preferred_memory_for_opp[opp_id[i]] = true;
76 			total_allocated++;
77 			if (total_required == total_allocated)
78 				break;
79 		}
80 	}
81 
82 	if (total_required > total_allocated) {
83 		for (i = 0; i < MAX_PIPES; i++) {
84 			if (second_preferred_memory_for_opp[i] == false) {
85 				second_preferred_memory_for_opp[i] = true;
86 				total_allocated++;
87 				if (total_required == total_allocated)
88 					break;
89 			}
90 		}
91 	}
92 	ASSERT(total_required == total_allocated);
93 
94 	for (i = 0; i < MAX_PIPES; i++) {
95 		if (first_preferred_memory_for_opp[i])
96 			memory_bit_map |= 0x1 << (i * 2);
97 		if (second_preferred_memory_for_opp[i])
98 			memory_bit_map |= 0x2 << (i * 2);
99 	}
100 
101 	return memory_bit_map;
102 }
103 
optc401_set_odm_combine(struct timing_generator * optc,int * opp_id,int opp_cnt,int segment_width,int last_segment_width)104 static void optc401_set_odm_combine(struct timing_generator *optc, int *opp_id,
105 		int opp_cnt, int segment_width, int last_segment_width)
106 {
107 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
108 	uint32_t h_active = segment_width * (opp_cnt - 1) + last_segment_width;
109 	uint32_t odm_mem_bit_map = decide_odm_mem_bit_map(
110 			opp_id, opp_cnt, h_active);
111 
112 	REG_SET(OPTC_MEMORY_CONFIG, 0,
113 		OPTC_MEM_SEL, odm_mem_bit_map);
114 
115 	switch (opp_cnt) {
116 	case 2: /* ODM Combine 2:1 */
117 		REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0,
118 				OPTC_NUM_OF_INPUT_SEGMENT, 1,
119 				OPTC_SEG0_SRC_SEL, opp_id[0],
120 				OPTC_SEG1_SRC_SEL, opp_id[1]);
121 		REG_UPDATE(OPTC_WIDTH_CONTROL,
122 					OPTC_SEGMENT_WIDTH, segment_width);
123 
124 		REG_UPDATE(OTG_H_TIMING_CNTL,
125 				OTG_H_TIMING_DIV_MODE, H_TIMING_DIV_BY2);
126 		break;
127 	case 3: /* ODM Combine 3:1 */
128 		REG_SET_4(OPTC_DATA_SOURCE_SELECT, 0,
129 				OPTC_NUM_OF_INPUT_SEGMENT, 2,
130 				OPTC_SEG0_SRC_SEL, opp_id[0],
131 				OPTC_SEG1_SRC_SEL, opp_id[1],
132 				OPTC_SEG2_SRC_SEL, opp_id[2]);
133 		REG_UPDATE(OPTC_WIDTH_CONTROL,
134 				OPTC_SEGMENT_WIDTH, segment_width);
135 		REG_UPDATE(OPTC_WIDTH_CONTROL2,
136 				OPTC_SEGMENT_WIDTH_LAST,
137 				last_segment_width);
138 		/* In ODM combine 3:1 mode ODM packs 4 pixels per data transfer
139 		 * so OTG_H_TIMING_DIV_MODE should be configured to
140 		 * H_TIMING_DIV_BY4 even though ODM combines 3 OPP inputs, it
141 		 * outputs 4 pixels from single OPP at a time.
