xref: /wlan-dirver/qca-wifi-host-cmn/umac/scan/dispatcher/src/wlan_scan_utils_api.c (revision f28396d060cff5c6519f883cb28ae0116ce479f1)
1 /*
2  * Copyright (c) 2017-2020 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * DOC: Defines scan utility functions
21  */
22 
23 #include <wlan_cmn.h>
24 #include <wlan_scan_ucfg_api.h>
25 #include <wlan_scan_utils_api.h>
26 #include <../../core/src/wlan_scan_cache_db.h>
27 #include <../../core/src/wlan_scan_main.h>
28 #include <wlan_reg_services_api.h>
29 
30 #define MAX_IE_LEN 1024
31 #define SHORT_SSID_LEN 4
32 #define NEIGHBOR_AP_LEN 1
33 #define BSS_PARAMS_LEN 1
34 
35 const char*
36 util_scan_get_ev_type_name(enum scan_event_type type)
37 {
38 	static const char * const event_name[] = {
39 		[SCAN_EVENT_TYPE_STARTED] = "STARTED",
40 		[SCAN_EVENT_TYPE_COMPLETED] = "COMPLETED",
41 		[SCAN_EVENT_TYPE_BSS_CHANNEL] = "HOME_CHANNEL",
42 		[SCAN_EVENT_TYPE_FOREIGN_CHANNEL] = "FOREIGN_CHANNEL",
43 		[SCAN_EVENT_TYPE_DEQUEUED] = "DEQUEUED",
44 		[SCAN_EVENT_TYPE_PREEMPTED] = "PREEMPTED",
45 		[SCAN_EVENT_TYPE_START_FAILED] = "START_FAILED",
46 		[SCAN_EVENT_TYPE_RESTARTED] = "RESTARTED",
47 		[SCAN_EVENT_TYPE_FOREIGN_CHANNEL_EXIT] = "FOREIGN_CHANNEL_EXIT",
48 		[SCAN_EVENT_TYPE_SUSPENDED] = "SUSPENDED",
49 		[SCAN_EVENT_TYPE_RESUMED] = "RESUMED",
50 		[SCAN_EVENT_TYPE_NLO_COMPLETE] = "NLO_COMPLETE",
51 		[SCAN_EVENT_TYPE_NLO_MATCH] = "NLO_MATCH",
52 		[SCAN_EVENT_TYPE_INVALID] = "INVALID",
53 		[SCAN_EVENT_TYPE_GPIO_TIMEOUT] = "GPIO_TIMEOUT",
54 		[SCAN_EVENT_TYPE_RADIO_MEASUREMENT_START] =
55 			"RADIO_MEASUREMENT_START",
56 		[SCAN_EVENT_TYPE_RADIO_MEASUREMENT_END] =
57 			"RADIO_MEASUREMENT_END",
58 		[SCAN_EVENT_TYPE_BSSID_MATCH] = "BSSID_MATCH",
59 		[SCAN_EVENT_TYPE_FOREIGN_CHANNEL_GET_NF] =
60 			"FOREIGN_CHANNEL_GET_NF",
61 	};
62 
63 	if (type >= SCAN_EVENT_TYPE_MAX)
64 		return "UNKNOWN";
65 
66 	return event_name[type];
67 }
68 
69 
70 const char*
71 util_scan_get_ev_reason_name(enum scan_completion_reason reason)
72 {
73 	static const char * const reason_name[] = {
74 		[SCAN_REASON_NONE] = "NONE",
75 		[SCAN_REASON_COMPLETED] = "COMPLETED",
76 		[SCAN_REASON_CANCELLED] = "CANCELLED",
77 		[SCAN_REASON_PREEMPTED] = "PREEMPTED",
78 		[SCAN_REASON_TIMEDOUT] = "TIMEDOUT",
79 		[SCAN_REASON_INTERNAL_FAILURE] = "INTERNAL_FAILURE",
80 		[SCAN_REASON_SUSPENDED] = "SUSPENDED",
81 		[SCAN_REASON_RUN_FAILED] = "RUN_FAILED",
82 		[SCAN_REASON_TERMINATION_FUNCTION] = "TERMINATION_FUNCTION",
83 		[SCAN_REASON_MAX_OFFCHAN_RETRIES] = "MAX_OFFCHAN_RETRIES",
84 		[SCAN_REASON_DFS_VIOLATION] = "DFS_NOL_VIOLATION",
85 	};
86 
87 	if (reason >= SCAN_REASON_MAX)
88 		return "UNKNOWN";
89 
90 	return reason_name[reason];
91 }
92 
93 qdf_time_t
94 util_get_last_scan_time(struct wlan_objmgr_vdev *vdev)
95 {
96 	uint8_t pdev_id;
97 	struct wlan_scan_obj *scan_obj;
98 
99 	if (!vdev) {
100 		scm_warn("null vdev");
101 		QDF_ASSERT(0);
102 		return 0;
103 	}
104 	pdev_id = wlan_scan_vdev_get_pdev_id(vdev);
105 	scan_obj = wlan_vdev_get_scan_obj(vdev);
106 
107 	if (scan_obj)
108 		return scan_obj->pdev_info[pdev_id].last_scan_time;
109 	else
110 		return 0;
111 }
112 
113 enum wlan_band util_scan_scm_chan_to_band(uint32_t chan)
114 {
115 	if (WLAN_CHAN_IS_2GHZ(chan))
116 		return WLAN_BAND_2_4_GHZ;
117 
118 	return WLAN_BAND_5_GHZ;
119 }
120 
121 enum wlan_band util_scan_scm_freq_to_band(uint16_t freq)
122 {
123 	if (WLAN_REG_IS_24GHZ_CH_FREQ(freq))
124 		return WLAN_BAND_2_4_GHZ;
125 
