// SPDX-License-Identifier: MIT // // Copyright 2024 Advanced Micro Devices, Inc. #include "dcn401_optc.h" #include "dcn30/dcn30_optc.h" #include "dcn31/dcn31_optc.h" #include "dcn32/dcn32_optc.h" #include "reg_helper.h" #include "dc.h" #include "dcn_calc_math.h" #include "dc_dmub_srv.h" #define REG(reg)\ optc1->tg_regs->reg #define CTX \ optc1->base.ctx #undef FN #define FN(reg_name, field_name) \ optc1->tg_shift->field_name, optc1->tg_mask->field_name /* * OPTC uses ODM_MEM sub block to merge pixel data coming from different OPPs * into unified memory location per horizontal line. ODM_MEM contains shared * memory resources global to the ASIC. Each memory resource is capable of * storing 2048 pixels independent from actual pixel data size. Total number of * memory allocated must be even. The memory resource allocation is described in * a memory bit map per OPTC instance. Driver has to make sure that there is no * double allocation across different OPTC instances. Bit offset in the map * represents memory instance id. Driver allocates a memory instance to the * current OPTC by setting the bit with offset associated with the desired * memory instance to 1 in the current OPTC memory map register. * * It is upto software to decide how to allocate the shared memory resources * across different OPTC instances. Driver understands that the total number * of memory available is always 2 times the max number of OPP pipes. So each * OPP pipe can be mapped 2 pieces of memory. However there exists cases such as * 11520x2160 which could use 6 pieces of memory for 2 OPP pipes i.e. 3 pieces * for each OPP pipe. * * Driver will reserve the first and second preferred memory instances for each * OPP pipe. For example, OPP0's first and second preferred memory is ODM_MEM0 * and ODM_MEM1. OPP1's first and second preferred memory is ODM_MEM2 and * ODM_MEM3 so on so forth. * * Driver will first allocate from first preferred memory instances associated * with current OPP pipes in use. If needed driver will then allocate from * second preferred memory instances associated with current OPP pipes in use. * Finally if still needed, driver will allocate from second preferred memory * instances not associated with current OPP pipes. So if memory instances are * enough other OPTCs can still allocate from their OPPs' first preferred memory * instances without worrying about double allocation. */ static uint32_t decide_odm_mem_bit_map(int *opp_id, int opp_cnt, int h_active) { bool first_preferred_memory_for_opp[MAX_PIPES] = {0}; bool second_preferred_memory_for_opp[MAX_PIPES] = {0}; uint32_t memory_bit_map = 0; int total_required = ((h_active + 4095) / 4096) * 2; int total_allocated = 0; int i; for (i = 0; i < opp_cnt; i++) { first_preferred_memory_for_opp[opp_id[i]] = true; total_allocated++; if (total_required == total_allocated) break; } if (total_required > total_allocated) { for (i = 0; i < opp_cnt; i++) { second_preferred_memory_for_opp[opp_id[i]] = true; total_allocated++; if (total_required == total_allocated) break; } } if (total_required > total_allocated) { for (i = 0; i < MAX_PIPES; i++) { if (second_preferred_memory_for_opp[i] == false) { second_preferred_memory_for_opp[i] = true; total_allocated++; if (total_required == total_allocated) break; } } } ASSERT(total_required == total_allocated); for (i = 0; i < MAX_PIPES; i++) { if (first_preferred_memory_for_opp[i]) memory_bit_map |= 0x1 << (i * 2); if (second_preferred_memory_for_opp[i]) memory_bit_map |= 0x2 << (i * 2); } return memory_bit_map; } static void optc401_set_odm_combine(struct timing_generator *optc, int *opp_id, int opp_cnt, int segment_width, int last_segment_width) { struct optc *optc1 = DCN10TG_FROM_TG(optc); uint32_t h_active = segment_width * (opp_cnt - 1) + last_segment_width; uint32_t odm_mem_bit_map = decide_odm_mem_bit_map( opp_id, opp_cnt, h_active); REG_SET(OPTC_MEMORY_CONFIG, 0, OPTC_MEM_SEL, odm_mem_bit_map); switch (opp_cnt) { case 2: /* ODM Combine 2:1 */ REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0, OPTC_NUM_OF_INPUT_SEGMENT, 1, OPTC_SEG0_SRC_SEL, opp_id[0], OPTC_SEG1_SRC_SEL, opp_id[1]); REG_UPDATE(OPTC_WIDTH_CONTROL, OPTC_SEGMENT_WIDTH, segment_width); REG_UPDATE(OTG_H_TIMING_CNTL, OTG_H_TIMING_DIV_MODE, H_TIMING_DIV_BY2); break; case 3: /* ODM Combine 3:1 */ REG_SET_4(OPTC_DATA_SOURCE_SELECT, 0, OPTC_NUM_OF_INPUT_SEGMENT, 2, OPTC_SEG0_SRC_SEL, opp_id[0], OPTC_SEG1_SRC_SEL, opp_id[1], OPTC_SEG2_SRC_SEL, opp_id[2]); REG_UPDATE(OPTC_WIDTH_CONTROL, OPTC_SEGMENT_WIDTH, segment_width); REG_UPDATE(OPTC_WIDTH_CONTROL2, OPTC_SEGMENT_WIDTH_LAST, last_segment_width); /* In ODM combine 3:1 mode ODM packs 4 pixels per data transfer * so OTG_H_TIMING_DIV_MODE should be configured to * H_TIMING_DIV_BY4 even though ODM combines 3 OPP inputs, it * outputs 4 pixels from single OPP at a time. */ REG_UPDATE(OTG_H_TIMING_CNTL, OTG_H_TIMING_DIV_MODE, H_TIMING_DIV_BY4); break; case 4: /* ODM Combine 4:1 */ REG_SET_5(OPTC_DATA_SOURCE_SELECT, 0, OPTC_NUM_OF_INPUT_SEGMENT, 3, OPTC_SEG0_SRC_SEL, opp_id[0], OPTC_SEG1_SRC_SEL, opp_id[1], OPTC_SEG2_SRC_SEL, opp_id[2], OPTC_SEG3_SRC_SEL, opp_id[3]); REG_UPDATE(OPTC_WIDTH_CONTROL, OPTC_SEGMENT_WIDTH, segment_width); REG_UPDATE(OTG_H_TIMING_CNTL, OTG_H_TIMING_DIV_MODE, H_TIMING_DIV_BY4); break; default: ASSERT(false); } ; optc1->opp_count = opp_cnt; } static void optc401_set_h_timing_div_manual_mode(struct timing_generator *optc, bool manual_mode) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_UPDATE(OTG_H_TIMING_CNTL, OTG_H_TIMING_DIV_MODE_MANUAL, manual_mode ? 1 : 0); } /** * optc401_enable_crtc() - Enable CRTC * @optc: Pointer to the timing generator structure * * This function calls ASIC Control Object to enable Timing generator. * * Return: Always returns true */ static bool optc401_enable_crtc(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); /* opp instance for OTG, 1 to 1 mapping and odm will adjust */ REG_UPDATE(OPTC_DATA_SOURCE_SELECT, OPTC_SEG0_SRC_SEL, optc->inst); /* VTG enable first is for HW workaround */ REG_UPDATE(CONTROL, VTG0_ENABLE, 1); REG_SEQ_START(); /* Enable CRTC */ REG_UPDATE_2(OTG_CONTROL, OTG_DISABLE_POINT_CNTL, 