1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * fs/dcache.c
4   *
5   * Complete reimplementation
6   * (C) 1997 Thomas Schoebel-Theuer,
7   * with heavy changes by Linus Torvalds
8   */
9  
10  /*
11   * Notes on the allocation strategy:
12   *
13   * The dcache is a master of the icache - whenever a dcache entry
14   * exists, the inode will always exist. "iput()" is done either when
15   * the dcache entry is deleted or garbage collected.
16   */
17  
18  #include <linux/ratelimit.h>
19  #include <linux/string.h>
20  #include <linux/mm.h>
21  #include <linux/fs.h>
22  #include <linux/fscrypt.h>
23  #include <linux/fsnotify.h>
24  #include <linux/slab.h>
25  #include <linux/init.h>
26  #include <linux/hash.h>
27  #include <linux/cache.h>
28  #include <linux/export.h>
29  #include <linux/security.h>
30  #include <linux/seqlock.h>
31  #include <linux/memblock.h>
32  #include <linux/bit_spinlock.h>
33  #include <linux/rculist_bl.h>
34  #include <linux/list_lru.h>
35  #include "internal.h"
36  #include "mount.h"
37  
38  #include <asm/runtime-const.h>
39  
40  /*
41   * Usage:
42   * dcache->d_inode->i_lock protects:
43   *   - i_dentry, d_u.d_alias, d_inode of aliases
44   * dcache_hash_bucket lock protects:
45   *   - the dcache hash table
46   * s_roots bl list spinlock protects:
47   *   - the s_roots list (see __d_drop)
48   * dentry->d_sb->s_dentry_lru_lock protects:
49   *   - the dcache lru lists and counters
50   * d_lock protects:
51   *   - d_flags
52   *   - d_name
53   *   - d_lru
54   *   - d_count
55   *   - d_unhashed()
56   *   - d_parent and d_chilren
57   *   - childrens' d_sib and d_parent
58   *   - d_u.d_alias, d_inode
59   *
60   * Ordering:
61   * dentry->d_inode->i_lock
62   *   dentry->d_lock
63   *     dentry->d_sb->s_dentry_lru_lock
64   *     dcache_hash_bucket lock
65   *     s_roots lock
66   *
67   * If there is an ancestor relationship:
68   * dentry->d_parent->...->d_parent->d_lock
69   *   ...
70   *     dentry->d_parent->d_lock
71   *       dentry->d_lock
72   *
73   * If no ancestor relationship:
74   * arbitrary, since it's serialized on rename_lock
75   */
76  int sysctl_vfs_cache_pressure __read_mostly = 100;
77  EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
78  
79  __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
80  
81  EXPORT_SYMBOL(rename_lock);
82  
83  static struct kmem_cache *dentry_cache __ro_after_init;
84  
85  const struct qstr empty_name = QSTR_INIT("", 0);
86  EXPORT_SYMBOL(empty_name);
87  const struct qstr slash_name = QSTR_INIT("/", 1);
88  EXPORT_SYMBOL(slash_name);
89  const struct qstr dotdot_name = QSTR_INIT("..", 2);
90  EXPORT_SYMBOL(dotdot_name);
91  
92  /*
93   * This is the single most critical data structure when it comes
94   * to the dcache: the hashtable for lookups. Somebody should try
95   * to make this good - I've just made it work.
96   *
97   * This hash-function tries to avoid losing too many bits of hash
98   * information, yet avoid using a prime hash-size or similar.
99   *
100   * Marking the variables "used" ensures that the compiler doesn't
101   * optimize them away completely on architectures with runtime
102   * constant infrastructure, this allows debuggers to see their
103   * values. But updating these values has no effect on those arches.
104   */
105  
106  static unsigned int d_hash_shift __ro_after_init __used;
107  
108  static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
109  
d_hash(unsigned long hashlen)110  static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
111  {
112  	return runtime_const_ptr(dentry_hashtable) +
113  		runtime_const_shift_right_32(hashlen, d_hash_shift);
114  }
115  
116  #define IN_LOOKUP_SHIFT 10
117  static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
118  
in_lookup_hash(const struct dentry * parent,unsigned int hash)119  static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
120  					unsigned int hash)
121  {
122  	hash += (unsigned long) parent / L1_CACHE_BYTES;
123  	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
124  }
125  
126  struct dentry_stat_t {
127  	long nr_dentry;
128  	long nr_unused;
129  	long age_limit;		/* age in seconds */
130  	long want_pages;	/* pages requested by system */
131  	long nr_negative;	/* # of unused negative dentries */
132  	long dummy;		/* Reserved for future use */
133  };
134  
135  static DEFINE_PER_CPU(long, nr_dentry);
136  static DEFINE_PER_CPU(long, nr_dentry_unused);
137  static DEFINE_PER_CPU(long, nr_dentry_negative);
138  
139  #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
140  /* Statistics gathering. */
141  static struct dentry_stat_t dentry_stat = {
142  	.age_limit = 45,
143  };
144  
145  /*
146   * Here we resort to our own counters instead of using generic per-cpu counters
147   * for consistency with what the vfs inode code does. We are expected to harvest
148   * better code and performance by having our own specialized counters.
149   *
150   * Please note that the loop is done over all possible CPUs, not over all online
151   * CPUs. The reason for this is that we don't want to play games with CPUs going
152   * on and off. If one of them goes off, we will just keep their counters.
153   *
154   * glommer: See cffbc8a for details, and if you ever intend to change this,
155   * please update all vfs counters to match.
156   */
get_nr_dentry(void)157  static long get_nr_dentry(void)
158  {
159  	int i;
160  	long sum = 0;
161  	for_each_possible_cpu(i)
162  		sum += per_cpu(nr_dentry, i);
163  	return sum < 0 ? 0 : sum;
164  }
165  
get_nr_dentry_unused(void)166  static long get_nr_dentry_unused(void)
167  {
168  	int i;
169  	long sum = 0;
170  	for_each_possible_cpu(i)
171  		sum += per_cpu(nr_dentry_unused, i);
172  	return sum < 0 ? 0 : sum;
173  }
174  
get_nr_dentry_negative(void)175  static long get_nr_dentry_negative(void)
176  {
177  	int i;
178  	long sum = 0;
179  
180  	for_each_possible_cpu(i)
181  		sum += per_cpu(nr_dentry_negative, i);
182  	return sum < 0 ? 0 : sum;
183  }
184  
proc_nr_dentry(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)185  static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
186  			  size_t *lenp, loff_t *ppos)
187  {
188  	dentry_stat.nr_dentry = get_nr_dentry();
189  	dentry_stat.nr_unused = get_nr_dentry_unused();
190  	dentry_stat.nr_negative = get_nr_dentry_negative();
191  	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
192  }
193  
194  static struct ctl_table fs_dcache_sysctls[] = {
195  	{
196  		.procname	= "dentry-state",
197  		.data		= &dentry_stat,
198  		.maxlen		= 6*sizeof(long),
199  		.mode		= 0444,
200  		.proc_handler	= proc_nr_dentry,
201  	},
202  };
203  
init_fs_dcache_sysctls(void)204  static int __init init_fs_dcache_sysctls(void)
205  {
206  	register_sysctl_init("fs", fs_dcache_sysctls);
207  	return 0;
208  }
209  fs_initcall(init_fs_dcache_sysctls);
210  #endif
211  
212  /*
213   * Compare 2 name strings, return 0 if they match, otherwise non-zero.
214   * The strings are both count bytes long, and count is non-zero.
215   */
216  #ifdef CONFIG_DCACHE_WORD_ACCESS
217  
218  #include <asm/word-at-a-time.h>
219  /*
220   * NOTE! 'cs' and 'scount' come from a dentry, so it has a
221   * aligned allocation for this particular component. We don't
222   * strictly need the load_unaligned_zeropad() safety, but it
223   * doesn't hurt either.
224   *
225   * In contrast, 'ct' and 'tcount' can be from a pathname, and do
226   * need the careful unaligned handling.
227   */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)228  static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
229  {
230  	unsigned long a,b,mask;
231  
232  	for (;;) {
233  		a = read_word_at_a_time(cs);
234  		b = load_unaligned_zeropad(ct);
235  		if (tcount < sizeof(unsigned long))
236  			break;
237  		if (unlikely(a != b))
238  			return 1;
239  		cs += sizeof(unsigned long);
240  		ct += sizeof(unsigned long);
241  		tcount -= sizeof(unsigned long);
242  		if (!tcount)
243  			return 0;
244  	}
245  	mask = bytemask_from_count(tcount);
246  	return unlikely(!!((a ^ b) & mask));
247  }
248  
249  #else
250  
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)251  static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
252  {
253  	do {
254  		if (*cs != *ct)
255  			return 1;
256  		cs++;
257  		ct++;
258  		tcount--;
259  	} while (tcount);
260  	return 0;
261  }
262  
263  #endif
264  
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)265  static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
266  {
267  	/*
268  	 * Be careful about RCU walk racing with rename:
269  	 * use 'READ_ONCE' to fetch the name pointer.
270  	 *
271  	 * NOTE! Even if a rename will mean that the length
272  	 * was not loaded atomically, we don't care. The
273  	 * RCU walk will check the sequence count eventually,
274  	 * and catch it. And we won't overrun the buffer,
275  	 * because we're reading the name pointer atomically,
276  	 * and a dentry name is guaranteed to be properly
277  	 * terminated with a NUL byte.
278  	 *
279  	 * End result: even if 'len' is wrong, we'll exit
280  	 * early because the data cannot match (there can
281  	 * be no NUL in the ct/tcount data)
282  	 */
283  	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
284  
285  	return dentry_string_cmp(cs, ct, tcount);
286  }
287  
288  struct external_name {
289  	union {
290  		atomic_t count;
291  		struct rcu_head head;
292  	} u;
293  	unsigned char name[];
294  };
295  
external_name(struct dentry * dentry)296  static inline struct external_name *external_name(struct dentry *dentry)
297  {
298  	return container_of(dentry->d_name.name, struct external_name, name[0]);
299  }
300  
__d_free(struct rcu_head * head)301  static void __d_free(struct rcu_head *head)
302  {
303  	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
304  
305  	kmem_cache_free(dentry_cache, dentry);
306  }
307  
__d_free_external(struct rcu_head * head)308  static void __d_free_external(struct rcu_head *head)
309  {
310  	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
311  	kfree(external_name(dentry));
312  	kmem_cache_free(dentry_cache, dentry);
313  }
314  
dname_external(const struct dentry * dentry)315  static inline int dname_external(const struct dentry *dentry)
316  {
317  	return dentry->d_name.name != dentry->d_iname;
318  }
319  
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)320  void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
321  {
322  	spin_lock(&dentry->d_lock);
323  	name->name = dentry->d_name;
324  	if (unlikely(dname_external(dentry))) {
325  		atomic_inc(&external_name(dentry)->u.count);
326  	} else {
327  		memcpy(name->inline_name, dentry->d_iname,
328  		       dentry->d_name.len + 1);
329  		name->name.name = name->inline_name;
330  	}
331  	spin_unlock(&dentry->d_lock);
332  }
333  EXPORT_SYMBOL(take_dentry_name_snapshot);
334  
release_dentry_name_snapshot(struct name_snapshot * name)335  void release_dentry_name_snapshot(struct name_snapshot *name)
336  {
337  	if (unlikely(name->name.name != name->inline_name)) {
338  		struct external_name *p;
339  		p = container_of(name->name.name, struct external_name, name[0]);
340  		if (unlikely(atomic_dec_and_test(&p->u.count)))
341  			kfree_rcu(p, u.head);
342  	}
343  }
344  EXPORT_SYMBOL(release_dentry_name_snapshot);
345  
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)346  static inline void __d_set_inode_and_type(struct dentry *dentry,
347  					  struct inode *inode,
348  					  unsigned type_flags)
349  {
350  	unsigned flags;
351  
352  	dentry->d_inode = inode;
353  	flags = READ_ONCE(dentry->d_flags);
354  	flags &= ~DCACHE_ENTRY_TYPE;
355  	flags |= type_flags;
356  	smp_store_release(&dentry->d_flags, flags);
357  }
358  
__d_clear_type_and_inode(struct dentry * dentry)359  static inline void __d_clear_type_and_inode(struct dentry *dentry)
360  {
361  	unsigned flags = READ_ONCE(dentry->d_flags);
362  
363  	flags &= ~DCACHE_ENTRY_TYPE;
364  	WRITE_ONCE(dentry->d_flags, flags);
365  	dentry->d_inode = NULL;
366  	/*
367  	 * The negative counter only tracks dentries on the LRU. Don't inc if
368  	 * d_lru is on another list.
369  	 */
370  	if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
371  		this_cpu_inc(nr_dentry_negative);
372  }
373  
dentry_free(struct dentry * dentry)374  static void dentry_free(struct dentry *dentry)
375  {
376  	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
377  	if (unlikely(dname_external(dentry))) {
378  		struct external_name *p = external_name(dentry);
379  		if (likely(atomic_dec_and_test(&p->u.count))) {
380  			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
381  			return;
382  		}
383  	}
384  	/* if dentry was never visible to RCU, immediate free is OK */
385  	if (dentry->d_flags & DCACHE_NORCU)
386  		__d_free(&dentry->d_u.d_rcu);
387  	else
388  		call_rcu(&dentry->d_u.d_rcu, __d_free);
389  }
390  
391  /*
392   * Release the dentry's inode, using the filesystem
393   * d_iput() operation if defined.
394   */
dentry_unlink_inode(struct dentry * dentry)395  static void dentry_unlink_inode(struct dentry * dentry)
396  	__releases(dentry->d_lock)
397  	__releases(dentry->d_inode->i_lock)
398  {
399  	struct inode *inode = dentry->d_inode;
400  
401  	raw_write_seqcount_begin(&dentry->d_seq);
402  	__d_clear_type_and_inode(dentry);
403  	hlist_del_init(&dentry->d_u.d_alias);
404  	raw_write_seqcount_end(&dentry->d_seq);
405  	spin_unlock(&dentry->d_lock);
406  	spin_unlock(&inode->i_lock);
407  	if (!inode->i_nlink)
408  		fsnotify_inoderemove(inode);
409  	if (dentry->d_op && dentry->d_op->d_iput)
410  		dentry->d_op->d_iput(dentry, inode);
411  	else
412  		iput(inode);
413  }
414  
415  /*
416   * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
417   * is in use - which includes both the "real" per-superblock
418   * LRU list _and_ the DCACHE_SHRINK_LIST use.