126 	return WLAN_BAND_5_GHZ;
127 }
128 
129 bool util_is_scan_entry_match(
130 	struct scan_cache_entry *entry1,
131 	struct scan_cache_entry *entry2)
132 {
133 
134 	if (entry1->cap_info.wlan_caps.ess !=
135 	   entry2->cap_info.wlan_caps.ess)
136 		return false;
137 
138 	if (entry1->cap_info.wlan_caps.ess &&
139 	   !qdf_mem_cmp(entry1->bssid.bytes,
140 	   entry2->bssid.bytes, QDF_MAC_ADDR_SIZE)) {
141 		/* Check for BSS */
142 		if (util_is_ssid_match(&entry1->ssid, &entry2->ssid) ||
143 		    util_scan_is_null_ssid(&entry1->ssid) ||
144 		    util_scan_is_null_ssid(&entry2->ssid))
145 			return true;
146 	} else if (entry1->cap_info.wlan_caps.ibss &&
147 	   (entry1->channel.chan_freq ==
148 	   entry2->channel.chan_freq)) {
149 		/*
150 		 * Same channel cannot have same SSID for
151 		 * different IBSS, so no need to check BSSID
152 		 */
153 		if (util_is_ssid_match(
154 		   &entry1->ssid, &entry2->ssid))
155 			return true;
156 	} else if (!entry1->cap_info.wlan_caps.ibss &&
157 	   !entry1->cap_info.wlan_caps.ess &&
158 	   !qdf_mem_cmp(entry1->bssid.bytes,
159 	   entry2->bssid.bytes, QDF_MAC_ADDR_SIZE)) {
160 		/* In case of P2P devices, ess and ibss will be set to zero */
161 		return true;
162 	}
163 
164 	return false;
165 }
166 
167 static bool util_is_pureg_rate(uint8_t *rates, uint8_t nrates)
168 {
169 	static const uint8_t g_rates[] = {12, 18, 24, 36, 48, 72, 96, 108};
170 	bool pureg = false;
171 	uint8_t i, j;
172 
173 	for (i = 0; i < nrates; i++) {
174 		for (j = 0; j < QDF_ARRAY_SIZE(g_rates); j++) {
175 			if (WLAN_RV(rates[i]) == g_rates[j]) {
176 				pureg = true;
177 				break;
178 			}
179 		}
180 		if (pureg)
181 			break;
182 	}
183 
184 	return pureg;
185 }
186 
187 #ifdef CONFIG_BAND_6GHZ
188 static struct he_oper_6g_param *util_scan_get_he_6g_params(uint8_t *he_ops)
189 {
190 	uint8_t len;
191 	uint32_t he_oper_params;
192 
193 	if (!he_ops)
194 		return NULL;
195 
196 	len = he_ops[1];
197 	he_ops += sizeof(struct ie_header);
198 
199 	if (len < WLAN_HEOP_FIXED_PARAM_LENGTH)
200 		return NULL;
201 
202 	/* element id extension */
203 	he_ops++;
204 	len--;
205 
206 	he_oper_params = LE_READ_4(he_ops);
207 	if (!(he_oper_params & WLAN_HEOP_6GHZ_INFO_PRESENT_MASK))
208 		return NULL;
209 
210 	/* fixed params - element id extension */
211 	he_ops += WLAN_HEOP_FIXED_PARAM_LENGTH - 1;
212 	len -= WLAN_HEOP_FIXED_PARAM_LENGTH - 1;
213 
214 	if (!len)
215 		return NULL;
216 
217 	/* vht oper params */
218 	if (he_oper_params & WLAN_HEOP_VHTOP_PRESENT_MASK) {
219 		if (len < WLAN_HEOP_VHTOP_LENGTH)
220 			return NULL;
221 		he_ops += WLAN_HEOP_VHTOP_LENGTH;
222 		len -= WLAN_HEOP_VHTOP_LENGTH;
223 	}
224 
225 	if (!len)
226 		return NULL;
227 
228 	if (he_oper_params & WLAN_HEOP_CO_LOCATED_BSS_MASK) {
229 		he_ops += WLAN_HEOP_CO_LOCATED_BSS_LENGTH;
230 		len -= WLAN_HEOP_CO_LOCATED_BSS_LENGTH;
231 	}
232 
233 	if (len < sizeof(struct he_oper_6g_param))
234 		return NULL;
235 
236 	return (struct he_oper_6g_param *)he_ops;
237 }
238 
239 static void
240 util_scan_get_chan_from_he_6g_params(struct scan_cache_entry *scan_params,
241 				     uint8_t *chan_idx)
242 {
243 	struct he_oper_6g_param *he_6g_params;
244 	uint8_t *he_ops;
245 
246 	he_ops = util_scan_entry_heop(scan_params);
247 	if (!util_scan_entry_hecap(scan_params) || !he_ops)
248 		return;
249 
250 	he_6g_params = util_scan_get_he_6g_params(he_ops);
251 	if (!he_6g_params)
252 		return;
253 
254 	*chan_idx = he_6g_params->primary_channel;
255 }