142 		 */
143 		REG_UPDATE(OTG_H_TIMING_CNTL,
144 				OTG_H_TIMING_DIV_MODE, H_TIMING_DIV_BY4);
145 		break;
146 	case 4: /* ODM Combine 4:1 */
147 		REG_SET_5(OPTC_DATA_SOURCE_SELECT, 0,
148 				OPTC_NUM_OF_INPUT_SEGMENT, 3,
149 				OPTC_SEG0_SRC_SEL, opp_id[0],
150 				OPTC_SEG1_SRC_SEL, opp_id[1],
151 				OPTC_SEG2_SRC_SEL, opp_id[2],
152 				OPTC_SEG3_SRC_SEL, opp_id[3]);
153 		REG_UPDATE(OPTC_WIDTH_CONTROL,
154 					OPTC_SEGMENT_WIDTH, segment_width);
155 		REG_UPDATE(OTG_H_TIMING_CNTL,
156 				OTG_H_TIMING_DIV_MODE, H_TIMING_DIV_BY4);
157 		break;
158 	default:
159 		ASSERT(false);
160 	}
161 ;
162 	optc1->opp_count = opp_cnt;
163 }
164 
optc401_set_h_timing_div_manual_mode(struct timing_generator * optc,bool manual_mode)165 static void optc401_set_h_timing_div_manual_mode(struct timing_generator *optc, bool manual_mode)
166 {
167 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
168 
169 	REG_UPDATE(OTG_H_TIMING_CNTL,
170 			OTG_H_TIMING_DIV_MODE_MANUAL, manual_mode ? 1 : 0);
171 }
172 /**
173  * optc401_enable_crtc() - Enable CRTC
174  * @optc: Pointer to the timing generator structure
175  *
176  * This function calls ASIC Control Object to enable Timing generator.
177  *
178  * Return: Always returns true
179  */
optc401_enable_crtc(struct timing_generator * optc)180 static bool optc401_enable_crtc(struct timing_generator *optc)
181 {
182 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
183 
184 	/* opp instance for OTG, 1 to 1 mapping and odm will adjust */
185 	REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
186 			OPTC_SEG0_SRC_SEL, optc->inst);
187 
188 	/* VTG enable first is for HW workaround */
189 	REG_UPDATE(CONTROL,
190 			VTG0_ENABLE, 1);
191 
192 	REG_SEQ_START();
193 
194 	/* Enable CRTC */
195 	REG_UPDATE_2(OTG_CONTROL,
196 			OTG_DISABLE_POINT_CNTL, 2,
197 			OTG_MASTER_EN, 1);
198 
199 	REG_SEQ_SUBMIT();
200 	REG_SEQ_WAIT_DONE();
201 
202 	return true;
203 }
204 
205 /* disable_crtc */
optc401_disable_crtc(struct timing_generator * optc)206 static bool optc401_disable_crtc(struct timing_generator *optc)
207 {
208 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
209 
210 	REG_UPDATE_5(OPTC_DATA_SOURCE_SELECT,
211 			OPTC_SEG0_SRC_SEL, 0xf,
212 			OPTC_SEG1_SRC_SEL, 0xf,
213 			OPTC_SEG2_SRC_SEL, 0xf,
214 			OPTC_SEG3_SRC_SEL, 0xf,
215 			OPTC_NUM_OF_INPUT_SEGMENT, 0);
216 
217 	REG_UPDATE(OPTC_MEMORY_CONFIG,
218 			OPTC_MEM_SEL, 0);
219 
220 	/* disable otg request until end of the first line
221 	 * in the vertical blank region
222 	 */
223 	REG_UPDATE(OTG_CONTROL,
224 			OTG_MASTER_EN, 0);
225 
226 	REG_UPDATE(CONTROL,
227 			VTG0_ENABLE, 0);
228 
229 	/* CRTC disabled, so disable  clock. */
230 	REG_WAIT(OTG_CLOCK_CONTROL,
231 			OTG_BUSY, 0,
232 			1, 150000);
233 
234 	return true;
235 }
236 
optc401_phantom_crtc_post_enable(struct timing_generator * optc)237 static void optc401_phantom_crtc_post_enable(struct timing_generator *optc)
238 {
239 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
240 
241 	/* Disable immediately. */
242 	REG_UPDATE_2(OTG_CONTROL, OTG_DISABLE_POINT_CNTL, 0, OTG_MASTER_EN, 0);
243 
244 	/* CRTC disabled, so disable  clock. */
245 	REG_WAIT(OTG_CLOCK_CONTROL, OTG_BUSY, 0, 1, 100000);
246 }
247 
optc401_disable_phantom_otg(struct timing_generator * optc)248 static void optc401_disable_phantom_otg(struct timing_generator *optc)
249 {
250 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
251 
252 	REG_UPDATE_5(OPTC_DATA_SOURCE_SELECT,
253 			OPTC_SEG0_SRC_SEL, 0xf,
254 			OPTC_SEG1_SRC_SEL, 0xf,
255 			OPTC_SEG2_SRC_SEL, 0xf,
256 			OPTC_SEG3_SRC_SEL, 0xf,
257 			OPTC_NUM_OF_INPUT_SEGMENT, 0);
258 
259 	REG_UPDATE(OTG_CONTROL, OTG_MASTER_EN, 0);
260 }
261 
optc401_set_odm_bypass(struct timing_generator * optc,const struct dc_crtc_timing * dc_crtc_timing)262 static void optc401_set_odm_bypass(struct timing_generator *optc,
263 		const struct dc_crtc_timing *dc_crtc_timing)
264 {
265 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