2, OTG_MASTER_EN, 1); REG_SEQ_SUBMIT(); REG_SEQ_WAIT_DONE(); return true; } /* disable_crtc */ static bool optc401_disable_crtc(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_UPDATE_5(OPTC_DATA_SOURCE_SELECT, OPTC_SEG0_SRC_SEL, 0xf, OPTC_SEG1_SRC_SEL, 0xf, OPTC_SEG2_SRC_SEL, 0xf, OPTC_SEG3_SRC_SEL, 0xf, OPTC_NUM_OF_INPUT_SEGMENT, 0); REG_UPDATE(OPTC_MEMORY_CONFIG, OPTC_MEM_SEL, 0); /* disable otg request until end of the first line * in the vertical blank region */ REG_UPDATE(OTG_CONTROL, OTG_MASTER_EN, 0); REG_UPDATE(CONTROL, VTG0_ENABLE, 0); /* CRTC disabled, so disable clock. */ REG_WAIT(OTG_CLOCK_CONTROL, OTG_BUSY, 0, 1, 150000); return true; } static void optc401_phantom_crtc_post_enable(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); /* Disable immediately. */ REG_UPDATE_2(OTG_CONTROL, OTG_DISABLE_POINT_CNTL, 0, OTG_MASTER_EN, 0); /* CRTC disabled, so disable clock. */ REG_WAIT(OTG_CLOCK_CONTROL, OTG_BUSY, 0, 1, 100000); } static void optc401_disable_phantom_otg(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_UPDATE_5(OPTC_DATA_SOURCE_SELECT, OPTC_SEG0_SRC_SEL, 0xf, OPTC_SEG1_SRC_SEL, 0xf, OPTC_SEG2_SRC_SEL, 0xf, OPTC_SEG3_SRC_SEL, 0xf, OPTC_NUM_OF_INPUT_SEGMENT, 0); REG_UPDATE(OTG_CONTROL, OTG_MASTER_EN, 0); } static void optc401_set_odm_bypass(struct timing_generator *optc, const struct dc_crtc_timing *dc_crtc_timing) { struct optc *optc1 = DCN10TG_FROM_TG(optc); enum h_timing_div_mode h_div = H_TIMING_NO_DIV; REG_SET_5(OPTC_DATA_SOURCE_SELECT, 0, OPTC_NUM_OF_INPUT_SEGMENT, 0, OPTC_SEG0_SRC_SEL, optc->inst, OPTC_SEG1_SRC_SEL, 0xf, OPTC_SEG2_SRC_SEL, 0xf, OPTC_SEG3_SRC_SEL, 0xf ); h_div = optc->funcs->is_two_pixels_per_container(dc_crtc_timing); REG_UPDATE(OTG_H_TIMING_CNTL, OTG_H_TIMING_DIV_MODE, h_div); REG_SET(OPTC_MEMORY_CONFIG, 0, OPTC_MEM_SEL, 0); optc1->opp_count = 1; } /* only to be used when FAMS2 is disabled or unsupported */ void optc401_setup_manual_trigger(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); struct dc *dc = optc->ctx->dc; if (dc->caps.dmub_caps.fams_ver == 1 && !dc->debug.disable_fams) /* FAMS */ dc_dmub_srv_set_drr_manual_trigger_cmd(dc, optc->inst); else { /* * MIN_MASK_EN is gone and MASK is now always enabled. * * To get it to it work with manual trigger we need to make sure * we program the correct bit. */ REG_UPDATE_4(OTG_V_TOTAL_CONTROL, OTG_V_TOTAL_MIN_SEL, 1, OTG_V_TOTAL_MAX_SEL, 1, OTG_FORCE_LOCK_ON_EVENT, 0, OTG_SET_V_TOTAL_MIN_MASK, (1 << 1)); /* TRIGA */ } } void optc401_set_drr( struct timing_generator *optc, const struct drr_params *params) { struct optc *optc1 = DCN10TG_FROM_TG(optc); struct dc *dc = optc->ctx->dc; struct drr_params amended_params = { 0 }; bool program_manual_trigger = false; if (dc->caps.dmub_caps.fams_ver >= 2 && dc->debug.fams2_config.bits.enable) { if (params != NULL && params->vertical_total_max > 0 && params->vertical_total_min > 0) { amended_params.vertical_total_max = params->vertical_total_max - 1; amended_params.vertical_total_min = params->vertical_total_min - 1; if (params->vertical_total_mid != 