256 
257 static enum wlan_phymode
258 util_scan_get_phymode_6g(struct wlan_objmgr_pdev *pdev,
259 			 struct scan_cache_entry *scan_params)
260 {
261 	struct he_oper_6g_param *he_6g_params;
262 	enum wlan_phymode phymode = WLAN_PHYMODE_11AXA_HE20;
263 	uint8_t *he_ops;
264 	uint8_t band_mask = BIT(REG_BAND_6G);
265 
266 	he_ops = util_scan_entry_heop(scan_params);
267 	if (!util_scan_entry_hecap(scan_params) || !he_ops)
268 		return phymode;
269 
270 	he_6g_params = util_scan_get_he_6g_params(he_ops);
271 	if (!he_6g_params)
272 		return phymode;
273 
274 	switch (he_6g_params->width) {
275 	case WLAN_HE_6GHZ_CHWIDTH_20:
276 		phymode = WLAN_PHYMODE_11AXA_HE20;
277 		break;
278 	case WLAN_HE_6GHZ_CHWIDTH_40:
279 		phymode = WLAN_PHYMODE_11AXA_HE40;
280 		break;
281 	case WLAN_HE_6GHZ_CHWIDTH_80:
282 		phymode = WLAN_PHYMODE_11AXA_HE80;
283 		break;
284 	case WLAN_HE_6GHZ_CHWIDTH_160_80_80:
285 		if (WLAN_IS_HE80_80(he_6g_params))
286 			phymode = WLAN_PHYMODE_11AXA_HE80_80;
287 		else if (WLAN_IS_HE160(he_6g_params))
288 			phymode = WLAN_PHYMODE_11AXA_HE160;
289 		else
290 			phymode = WLAN_PHYMODE_11AXA_HE80;
291 		break;
292 	default:
293 		scm_err("Invalid he_6g_params width: %d", he_6g_params->width);
294 		phymode = WLAN_PHYMODE_11AXA_HE20;
295 		break;
296 	}
297 
298 	if (he_6g_params->chan_freq_seg0)
299 		scan_params->channel.cfreq0 =
300 			wlan_reg_chan_band_to_freq(pdev,
301 					he_6g_params->chan_freq_seg0,
302 					band_mask);
303 	if (he_6g_params->chan_freq_seg1)
304 		scan_params->channel.cfreq1 =
305 			wlan_reg_chan_band_to_freq(pdev,
306 					he_6g_params->chan_freq_seg1,
307 					band_mask);
308 
309 	return phymode;
310 }
311 #else
312 static void
313 util_scan_get_chan_from_he_6g_params(struct scan_cache_entry *scan_params,
314 				     uint8_t *chan_idx)
315 {}
316 static inline enum wlan_phymode
317 util_scan_get_phymode_6g(struct wlan_objmgr_pdev *pdev,
318 			 struct scan_cache_entry *scan_params)
319 {
320 	return WLAN_PHYMODE_AUTO;
321 }
322 #endif
323 
324 static inline
325 uint32_t util_scan_sec_chan_freq_from_htinfo(struct wlan_ie_htinfo_cmn *htinfo,
326 					     uint32_t primary_chan_freq)
327 {
328 	if (htinfo->hi_extchoff == WLAN_HTINFO_EXTOFFSET_ABOVE)
329 		return primary_chan_freq + WLAN_CHAN_SPACING_20MHZ;
330 	else if (htinfo->hi_extchoff == WLAN_HTINFO_EXTOFFSET_BELOW)
331 		return primary_chan_freq - WLAN_CHAN_SPACING_20MHZ;
332 
333 	return 0;
334 }
335 
336 static enum wlan_phymode
337 util_scan_get_phymode_5g(struct wlan_objmgr_pdev *pdev,
338 			 struct scan_cache_entry *scan_params)
339 {
340 	enum wlan_phymode phymode = WLAN_PHYMODE_AUTO;
341 	uint16_t ht_cap = 0;
342 	struct htcap_cmn_ie *htcap;
343 	struct wlan_ie_htinfo_cmn *htinfo;
344 	struct wlan_ie_vhtop *vhtop;
345 	uint8_t band_mask = BIT(REG_BAND_5G);
346 
347 	htcap = (struct htcap_cmn_ie *)
348 		util_scan_entry_htcap(scan_params);
349 	htinfo = (struct wlan_ie_htinfo_cmn *)
350 		util_scan_entry_htinfo(scan_params);
351 	vhtop = (struct wlan_ie_vhtop *)
352 		util_scan_entry_vhtop(scan_params);
353 
354 	if (!(htcap && htinfo))
355 		return WLAN_PHYMODE_11A;
356 
357 	if (htcap)
358 		ht_cap = le16toh(htcap->hc_cap);
359 
360 	if (ht_cap & WLAN_HTCAP_C_CHWIDTH40)
361 		phymode = WLAN_PHYMODE_11NA_HT40;
362 	else
363 		phymode = WLAN_PHYMODE_11NA_HT20;
364 
365 	scan_params->channel.cfreq0 =
366 		util_scan_sec_chan_freq_from_htinfo(htinfo,
367 						scan_params->channel.chan_freq);
368 