266 	enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
267 
268 	REG_SET_5(OPTC_DATA_SOURCE_SELECT, 0,
269 			OPTC_NUM_OF_INPUT_SEGMENT, 0,
270 			OPTC_SEG0_SRC_SEL, optc->inst,
271 			OPTC_SEG1_SRC_SEL, 0xf,
272 			OPTC_SEG2_SRC_SEL, 0xf,
273 			OPTC_SEG3_SRC_SEL, 0xf
274 			);
275 
276 	h_div = optc->funcs->is_two_pixels_per_container(dc_crtc_timing);
277 	REG_UPDATE(OTG_H_TIMING_CNTL,
278 			OTG_H_TIMING_DIV_MODE, h_div);
279 
280 	REG_SET(OPTC_MEMORY_CONFIG, 0,
281 			OPTC_MEM_SEL, 0);
282 	optc1->opp_count = 1;
283 }
284 
285 /* only to be used when FAMS2 is disabled or unsupported */
optc401_setup_manual_trigger(struct timing_generator * optc)286 void optc401_setup_manual_trigger(struct timing_generator *optc)
287 {
288 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
289 	struct dc *dc = optc->ctx->dc;
290 
291 	if (dc->caps.dmub_caps.fams_ver == 1 && !dc->debug.disable_fams)
292 		/* FAMS */
293 		dc_dmub_srv_set_drr_manual_trigger_cmd(dc, optc->inst);
294 	else {
295 		/*
296 		 * MIN_MASK_EN is gone and MASK is now always enabled.
297 		 *
298 		 * To get it to it work with manual trigger we need to make sure
299 		 * we program the correct bit.
300 		 */
301 		REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
302 				OTG_V_TOTAL_MIN_SEL, 1,
303 				OTG_V_TOTAL_MAX_SEL, 1,
304 				OTG_FORCE_LOCK_ON_EVENT, 0,
305 				OTG_SET_V_TOTAL_MIN_MASK, (1 << 1)); /* TRIGA */
306 	}
307 }
308 
optc401_set_drr(struct timing_generator * optc,const struct drr_params * params)309 void optc401_set_drr(
310 	struct timing_generator *optc,
311 	const struct drr_params *params)
312 {
313 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
314 	struct dc *dc = optc->ctx->dc;
315 	struct drr_params amended_params = { 0 };
316 	bool program_manual_trigger = false;
317 
318 	if (dc->caps.dmub_caps.fams_ver >= 2 && dc->debug.fams2_config.bits.enable) {
319 		if (params != NULL &&
320 				params->vertical_total_max > 0 &&
321 				params->vertical_total_min > 0) {
322 			amended_params.vertical_total_max = params->vertical_total_max - 1;
323 			amended_params.vertical_total_min = params->vertical_total_min - 1;
324 			if (params->vertical_total_mid != 0) {
325 				amended_params.vertical_total_mid = params->vertical_total_mid - 1;
326 				amended_params.vertical_total_mid_frame_num = params->vertical_total_mid_frame_num;
327 			}
328 			program_manual_trigger = true;
329 		}
330 
331 		dc_dmub_srv_fams2_drr_update(dc, optc->inst,
332 				amended_params.vertical_total_min,
333 				amended_params.vertical_total_max,
334 				amended_params.vertical_total_mid,
335 				amended_params.vertical_total_mid_frame_num,
336 				program_manual_trigger);
337 	} else {
338 		if (params != NULL &&
339 			params->vertical_total_max > 0 &&
340 			params->vertical_total_min > 0) {
341 
342 			if (params->vertical_total_mid != 0) {
343 
344 				REG_SET(OTG_V_TOTAL_MID, 0,
345 					OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
346 
347 				REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
348 						OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
349 						OTG_VTOTAL_MID_FRAME_NUM,
350 						(uint8_t)params->vertical_total_mid_frame_num);
351 
352 			}
353 
354 			optc->funcs->set_vtotal_min_max(optc, params->vertical_total_min - 1, params->vertical_total_max - 1);
355 			optc401_setup_manual_trigger(optc);
356 		} else {
357 			REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
358 					OTG_SET_V_TOTAL_MIN_MASK, 0,
359 					OTG_V_TOTAL_MIN_SEL, 0,
360 					OTG_V_TOTAL_MAX_SEL, 0,
361 					OTG_FORCE_LOCK_ON_EVENT, 0);
362 
363 			optc->funcs->set_vtotal_min_max(optc, 0, 0);
364 		}
365 	}
366 }
367 
optc401_set_out_mux(struct timing_generator * optc,enum otg_out_mux_dest dest)368 static void optc401_set_out_mux(struct timing_generator *optc, enum otg_out_mux_dest dest)
369 {
370 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
371 
372 	/* 00 - OTG_CONTROL_OTG_OUT_MUX_0 : Connects to DIO.