0) { amended_params.vertical_total_mid = params->vertical_total_mid - 1; amended_params.vertical_total_mid_frame_num = params->vertical_total_mid_frame_num; } program_manual_trigger = true; } dc_dmub_srv_fams2_drr_update(dc, optc->inst, amended_params.vertical_total_min, amended_params.vertical_total_max, amended_params.vertical_total_mid, amended_params.vertical_total_mid_frame_num, program_manual_trigger); } else { if (params != NULL && params->vertical_total_max > 0 && params->vertical_total_min > 0) { if (params->vertical_total_mid != 0) { REG_SET(OTG_V_TOTAL_MID, 0, OTG_V_TOTAL_MID, params->vertical_total_mid - 1); REG_UPDATE_2(OTG_V_TOTAL_CONTROL, OTG_VTOTAL_MID_REPLACING_MAX_EN, 1, OTG_VTOTAL_MID_FRAME_NUM, (uint8_t)params->vertical_total_mid_frame_num); } optc->funcs->set_vtotal_min_max(optc, params->vertical_total_min - 1, params->vertical_total_max - 1); optc401_setup_manual_trigger(optc); } else { REG_UPDATE_4(OTG_V_TOTAL_CONTROL, OTG_SET_V_TOTAL_MIN_MASK, 0, OTG_V_TOTAL_MIN_SEL, 0, OTG_V_TOTAL_MAX_SEL, 0, OTG_FORCE_LOCK_ON_EVENT, 0); optc->funcs->set_vtotal_min_max(optc, 0, 0); } } } static void optc401_set_out_mux(struct timing_generator *optc, enum otg_out_mux_dest dest) { struct optc *optc1 = DCN10TG_FROM_TG(optc); /* 00 - OTG_CONTROL_OTG_OUT_MUX_0 : Connects to DIO. 01 - OTG_CONTROL_OTG_OUT_MUX_1 : Reserved. 02 - OTG_CONTROL_OTG_OUT_MUX_2 : Connects to HPO. */ REG_UPDATE(OTG_CONTROL, OTG_OUT_MUX, dest); } void optc401_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max) { struct dc *dc = optc->ctx->dc; if (dc->caps.dmub_caps.fams_ver >= 2 && dc->debug.fams2_config.bits.enable) { /* FAMS2 */ dc_dmub_srv_fams2_drr_update(dc, optc->inst, vtotal_min, vtotal_max, 0, 0, false); } else if (dc->caps.dmub_caps.fams_ver == 1 && !dc->debug.disable_fams) { /* FAMS */ dc_dmub_srv_drr_update_cmd(dc, optc->inst, vtotal_min, vtotal_max); } else { optc1_set_vtotal_min_max(optc, vtotal_min, vtotal_max); } } static void optc401_program_global_sync( struct timing_generator *optc, int vready_offset, int vstartup_start, int vupdate_offset, int vupdate_width, int pstate_keepout) { struct optc *optc1 = DCN10TG_FROM_TG(optc); optc1->vready_offset = vready_offset; optc1->vstartup_start = vstartup_start; optc1->vupdate_offset = vupdate_offset; optc1->vupdate_width = vupdate_width; optc1->pstate_keepout = pstate_keepout; if (optc1->vstartup_start == 0) { BREAK_TO_DEBUGGER(); return; } REG_SET(OTG_VSTARTUP_PARAM, 0, VSTARTUP_START, optc1->vstartup_start); REG_SET_2(OTG_VUPDATE_PARAM, 0, VUPDATE_OFFSET, optc1->vupdate_offset, VUPDATE_WIDTH, optc1->vupdate_width); REG_SET(OTG_VREADY_PARAM, 0, VREADY_OFFSET, optc1->vready_offset); REG_UPDATE(OTG_PSTATE_REGISTER, OTG_PSTATE_KEEPOUT_START, pstate_keepout); } static struct timing_generator_funcs dcn401_tg_funcs = { .validate_timing = optc1_validate_timing, .program_timing = optc1_program_timing, .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0, .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1, .