419   *
420   * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
421   * on the shrink list (ie not on the superblock LRU list).
422   *
423   * The per-cpu "nr_dentry_unused" counters are updated with
424   * the DCACHE_LRU_LIST bit.
425   *
426   * The per-cpu "nr_dentry_negative" counters are only updated
427   * when deleted from or added to the per-superblock LRU list, not
428   * from/to the shrink list. That is to avoid an unneeded dec/inc
429   * pair when moving from LRU to shrink list in select_collect().
430   *
431   * These helper functions make sure we always follow the
432   * rules. d_lock must be held by the caller.
433   */
434  #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)435  static void d_lru_add(struct dentry *dentry)
436  {
437  	D_FLAG_VERIFY(dentry, 0);
438  	dentry->d_flags |= DCACHE_LRU_LIST;
439  	this_cpu_inc(nr_dentry_unused);
440  	if (d_is_negative(dentry))
441  		this_cpu_inc(nr_dentry_negative);
442  	WARN_ON_ONCE(!list_lru_add_obj(
443  			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
444  }
445  
d_lru_del(struct dentry * dentry)446  static void d_lru_del(struct dentry *dentry)
447  {
448  	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
449  	dentry->d_flags &= ~DCACHE_LRU_LIST;
450  	this_cpu_dec(nr_dentry_unused);
451  	if (d_is_negative(dentry))
452  		this_cpu_dec(nr_dentry_negative);
453  	WARN_ON_ONCE(!list_lru_del_obj(
454  			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
455  }
456  
d_shrink_del(struct dentry * dentry)457  static void d_shrink_del(struct dentry *dentry)
458  {
459  	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
460  	list_del_init(&dentry->d_lru);
461  	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
462  	this_cpu_dec(nr_dentry_unused);
463  }
464  
d_shrink_add(struct dentry * dentry,struct list_head * list)465  static void d_shrink_add(struct dentry *dentry, struct list_head *list)
466  {
467  	D_FLAG_VERIFY(dentry, 0);
468  	list_add(&dentry->d_lru, list);
469  	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
470  	this_cpu_inc(nr_dentry_unused);
471  }
472  
473  /*
474   * These can only be called under the global LRU lock, ie during the
475   * callback for freeing the LRU list. "isolate" removes it from the
476   * LRU lists entirely, while shrink_move moves it to the indicated
477   * private list.
478   */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)479  static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
480  {
481  	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
482  	dentry->d_flags &= ~DCACHE_LRU_LIST;
483  	this_cpu_dec(nr_dentry_unused);
484  	if (d_is_negative(dentry))
485  		this_cpu_dec(nr_dentry_negative);
486  	list_lru_isolate(lru, &dentry->d_lru);
487  }
488  
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)489  static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
490  			      struct list_head *list)
491  {
492  	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
493  	dentry->d_flags |= DCACHE_SHRINK_LIST;
494  	if (d_is_negative(dentry))
495  		this_cpu_dec(nr_dentry_negative);
496  	list_lru_isolate_move(lru, &dentry->d_lru, list);
497  }
498  
___d_drop(struct dentry * dentry)499  static void ___d_drop(struct dentry *dentry)
500  {
501  	struct hlist_bl_head *b;
502  	/*
503  	 * Hashed dentries are normally on the dentry hashtable,
504  	 * with the exception of those newly allocated by
505  	 * d_obtain_root, which are always IS_ROOT:
506  	 */
507  	if (unlikely(IS_ROOT(dentry)))
508  		b = &dentry->d_sb->s_roots;
509  	else
510  		b = d_hash(dentry->d_name.hash);
511  
512  	hlist_bl_lock(b);
513  	__hlist_bl_del(&dentry->d_hash);
514  	hlist_bl_unlock(b);
515  }
516  
__d_drop(struct dentry * dentry)517  void __d_drop(struct dentry *dentry)
518  {
519  	if (!d_unhashed(dentry)) {
520  		___d_drop(dentry);
521  		dentry->d_hash.pprev = NULL;
522  		write_seqcount_invalidate(&dentry->d_seq);
523  	}
524  }
525  EXPORT_SYMBOL(__d_drop);
526  
527  /**
528   * d_drop - drop a dentry
529   * @dentry: dentry to drop
530   *
531   * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
532   * be found through a VFS lookup any more. Note that this is different from
533   * deleting the dentry - d_delete will try to mark the dentry negative if
534   * possible, giving a successful _negative_ lookup, while d_drop will
535   * just make the cache lookup fail.
536   *
537   * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
538   * reason (NFS timeouts or autofs deletes).
539   *
540   * __d_drop requires dentry->d_lock
541   *
542   * ___d_drop doesn't mark dentry as "unhashed"
543   * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
544   */
d_drop(struct dentry * dentry)545  void d_drop(struct dentry *dentry)
546  {
547  	spin_lock(&dentry->d_lock);
548  	__d_drop(dentry);
549  	spin_unlock(&dentry->d_lock);
550  }
551  EXPORT_SYMBOL(d_drop);
552  
dentry_unlist(struct dentry * dentry)553  static inline void dentry_unlist(struct dentry *dentry)
554  {
555  	struct dentry *next;
556  	/*
557  	 * Inform d_walk() and shrink_dentry_list() that we are no longer
558  	 * attached to the dentry tree
559  	 */
560  	dentry->d_flags |= DCACHE_DENTRY_KILLED;
561  	if (unlikely(hlist_unhashed(&dentry->d_sib)))
562  		return;
563  	__hlist_del(&dentry->d_sib);
564  	/*
565  	 * Cursors can move around the list of children.  While we'd been
566  	 * a normal list member, it didn't matter - ->d_sib.next would've
567  	 * been updated.  However, from now on it won't be and for the
568  	 * things like d_walk() it might end up with a nasty surprise.
569  	 * Normally d_walk() doesn't care about cursors moving around -
570  	 * ->d_lock on parent prevents that and since a cursor has no children
571  	 * of its own, we get through it without ever unlocking the parent.
572  	 * There is one exception, though - if we ascend from a child that
573  	 * gets killed as soon as we unlock it, the next sibling is found
574  	 * using the value left in its ->d_sib.next.  And if _that_
575  	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
576  	 * before d_walk() regains parent->d_lock, we'll end up skipping
577  	 * everything the cursor had been moved past.
578  	 *
579  	 * Solution: make sure that the pointer left behind in ->d_sib.next
580  	 * points to something that won't be moving around.  I.e. skip the
581  	 * cursors.
582  	 */
583  	while (dentry->d_sib.next) {
584  		next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
585  		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
586  			break;
587  		dentry->d_sib.next = next->d_sib.next;
588  	}
589  }
590  
__dentry_kill(struct dentry * dentry)591  static struct dentry *__dentry_kill(struct dentry *dentry)
592  {
593  	struct dentry *parent = NULL;
594  	bool can_free = true;
595  
596  	/*
597  	 * The dentry is now unrecoverably dead to the world.
598  	 */
599  	lockref_mark_dead(&dentry->d_lockref);
600  
601  	/*
602  	 * inform the fs via d_prune that this dentry is about to be
603  	 * unhashed and destroyed.
604  	 */
605  	if (dentry->d_flags & DCACHE_OP_PRUNE)
606  		dentry->d_op->d_prune(dentry);
607  
608  	if (dentry->d_flags & DCACHE_LRU_LIST) {
609  		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
610  			d_lru_del(dentry);
611  	}
612  	/* if it was on the hash then remove it */
613  	__d_drop(dentry);
614  	if (dentry->d_inode)
615  		dentry_unlink_inode(dentry);
616  	else
617  		spin_unlock(&dentry->d_lock);
618  	this_cpu_dec(nr_dentry);
619  	if (dentry->d_op && dentry->d_op->d_release)
620  		dentry->d_op->d_release(dentry);
621  
622  	cond_resched();
623  	/* now that it's negative, ->d_parent is stable */
624  	if (!IS_ROOT(dentry)) {
625  		parent = dentry->d_parent;
626  		spin_lock(&parent->d_lock);
627  	}
628  	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
629  	dentry_unlist(dentry);
630  	if (dentry->d_flags & DCACHE_SHRINK_LIST)
631  		can_free = false;
632  	spin_unlock(&dentry->d_lock);
633  	if (likely(can_free))
634  		dentry_free(dentry);
635  	if (parent && --parent->d_lockref.count) {
636  		spin_unlock(&parent->d_lock);
637  		return NULL;
638  	}
639  	return parent;
640  }
641  
642  /*
643   * Lock a dentry for feeding it to __dentry_kill().
644   * Called under rcu_read_lock() and dentry->d_lock; the former
645   * guarantees that nothing we access will be freed under us.
646   * Note that dentry is *not* protected from concurrent dentry_kill(),
647   * d_delete(), etc.
648   *
649   * Return false if dentry is busy.  Otherwise, return true and have
650   * that dentry's inode locked.
651   */
652  
lock_for_kill(struct dentry * dentry)653  static bool lock_for_kill(struct dentry *dentry)
654  {
655  	struct inode *inode = dentry->d_inode;
656  
657  	if (unlikely(dentry->d_lockref.count))
658  		return false;
659  
660  	if (!inode || likely(spin_trylock(&inode->i_lock)))
661  		return true;
662  
663  	do {
664  		spin_unlock(&dentry->d_lock);
665  		spin_lock(&inode->i_lock);
666  		spin_lock(&dentry->d_lock);
667  		if (likely(inode == dentry->d_inode))
668  			break;
669  		spin_unlock(&inode->i_lock);
670  		inode = dentry->d_inode;
671  	} while (inode);
672  	if (likely(!dentry->d_lockref.count))
673  		return true;
674  	if (inode)
675  		spin_unlock(&inode->i_lock);
676  	return false;
677  }
678  
679  /*
680   * Decide if dentry is worth retaining.  Usually this is called with dentry
681   * locked; if not locked, we are more limited and might not be able to tell
682   * without a lock.  False in this case means "punt to locked path and recheck".
683   *
684   * In case we aren't locked, these predicates are not "stable". However, it is
685   * sufficient that at some point after we dropped the reference the dentry was
686   * hashed and the flags had the proper value. Other dentry users may have
687   * re-gotten a reference to the dentry and change that, but our work is done -
688   * we can leave the dentry around with a zero refcount.
689   */
retain_dentry(struct dentry * dentry,bool locked)690  static inline bool retain_dentry(struct dentry *dentry, bool locked)
691  {
692  	unsigned int d_flags;
693  
694  	smp_rmb();
695  	d_flags = READ_ONCE(dentry->d_flags);
696  
697  	// Unreachable? Nobody would be able to look it up, no point retaining
698  	if (unlikely(d_unhashed(dentry)))
699  		return false;
700  
701  	// Same if it's disconnected
702  	if (unlikely(d_flags & DCACHE_DISCONNECTED))
703  		return false;
704  
705  	// ->d_delete() might tell us not to bother, but that requires
706  	// ->d_lock; can't decide without it
707  	if (unlikely(d_flags & DCACHE_OP_DELETE)) {
708  		if (!locked || dentry->d_op->d_delete(dentry))
709  			return false;
710  	}
711  
712  	// Explicitly told not to bother
713  	if (unlikely(d_flags & DCACHE_DONTCACHE))
714  		return false;
715  
716  	// At this point it looks like we ought to keep it.  We also might
717  	// need to do something - put it on LRU if it wasn't there already
718  	// and mark it referenced if it was on LRU, but not marked yet.
719  	// Unfortunately, both actions require ->d_lock, so in lockless
720  	// case we'd have to punt rather than doing those.
721  	if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
722  		if (!locked)
723  			return false;
724  		d_lru_add(dentry);
725  	} else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
726  		if (!locked)
727  			return false;
728  		dentry->d_flags |= DCACHE_REFERENCED;
729  	}
730  	return true;
731  }
732  
d_mark_dontcache(struct inode * inode)733  void d_mark_dontcache(struct inode *inode)
734  {
735  	struct dentry *de;
736  
737  	spin_lock(&inode->i_lock);
738  	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
739  		spin_lock(&de->d_lock);
740  		de->d_flags |= DCACHE_DONTCACHE;
741  		spin_unlock(&de->d_lock);
742  	}
743  	inode->i_state |= I_DONTCACHE;
744  	spin_unlock(&inode->i_lock);
745  }
746  EXPORT_SYMBOL(d_mark_dontcache);
747  
748  /*
749   * Try to do a lockless dput(), and return whether that was successful.
750   *
751   * If unsuccessful, we return false, having already taken the dentry lock.
752   * In that case refcount is guaranteed to be zero and we have already
753   * decided that it's not worth keeping around.
754   *
755   * The caller needs to hold the RCU read lock, so that the dentry is
756   * guaranteed to stay around even if the refcount goes down to zero!
757   */
fast_dput(struct dentry * dentry)758  static inline bool fast_dput(struct dentry *dentry)
759  {
760  	int ret;
761  
762  	/*
763  	 * try to decrement the lockref optimistically.
764  	 */
765  	ret = lockref_put_return(&dentry->d_lockref);
766  
767  	/*
768  	 * If the lockref_put_return() failed due to the lock being held
769  	 * by somebody else, the fast path has failed. We will need to
770  	 * get the lock, and then check the count again.
771  	 */
772  	if (unlikely(ret < 0)) {
773  		spin_lock(&dentry->d_lock);
774  		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
775  			spin_unlock(&dentry->d_lock);
776  			return true;
777  		}
778  		dentry->d_lockref.count--;
779  		goto locked;
780  	}
781  
782  	/*
783  	 * If we weren't the last ref, we're done.
784  	 */
785  	if (ret)
786  		return true;
787  
788  	/*
789  	 * Can we decide that decrement of refcount is all we needed without
790  	 * taking the lock?  There's a very common case when it's all we need -
791  	 * dentry looks like it ought to be retained and there's nothing else
792  	 * to do.
793  	 */
794  	if (retain_dentry(dentry, false))
795  		return true;
796  
797  	/*
798  	 * Either not worth retaining or we can't tell without the lock.
799  	 * Get the lock, then.  We've already decremented the refcount to 0,
800  	 * but we'll need to re-check the situation after getting the lock.
801  	 */
802  	spin_lock(&dentry->d_lock);
803  
804  	/*
805  	 * Did somebody else grab a reference to it in the meantime, and
806  	 * we're no longer the last user after all? Alternatively, somebody
807  	 * else could have killed it and marked it dead. Either way, we
808  	 * don't need to do anything else.