373 	   01 - OTG_CONTROL_OTG_OUT_MUX_1 : Reserved.
374 	   02 - OTG_CONTROL_OTG_OUT_MUX_2 : Connects to HPO.
375 	*/
376 	REG_UPDATE(OTG_CONTROL, OTG_OUT_MUX, dest);
377 }
378 
optc401_set_vtotal_min_max(struct timing_generator * optc,int vtotal_min,int vtotal_max)379 void optc401_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max)
380 {
381 	struct dc *dc = optc->ctx->dc;
382 
383 	if (dc->caps.dmub_caps.fams_ver >= 2 && dc->debug.fams2_config.bits.enable) {
384 		/* FAMS2 */
385 		dc_dmub_srv_fams2_drr_update(dc, optc->inst,
386 				vtotal_min,
387 				vtotal_max,
388 				0,
389 				0,
390 				false);
391 	} else if (dc->caps.dmub_caps.fams_ver == 1 && !dc->debug.disable_fams) {
392 		/* FAMS */
393 		dc_dmub_srv_drr_update_cmd(dc, optc->inst, vtotal_min, vtotal_max);
394 	} else {
395 		optc1_set_vtotal_min_max(optc, vtotal_min, vtotal_max);
396 	}
397 }
398 
optc401_program_global_sync(struct timing_generator * optc,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width,int pstate_keepout)399 static void optc401_program_global_sync(
400 		struct timing_generator *optc,
401 		int vready_offset,
402 		int vstartup_start,
403 		int vupdate_offset,
404 		int vupdate_width,
405 		int pstate_keepout)
406 {
407 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
408 
409 	optc1->vready_offset = vready_offset;
410 	optc1->vstartup_start = vstartup_start;
411 	optc1->vupdate_offset = vupdate_offset;
412 	optc1->vupdate_width = vupdate_width;
413 	optc1->pstate_keepout = pstate_keepout;
414 
415 	if (optc1->vstartup_start == 0) {
416 		BREAK_TO_DEBUGGER();
417 		return;
418 	}
419 
420 	REG_SET(OTG_VSTARTUP_PARAM, 0,
421 		VSTARTUP_START, optc1->vstartup_start);
422 
423 	REG_SET_2(OTG_VUPDATE_PARAM, 0,
424 			VUPDATE_OFFSET, optc1->vupdate_offset,
425 			VUPDATE_WIDTH, optc1->vupdate_width);
426 
427 	REG_SET(OTG_VREADY_PARAM, 0,
428 			VREADY_OFFSET, optc1->vready_offset);
429 
430 	REG_UPDATE(OTG_PSTATE_REGISTER, OTG_PSTATE_KEEPOUT_START, pstate_keepout);
431 }
432 
433 static struct timing_generator_funcs dcn401_tg_funcs = {
434 		.validate_timing = optc1_validate_timing,
435 		.program_timing = optc1_program_timing,
436 		.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
437 		.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
438 		.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
439 		.program_global_sync = optc401_program_global_sync,
440 		.enable_crtc = optc401_enable_crtc,
441 		.disable_crtc = optc401_disable_crtc,
442 		.phantom_crtc_post_enable = optc401_phantom_crtc_post_enable,
443 		.disable_phantom_crtc = optc401_disable_phantom_otg,
444 		/* used by enable_timing_synchronization. Not need for FPGA */
445 		.is_counter_moving = optc1_is_counter_moving,
446 		.get_position = optc1_get_position,
447 		.get_frame_count = optc1_get_vblank_counter,
448 		.get_scanoutpos = optc1_get_crtc_scanoutpos,
449 		.get_otg_active_size = optc1_get_otg_active_size,