369 	if (util_scan_entry_vhtcap(scan_params) && vhtop) {
370 		switch (vhtop->vht_op_chwidth) {
371 		case WLAN_VHTOP_CHWIDTH_2040:
372 			if (ht_cap & WLAN_HTCAP_C_CHWIDTH40)
373 				phymode = WLAN_PHYMODE_11AC_VHT40;
374 			else
375 				phymode = WLAN_PHYMODE_11AC_VHT20;
376 			break;
377 		case WLAN_VHTOP_CHWIDTH_80:
378 			if (WLAN_IS_REVSIG_VHT80_80(vhtop))
379 				phymode = WLAN_PHYMODE_11AC_VHT80_80;
380 			else if (WLAN_IS_REVSIG_VHT160(vhtop))
381 				phymode = WLAN_PHYMODE_11AC_VHT160;
382 			else
383 				phymode = WLAN_PHYMODE_11AC_VHT80;
384 			break;
385 		case WLAN_VHTOP_CHWIDTH_160:
386 			phymode = WLAN_PHYMODE_11AC_VHT160;
387 			break;
388 		case WLAN_VHTOP_CHWIDTH_80_80:
389 			phymode = WLAN_PHYMODE_11AC_VHT80_80;
390 			break;
391 		default:
392 			scm_err("bad channel: %d",
393 					vhtop->vht_op_chwidth);
394 			phymode = WLAN_PHYMODE_11AC_VHT20;
395 			break;
396 		}
397 		if (vhtop->vht_op_ch_freq_seg1)
398 			scan_params->channel.cfreq0 =
399 				wlan_reg_chan_band_to_freq(pdev,
400 						vhtop->vht_op_ch_freq_seg1,
401 						band_mask);
402 		if (vhtop->vht_op_ch_freq_seg2)
403 			scan_params->channel.cfreq1 =
404 				wlan_reg_chan_band_to_freq(pdev,
405 						vhtop->vht_op_ch_freq_seg2,
406 						band_mask);
407 	}
408 
409 	if (!util_scan_entry_hecap(scan_params))
410 		return phymode;
411 
412 	/* for 5Ghz Check for HE, only if VHT cap and HE cap are present */
413 	if (!IS_WLAN_PHYMODE_VHT(phymode))
414 		return phymode;
415 
416 	switch (phymode) {
417 	case WLAN_PHYMODE_11AC_VHT20:
418 		phymode = WLAN_PHYMODE_11AXA_HE20;
419 		break;
420 	case WLAN_PHYMODE_11AC_VHT40:
421 		phymode = WLAN_PHYMODE_11AXA_HE40;
422 		break;
423 	case WLAN_PHYMODE_11AC_VHT80:
424 		phymode = WLAN_PHYMODE_11AXA_HE80;
425 		break;
426 	case WLAN_PHYMODE_11AC_VHT160:
427 		phymode = WLAN_PHYMODE_11AXA_HE160;
428 		break;
429 	case WLAN_PHYMODE_11AC_VHT80_80:
430 		phymode = WLAN_PHYMODE_11AXA_HE80_80;
431 		break;
432 	default:
433 		phymode = WLAN_PHYMODE_11AXA_HE20;
434 		break;
435 	}
436 
437 	return phymode;
438 }
439 
440 static enum wlan_phymode
441 util_scan_get_phymode_2g(struct scan_cache_entry *scan_params)
442 {
443 	enum wlan_phymode phymode = WLAN_PHYMODE_AUTO;
444 	uint16_t ht_cap = 0;
445 	struct htcap_cmn_ie *htcap;
446 	struct wlan_ie_htinfo_cmn *htinfo;
447 	struct wlan_ie_vhtop *vhtop;
448 
449 	htcap = (struct htcap_cmn_ie *)
450 		util_scan_entry_htcap(scan_params);
451 	htinfo = (struct wlan_ie_htinfo_cmn *)
452 		util_scan_entry_htinfo(scan_params);
453 	vhtop = (struct wlan_ie_vhtop *)
454 		util_scan_entry_vhtop(scan_params);
455 
456 	if (htcap)
457 		ht_cap = le16toh(htcap->hc_cap);
458 
459 	if (htcap && htinfo) {
460 		if ((ht_cap & WLAN_HTCAP_C_CHWIDTH40) &&
461 		   (htinfo->hi_extchoff == WLAN_HTINFO_EXTOFFSET_ABOVE))
462 			phymode = WLAN_PHYMODE_11NG_HT40PLUS;
463 		else if ((ht_cap & WLAN_HTCAP_C_CHWIDTH40) &&
464 		   (htinfo->hi_extchoff == WLAN_HTINFO_EXTOFFSET_BELOW))
465 			phymode = WLAN_PHYMODE_11NG_HT40MINUS;
466 		else
467 			phymode = WLAN_PHYMODE_11NG_HT20;
468 	} else if (util_scan_entry_xrates(scan_params)) {
469 		/* only 11G stations will have more than 8 rates */
470 		phymode = WLAN_PHYMODE_11G;
471 	} else {
472 		/* Some mischievous g-only APs do not set extended rates */
473 		if (util_scan_entry_rates(scan_params)) {
474 			if (util_is_pureg_rate(&scan_params->ie_list.rates[2],
475 			   scan_params->ie_list.rates[1]))
476 				phymode = WLAN_PHYMODE_11G;
477 			else