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2, .program_global_sync = optc401_program_global_sync, .enable_crtc = optc401_enable_crtc, .disable_crtc = optc401_disable_crtc, .phantom_crtc_post_enable = optc401_phantom_crtc_post_enable, .disable_phantom_crtc = optc401_disable_phantom_otg, /* used by enable_timing_synchronization. Not need for FPGA */ .is_counter_moving = optc1_is_counter_moving, .get_position = optc1_get_position, .get_frame_count = optc1_get_vblank_counter, .get_scanoutpos = optc1_get_crtc_scanoutpos, .get_otg_active_size = optc1_get_otg_active_size, .set_early_control = optc1_set_early_control, /* used by enable_timing_synchronization. Not need for FPGA */ .wait_for_state = optc1_wait_for_state, .set_blank_color = optc3_program_blank_color, .did_triggered_reset_occur = optc1_did_triggered_reset_occur, .triplebuffer_lock = optc3_triplebuffer_lock, .triplebuffer_unlock = optc2_triplebuffer_unlock, .enable_reset_trigger = optc1_enable_reset_trigger, .enable_crtc_reset = optc1_enable_crtc_reset, .disable_reset_trigger = optc1_disable_reset_trigger, .lock = optc3_lock, .unlock = optc1_unlock, .lock_doublebuffer_enable = optc3_lock_doublebuffer_enable, .lock_doublebuffer_disable = optc3_lock_doublebuffer_disable, .enable_optc_clock = optc1_enable_optc_clock, .set_drr = optc401_set_drr, .get_last_used_drr_vtotal = optc2_get_last_used_drr_vtotal, .set_vtotal_min_max = optc401_set_vtotal_min_max, .set_static_screen_control = optc1_set_static_screen_control, .program_stereo = optc1_program_stereo, .is_stereo_left_eye = optc1_is_stereo_left_eye, .tg_init = optc3_tg_init, .is_tg_enabled = optc1_is_tg_enabled, .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred, .clear_optc_underflow = optc1_clear_optc_underflow, .setup_global_swap_lock = NULL, .get_crc = optc1_get_crc, .configure_crc = optc1_configure_crc, .set_dsc_config = optc3_set_dsc_config, .get_dsc_status = optc2_get_dsc_status, .set_dwb_source = NULL, .set_odm_bypass = optc401_set_odm_bypass, .set_odm_combine = optc401_set_odm_combine, .wait_odm_doublebuffer_pending_clear = optc32_wait_odm_doublebuffer_pending_clear, .set_h_timing_div_manual_mode = optc401_set_h_timing_div_manual_mode, .get_optc_source = optc2_get_optc_source, .set_out_mux = optc401_set_out_mux, .set_drr_trigger_window = optc3_set_drr_trigger_window, .set_vtotal_change_limit = optc3_set_vtotal_change_limit, .set_gsl = optc2_set_gsl, .set_gsl_source_select = optc2_set_gsl_source_select, .set_vtg_params = optc1_set_vtg_params, .program_manual_trigger = optc2_program_manual_trigger, .setup_manual_trigger = optc2_setup_manual_trigger, .get_hw_timing = optc1_get_hw_timing, .is_two_pixels_per_container = optc1_is_two_pixels_per_container, .get_double_buffer_pending = optc32_get_double_buffer_pending, }; void dcn401_timing_generator_init(struct optc *optc1) { optc1->base.funcs = &dcn401_tg_funcs; optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1; optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1; optc1->min_h_blank = 32; optc1->min_v_blank = 3; optc1->min_v_blank_interlace = 5; optc1->min_h_sync_width = 4; optc1->min_v_sync_width = 1; }