809  	 */
810  locked:
811  	if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
812  		spin_unlock(&dentry->d_lock);
813  		return true;
814  	}
815  	return false;
816  }
817  
818  
819  /*
820   * This is dput
821   *
822   * This is complicated by the fact that we do not want to put
823   * dentries that are no longer on any hash chain on the unused
824   * list: we'd much rather just get rid of them immediately.
825   *
826   * However, that implies that we have to traverse the dentry
827   * tree upwards to the parents which might _also_ now be
828   * scheduled for deletion (it may have been only waiting for
829   * its last child to go away).
830   *
831   * This tail recursion is done by hand as we don't want to depend
832   * on the compiler to always get this right (gcc generally doesn't).
833   * Real recursion would eat up our stack space.
834   */
835  
836  /*
837   * dput - release a dentry
838   * @dentry: dentry to release
839   *
840   * Release a dentry. This will drop the usage count and if appropriate
841   * call the dentry unlink method as well as removing it from the queues and
842   * releasing its resources. If the parent dentries were scheduled for release
843   * they too may now get deleted.
844   */
dput(struct dentry * dentry)845  void dput(struct dentry *dentry)
846  {
847  	if (!dentry)
848  		return;
849  	might_sleep();
850  	rcu_read_lock();
851  	if (likely(fast_dput(dentry))) {
852  		rcu_read_unlock();
853  		return;
854  	}
855  	while (lock_for_kill(dentry)) {
856  		rcu_read_unlock();
857  		dentry = __dentry_kill(dentry);
858  		if (!dentry)
859  			return;
860  		if (retain_dentry(dentry, true)) {
861  			spin_unlock(&dentry->d_lock);
862  			return;
863  		}
864  		rcu_read_lock();
865  	}
866  	rcu_read_unlock();
867  	spin_unlock(&dentry->d_lock);
868  }
869  EXPORT_SYMBOL(dput);
870  
to_shrink_list(struct dentry * dentry,struct list_head * list)871  static void to_shrink_list(struct dentry *dentry, struct list_head *list)
872  __must_hold(&dentry->d_lock)
873  {
874  	if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
875  		if (dentry->d_flags & DCACHE_LRU_LIST)
876  			d_lru_del(dentry);
877  		d_shrink_add(dentry, list);
878  	}
879  }
880  
dput_to_list(struct dentry * dentry,struct list_head * list)881  void dput_to_list(struct dentry *dentry, struct list_head *list)
882  {
883  	rcu_read_lock();
884  	if (likely(fast_dput(dentry))) {
885  		rcu_read_unlock();
886  		return;
887  	}
888  	rcu_read_unlock();
889  	to_shrink_list(dentry, list);
890  	spin_unlock(&dentry->d_lock);
891  }
892  
dget_parent(struct dentry * dentry)893  struct dentry *dget_parent(struct dentry *dentry)
894  {
895  	int gotref;
896  	struct dentry *ret;
897  	unsigned seq;
898  
899  	/*
900  	 * Do optimistic parent lookup without any
901  	 * locking.
902  	 */
903  	rcu_read_lock();
904  	seq = raw_seqcount_begin(&dentry->d_seq);
905  	ret = READ_ONCE(dentry->d_parent);
906  	gotref = lockref_get_not_zero(&ret->d_lockref);
907  	rcu_read_unlock();
908  	if (likely(gotref)) {
909  		if (!read_seqcount_retry(&dentry->d_seq, seq))
910  			return ret;
911  		dput(ret);
912  	}
913  
914  repeat:
915  	/*
916  	 * Don't need rcu_dereference because we re-check it was correct under
917  	 * the lock.
918  	 */
919  	rcu_read_lock();
920  	ret = dentry->d_parent;
921  	spin_lock(&ret->d_lock);
922  	if (unlikely(ret != dentry->d_parent)) {
923  		spin_unlock(&ret->d_lock);
924  		rcu_read_unlock();
925  		goto repeat;
926  	}
927  	rcu_read_unlock();
928  	BUG_ON(!ret->d_lockref.count);
929  	ret->d_lockref.count++;
930  	spin_unlock(&ret->d_lock);
931  	return ret;
932  }
933  EXPORT_SYMBOL(dget_parent);
934  
__d_find_any_alias(struct inode * inode)935  static struct dentry * __d_find_any_alias(struct inode *inode)
936  {
937  	struct dentry *alias;
938  
939  	if (hlist_empty(&inode->i_dentry))
940  		return NULL;
941  	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
942  	lockref_get(&alias->d_lockref);
943  	return alias;
944  }
945  
946  /**
947   * d_find_any_alias - find any alias for a given inode
948   * @inode: inode to find an alias for
949   *
950   * If any aliases exist for the given inode, take and return a
951   * reference for one of them.  If no aliases exist, return %NULL.
952   */
d_find_any_alias(struct inode * inode)953  struct dentry *d_find_any_alias(struct inode *inode)
954  {
955  	struct dentry *de;
956  
957  	spin_lock(&inode->i_lock);
958  	de = __d_find_any_alias(inode);
959  	spin_unlock(&inode->i_lock);
960  	return de;
961  }
962  EXPORT_SYMBOL(d_find_any_alias);
963  
__d_find_alias(struct inode * inode)964  static struct dentry *__d_find_alias(struct inode *inode)
965  {
966  	struct dentry *alias;
967  
968  	if (S_ISDIR(inode->i_mode))
969  		return __d_find_any_alias(inode);
970  
971  	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
972  		spin_lock(&alias->d_lock);
973   		if (!d_unhashed(alias)) {
974  			dget_dlock(alias);
975  			spin_unlock(&alias->d_lock);
976  			return alias;
977  		}
978  		spin_unlock(&alias->d_lock);
979  	}
980  	return NULL;
981  }
982  
983  /**
984   * d_find_alias - grab a hashed alias of inode
985   * @inode: inode in question
986   *
987   * If inode has a hashed alias, or is a directory and has any alias,
988   * acquire the reference to alias and return it. Otherwise return NULL.
989   * Notice that if inode is a directory there can be only one alias and
990   * it can be unhashed only if it has no children, or if it is the root
991   * of a filesystem, or if the directory was renamed and d_revalidate
992   * was the first vfs operation to notice.
993   *
994   * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
995   * any other hashed alias over that one.
996   */
d_find_alias(struct inode * inode)997  struct dentry *d_find_alias(struct inode *inode)
998  {
999  	struct dentry *de = NULL;
1000  
1001  	if (!hlist_empty(&inode->i_dentry)) {
1002  		spin_lock(&inode->i_lock);
1003  		de = __d_find_alias(inode);
1004  		spin_unlock(&inode->i_lock);
1005  	}
1006  	return de;
1007  }
1008  EXPORT_SYMBOL(d_find_alias);
1009  
1010  /*
1011   *  Caller MUST be holding rcu_read_lock() and be guaranteed
1012   *  that inode won't get freed until rcu_read_unlock().
1013   */
d_find_alias_rcu(struct inode * inode)1014  struct dentry *d_find_alias_rcu(struct inode *inode)
1015  {
1016  	struct hlist_head *l = &inode->i_dentry;
1017  	struct dentry *de = NULL;
1018  
1019  	spin_lock(&inode->i_lock);
1020  	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1021  	// used without having I_FREEING set, which means no aliases left
1022  	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1023  		if (S_ISDIR(inode->i_mode)) {
1024  			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1025  		} else {
1026  			hlist_for_each_entry(de, l, d_u.d_alias)
1027  				if (!d_unhashed(de))
1028  					break;
1029  		}
1030  	}
1031  	spin_unlock(&inode->i_lock);
1032  	return de;
1033  }
1034  
1035  /*
1036   *	Try to kill dentries associated with this inode.
1037   * WARNING: you must own a reference to inode.
1038   */
d_prune_aliases(struct inode * inode)1039  void d_prune_aliases(struct inode *inode)
1040  {
1041  	LIST_HEAD(dispose);
1042  	struct dentry *dentry;
1043  
1044  	spin_lock(&inode->i_lock);
1045  	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1046  		spin_lock(&dentry->d_lock);
1047  		if (!dentry->d_lockref.count)
1048  			to_shrink_list(dentry, &dispose);
1049  		spin_unlock(&dentry->d_lock);
1050  	}
1051  	spin_unlock(&inode->i_lock);
1052  	shrink_dentry_list(&dispose);
1053  }
1054  EXPORT_SYMBOL(d_prune_aliases);
1055  
shrink_kill(struct dentry * victim)1056  static inline void shrink_kill(struct dentry *victim)
1057  {
1058  	do {
1059  		rcu_read_unlock();
1060  		victim = __dentry_kill(victim);
1061  		rcu_read_lock();
1062  	} while (victim && lock_for_kill(victim));
1063  	rcu_read_unlock();
1064  	if (victim)
1065  		spin_unlock(&victim->d_lock);
1066  }
1067  
shrink_dentry_list(struct list_head * list)1068  void shrink_dentry_list(struct list_head *list)
1069  {
1070  	while (!list_empty(list)) {
1071  		struct dentry *dentry;
1072  
1073  		dentry = list_entry(list->prev, struct dentry, d_lru);
1074  		spin_lock(&dentry->d_lock);
1075  		rcu_read_lock();
1076  		if (!lock_for_kill(dentry)) {
1077  			bool can_free;
1078  			rcu_read_unlock();
1079  			d_shrink_del(dentry);
1080  			can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1081  			spin_unlock(&dentry->d_lock);
1082  			if (can_free)
1083  				dentry_free(dentry);
1084  			continue;
1085  		}
1086  		d_shrink_del(dentry);
1087  		shrink_kill(dentry);
1088  	}
1089  }
1090  
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1091  static enum lru_status dentry_lru_isolate(struct list_head *item,
1092  		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1093  {
1094  	struct list_head *freeable = arg;
1095  	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1096  
1097  
1098  	/*
1099  	 * we are inverting the lru lock/dentry->d_lock here,
1100  	 * so use a trylock. If we fail to get the lock, just skip
1101  	 * it
1102  	 */
1103  	if (!spin_trylock(&dentry->d_lock))
1104  		return LRU_SKIP;
1105  
1106  	/*
1107  	 * Referenced dentries are still in use. If they have active
1108  	 * counts, just remove them from the LRU. Otherwise give them
1109  	 * another pass through the LRU.
1110  	 */
1111  	if (dentry->d_lockref.count) {
1112  		d_lru_isolate(lru, dentry);
1113  		spin_unlock(&dentry->d_lock);
1114  		return LRU_REMOVED;
1115  	}
1116  
1117  	if (dentry->d_flags & DCACHE_REFERENCED) {
1118  		dentry->d_flags &= ~DCACHE_REFERENCED;
1119  		spin_unlock(&dentry->d_lock);
1120  
1121  		/*
1122  		 * The list move itself will be made by the common LRU code. At
1123  		 * this point, we've dropped the dentry->d_lock but keep the
1124  		 * lru lock. This is safe to do, since every list movement is
1125  		 * protected by the lru lock even if both locks are held.
1126  		 *
1127  		 * This is guaranteed by the fact that all LRU management
1128  		 * functions are intermediated by the LRU API calls like
1129  		 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1130  		 * only ever occur through this functions or through callbacks
1131  		 * like this one, that are called from the LRU API.
1132  		 *
1133  		 * The only exceptions to this are functions like
1134  		 * shrink_dentry_list, and code that first checks for the
1135  		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1136  		 * operating only with stack provided lists after they are
1137  		 * properly isolated from the main list.  It is thus, always a
1138  		 * local access.
1139  		 */
1140  		return LRU_ROTATE;
1141  	}
1142  
1143  	d_lru_shrink_move(lru, dentry, freeable);
1144  	spin_unlock(&dentry->d_lock);
1145  
1146  	return LRU_REMOVED;
1147  }
1148  
1149  /**
1150   * prune_dcache_sb - shrink the dcache
1151   * @sb: superblock
1152   * @sc: shrink control, passed to list_lru_shrink_walk()
1153   *
1154   * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1155   * is done when we need more memory and called from the superblock shrinker
1156   * function.
1157   *
1158   * This function may fail to free any resources if all the dentries are in
1159   * use.
1160   */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1161  long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1162  {
1163  	LIST_HEAD(dispose);
1164  	long freed;
1165  
1166  	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1167  				     dentry_lru_isolate, &dispose);
1168  	shrink_dentry_list(&dispose);
1169  	return freed;
1170  }
1171  
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1172  static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1173  		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1174  {
1175  	struct list_head *freeable = arg;
1176  	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1177  
1178  	/*
1179  	 * we are inverting the lru lock/dentry->d_lock here,
1180  	 * so use a trylock. If we fail to get the lock, just skip
1181  	 * it
1182  	 */
1183  	if (!spin_trylock(&dentry->d_lock))
1184  		return LRU_SKIP;
1185  
1186  	d_lru_shrink_move(lru, dentry, freeable);
1187  	spin_unlock(&dentry->d_lock);
1188  
1189  	return LRU_REMOVED;
1190  }
1191  
1192  
1193  /**
1194   * shrink_dcache_sb - shrink dcache for a superblock
1195   * @sb: superblock
1196   *
1197   * Shrink the dcache for the specified super block. This is used to free
1198   * the dcache before unmounting a file system.
1199   */
shrink_dcache_sb(struct super_block * sb)1200  void shrink_dcache_sb(struct super_block *sb)
1201  {
1202  	do {
1203  		LIST_HEAD(dispose);
1204  
1205  		list_lru_walk(&sb->s_dentry_lru,
1206  			dentry_lru_isolate_shrink, &dispose, 1024);
1207  		shrink_dentry_list(&dispose);
1208  	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1209  }
1210  EXPORT_SYMBOL(shrink_dcache_sb);
1211  
1212  /**
1213   * enum d_walk_ret - action to talke during tree walk
1214   * @D_WALK_CONTINUE:	contrinue walk
1215   * @D_WALK_QUIT:	quit walk
1216   * @D_WALK_NORETRY:	quit when retry is needed
1217   * @D_WALK_SKIP:	skip this dentry and its children
1218   */
1219  enum d_walk_ret {
1220  	D_WALK_CONTINUE,
1221  	D_WALK_QUIT,
1222  	D_WALK_NORETRY,
1223  	D_WALK_SKIP,
1224  };
1225  
1226  /**
1227   * d_walk - walk the dentry tree
1228   * @parent:	start of walk
1229   * @data:	data passed to @enter() and @finish()
1230   * @enter:	callback when first entering the dentry
1231   *
1232   * The @enter() callbacks are called with d_lock held.