478 				phymode = WLAN_PHYMODE_11B;
479 		} else {
480 			phymode = WLAN_PHYMODE_11B;
481 		}
482 	}
483 
484 	/* Check for VHT only if HT cap is present */
485 	if (!IS_WLAN_PHYMODE_HT(phymode))
486 		return phymode;
487 
488 	scan_params->channel.cfreq0 =
489 		util_scan_sec_chan_freq_from_htinfo(htinfo,
490 						scan_params->channel.chan_freq);
491 
492 	if (util_scan_entry_vhtcap(scan_params) && vhtop) {
493 		switch (vhtop->vht_op_chwidth) {
494 		case WLAN_VHTOP_CHWIDTH_2040:
495 			if (phymode == WLAN_PHYMODE_11NG_HT40PLUS)
496 				phymode = WLAN_PHYMODE_11AC_VHT40PLUS_2G;
497 			else if (phymode == WLAN_PHYMODE_11NG_HT40MINUS)
498 				phymode = WLAN_PHYMODE_11AC_VHT40MINUS_2G;
499 			else
500 				phymode = WLAN_PHYMODE_11AC_VHT20_2G;
501 
502 			break;
503 		default:
504 			scm_info("bad vht_op_chwidth: %d",
505 				 vhtop->vht_op_chwidth);
506 			phymode = WLAN_PHYMODE_11AC_VHT20_2G;
507 			break;
508 		}
509 	}
510 
511 	if (!util_scan_entry_hecap(scan_params))
512 		return phymode;
513 
514 	if (phymode == WLAN_PHYMODE_11AC_VHT40PLUS_2G ||
515 	    phymode == WLAN_PHYMODE_11NG_HT40PLUS)
516 		phymode = WLAN_PHYMODE_11AXG_HE40PLUS;
517 	else if (phymode == WLAN_PHYMODE_11AC_VHT40MINUS_2G ||
518 		 phymode == WLAN_PHYMODE_11NG_HT40MINUS)
519 		phymode = WLAN_PHYMODE_11AXG_HE40MINUS;
520 	else
521 		phymode = WLAN_PHYMODE_11AXG_HE20;
522 
523 	return phymode;
524 }
525 
526 static enum wlan_phymode
527 util_scan_get_phymode(struct wlan_objmgr_pdev *pdev,
528 		      struct scan_cache_entry *scan_params)
529 {
530 	if (WLAN_REG_IS_24GHZ_CH_FREQ(scan_params->channel.chan_freq))
531 		return util_scan_get_phymode_2g(scan_params);
532 	else if (WLAN_REG_IS_6GHZ_CHAN_FREQ(scan_params->channel.chan_freq))
533 		return util_scan_get_phymode_6g(pdev, scan_params);
534 	else
535 		return util_scan_get_phymode_5g(pdev, scan_params);
536 }
537 
538 static QDF_STATUS
539 util_scan_parse_chan_switch_wrapper_ie(struct scan_cache_entry *scan_params,
540 	struct ie_header *sub_ie, qdf_size_t sub_ie_len)
541 {
542 	/* Walk through to check nothing is malformed */
543 	while (sub_ie_len >= sizeof(struct ie_header)) {
544 		/* At least one more header is present */
545 		sub_ie_len -= sizeof(struct ie_header);
546 
547 		if (sub_ie->ie_len == 0) {
548 			sub_ie += 1;
549 			continue;
550 		}
551 		if (sub_ie_len < sub_ie->ie_len) {
552 			scm_err("Incomplete corrupted IE:%x",
553 				WLAN_ELEMID_CHAN_SWITCH_WRAP);
554 			return QDF_STATUS_E_INVAL;
555 		}
556 		switch (sub_ie->ie_id) {
557 		case WLAN_ELEMID_COUNTRY:
558 			scan_params->ie_list.country = (uint8_t *)sub_ie;
559 			break;
560 		case WLAN_ELEMID_WIDE_BAND_CHAN_SWITCH:
561 			scan_params->ie_list.widebw = (uint8_t *)sub_ie;
562 			break;
563 		case WLAN_ELEMID_VHT_TX_PWR_ENVLP:
564 			scan_params->ie_list.txpwrenvlp = (uint8_t *)sub_ie;
565 			break;
566 		}
567 		/* Consume sub info element */
568 		sub_ie_len -= sub_ie->ie_len;
569 		/* go to next Sub IE */
570 		sub_ie = (struct ie_header *)
571 			(((uint8_t *) sub_ie) +
572 			sizeof(struct ie_header) + sub_ie->ie_len);
573 	}
574 
575 	return QDF_STATUS_SUCCESS;
576 }
577 
578 bool
579 util_scan_is_hidden_ssid(struct ie_ssid *ssid)
580 {
581 	uint8_t i;
582 
583 	/*
584 	 * We flag this as Hidden SSID if the Length is 0
585 	 * of the SSID only contains 0's
586 	 */
587 	if (!ssid || !ssid->ssid_len)
588 		return true;
589 
590 	for (i = 0; i < ssid->ssid_len; i++)
591 		if (ssid->ssid[i] != 0)
592 			return false;
593 