450 		.set_early_control = optc1_set_early_control,
451 		/* used by enable_timing_synchronization. Not need for FPGA */
452 		.wait_for_state = optc1_wait_for_state,
453 		.set_blank_color = optc3_program_blank_color,
454 		.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
455 		.triplebuffer_lock = optc3_triplebuffer_lock,
456 		.triplebuffer_unlock = optc2_triplebuffer_unlock,
457 		.enable_reset_trigger = optc1_enable_reset_trigger,
458 		.enable_crtc_reset = optc1_enable_crtc_reset,
459 		.disable_reset_trigger = optc1_disable_reset_trigger,
460 		.lock = optc3_lock,
461 		.unlock = optc1_unlock,
462 		.lock_doublebuffer_enable = optc3_lock_doublebuffer_enable,
463 		.lock_doublebuffer_disable = optc3_lock_doublebuffer_disable,
464 		.enable_optc_clock = optc1_enable_optc_clock,
465 		.set_drr = optc401_set_drr,
466 		.get_last_used_drr_vtotal = optc2_get_last_used_drr_vtotal,
467 		.set_vtotal_min_max = optc401_set_vtotal_min_max,
468 		.set_static_screen_control = optc1_set_static_screen_control,
469 		.program_stereo = optc1_program_stereo,
470 		.is_stereo_left_eye = optc1_is_stereo_left_eye,
471 		.tg_init = optc3_tg_init,
472 		.is_tg_enabled = optc1_is_tg_enabled,
473 		.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
474 		.clear_optc_underflow = optc1_clear_optc_underflow,
475 		.setup_global_swap_lock = NULL,
476 		.get_crc = optc1_get_crc,
477 		.configure_crc = optc1_configure_crc,
478 		.set_dsc_config = optc3_set_dsc_config,
479 		.get_dsc_status = optc2_get_dsc_status,
480 		.set_dwb_source = NULL,
481 		.set_odm_bypass = optc401_set_odm_bypass,
482 		.set_odm_combine = optc401_set_odm_combine,
483 		.wait_odm_doublebuffer_pending_clear = optc32_wait_odm_doublebuffer_pending_clear,
484 		.set_h_timing_div_manual_mode = optc401_set_h_timing_div_manual_mode,
485 		.get_optc_source = optc2_get_optc_source,
486 		.set_out_mux = optc401_set_out_mux,
487 		.set_drr_trigger_window = optc3_set_drr_trigger_window,
488 		.set_vtotal_change_limit = optc3_set_vtotal_change_limit,
489 		.set_gsl = optc2_set_gsl,
490 		.set_gsl_source_select = optc2_set_gsl_source_select,
491 		.set_vtg_params = optc1_set_vtg_params,
492 		.program_manual_trigger = optc2_program_manual_trigger,
493 		.setup_manual_trigger = optc2_setup_manual_trigger,
494 		.get_hw_timing = optc1_get_hw_timing,
495 		.is_two_pixels_per_container = optc1_is_two_pixels_per_container,
496 		.get_double_buffer_pending = optc32_get_double_buffer_pending,
497 };
498 
dcn401_timing_generator_init(struct optc * optc1)499 void dcn401_timing_generator_init(struct optc *optc1)
500 {
501 	optc1->base.funcs = &dcn401_tg_funcs;
502 
503 	optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
504 	optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
505 
506 	optc1->min_h_blank = 32;
507 	optc1->min_v_blank = 3;
508 	optc1->min_v_blank_interlace = 5;
509 	optc1->min_h_sync_width = 4;
510 	optc1->min_v_sync_width = 1;
511 }
512 
513