1233   */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *))1234  static void d_walk(struct dentry *parent, void *data,
1235  		   enum d_walk_ret (*enter)(void *, struct dentry *))
1236  {
1237  	struct dentry *this_parent, *dentry;
1238  	unsigned seq = 0;
1239  	enum d_walk_ret ret;
1240  	bool retry = true;
1241  
1242  again:
1243  	read_seqbegin_or_lock(&rename_lock, &seq);
1244  	this_parent = parent;
1245  	spin_lock(&this_parent->d_lock);
1246  
1247  	ret = enter(data, this_parent);
1248  	switch (ret) {
1249  	case D_WALK_CONTINUE:
1250  		break;
1251  	case D_WALK_QUIT:
1252  	case D_WALK_SKIP:
1253  		goto out_unlock;
1254  	case D_WALK_NORETRY:
1255  		retry = false;
1256  		break;
1257  	}
1258  repeat:
1259  	dentry = d_first_child(this_parent);
1260  resume:
1261  	hlist_for_each_entry_from(dentry, d_sib) {
1262  		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1263  			continue;
1264  
1265  		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1266  
1267  		ret = enter(data, dentry);
1268  		switch (ret) {
1269  		case D_WALK_CONTINUE:
1270  			break;
1271  		case D_WALK_QUIT:
1272  			spin_unlock(&dentry->d_lock);
1273  			goto out_unlock;
1274  		case D_WALK_NORETRY:
1275  			retry = false;
1276  			break;
1277  		case D_WALK_SKIP:
1278  			spin_unlock(&dentry->d_lock);
1279  			continue;
1280  		}
1281  
1282  		if (!hlist_empty(&dentry->d_children)) {
1283  			spin_unlock(&this_parent->d_lock);
1284  			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1285  			this_parent = dentry;
1286  			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1287  			goto repeat;
1288  		}
1289  		spin_unlock(&dentry->d_lock);
1290  	}
1291  	/*
1292  	 * All done at this level ... ascend and resume the search.
1293  	 */
1294  	rcu_read_lock();
1295  ascend:
1296  	if (this_parent != parent) {
1297  		dentry = this_parent;
1298  		this_parent = dentry->d_parent;
1299  
1300  		spin_unlock(&dentry->d_lock);
1301  		spin_lock(&this_parent->d_lock);
1302  
1303  		/* might go back up the wrong parent if we have had a rename. */
1304  		if (need_seqretry(&rename_lock, seq))
1305  			goto rename_retry;
1306  		/* go into the first sibling still alive */
1307  		hlist_for_each_entry_continue(dentry, d_sib) {
1308  			if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1309  				rcu_read_unlock();
1310  				goto resume;
1311  			}
1312  		}
1313  		goto ascend;
1314  	}
1315  	if (need_seqretry(&rename_lock, seq))
1316  		goto rename_retry;
1317  	rcu_read_unlock();
1318  
1319  out_unlock:
1320  	spin_unlock(&this_parent->d_lock);
1321  	done_seqretry(&rename_lock, seq);
1322  	return;
1323  
1324  rename_retry:
1325  	spin_unlock(&this_parent->d_lock);
1326  	rcu_read_unlock();
1327  	BUG_ON(seq & 1);
1328  	if (!retry)
1329  		return;
1330  	seq = 1;
1331  	goto again;
1332  }
1333  
1334  struct check_mount {
1335  	struct vfsmount *mnt;
1336  	unsigned int mounted;
1337  };
1338  
path_check_mount(void * data,struct dentry * dentry)1339  static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1340  {
1341  	struct check_mount *info = data;
1342  	struct path path = { .mnt = info->mnt, .dentry = dentry };
1343  
1344  	if (likely(!d_mountpoint(dentry)))
1345  		return D_WALK_CONTINUE;
1346  	if (__path_is_mountpoint(&path)) {
1347  		info->mounted = 1;
1348  		return D_WALK_QUIT;
1349  	}
1350  	return D_WALK_CONTINUE;
1351  }
1352  
1353  /**
1354   * path_has_submounts - check for mounts over a dentry in the
1355   *                      current namespace.
1356   * @parent: path to check.
1357   *
1358   * Return true if the parent or its subdirectories contain
1359   * a mount point in the current namespace.
1360   */
path_has_submounts(const struct path * parent)1361  int path_has_submounts(const struct path *parent)
1362  {
1363  	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1364  
1365  	read_seqlock_excl(&mount_lock);
1366  	d_walk(parent->dentry, &data, path_check_mount);
1367  	read_sequnlock_excl(&mount_lock);
1368  
1369  	return data.mounted;
1370  }
1371  EXPORT_SYMBOL(path_has_submounts);
1372  
1373  /*
1374   * Called by mount code to set a mountpoint and check if the mountpoint is
1375   * reachable (e.g. NFS can unhash a directory dentry and then the complete
1376   * subtree can become unreachable).
1377   *
1378   * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1379   * this reason take rename_lock and d_lock on dentry and ancestors.
1380   */
d_set_mounted(struct dentry * dentry)1381  int d_set_mounted(struct dentry *dentry)
1382  {
1383  	struct dentry *p;
1384  	int ret = -ENOENT;
1385  	write_seqlock(&rename_lock);
1386  	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1387  		/* Need exclusion wrt. d_invalidate() */
1388  		spin_lock(&p->d_lock);
1389  		if (unlikely(d_unhashed(p))) {
1390  			spin_unlock(&p->d_lock);
1391  			goto out;
1392  		}
1393  		spin_unlock(&p->d_lock);
1394  	}
1395  	spin_lock(&dentry->d_lock);
1396  	if (!d_unlinked(dentry)) {
1397  		ret = -EBUSY;
1398  		if (!d_mountpoint(dentry)) {
1399  			dentry->d_flags |= DCACHE_MOUNTED;
1400  			ret = 0;
1401  		}
1402  	}
1403   	spin_unlock(&dentry->d_lock);
1404  out:
1405  	write_sequnlock(&rename_lock);
1406  	return ret;
1407  }
1408  
1409  /*
1410   * Search the dentry child list of the specified parent,
1411   * and move any unused dentries to the end of the unused
1412   * list for prune_dcache(). We descend to the next level
1413   * whenever the d_children list is non-empty and continue
1414   * searching.
1415   *
1416   * It returns zero iff there are no unused children,
1417   * otherwise  it returns the number of children moved to
1418   * the end of the unused list. This may not be the total
1419   * number of unused children, because select_parent can
1420   * drop the lock and return early due to latency
1421   * constraints.
1422   */
1423  
1424  struct select_data {
1425  	struct dentry *start;
1426  	union {
1427  		long found;
1428  		struct dentry *victim;
1429  	};
1430  	struct list_head dispose;
1431  };
1432  
select_collect(void * _data,struct dentry * dentry)1433  static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1434  {
1435  	struct select_data *data = _data;
1436  	enum d_walk_ret ret = D_WALK_CONTINUE;
1437  
1438  	if (data->start == dentry)
1439  		goto out;
1440  
1441  	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1442  		data->found++;
1443  	} else if (!dentry->d_lockref.count) {
1444  		to_shrink_list(dentry, &data->dispose);
1445  		data->found++;
1446  	} else if (dentry->d_lockref.count < 0) {
1447  		data->found++;
1448  	}
1449  	/*
1450  	 * We can return to the caller if we have found some (this
1451  	 * ensures forward progress). We'll be coming back to find
1452  	 * the rest.
1453  	 */
1454  	if (!list_empty(&data->dispose))
1455  		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1456  out:
1457  	return ret;
1458  }
1459  
select_collect2(void * _data,struct dentry * dentry)1460  static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1461  {
1462  	struct select_data *data = _data;
1463  	enum d_walk_ret ret = D_WALK_CONTINUE;
1464  
1465  	if (data->start == dentry)
1466  		goto out;
1467  
1468  	if (!dentry->d_lockref.count) {
1469  		if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1470  			rcu_read_lock();
1471  			data->victim = dentry;
1472  			return D_WALK_QUIT;
1473  		}
1474  		to_shrink_list(dentry, &data->dispose);
1475  	}
1476  	/*
1477  	 * We can return to the caller if we have found some (this
1478  	 * ensures forward progress). We'll be coming back to find
1479  	 * the rest.
1480  	 */
1481  	if (!list_empty(&data->dispose))
1482  		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1483  out:
1484  	return ret;
1485  }
1486  
1487  /**
1488   * shrink_dcache_parent - prune dcache
1489   * @parent: parent of entries to prune
1490   *
1491   * Prune the dcache to remove unused children of the parent dentry.
1492   */
shrink_dcache_parent(struct dentry * parent)1493  void shrink_dcache_parent(struct dentry *parent)
1494  {
1495  	for (;;) {
1496  		struct select_data data = {.start = parent};
1497  
1498  		INIT_LIST_HEAD(&data.dispose);
1499  		d_walk(parent, &data, select_collect);
1500  
1501  		if (!list_empty(&data.dispose)) {
1502  			shrink_dentry_list(&data.dispose);
1503  			continue;
1504  		}
1505  
1506  		cond_resched();
1507  		if (!data.found)
1508  			break;
1509  		data.victim = NULL;
1510  		d_walk(parent, &data, select_collect2);
1511  		if (data.victim) {
1512  			spin_lock(&data.victim->d_lock);
1513  			if (!lock_for_kill(data.victim)) {
1514  				spin_unlock(&data.victim->d_lock);
1515  				rcu_read_unlock();
1516  			} else {
1517  				shrink_kill(data.victim);
1518  			}
1519  		}
1520  		if (!list_empty(&data.dispose))
1521  			shrink_dentry_list(&data.dispose);
1522  	}
1523  }
1524  EXPORT_SYMBOL(shrink_dcache_parent);
1525  
umount_check(void * _data,struct dentry * dentry)1526  static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1527  {
1528  	/* it has busy descendents; complain about those instead */
1529  	if (!hlist_empty(&dentry->d_children))
1530  		return D_WALK_CONTINUE;
1531  
1532  	/* root with refcount 1 is fine */
1533  	if (dentry == _data && dentry->d_lockref.count == 1)
1534  		return D_WALK_CONTINUE;
1535  
1536  	WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1537  			" still in use (%d) [unmount of %s %s]\n",
1538  		       dentry,
1539  		       dentry->d_inode ?
1540  		       dentry->d_inode->i_ino : 0UL,
1541  		       dentry,
1542  		       dentry->d_lockref.count,
1543  		       dentry->d_sb->s_type->name,
1544  		       dentry->d_sb->s_id);
1545  	return D_WALK_CONTINUE;
1546  }
1547  
do_one_tree(struct dentry * dentry)1548  static void do_one_tree(struct dentry *dentry)
1549  {
1550  	shrink_dcache_parent(dentry);
1551  	d_walk(dentry, dentry, umount_check);
1552  	d_drop(dentry);
1553  	dput(dentry);
1554  }
1555  
1556  /*
1557   * destroy the dentries attached to a superblock on unmounting
1558   */
shrink_dcache_for_umount(struct super_block * sb)1559  void shrink_dcache_for_umount(struct super_block *sb)
1560  {
1561  	struct dentry *dentry;
1562  
1563  	rwsem_assert_held_write(&sb->s_umount);
1564  
1565  	dentry = sb->s_root;
1566  	sb->s_root = NULL;
1567  	do_one_tree(dentry);
1568  
1569  	while (!hlist_bl_empty(&sb->s_roots)) {
1570  		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1571  		do_one_tree(dentry);
1572  	}
1573  }
1574  
find_submount(void * _data,struct dentry * dentry)1575  static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1576  {
1577  	struct dentry **victim = _data;
1578  	if (d_mountpoint(dentry)) {
1579  		*victim = dget_dlock(dentry);
1580  		return D_WALK_QUIT;
1581  	}
1582  	return D_WALK_CONTINUE;
1583  }
1584  
1585  /**
1586   * d_invalidate - detach submounts, prune dcache, and drop
1587   * @dentry: dentry to invalidate (aka detach, prune and drop)
1588   */
d_invalidate(struct dentry * dentry)1589  void d_invalidate(struct dentry *dentry)
1590  {
1591  	bool had_submounts = false;
1592  	spin_lock(&dentry->d_lock);
1593  	if (d_unhashed(dentry)) {
1594  		spin_unlock(&dentry->d_lock);
1595  		return;
1596  	}
1597  	__d_drop(dentry);
1598  	spin_unlock(&dentry->d_lock);
1599  
1600  	/* Negative dentries can be dropped without further checks */
1601  	if (!dentry->d_inode)
1602  		return;
1603  
1604  	shrink_dcache_parent(dentry);
1605  	for (;;) {
1606  		struct dentry *victim = NULL;
1607  		d_walk(dentry, &victim, find_submount);
1608  		if (!victim) {
1609  			if (had_submounts)
1610  				shrink_dcache_parent(dentry);
1611  			return;
1612  		}
1613  		had_submounts = true;
1614  		detach_mounts(victim);
1615  		dput(victim);
1616  	}
1617  }
1618  EXPORT_SYMBOL(d_invalidate);
1619  
1620  /**
1621   * __d_alloc	-	allocate a dcache entry
1622   * @sb: filesystem it will belong to
1623   * @name: qstr of the name
1624   *
1625   * Allocates a dentry. It returns %NULL if there is insufficient memory
1626   * available. On a success the dentry is returned. The name passed in is
1627   * copied and the copy passed in may be reused after this call.
1628   */
1629  
__d_alloc(struct super_block * sb,const struct qstr * name)1630  static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1631  {
1632  	struct dentry *dentry;
1633  	char *dname;
1634  	int err;
1635  
1636  	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1637  				      GFP_KERNEL);
1638  	if (!dentry)
1639  		return NULL;
1640  
1641  	/*
1642  	 * We guarantee that the inline name is always NUL-terminated.