594 	/* All 0's */
595 	return true;
596 }
597 
598 static QDF_STATUS
599 util_scan_update_rnr(struct rnr_bss_info *rnr,
600 		     struct neighbor_ap_info_field *ap_info,
601 		     uint8_t *data)
602 {
603 	uint8_t tbtt_info_length;
604 
605 	tbtt_info_length = ap_info->tbtt_header.tbtt_info_length;
606 
607 	switch (tbtt_info_length) {
608 	case TBTT_NEIGHBOR_AP_OFFSET_ONLY:
609 		/* Dont store it skip*/
610 		break;
611 
612 	case TBTT_NEIGHBOR_AP_BSS_PARAM:
613 		/* Dont store it skip*/
614 		break;
615 
616 	case TBTT_NEIGHBOR_AP_SHORTSSID:
617 		rnr->channel_number = ap_info->channel_number;
618 		rnr->operating_class = ap_info->operting_class;
619 		qdf_mem_copy(&rnr->short_ssid, &data[1], SHORT_SSID_LEN);
620 		break;
621 
622 	case TBTT_NEIGHBOR_AP_S_SSID_BSS_PARAM:
623 		rnr->channel_number = ap_info->channel_number;
624 		rnr->operating_class = ap_info->operting_class;
625 		qdf_mem_copy(&rnr->short_ssid, &data[1], SHORT_SSID_LEN);
626 		rnr->bss_params = data[5];
627 		break;
628 
629 	case TBTT_NEIGHBOR_AP_BSSID:
630 		rnr->channel_number = ap_info->channel_number;
631 		rnr->operating_class = ap_info->operting_class;
632 		qdf_mem_copy(&rnr->bssid, &data[1], QDF_MAC_ADDR_SIZE);
633 		break;
634 
635 	case TBTT_NEIGHBOR_AP_BSSID_BSS_PARAM:
636 		rnr->channel_number = ap_info->channel_number;
637 		rnr->operating_class = ap_info->operting_class;
638 		qdf_mem_copy(&rnr->bssid, &data[1], QDF_MAC_ADDR_SIZE);
639 		rnr->bss_params = data[7];
640 		break;
641 
642 	case TBTT_NEIGHBOR_AP_BSSSID_S_SSID:
643 		rnr->channel_number = ap_info->channel_number;
644 		rnr->operating_class = ap_info->operting_class;
645 		qdf_mem_copy(&rnr->bssid, &data[1], QDF_MAC_ADDR_SIZE);
646 		qdf_mem_copy(&rnr->short_ssid, &data[7], SHORT_SSID_LEN);
647 		break;
648 
649 	case TBTT_NEIGHBOR_AP_BSSID_S_SSID_BSS_PARAM:
650 		rnr->channel_number = ap_info->channel_number;
651 		rnr->operating_class = ap_info->operting_class;
652 		qdf_mem_copy(&rnr->bssid, &data[1], QDF_MAC_ADDR_SIZE);
653 		qdf_mem_copy(&rnr->short_ssid, &data[7], SHORT_SSID_LEN);
654 		rnr->bss_params = data[11];
655 		break;
656 
657 	default:
658 		scm_debug("Wrong fieldtype");
659 	}
660 
661 	return QDF_STATUS_SUCCESS;
662 }
663 
664 static QDF_STATUS
665 util_scan_parse_rnr_ie(struct scan_cache_entry *scan_entry,
666 		       struct ie_header *ie)
667 {
668 	uint32_t rnr_ie_len;
669 	uint16_t tbtt_count, tbtt_length, i, fieldtype;
670 	uint8_t *data;
671 	struct neighbor_ap_info_field *neighbor_ap_info;
672 
673 	rnr_ie_len = ie->ie_len;
674 	data = (uint8_t *)ie + sizeof(struct ie_header);
675 
676 	while (data < ((uint8_t *)ie + rnr_ie_len + 2)) {
677 		neighbor_ap_info = (struct neighbor_ap_info_field *)data;
678 		tbtt_count = neighbor_ap_info->tbtt_header.tbtt_info_count;
679 		tbtt_length = neighbor_ap_info->tbtt_header.tbtt_info_length;
680 		fieldtype = neighbor_ap_info->tbtt_header.tbbt_info_fieldtype;
681 		scm_debug("channel number %d, op class %d",
682 			  neighbor_ap_info->channel_number,
683 			  neighbor_ap_info->operting_class);
684 		scm_debug("tbtt_count %d, tbtt_length %d, fieldtype %d",
685 			  tbtt_count, tbtt_length, fieldtype);
686 		data += sizeof(struct neighbor_ap_info_field);
687 		for (i = 0; i < (tbtt_count + 1) ; i++) {
688 			if (i < MAX_RNR_BSS)
689 				util_scan_update_rnr(
690 					&scan_entry->rnr.bss_info[i],
691 					neighbor_ap_info,
692 					data);
693 			data += tbtt_length;
694 		}
695 	}
696 
697 	return QDF_STATUS_SUCCESS;
698 }