1643  	 * This way the memcpy() done by the name switching in rename
1644  	 * will still always have a NUL at the end, even if we might
1645  	 * be overwriting an internal NUL character
1646  	 */
1647  	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1648  	if (unlikely(!name)) {
1649  		name = &slash_name;
1650  		dname = dentry->d_iname;
1651  	} else if (name->len > DNAME_INLINE_LEN-1) {
1652  		size_t size = offsetof(struct external_name, name[1]);
1653  		struct external_name *p = kmalloc(size + name->len,
1654  						  GFP_KERNEL_ACCOUNT |
1655  						  __GFP_RECLAIMABLE);
1656  		if (!p) {
1657  			kmem_cache_free(dentry_cache, dentry);
1658  			return NULL;
1659  		}
1660  		atomic_set(&p->u.count, 1);
1661  		dname = p->name;
1662  	} else  {
1663  		dname = dentry->d_iname;
1664  	}
1665  
1666  	dentry->d_name.len = name->len;
1667  	dentry->d_name.hash = name->hash;
1668  	memcpy(dname, name->name, name->len);
1669  	dname[name->len] = 0;
1670  
1671  	/* Make sure we always see the terminating NUL character */
1672  	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1673  
1674  	dentry->d_lockref.count = 1;
1675  	dentry->d_flags = 0;
1676  	spin_lock_init(&dentry->d_lock);
1677  	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1678  	dentry->d_inode = NULL;
1679  	dentry->d_parent = dentry;
1680  	dentry->d_sb = sb;
1681  	dentry->d_op = NULL;
1682  	dentry->d_fsdata = NULL;
1683  	INIT_HLIST_BL_NODE(&dentry->d_hash);
1684  	INIT_LIST_HEAD(&dentry->d_lru);
1685  	INIT_HLIST_HEAD(&dentry->d_children);
1686  	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1687  	INIT_HLIST_NODE(&dentry->d_sib);
1688  	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1689  
1690  	if (dentry->d_op && dentry->d_op->d_init) {
1691  		err = dentry->d_op->d_init(dentry);
1692  		if (err) {
1693  			if (dname_external(dentry))
1694  				kfree(external_name(dentry));
1695  			kmem_cache_free(dentry_cache, dentry);
1696  			return NULL;
1697  		}
1698  	}
1699  
1700  	this_cpu_inc(nr_dentry);
1701  
1702  	return dentry;
1703  }
1704  
1705  /**
1706   * d_alloc	-	allocate a dcache entry
1707   * @parent: parent of entry to allocate
1708   * @name: qstr of the name
1709   *
1710   * Allocates a dentry. It returns %NULL if there is insufficient memory
1711   * available. On a success the dentry is returned. The name passed in is
1712   * copied and the copy passed in may be reused after this call.
1713   */
d_alloc(struct dentry * parent,const struct qstr * name)1714  struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1715  {
1716  	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1717  	if (!dentry)
1718  		return NULL;
1719  	spin_lock(&parent->d_lock);
1720  	/*
1721  	 * don't need child lock because it is not subject
1722  	 * to concurrency here
1723  	 */
1724  	dentry->d_parent = dget_dlock(parent);
1725  	hlist_add_head(&dentry->d_sib, &parent->d_children);
1726  	spin_unlock(&parent->d_lock);
1727  
1728  	return dentry;
1729  }
1730  EXPORT_SYMBOL(d_alloc);
1731  
d_alloc_anon(struct super_block * sb)1732  struct dentry *d_alloc_anon(struct super_block *sb)
1733  {
1734  	return __d_alloc(sb, NULL);
1735  }
1736  EXPORT_SYMBOL(d_alloc_anon);
1737  
d_alloc_cursor(struct dentry * parent)1738  struct dentry *d_alloc_cursor(struct dentry * parent)
1739  {
1740  	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1741  	if (dentry) {
1742  		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1743  		dentry->d_parent = dget(parent);
1744  	}
1745  	return dentry;
1746  }
1747  
1748  /**
1749   * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1750   * @sb: the superblock
1751   * @name: qstr of the name
1752   *
1753   * For a filesystem that just pins its dentries in memory and never
1754   * performs lookups at all, return an unhashed IS_ROOT dentry.
1755   * This is used for pipes, sockets et.al. - the stuff that should
1756   * never be anyone's children or parents.  Unlike all other
1757   * dentries, these will not have RCU delay between dropping the
1758   * last reference and freeing them.
1759   *
1760   * The only user is alloc_file_pseudo() and that's what should
1761   * be considered a public interface.  Don't use directly.
1762   */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1763  struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1764  {
1765  	static const struct dentry_operations anon_ops = {
1766  		.d_dname = simple_dname
1767  	};
1768  	struct dentry *dentry = __d_alloc(sb, name);
1769  	if (likely(dentry)) {
1770  		dentry->d_flags |= DCACHE_NORCU;
1771  		if (!sb->s_d_op)
1772  			d_set_d_op(dentry, &anon_ops);
1773  	}
1774  	return dentry;
1775  }
1776  
d_alloc_name(struct dentry * parent,const char * name)1777  struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1778  {
1779  	struct qstr q;
1780  
1781  	q.name = name;
1782  	q.hash_len = hashlen_string(parent, name);
1783  	return d_alloc(parent, &q);
1784  }
1785  EXPORT_SYMBOL(d_alloc_name);
1786  
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1787  void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1788  {
1789  	WARN_ON_ONCE(dentry->d_op);
1790  	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1791  				DCACHE_OP_COMPARE	|
1792  				DCACHE_OP_REVALIDATE	|
1793  				DCACHE_OP_WEAK_REVALIDATE	|
1794  				DCACHE_OP_DELETE	|
1795  				DCACHE_OP_REAL));
1796  	dentry->d_op = op;
1797  	if (!op)
1798  		return;
1799  	if (op->d_hash)
1800  		dentry->d_flags |= DCACHE_OP_HASH;
1801  	if (op->d_compare)
1802  		dentry->d_flags |= DCACHE_OP_COMPARE;
1803  	if (op->d_revalidate)
1804  		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1805  	if (op->d_weak_revalidate)
1806  		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1807  	if (op->d_delete)
1808  		dentry->d_flags |= DCACHE_OP_DELETE;
1809  	if (op->d_prune)
1810  		dentry->d_flags |= DCACHE_OP_PRUNE;
1811  	if (op->d_real)
1812  		dentry->d_flags |= DCACHE_OP_REAL;
1813  
1814  }
1815  EXPORT_SYMBOL(d_set_d_op);
1816  
d_flags_for_inode(struct inode * inode)1817  static unsigned d_flags_for_inode(struct inode *inode)
1818  {
1819  	unsigned add_flags = DCACHE_REGULAR_TYPE;
1820  
1821  	if (!inode)
1822  		return DCACHE_MISS_TYPE;
1823  
1824  	if (S_ISDIR(inode->i_mode)) {
1825  		add_flags = DCACHE_DIRECTORY_TYPE;
1826  		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1827  			if (unlikely(!inode->i_op->lookup))
1828  				add_flags = DCACHE_AUTODIR_TYPE;
1829  			else
1830  				inode->i_opflags |= IOP_LOOKUP;
1831  		}
1832  		goto type_determined;
1833  	}
1834  
1835  	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1836  		if (unlikely(inode->i_op->get_link)) {
1837  			add_flags = DCACHE_SYMLINK_TYPE;
1838  			goto type_determined;
1839  		}
1840  		inode->i_opflags |= IOP_NOFOLLOW;
1841  	}
1842  
1843  	if (unlikely(!S_ISREG(inode->i_mode)))
1844  		add_flags = DCACHE_SPECIAL_TYPE;
1845  
1846  type_determined:
1847  	if (unlikely(IS_AUTOMOUNT(inode)))
1848  		add_flags |= DCACHE_NEED_AUTOMOUNT;
1849  	return add_flags;
1850  }
1851  
__d_instantiate(struct dentry * dentry,struct inode * inode)1852  static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1853  {
1854  	unsigned add_flags = d_flags_for_inode(inode);
1855  	WARN_ON(d_in_lookup(dentry));
1856  
1857  	spin_lock(&dentry->d_lock);
1858  	/*
1859  	 * The negative counter only tracks dentries on the LRU. Don't dec if
1860  	 * d_lru is on another list.
1861  	 */
1862  	if ((dentry->d_flags &
1863  	     (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1864  		this_cpu_dec(nr_dentry_negative);
1865  	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1866  	raw_write_seqcount_begin(&dentry->d_seq);
1867  	__d_set_inode_and_type(dentry, inode, add_flags);
1868  	raw_write_seqcount_end(&dentry->d_seq);
1869  	fsnotify_update_flags(dentry);
1870  	spin_unlock(&dentry->d_lock);
1871  }
1872  
1873  /**
1874   * d_instantiate - fill in inode information for a dentry
1875   * @entry: dentry to complete
1876   * @inode: inode to attach to this dentry
1877   *
1878   * Fill in inode information in the entry.
1879   *
1880   * This turns negative dentries into productive full members
1881   * of society.
1882   *
1883   * NOTE! This assumes that the inode count has been incremented
1884   * (or otherwise set) by the caller to indicate that it is now
1885   * in use by the dcache.
1886   */
1887  
d_instantiate(struct dentry * entry,struct inode * inode)1888  void d_instantiate(struct dentry *entry, struct inode * inode)
1889  {
1890  	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1891  	if (inode) {
1892  		security_d_instantiate(entry, inode);
1893  		spin_lock(&inode->i_lock);
1894  		__d_instantiate(entry, inode);
1895  		spin_unlock(&inode->i_lock);
1896  	}
1897  }
1898  EXPORT_SYMBOL(d_instantiate);
1899  
1900  /*
1901   * This should be equivalent to d_instantiate() + unlock_new_inode(),
1902   * with lockdep-related part of unlock_new_inode() done before
1903   * anything else.  Use that instead of open-coding d_instantiate()/
1904   * unlock_new_inode() combinations.
1905   */
d_instantiate_new(struct dentry * entry,struct inode * inode)1906  void d_instantiate_new(struct dentry *entry, struct inode *inode)
1907  {
1908  	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1909  	BUG_ON(!inode);
1910  	lockdep_annotate_inode_mutex_key(inode);
1911  	security_d_instantiate(entry, inode);
1912  	spin_lock(&inode->i_lock);
1913  	__d_instantiate(entry, inode);
1914  	WARN_ON(!(inode->i_state & I_NEW));
1915  	inode->i_state &= ~I_NEW & ~I_CREATING;
1916  	/*
1917  	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1918  	 * ___wait_var_event() either sees the bit cleared or
1919  	 * waitqueue_active() check in wake_up_var() sees the waiter.
1920  	 */
1921  	smp_mb();
1922  	inode_wake_up_bit(inode, __I_NEW);
1923  	spin_unlock(&inode->i_lock);
1924  }
1925  EXPORT_SYMBOL(d_instantiate_new);
1926  
d_make_root(struct inode * root_inode)1927  struct dentry *d_make_root(struct inode *root_inode)
1928  {
1929  	struct dentry *res = NULL;
1930  
1931  	if (root_inode) {
1932  		res = d_alloc_anon(root_inode->i_sb);
1933  		if (res)
1934  			d_instantiate(res, root_inode);
1935  		else
1936  			iput(root_inode);
1937  	}
1938  	return res;
1939  }
1940  EXPORT_SYMBOL(d_make_root);
1941  
__d_obtain_alias(struct inode * inode,bool disconnected)1942  static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1943  {
1944  	struct super_block *sb;
1945  	struct dentry *new, *res;
1946  
1947  	if (!inode)
1948  		return ERR_PTR(-ESTALE);
1949  	if (IS_ERR(inode))
1950  		return ERR_CAST(inode);
1951  
1952  	sb = inode->i_sb;
1953  
1954  	res = d_find_any_alias(inode); /* existing alias? */
1955  	if (res)
1956  		goto out;
1957  
1958  	new = d_alloc_anon(sb);
1959  	if (!new) {
1960  		res = ERR_PTR(-ENOMEM);
1961  		goto out;
1962  	}
1963  
1964  	security_d_instantiate(new, inode);
1965  	spin_lock(&inode->i_lock);
1966  	res = __d_find_any_alias(inode); /* recheck under lock */
1967  	if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1968  		unsigned add_flags = d_flags_for_inode(inode);
1969  
1970  		if (disconnected)
1971  			add_flags |= DCACHE_DISCONNECTED;
1972  
1973  		spin_lock(&new->d_lock);
1974  		__d_set_inode_and_type(new, inode, add_flags);
1975  		hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
1976  		if (!disconnected) {
1977  			hlist_bl_lock(&sb->s_roots);
1978  			hlist_bl_add_head(&new->d_hash, &sb->s_roots);
1979  			hlist_bl_unlock(&sb->s_roots);
1980  		}
1981  		spin_unlock(&new->d_lock);
1982  		spin_unlock(&inode->i_lock);
1983  		inode = NULL; /* consumed by new->d_inode */
1984  		res = new;
1985  	} else {
1986  		spin_unlock(&inode->i_lock);
1987  		dput(new);
1988  	}
1989  
1990   out:
1991  	iput(inode);
1992  	return res;
1993  }
1994  
1995  /**
1996   * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1997   * @inode: inode to allocate the dentry for
1998   *
1999   * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2000   * similar open by handle operations.  The returned dentry may be anonymous,
2001   * or may have a full name (if the inode was already in the cache).
2002   *
2003   * When called on a directory inode, we must ensure that the inode only ever
2004   * has one dentry.  If a dentry is found, that is returned instead of
2005   * allocating a new one.
2006   *
2007   * On successful return, the reference to the inode has been transferred
2008   * to the dentry.  In case of an error the reference on the inode is released.
2009   * To make it easier to use in export operations a %NULL or IS_ERR inode may
2010   * be passed in and the error will be propagated to the return value,
2011   * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2012   */
d_obtain_alias(struct inode * inode)2013  struct dentry *d_obtain_alias(struct inode *inode)
2014  {
2015  	return __d_obtain_alias(inode, true);
2016  }
2017  EXPORT_SYMBOL(d_obtain_alias);
2018  
2019  /**
2020   * d_obtain_root - find or allocate a dentry for a given inode
2021   * @inode: inode to allocate the dentry for
2022   *
2023   * Obtain an IS_ROOT dentry for the root of a filesystem.
2024   *
2025   * We must ensure that directory inodes only ever have one dentry.  If a
2026   * dentry is found, that is returned instead of allocating a new one.
2027   *
2028   * On successful return, the reference to the inode has been transferred
2029   * to the dentry.  In case of an error the reference on the inode is
2030   * released.  A %NULL or IS_ERR inode may be passed in and will be the
2031   * error will be propagate to the return value, with a %NULL @inode
2032   * replaced by ERR_PTR(-ESTALE).
2033   */
d_obtain_root(struct inode * inode)2034  struct dentry *d_obtain_root(struct inode *inode)
2035  {
2036  	return __d_obtain_alias(inode, false);
2037  }
2038  EXPORT_SYMBOL(d_obtain_root);
2039  
2040  /**
2041   * d_add_ci - lookup or allocate new dentry with case-exact name
2042   * @inode:  the inode case-insensitive lookup has found
2043   * @dentry: the negative dentry that was passed to the parent's lookup func
2044   * @name:   the case-exact name to be associated with the returned dentry
2045   *
2046   * This is to avoid filling the dcache with case-insensitive names to the
2047   * same inode, only the actual correct case is stored in the dcache for
2048   * case-insensitive filesystems.
2049   *
2050   * For a case-insensitive lookup match and if the case-exact dentry
2051   * already exists in the dcache, use it and return it.
2052   *
2053   * If no entry exists with the exact case name, allocate new dentry with
2054   * the exact case, and return the spliced entry.
2055   */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2056  struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2057  			struct qstr *name)
2058  {
2059  	struct dentry *found, *res;
2060  
2061  	/*
2062  	 * First check if a dentry matching the name already exists,
2063  	 * if not go ahead and create it now.
2064  	 */
2065  	found = d_hash_and_lookup(dentry->d_parent, name);
2066  	if (found) {
2067  		iput(inode);
2068  		return found;
2069  	}
2070  	if (d_in_lookup(dentry)) {
2071  		found = d_alloc_parallel(dentry->d_parent, name,
2072  					dentry->d_wait);
2073  		if (IS_ERR(found) || !d_in_lookup(found)) {
2074  			iput(inode);
2075  			return found;
2076  		}
2077  	} else {
2078  		found = d_alloc(dentry->d_parent, name);
2079  		if (!found) {
2080  			iput(inode);
2081  			return ERR_PTR(-ENOMEM);
2082  		}
2083  	}
2084  	res = d_splice_alias(inode, found);
2085  	if (res) {
2086  		d_lookup_done(found);
2087  		dput(found);
2088  		return res;
2089  	}
2090  	return found;
2091  }
2092  EXPORT_SYMBOL(d_add_ci);
2093  
2094  /**
2095   * d_same_name - compare dentry name with case-exact name
2096   * @parent: parent dentry
2097   * @dentry: the negative dentry that was passed to the parent's lookup func
2098   * @name:   the case-exact name to be associated with the returned dentry
2099   *
2100   * Return: true if names are same, or false
2101   */
d_same_name(const struct dentry * dentry,const struct dentry * parent,const struct qstr * name)2102  bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2103  		 const struct qstr *name)
2104  {
2105  	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2106  		if (dentry->d_name.len != name->len)
2107  			return false;
2108  		return dentry_cmp(dentry, name->name, name->len) == 0;
2109  	}
2110  	return parent->d_op->d_compare(dentry,
2111  				       dentry->d_name.len, dentry->d_name.name,
2112  				       name) == 0;
2113  }
2114  EXPORT_SYMBOL_GPL(d_same_name);
2115  
2116  /*
2117   * This is __d_lookup_rcu() when the parent dentry has
2118   * DCACHE_OP_COMPARE, which makes things much nastier.
2119   */
__d_lookup_rcu_op_compare(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2120  static noinline struct dentry *__d_lookup_rcu_op_compare(
2121  	const struct dentry *parent,
2122  	const struct qstr *name,
2123  	unsigned *seqp)
2124  {
2125  	u64 hashlen = name->hash_len;
2126  	struct hlist_bl_head *b = d_hash(hashlen);
2127  	struct hlist_bl_node *node;
2128  	struct dentry *dentry;
2129  
2130  	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2131  		int tlen;
2132  		const char *tname;
2133  		unsigned seq;
2134  
2135  seqretry:
2136  		seq = raw_seqcount_begin(&dentry->d_seq);
2137  		if (dentry->d_parent != parent)
2138  			continue;
2139  		if (d_unhashed(dentry))
2140  			continue;
2141  		if (dentry->d_name.hash != hashlen_hash(hashlen))
2142  			continue;
2143  		tlen = dentry->d_name.len;
2144  		tname = dentry->d_name.name;
2145  		/* we want a consistent (name,len) pair */
2146  		if (read_seqcount_retry(&dentry->d_seq, seq)) {
2147  			cpu_relax();
2148  			goto seqretry;
2149  		}
2150  		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2151  			continue;
2152  		*seqp = seq;
2153  		return dentry;
2154  	}
2155  	return NULL;
2156  }
2157  
2158  /**
2159   * __d_lookup_rcu - search for a dentry (racy, store-free)
2160   * @parent: parent dentry
2161   * @name: qstr of name we wish to find
2162   * @seqp: returns d_seq value at the point where the dentry was found
2163   * Returns: dentry, or NULL
2164   *
2165   * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2166   * resolution (store-free path walking) design described in
2167   * Documentation/filesystems/path-lookup.txt.
2168   *
2169   * This is not to be used outside core vfs.
2170   *
2171   * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2172   * held, and rcu_read_lock held. The returned dentry must not be stored into
2173   * without taking d_lock and checking d_seq sequence count against @seq
2174   * returned here.
2175   *
2176   * Alternatively, __d_lookup_rcu may be called again to look up the child of
2177   * the returned dentry, so long as its parent's seqlock is checked after the
2178   * child is looked up. Thus, an interlocking stepping of sequence lock checks
2179   * is formed, giving integrity down the path walk.
2180   *
2181   * NOTE! The caller *has* to check the resulting dentry against the sequence
2182   * number we've returned before using any of the resulting dentry state!
2183   */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2184  struct dentry *__d_lookup_rcu(const struct dentry *parent,
2185  				const struct qstr *name,
2186  				unsigned *seqp)
2187  {
2188  	u64 hashlen = name->hash_len;
2189  	const unsigned char *str = name->name;
2190  	struct hlist_bl_head *b = d_hash(hashlen);
2191  	struct hlist_bl_node *node;
2192  	struct dentry *dentry;
2193  
2194  	/*
2195  	 * Note: There is significant duplication with __d_lookup_rcu which is
2196  	 * required to prevent single threaded performance regressions
2197  	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2198  	 * Keep the two functions in sync.
2199  	 */
2200  
2201  	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2202  		return __d_lookup_rcu_op_compare(parent, name, seqp);
2203  
2204  	/*
2205  	 * The hash list is protected using RCU.
2206  	 *
2207  	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2208  	 * races with d_move().
2209  	 *
2210  	 * It is possible that concurrent renames can mess up our list
2211  	 * walk here and result in missing our dentry, resulting in the
2212  	 * false-negative result. d_lookup() protects against concurrent
2213  	 * renames using rename_lock seqlock.
2214  	 *
2215  	 * See Documentation/filesystems/path-lookup.txt for more details.
2216  	 */
2217  	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2218  		unsigned seq;
2219  
2220  		/*
2221  		 * The dentry sequence count protects us from concurrent
2222  		 * renames, and thus protects parent and name fields.
2223  		 *
2224  		 * The caller must perform a seqcount check in order
2225  		 * to do anything useful with the returned dentry.
2226  		 *
2227  		 * NOTE! We do a "raw" seqcount_begin here. That means that
2228  		 * we don't wait for the sequence count to stabilize if it
2229  		 * is in the middle of a sequence change. If we do the slow
2230  		 * dentry compare, we will do seqretries until it is stable,
2231  		 * and if we end up with a successful lookup, we actually
2232  		 * want to exit RCU lookup anyway.
2233  		 *
2234  		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2235  		 * we are still guaranteed NUL-termination of ->d_name.name.
2236  		 */
2237  		seq = raw_seqcount_begin(&dentry->d_seq);
2238  		if (dentry->d_parent != parent)
2239  			continue;
2240  		if (d_unhashed(dentry))
2241  			continue;
2242  		if (dentry->d_name.hash_len != hashlen)
2243  			continue;
2244  		if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2245  			continue;
2246  		*seqp = seq;
2247  		return dentry;
2248  	}
2249  	return NULL;
2250  }
2251  
2252  /**
2253   * d_lookup - search for a dentry
2254   * @parent: parent dentry
2255   * @name: qstr of name we wish to find
2256   * Returns: dentry, or NULL
2257   *
2258   * d_lookup searches the children of the parent dentry for the name in
2259   * question. If the dentry is found its reference count is incremented and the
2260   * dentry is returned. The caller must use dput to free the entry when it has
2261   * finished using it. %NULL is returned if the dentry does not exist.
2262   */
d_lookup(const struct dentry * parent,const struct qstr * name)2263  struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2264  {
2265  	struct dentry *dentry;
2266  	unsigned seq;
2267  
2268  	do {
2269  		seq = read_seqbegin(&rename_lock);
2270  		dentry = __d_lookup(parent, name);
2271  		if (dentry)
2272  			break;
2273  	} while (read_seqretry(&rename_lock, seq));
2274  	return dentry;
2275  }
2276  EXPORT_SYMBOL(d_lookup);
2277  
2278  /**
2279   * __d_lookup - search for a dentry (racy)
2280   * @parent: parent dentry
2281   * @name: qstr of name we wish to find
2282   * Returns: dentry, or NULL
2283   *
2284   * __d_lookup is like d_lookup, however it may (rarely) return a
2285   * false-negative result due to unrelated rename activity.
2286   *
2287   * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2288   * however it must be used carefully, eg. with a following d_lookup in
2289   * the case of failure.
2290   *
2291   * __d_lookup callers must be commented.
2292   */
__d_lookup(const struct dentry * parent,const struct qstr * name)2293  struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2294  {
2295  	unsigned int hash = name->hash;
2296  	struct hlist_bl_head *b = d_hash(hash);
2297  	struct hlist_bl_node *node;
2298  	struct dentry *found = NULL;
2299  	struct dentry *dentry;
2300  
2301  	/*
2302  	 * Note: There is significant duplication with __d_lookup_rcu which is
2303  	 * required to prevent single threaded performance regressions
2304  	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2305  	 * Keep the two functions in sync.
2306  	 */
2307  
2308  	/*
2309  	 * The hash list is protected using RCU.
2310  	 *
2311  	 * Take d_lock when comparing a candidate dentry, to avoid races
2312  	 * with d_move().
2313  	 *
2314  	 * It is possible that concurrent renames can mess up our list
2315  	 * walk here and result in missing our dentry, resulting in the
2316  	 * false-negative result. d_lookup() protects against concurrent
2317  	 * renames using rename_lock seqlock.
2318  	 *
2319  	 * See Documentation/filesystems/path-lookup.txt for more details.
2320  	 */
2321  	rcu_read_lock();
2322  
2323  	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2324  
2325  		if (dentry->d_name.hash != hash)
2326  			continue;
2327  
2328  		spin_lock(&dentry->d_lock);
2329  		if (dentry->d_parent != parent)
2330  			goto next;
2331  		if (d_unhashed(dentry))
2332  			goto next;
2333  
2334  		if (!d_same_name(dentry, parent, name))
2335  			goto next;
2336  
2337  		dentry->d_lockref.count++;
2338  		found = dentry;
2339  		spin_unlock(&dentry->d_lock);
2340  		break;
2341  next:
2342  		spin_unlock(&dentry->d_lock);
2343   	}
2344   	rcu_read_unlock();
2345  
2346   	return found;
2347  }
2348  
2349  /**
2350   * d_hash_and_lookup - hash the qstr then search for a dentry
2351   * @dir: Directory to search in
2352   * @name: qstr of name we wish to find
2353   *
2354   * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2355   */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2356  struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2357  {
2358  	/*
2359  	 * Check for a fs-specific hash function. Note that we must
2360  	 * calculate the standard hash first, as the d_op->d_hash()
2361  	 * routine may choose to leave the hash value unchanged.
2362  	 */
2363  	name->hash = full_name_hash(dir, name->name, name->len);
2364  	if (dir->d_flags & DCACHE_OP_HASH) {
2365  		int err = dir->d_op->d_hash(dir, name);
2366  		if (unlikely(err < 0))
2367  			return ERR_PTR(err);
2368  	}
2369  	return d_lookup(dir, name);
2370  }
2371  EXPORT_SYMBOL(d_hash_and_lookup);
2372  
2373  /*
2374   * When a file is deleted, we have two options:
2375   * - turn this dentry into a negative dentry
2376   * - unhash this dentry and free it.
2377   *
2378   * Usually, we want to just turn this into
2379   * a negative dentry, but if anybody else is
2380   * currently using the dentry or the inode
2381   * we can't do that and we fall back on removing
2382   * it from the hash queues and waiting for
2383   * it to be deleted later when it has no users
2384   */
2385  
2386  /**
2387   * d_delete - delete a dentry
2388   * @dentry: The dentry to delete
2389   *
2390   * Turn the dentry into a negative dentry if possible, otherwise
2391   * remove it from the hash queues so it can be deleted later
2392   */
2393  
d_delete(struct dentry * dentry)2394  void d_delete(struct dentry * dentry)
2395  {
2396  	struct inode *inode = dentry->d_inode;
2397  
2398  	spin_lock(&inode->i_lock);
2399  	spin_lock(&dentry->d_lock);
2400  	/*
2401  	 * Are we the only user?
2402  	 */
2403  	if (dentry->d_lockref.count == 1) {
2404  		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2405  		dentry_unlink_inode(dentry);
2406  	} else {
2407  		__d_drop(dentry);
2408  		spin_unlock(&dentry->d_lock);
2409  		spin_unlock(&inode->i_lock);
2410  	}
2411  }
2412  EXPORT_SYMBOL(d_delete);
2413  
__d_rehash(struct dentry * entry)2414  static void __d_rehash(struct dentry *entry)
2415  {
2416  	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2417  
2418  	hlist_bl_lock(b);
2419  	hlist_bl_add_head_rcu(&entry->d_hash, b);
2420  	hlist_bl_unlock(b);
2421  }
2422  
2423  /**
2424   * d_rehash	- add an entry back to the hash
2425   * @entry: dentry to add to the hash
2426   *
2427   * Adds a dentry to the hash according to its name.