699 
700 static QDF_STATUS
701 util_scan_parse_extn_ie(struct scan_cache_entry *scan_params,
702 	struct ie_header *ie)
703 {
704 	struct extn_ie_header *extn_ie = (struct extn_ie_header *) ie;
705 
706 	switch (extn_ie->ie_extn_id) {
707 	case WLAN_EXTN_ELEMID_MAX_CHAN_SWITCH_TIME:
708 		scan_params->ie_list.mcst  = (uint8_t *)ie;
709 		break;
710 	case WLAN_EXTN_ELEMID_SRP:
711 		scan_params->ie_list.srp   = (uint8_t *)ie;
712 		break;
713 	case WLAN_EXTN_ELEMID_HECAP:
714 		scan_params->ie_list.hecap = (uint8_t *)ie;
715 		break;
716 	case WLAN_EXTN_ELEMID_HEOP:
717 		scan_params->ie_list.heop  = (uint8_t *)ie;
718 		break;
719 	case WLAN_EXTN_ELEMID_ESP:
720 		scan_params->ie_list.esp = (uint8_t *)ie;
721 		break;
722 	case WLAN_EXTN_ELEMID_MUEDCA:
723 		scan_params->ie_list.muedca = (uint8_t *)ie;
724 		break;
725 	case WLAN_EXTN_ELEMID_HE_6G_CAP:
726 		scan_params->ie_list.hecap_6g = (uint8_t *)ie;
727 		break;
728 	default:
729 		break;
730 	}
731 	return QDF_STATUS_SUCCESS;
732 }
733 
734 static QDF_STATUS
735 util_scan_parse_vendor_ie(struct scan_cache_entry *scan_params,
736 	struct ie_header *ie)
737 {
738 	if (!scan_params->ie_list.vendor)
739 		scan_params->ie_list.vendor = (uint8_t *)ie;
740 
741 	if (is_wpa_oui((uint8_t *)ie)) {
742 		scan_params->ie_list.wpa = (uint8_t *)ie;
743 	} else if (is_wps_oui((uint8_t *)ie)) {
744 		scan_params->ie_list.wps = (uint8_t *)ie;
745 		/* WCN IE should be a subset of WPS IE */
746 		if (is_wcn_oui((uint8_t *)ie))
747 			scan_params->ie_list.wcn = (uint8_t *)ie;
748 	} else if (is_wme_param((uint8_t *)ie)) {
749 		scan_params->ie_list.wmeparam = (uint8_t *)ie;
750 	} else if (is_wme_info((uint8_t *)ie)) {
751 		scan_params->ie_list.wmeinfo = (uint8_t *)ie;
752 	} else if (is_atheros_oui((uint8_t *)ie)) {
753 		scan_params->ie_list.athcaps = (uint8_t *)ie;
754 	} else if (is_atheros_extcap_oui((uint8_t *)ie)) {
755 		scan_params->ie_list.athextcaps = (uint8_t *)ie;
756 	} else if (is_sfa_oui((uint8_t *)ie)) {
757 		scan_params->ie_list.sfa = (uint8_t *)ie;
758 	} else if (is_p2p_oui((uint8_t *)ie)) {
759 		scan_params->ie_list.p2p = (uint8_t *)ie;
760 	} else if (is_qca_son_oui((uint8_t *)ie,
761 				  QCA_OUI_WHC_AP_INFO_SUBTYPE)) {
762 		scan_params->ie_list.sonadv = (uint8_t *)ie;
763 	} else if (is_ht_cap((uint8_t *)ie)) {
764 		/* we only care if there isn't already an HT IE (ANA) */
765 		if (!scan_params->ie_list.htcap) {
766 			if (ie->ie_len != (WLAN_VENDOR_HT_IE_OFFSET_LEN +
767 					   sizeof(struct htcap_cmn_ie)))
768 				return QDF_STATUS_E_INVAL;
769 			scan_params->ie_list.htcap =
770 			 (uint8_t *)&(((struct wlan_vendor_ie_htcap *)ie)->ie);
771 		}
772 	} else if (is_ht_info((uint8_t *)ie)) {
773 		/* we only care if there isn't already an HT IE (ANA) */
774 		if (!scan_params->ie_list.htinfo) {
775 			if (ie->ie_len != WLAN_VENDOR_HT_IE_OFFSET_LEN +
776 					  sizeof(struct wlan_ie_htinfo_cmn))
777 				return QDF_STATUS_E_INVAL;
778 			scan_params->ie_list.htinfo =
779 			  (uint8_t *)&(((struct wlan_vendor_ie_htinfo *)
780 			  ie)->hi_ie);
781 		}
782 	} else if (is_interop_vht((uint8_t *)ie) &&
783 	    !(scan_params->ie_list.vhtcap)) {
784 		uint8_t *vendor_ie = (uint8_t *)(ie);
785 
786 		if (ie->ie_len < ((WLAN_VENDOR_VHTCAP_IE_OFFSET +
787 				 sizeof(struct wlan_ie_vhtcaps)) -
788 				 sizeof(struct ie_header)))
789 			return QDF_STATUS_E_INVAL;
790 		vendor_ie = ((uint8_t *)(ie)) + WLAN_VENDOR_VHTCAP_IE_OFFSET;
791 		if (vendor_ie[1] != (sizeof(struct wlan_ie_vhtcaps)) -