2428   */
2429  
d_rehash(struct dentry * entry)2430  void d_rehash(struct dentry * entry)
2431  {
2432  	spin_lock(&entry->d_lock);
2433  	__d_rehash(entry);
2434  	spin_unlock(&entry->d_lock);
2435  }
2436  EXPORT_SYMBOL(d_rehash);
2437  
start_dir_add(struct inode * dir)2438  static inline unsigned start_dir_add(struct inode *dir)
2439  {
2440  	preempt_disable_nested();
2441  	for (;;) {
2442  		unsigned n = dir->i_dir_seq;
2443  		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2444  			return n;
2445  		cpu_relax();
2446  	}
2447  }
2448  
end_dir_add(struct inode * dir,unsigned int n,wait_queue_head_t * d_wait)2449  static inline void end_dir_add(struct inode *dir, unsigned int n,
2450  			       wait_queue_head_t *d_wait)
2451  {
2452  	smp_store_release(&dir->i_dir_seq, n + 2);
2453  	preempt_enable_nested();
2454  	wake_up_all(d_wait);
2455  }
2456  
d_wait_lookup(struct dentry * dentry)2457  static void d_wait_lookup(struct dentry *dentry)
2458  {
2459  	if (d_in_lookup(dentry)) {
2460  		DECLARE_WAITQUEUE(wait, current);
2461  		add_wait_queue(dentry->d_wait, &wait);
2462  		do {
2463  			set_current_state(TASK_UNINTERRUPTIBLE);
2464  			spin_unlock(&dentry->d_lock);
2465  			schedule();
2466  			spin_lock(&dentry->d_lock);
2467  		} while (d_in_lookup(dentry));
2468  	}
2469  }
2470  
d_alloc_parallel(struct dentry * parent,const struct qstr * name,wait_queue_head_t * wq)2471  struct dentry *d_alloc_parallel(struct dentry *parent,
2472  				const struct qstr *name,
2473  				wait_queue_head_t *wq)
2474  {
2475  	unsigned int hash = name->hash;
2476  	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2477  	struct hlist_bl_node *node;
2478  	struct dentry *new = d_alloc(parent, name);
2479  	struct dentry *dentry;
2480  	unsigned seq, r_seq, d_seq;
2481  
2482  	if (unlikely(!new))
2483  		return ERR_PTR(-ENOMEM);
2484  
2485  retry:
2486  	rcu_read_lock();
2487  	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2488  	r_seq = read_seqbegin(&rename_lock);
2489  	dentry = __d_lookup_rcu(parent, name, &d_seq);
2490  	if (unlikely(dentry)) {
2491  		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2492  			rcu_read_unlock();
2493  			goto retry;
2494  		}
2495  		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2496  			rcu_read_unlock();
2497  			dput(dentry);
2498  			goto retry;
2499  		}
2500  		rcu_read_unlock();
2501  		dput(new);
2502  		return dentry;
2503  	}
2504  	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2505  		rcu_read_unlock();
2506  		goto retry;
2507  	}
2508  
2509  	if (unlikely(seq & 1)) {
2510  		rcu_read_unlock();
2511  		goto retry;
2512  	}
2513  
2514  	hlist_bl_lock(b);
2515  	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2516  		hlist_bl_unlock(b);
2517  		rcu_read_unlock();
2518  		goto retry;
2519  	}
2520  	/*
2521  	 * No changes for the parent since the beginning of d_lookup().
2522  	 * Since all removals from the chain happen with hlist_bl_lock(),
2523  	 * any potential in-lookup matches are going to stay here until
2524  	 * we unlock the chain.  All fields are stable in everything
2525  	 * we encounter.
2526  	 */
2527  	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2528  		if (dentry->d_name.hash != hash)
2529  			continue;
2530  		if (dentry->d_parent != parent)
2531  			continue;
2532  		if (!d_same_name(dentry, parent, name))
2533  			continue;
2534  		hlist_bl_unlock(b);
2535  		/* now we can try to grab a reference */
2536  		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2537  			rcu_read_unlock();
2538  			goto retry;
2539  		}
2540  
2541  		rcu_read_unlock();
2542  		/*
2543  		 * somebody is likely to be still doing lookup for it;
2544  		 * wait for them to finish
2545  		 */
2546  		spin_lock(&dentry->d_lock);
2547  		d_wait_lookup(dentry);
2548  		/*
2549  		 * it's not in-lookup anymore; in principle we should repeat
2550  		 * everything from dcache lookup, but it's likely to be what
2551  		 * d_lookup() would've found anyway.  If it is, just return it;
2552  		 * otherwise we really have to repeat the whole thing.
2553  		 */
2554  		if (unlikely(dentry->d_name.hash != hash))
2555  			goto mismatch;
2556  		if (unlikely(dentry->d_parent != parent))
2557  			goto mismatch;
2558  		if (unlikely(d_unhashed(dentry)))
2559  			goto mismatch;
2560  		if (unlikely(!d_same_name(dentry, parent, name)))
2561  			goto mismatch;
2562  		/* OK, it *is* a hashed match; return it */
2563  		spin_unlock(&dentry->d_lock);
2564  		dput(new);
2565  		return dentry;
2566  	}
2567  	rcu_read_unlock();
2568  	/* we can't take ->d_lock here; it's OK, though. */
2569  	new->d_flags |= DCACHE_PAR_LOOKUP;
2570  	new->d_wait = wq;
2571  	hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2572  	hlist_bl_unlock(b);
2573  	return new;
2574  mismatch:
2575  	spin_unlock(&dentry->d_lock);
2576  	dput(dentry);
2577  	goto retry;
2578  }
2579  EXPORT_SYMBOL(d_alloc_parallel);
2580  
2581  /*
2582   * - Unhash the dentry
2583   * - Retrieve and clear the waitqueue head in dentry
2584   * - Return the waitqueue head
2585   */
__d_lookup_unhash(struct dentry * dentry)2586  static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2587  {
2588  	wait_queue_head_t *d_wait;
2589  	struct hlist_bl_head *b;
2590  
2591  	lockdep_assert_held(&dentry->d_lock);
2592  
2593  	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2594  	hlist_bl_lock(b);
2595  	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2596  	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2597  	d_wait = dentry->d_wait;
2598  	dentry->d_wait = NULL;
2599  	hlist_bl_unlock(b);
2600  	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2601  	INIT_LIST_HEAD(&dentry->d_lru);
2602  	return d_wait;
2603  }
2604  
__d_lookup_unhash_wake(struct dentry * dentry)2605  void __d_lookup_unhash_wake(struct dentry *dentry)
2606  {
2607  	spin_lock(&dentry->d_lock);
2608  	wake_up_all(__d_lookup_unhash(dentry));
2609  	spin_unlock(&dentry->d_lock);
2610  }
2611  EXPORT_SYMBOL(__d_lookup_unhash_wake);
2612  
2613  /* inode->i_lock held if inode is non-NULL */
2614  
__d_add(struct dentry * dentry,struct inode * inode)2615  static inline void __d_add(struct dentry *dentry, struct inode *inode)
2616  {
2617  	wait_queue_head_t *d_wait;
2618  	struct inode *dir = NULL;
2619  	unsigned n;
2620  	spin_lock(&dentry->d_lock);
2621  	if (unlikely(d_in_lookup(dentry))) {
2622  		dir = dentry->d_parent->d_inode;
2623  		n = start_dir_add(dir);
2624  		d_wait = __d_lookup_unhash(dentry);
2625  	}
2626  	if (inode) {
2627  		unsigned add_flags = d_flags_for_inode(inode);
2628  		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2629  		raw_write_seqcount_begin(&dentry->d_seq);
2630  		__d_set_inode_and_type(dentry, inode, add_flags);
2631  		raw_write_seqcount_end(&dentry->d_seq);
2632  		fsnotify_update_flags(dentry);
2633  	}
2634  	__d_rehash(dentry);
2635  	if (dir)
2636  		end_dir_add(dir, n, d_wait);
2637  	spin_unlock(&dentry->d_lock);
2638  	if (inode)
2639  		spin_unlock(&inode->i_lock);
2640  }
2641  
2642  /**
2643   * d_add - add dentry to hash queues
2644   * @entry: dentry to add
2645   * @inode: The inode to attach to this dentry
2646   *
2647   * This adds the entry to the hash queues and initializes @inode.
2648   * The entry was actually filled in earlier during d_alloc().
2649   */
2650  
d_add(struct dentry * entry,struct inode * inode)2651  void d_add(struct dentry *entry, struct inode *inode)
2652  {
2653  	if (inode) {
2654  		security_d_instantiate(entry, inode);
2655  		spin_lock(&inode->i_lock);
2656  	}
2657  	__d_add(entry, inode);
2658  }
2659  EXPORT_SYMBOL(d_add);
2660  
2661  /**
2662   * d_exact_alias - find and hash an exact unhashed alias
2663   * @entry: dentry to add
2664   * @inode: The inode to go with this dentry
2665   *
2666   * If an unhashed dentry with the same name/parent and desired
2667   * inode already exists, hash and return it.  Otherwise, return
2668   * NULL.
2669   *
2670   * Parent directory should be locked.
2671   */
d_exact_alias(struct dentry * entry,struct inode * inode)2672  struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2673  {
2674  	struct dentry *alias;
2675  	unsigned int hash = entry->d_name.hash;
2676  
2677  	spin_lock(&inode->i_lock);
2678  	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2679  		/*
2680  		 * Don't need alias->d_lock here, because aliases with
2681  		 * d_parent == entry->d_parent are not subject to name or
2682  		 * parent changes, because the parent inode i_mutex is held.
2683  		 */
2684  		if (alias->d_name.hash != hash)
2685  			continue;
2686  		if (alias->d_parent != entry->d_parent)
2687  			continue;
2688  		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2689  			continue;
2690  		spin_lock(&alias->d_lock);
2691  		if (!d_unhashed(alias)) {
2692  			spin_unlock(&alias->d_lock);
2693  			alias = NULL;
2694  		} else {
2695  			dget_dlock(alias);
2696  			__d_rehash(alias);
2697  			spin_unlock(&alias->d_lock);
2698  		}
2699  		spin_unlock(&inode->i_lock);
2700  		return alias;
2701  	}
2702  	spin_unlock(&inode->i_lock);
2703  	return NULL;
2704  }
2705  EXPORT_SYMBOL(d_exact_alias);
2706  
swap_names(struct dentry * dentry,struct dentry * target)2707  static void swap_names(struct dentry *dentry, struct dentry *target)
2708  {
2709  	if (unlikely(dname_external(target))) {
2710  		if (unlikely(dname_external(dentry))) {
2711  			/*
2712  			 * Both external: swap the pointers
2713  			 */
2714  			swap(target->d_name.name, dentry->d_name.name);
2715  		} else {
2716  			/*
2717  			 * dentry:internal, target:external.  Steal target's
2718  			 * storage and make target internal.
2719  			 */
2720  			memcpy(target->d_iname, dentry->d_name.name,
2721  					dentry->d_name.len + 1);
2722  			dentry->d_name.name = target->d_name.name;
2723  			target->d_name.name = target->d_iname;
2724  		}
2725  	} else {
2726  		if (unlikely(dname_external(dentry))) {
2727  			/*
2728  			 * dentry:external, target:internal.  Give dentry's
2729  			 * storage to target and make dentry internal
2730  			 */
2731  			memcpy(dentry->d_iname, target->d_name.name,
2732  					target->d_name.len + 1);
2733  			target->d_name.name = dentry->d_name.name;
2734  			dentry->d_name.name = dentry->d_iname;
2735  		} else {
2736  			/*
2737  			 * Both are internal.
2738  			 */
2739  			unsigned int i;
2740  			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2741  			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2742  				swap(((long *) &dentry->d_iname)[i],
2743  				     ((long *) &target->d_iname)[i]);
2744  			}
2745  		}
2746  	}
2747  	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2748  }
2749  
copy_name(struct dentry * dentry,struct dentry * target)2750  static void copy_name(struct dentry *dentry, struct dentry *target)
2751  {
2752  	struct external_name *old_name = NULL;
2753  	if (unlikely(dname_external(dentry)))
2754  		old_name = external_name(dentry);
2755  	if (unlikely(dname_external(target))) {
2756  		atomic_inc(&external_name(target)->u.count);
2757  		dentry->d_name = target->d_name;
2758  	} else {
2759  		memcpy(dentry->d_iname, target->d_name.name,
2760  				target->d_name.len + 1);
2761  		dentry->d_name.name = dentry->d_iname;
2762  		dentry->d_name.hash_len = target->d_name.hash_len;
2763  	}
2764  	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2765  		kfree_rcu(old_name, u.head);
2766  }
2767  
2768  /*
2769   * __d_move - move a dentry
2770   * @dentry: entry to move
2771   * @target: new dentry
2772   * @exchange: exchange the two dentries
2773   *
2774   * Update the dcache to reflect the move of a file name. Negative
2775   * dcache entries should not be moved in this way. Caller must hold
2776   * rename_lock, the i_mutex of the source and target directories,
2777   * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2778   */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2779  static void __d_move(struct dentry *dentry, struct dentry *target,
2780  		     bool exchange)
2781  {
2782  	struct dentry *old_parent, *p;
2783  	wait_queue_head_t *d_wait;
2784  	struct inode *dir = NULL;
2785  	unsigned n;
2786  
2787  	WARN_ON(!dentry->d_inode);
2788  	if (WARN_ON(dentry == target))
2789  		return;
2790  
2791  	BUG_ON(d_ancestor(target, dentry));
2792  	old_parent = dentry->d_parent;
2793  	p = d_ancestor(old_parent, target);
2794  	if (IS_ROOT(dentry)) {
2795  		BUG_ON(p);
2796  		spin_lock(&target->d_parent->d_lock);
2797  	} else if (!p) {
2798  		/* target is not a descendent of dentry->d_parent */
2799  		spin_lock(&target->d_parent->d_lock);
2800  		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2801  	} else {
2802  		BUG_ON(p == dentry);
2803  		spin_lock(&old_parent->d_lock);
2804  		if (p != target)
2805  			spin_lock_nested(&target->d_parent->d_lock,
2806  					DENTRY_D_LOCK_NESTED);
2807  	}
2808  	spin_lock_nested(&dentry->d_lock, 2);
2809  	spin_lock_nested(&target->d_lock, 3);
2810  
2811  	if (unlikely(d_in_lookup(target))) {
2812  		dir = target->d_parent->d_inode;
2813  		n = start_dir_add(dir);
2814  		d_wait = __d_lookup_unhash(target);
2815  	}
2816  
2817  	write_seqcount_begin(&dentry->d_seq);
2818  	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2819  
2820  	/* unhash both */
2821  	if (!d_unhashed(dentry))
2822  		___d_drop(dentry);
2823  	if (!d_unhashed(target))
2824  		___d_drop(target);
2825  
2826  	/* ... and switch them in the tree */
2827  	dentry->d_parent = target->d_parent;
2828  	if (!exchange) {
2829  		copy_name(dentry, target);
2830  		target->d_hash.pprev = NULL;
2831  		dentry->d_parent->d_lockref.count++;
2832  		if (dentry != old_parent) /* wasn't IS_ROOT */
2833  			WARN_ON(!--old_parent->d_lockref.count);
2834  	} else {
2835  		target->d_parent = old_parent;
2836  		swap_names(dentry, target);
2837  		if (!hlist_unhashed(&target->d_sib))
2838  			__hlist_del(&target->d_sib);
2839  		hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2840  		__d_rehash(target);
2841  		fsnotify_update_flags(target);
2842  	}
2843  	if (!hlist_unhashed(&dentry->d_sib))
2844  		__hlist_del(&dentry->d_sib);
2845  	hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2846  	__d_rehash(dentry);
2847  	fsnotify_update_flags(dentry);
2848  	fscrypt_handle_d_move(dentry);
2849  
2850  	write_seqcount_end(&target->d_seq);
2851  	write_seqcount_end(&dentry->d_seq);
2852  
2853  	if (dir)
2854  		end_dir_add(dir, n, d_wait);
2855  
2856  	if (dentry->d_parent != old_parent)
2857  		spin_unlock(&dentry->d_parent->d_lock);
2858  	if (dentry != old_parent)
2859  		spin_unlock(&old_parent->d_lock);
2860  	spin_unlock(&target->d_lock);
2861  	spin_unlock(&dentry->d_lock);
2862  }
2863  
2864  /*
2865   * d_move - move a dentry
2866   * @dentry: entry to move
2867   * @target: new dentry
2868   *
2869   * Update the dcache to reflect the move of a file name. Negative
2870   * dcache entries should not be moved in this way. See the locking
2871   * requirements for __d_move.
2872   */
d_move(struct dentry * dentry,struct dentry * target)2873  void d_move(struct dentry *dentry, struct dentry *target)
2874  {
2875  	write_seqlock(&rename_lock);
2876  	__d_move(dentry, target, false);
2877  	write_sequnlock(&rename_lock);
2878  }
2879  EXPORT_SYMBOL(d_move);
2880  
2881  /*
2882   * d_exchange - exchange two dentries
2883   * @dentry1: first dentry
2884   * @dentry2: second dentry
2885   */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2886  void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2887  {
2888  	write_seqlock(&rename_lock);
2889  
2890  	WARN_ON(!dentry1->d_inode);
2891  	WARN_ON(!dentry2->d_inode);
2892  	WARN_ON(IS_ROOT(dentry1));
2893  	WARN_ON(IS_ROOT(dentry2));
2894  
2895  	__d_move(dentry1, dentry2, true);
2896  
2897  	write_sequnlock(&rename_lock);
2898  }
2899  
2900  /**
2901   * d_ancestor - search for an ancestor
2902   * @p1: ancestor dentry
2903   * @p2: child dentry
2904   *
2905   * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2906   * an ancestor of p2, else NULL.
2907   */
d_ancestor(struct dentry * p1,struct dentry * p2)2908  struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2909  {
2910  	struct dentry *p;
2911  
2912  	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2913  		if (p->d_parent == p1)
2914  			return p;
2915  	}
2916  	return NULL;
2917  }
2918  
2919  /*
2920   * This helper attempts to cope with remotely renamed directories
2921   *
2922   * It assumes that the caller is already holding
2923   * dentry->d_parent->d_inode->i_mutex, and rename_lock
2924   *
2925   * Note: If ever the locking in lock_rename() changes, then please
2926   * remember to update this too...
2927   */
__d_unalias(struct dentry * dentry,struct dentry * alias)2928  static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2929  {
2930  	struct mutex *m1 = NULL;
2931  	struct rw_semaphore *m2 = NULL;
2932  	int ret = -ESTALE;
2933  
2934  	/* If alias and dentry share a parent, then no extra locks required */
2935  	if (alias->d_parent == dentry->d_parent)
2936  		goto out_unalias;
2937  
2938  	/* See lock_rename() */
2939  	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2940  		goto out_err;
2941  	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2942  	if (!inode_trylock_shared(alias->d_parent->d_inode))
2943  		goto out_err;
2944  	m2 = &alias->d_parent->d_inode->i_rwsem;
2945  out_unalias:
2946  	__d_move(alias, dentry, false);
2947  	ret = 0;
2948  out_err:
2949  	if (m2)
2950  		up_read(m2);
2951  	if (m1)
2952  		mutex_unlock(m1);
2953  	return ret;
2954  }
2955  
2956  /**
2957   * d_splice_alias - splice a disconnected dentry into the tree if one exists
2958   * @inode:  the inode which may have a disconnected dentry
2959   * @dentry: a negative dentry which we want to point to the inode.
2960   *
2961   * If inode is a directory and has an IS_ROOT alias, then d_move that in
2962   * place of the given dentry and return it, else simply d_add the inode
2963   * to the dentry and return NULL.
2964   *
2965   * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2966   * we should error out: directories can't have multiple aliases.
2967   *
2968   * This is needed in the lookup routine of any filesystem that is exportable
2969   * (via knfsd) so that we can build dcache paths to directories effectively.
2970   *
2971   * If a dentry was found and moved, then it is returned.  Otherwise NULL
2972   * is returned.  This matches the expected return value of ->lookup.
2973   *
2974   * Cluster filesystems may call this function with a negative, hashed dentry.
2975   * In that case, we know that the inode will be a regular file, and also this
2976   * will only occur during atomic_open. So we need to check for the dentry
2977   * being already hashed only in the final case.
2978   */
d_splice_alias(struct inode * inode,struct dentry * dentry)2979  struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2980  {
2981  	if (IS_ERR(inode))
2982  		return ERR_CAST(inode);
2983  
2984  	BUG_ON(!d_unhashed(dentry));
2985  
2986  	if (!inode)
2987  		goto out;
2988  
2989  	security_d_instantiate(dentry, inode);
2990  	spin_lock(&inode->i_lock);
2991  	if (S_ISDIR(inode->i_mode)) {
2992  		struct dentry *new = __d_find_any_alias(inode);
2993  		if (unlikely(new)) {
2994  			/* The reference to new ensures it remains an alias */
2995  			spin_unlock(&inode->i_lock);
2996  			write_seqlock(&rename_lock);
2997  			if (unlikely(d_ancestor(new, dentry))) {
2998  				write_sequnlock(&rename_lock);
2999  				dput(new);
3000  				new = ERR_PTR(-ELOOP);
3001  				pr_warn_ratelimited(
3002  					"VFS: Lookup of '%s' in %s %s"
3003  					" would have caused loop\n",
3004  					dentry->d_name.name,
3005  					inode->i_sb->s_type->name,
3006  					inode->i_sb->s_id);
3007  			} else if (!IS_ROOT(new)) {
3008  				struct dentry *old_parent = dget(new->d_parent);
3009  				int err = __d_unalias(dentry, new);
3010  				write_sequnlock(&rename_lock);
3011  				if (err) {
3012  					dput(new);
3013  					new = ERR_PTR(err);
3014  				}
3015  				dput(old_parent);
3016  			} else {
3017  				__d_move(new, dentry, false);
3018  				write_sequnlock(&rename_lock);
3019  			}
3020  			iput(inode);
3021  			return new;
3022  		}
3023  	}
3024  out:
3025  	__d_add(dentry, inode);
3026  	return NULL;
3027  }
3028  EXPORT_SYMBOL(d_splice_alias);
3029  
3030  /*
3031   * Test whether new_dentry is a subdirectory of old_dentry.
3032   *
3033   * Trivially implemented using the dcache structure
3034   */
3035  
3036  /**
3037   * is_subdir - is new dentry a subdirectory of old_dentry
3038   * @new_dentry: new dentry
3039   * @old_dentry: old dentry
3040   *
3041   * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3042   * Returns false otherwise.
3043   * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3044   */
3045  
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3046  bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3047  {
3048  	bool subdir;
3049  	unsigned seq;
3050  
3051  	if (new_dentry == old_dentry)
3052  		return true;
3053  
3054  	/* Access d_parent under rcu as d_move() may change it. */
3055  	rcu_read_lock();
3056  	seq = read_seqbegin(&rename_lock);
3057  	subdir = d_ancestor(old_dentry, new_dentry);
3058  	 /* Try lockless once... */
3059  	if (read_seqretry(&rename_lock, seq)) {
3060  		/* ...else acquire lock for progress even on deep chains. */
3061  		read_seqlock_excl(&rename_lock);
3062  		subdir = d_ancestor(old_dentry, new_dentry);
3063  		read_sequnlock_excl(&rename_lock);
3064  	}
3065  	rcu_read_unlock();
3066  	return subdir;
3067  }
3068  EXPORT_SYMBOL(is_subdir);
3069  
d_genocide_kill(void * data,struct dentry * dentry)3070  static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3071  {
3072  	struct dentry *root = data;
3073  	if (dentry != root) {
3074  		if (d_unhashed(dentry) || !dentry->d_inode)
3075  			return D_WALK_SKIP;
3076  
3077  		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3078  			dentry->d_flags |= DCACHE_GENOCIDE;
3079  			dentry->d_lockref.count--;
3080  		}
3081  	}
3082  	return D_WALK_CONTINUE;
3083  }
3084  
d_genocide(struct dentry * parent)3085  void d_genocide(struct dentry *parent)
3086  {
3087  	d_walk(parent, parent, d_genocide_kill);
3088  }
3089  
d_mark_tmpfile(struct file * file,struct inode * inode)3090  void d_mark_tmpfile(struct file *file, struct inode *inode)
3091  {
3092  	struct dentry *dentry = file->f_path.dentry;
3093  
3094  	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3095  		!hlist_unhashed(&dentry->d_u.d_alias) ||
3096  		!d_unlinked(dentry));
3097  	spin_lock(&dentry->d_parent->d_lock);
3098  	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3099  	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3100  				(unsigned long long)inode->i_ino);
3101  	spin_unlock(&dentry->d_lock);
3102  	spin_unlock(&dentry->d_parent->d_lock);
3103  }
3104  EXPORT_SYMBOL(d_mark_tmpfile);
3105  
d_tmpfile(struct file * file,struct inode * inode)3106  void d_tmpfile(struct file *file, struct inode *inode)
3107  {
3108  	struct dentry *dentry = file->f_path.dentry;
3109  
3110  	inode_dec_link_count(inode);
3111  	d_mark_tmpfile(file, inode);
3112  	d_instantiate(dentry, inode);
3113  }
3114  EXPORT_SYMBOL(d_tmpfile);
3115  
3116  /*
3117   * Obtain inode number of the parent dentry.
3118   */
d_parent_ino(struct dentry * dentry)3119  ino_t d_parent_ino(struct dentry *dentry)
3120  {
3121  	struct dentry *parent;
3122  	struct inode *iparent;
3123  	unsigned seq;
3124  	ino_t ret;
3125  
3126  	scoped_guard(rcu) {
3127  		seq = raw_seqcount_begin(&dentry->d_seq);
3128  		parent = READ_ONCE(dentry->d_parent);
3129  		iparent = d_inode_rcu(parent);
3130  		if (likely(iparent)) {
3131  			ret = iparent->i_ino;
3132  			if (!read_seqcount_retry(&dentry->d_seq, seq))
3133  				return ret;
3134  		}
3135  	}
3136  
3137  	spin_lock(&dentry->d_lock);
3138  	ret = dentry->d_parent->d_inode->i_ino;
3139  	spin_unlock(&dentry->d_lock);
3140  	return ret;
3141  }
3142  EXPORT_SYMBOL(d_parent_ino);
3143  
3144  static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3145  static int __init set_dhash_entries(char *str)
3146  {
3147  	if (!str)
3148  		return 0;
3149  	dhash_entries = simple_strtoul(str, &str, 0);
3150  	return 1;
3151  }
3152  __setup("dhash_entries=", set_dhash_entries);
3153  
dcache_init_early(void)3154  static void __init dcache_init_early(void)
3155  {
3156  	/* If hashes are distributed across NUMA nodes, defer
3157  	 * hash allocation until vmalloc space is available.
3158  	 */
3159  	if (hashdist)
3160  		return;
3161  
3162  	dentry_hashtable =
3163  		alloc_large_system_hash("Dentry cache",
3164  					sizeof(struct hlist_bl_head),
3165  					dhash_entries,
3166  					13,
3167  					HASH_EARLY | HASH_ZERO,
3168  					&d_hash_shift,
3169  					NULL,
3170  					0,
3171  					0);
3172  	d_hash_shift = 32 - d_hash_shift;
3173  
3174  	runtime_const_init(shift, d_hash_shift);
3175  	runtime_const_init(ptr, dentry_hashtable);
3176  }
3177  
dcache_init(void)3178  static void __init dcache_init(void)
3179  {
3180  	/*
3181  	 * A constructor could be added for stable state like the lists,
3182  	 * but it is probably not worth it because of the cache nature
3183  	 * of the dcache.
3184  	 */
3185  	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3186  		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3187  		d_iname);
3188  
3189  	/* Hash may have been set up in dcache_init_early */
3190  	if (!hashdist)
3191  		return;
3192  
3193  	dentry_hashtable =
3194  		alloc_large_system_hash("Dentry cache",
3195  					sizeof(struct hlist_bl_head),
3196  					dhash_entries,
3197  					13,
3198  					HASH_ZERO,
3199  					&d_hash_shift,
3200  					NULL,
3201  					0,
3202  					0);
3203  	d_hash_shift = 32 - d_hash_shift;
3204  
3205  	runtime_const_init(shift, d_hash_shift);
3206  	runtime_const_init(ptr, dentry_hashtable);
3207  }
3208  
3209  /* SLAB cache for __getname() consumers */
3210  struct kmem_cache *names_cachep __ro_after_init;
3211  EXPORT_SYMBOL(names_cachep);
3212  
vfs_caches_init_early(void)3213  void __init vfs_caches_init_early(void)
3214  {
3215  	int i;
3216  
3217  	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3218  		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3219  
3220  	dcache_init_early();
3221  	inode_init_early();
3222  }
3223  
vfs_caches_init(void)3224  void __init vfs_caches_init(void)
3225  {
3226  	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3227  			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3228  
3229  	dcache_init();
3230  	inode_init();
3231  	files_init();
3232  	files_maxfiles_init();
3233  	mnt_init();
3234  	bdev_cache_init();
3235  	chrdev_init();
3236  }
3237