792 				      sizeof(struct ie_header))
793 			return QDF_STATUS_E_INVAL;
794 		/* location where Interop Vht Cap IE and VHT OP IE Present */
795 		scan_params->ie_list.vhtcap = (((uint8_t *)(ie)) +
796 						WLAN_VENDOR_VHTCAP_IE_OFFSET);
797 		if (ie->ie_len > ((WLAN_VENDOR_VHTCAP_IE_OFFSET +
798 				 sizeof(struct wlan_ie_vhtcaps)) -
799 				 sizeof(struct ie_header))) {
800 			if (ie->ie_len < ((WLAN_VENDOR_VHTOP_IE_OFFSET +
801 					  sizeof(struct wlan_ie_vhtop)) -
802 					  sizeof(struct ie_header)))
803 				return QDF_STATUS_E_INVAL;
804 			vendor_ie = ((uint8_t *)(ie)) +
805 				    WLAN_VENDOR_VHTOP_IE_OFFSET;
806 			if (vendor_ie[1] != (sizeof(struct wlan_ie_vhtop) -
807 					     sizeof(struct ie_header)))
808 				return QDF_STATUS_E_INVAL;
809 			scan_params->ie_list.vhtop = (((uint8_t *)(ie)) +
810 						   WLAN_VENDOR_VHTOP_IE_OFFSET);
811 		}
812 	} else if (is_bwnss_oui((uint8_t *)ie)) {
813 		/*
814 		 * Bandwidth-NSS map has sub-type & version.
815 		 * hence copy data just after version byte
816 		 */
817 		scan_params->ie_list.bwnss_map = (((uint8_t *)ie) + 8);
818 	} else if (is_mbo_oce_oui((uint8_t *)ie)) {
819 		scan_params->ie_list.mbo_oce = (uint8_t *)ie;
820 	} else if (is_extender_oui((uint8_t *)ie)) {
821 		scan_params->ie_list.extender = (uint8_t *)ie;
822 	} else if (is_adaptive_11r_oui((uint8_t *)ie)) {
823 		if ((ie->ie_len < OUI_LENGTH) ||
824 		    (ie->ie_len > MAX_ADAPTIVE_11R_IE_LEN))
825 			return QDF_STATUS_E_INVAL;
826 
827 		scan_params->ie_list.adaptive_11r = (uint8_t *)ie +
828 						sizeof(struct ie_header);
829 	}
830 	return QDF_STATUS_SUCCESS;
831 }
832 
833 static QDF_STATUS
834 util_scan_populate_bcn_ie_list(struct scan_cache_entry *scan_params,
835 			       uint8_t *chan_idx)
836 {
837 	struct ie_header *ie, *sub_ie;
838 	uint32_t ie_len, sub_ie_len;
839 	QDF_STATUS status;
840 
841 	ie_len = util_scan_entry_ie_len(scan_params);
842 	ie = (struct ie_header *)
843 		  util_scan_entry_ie_data(scan_params);
844 
845 	while (ie_len >= sizeof(struct ie_header)) {
846 		ie_len -= sizeof(struct ie_header);
847 
848 		if (!ie->ie_len) {
849 			ie += 1;
850 			continue;
851 		}
852 
853 		if (ie_len < ie->ie_len) {
854 			scm_debug("Incomplete corrupted IE:%x",
855 				ie->ie_id);
856 			return QDF_STATUS_E_INVAL;
857 		}
858 
859 		switch (ie->ie_id) {
860 		case WLAN_ELEMID_SSID:
861 			if (ie->ie_len > (sizeof(struct ie_ssid) -
862 					  sizeof(struct ie_header)))
863 				goto err;
864 			scan_params->ie_list.ssid = (uint8_t *)ie;
865 			break;
866 		case WLAN_ELEMID_RATES:
867 			if (ie->ie_len > WLAN_SUPPORTED_RATES_IE_MAX_LEN)
868 				goto err;
869 			scan_params->ie_list.rates = (uint8_t *)ie;
870 			break;
871 		case WLAN_ELEMID_DSPARMS:
872 			if (ie->ie_len != WLAN_DS_PARAM_IE_MAX_LEN)
873 				return QDF_STATUS_E_INVAL;
874 			scan_params->ie_list.ds_param = (uint8_t *)ie;
875 			*chan_idx =
876 				((struct ds_ie *)ie)->cur_chan;
877 			break;
878 		case WLAN_ELEMID_TIM:
879 			if (ie->ie_len < WLAN_TIM_IE_MIN_LENGTH)
880 				goto err;
881 			scan_params->ie_list.tim = (uint8_t *)ie;
882 			scan_params->dtim_period =
883 				((struct wlan_tim_ie *)ie)->tim_period;
884 			break;
885 		case WLAN_ELEMID_COUNTRY:
886 			if (ie->ie_len < WLAN_COUNTRY_IE_MIN_LEN)
887 				goto err;
888 			scan_params->ie_list.country = (uint8_t *)ie;
889 			break;
890 		case WLAN_ELEMID_QBSS_LOAD:
891 			if (ie->ie_len != sizeof(struct qbss_load_ie) -
892 					  sizeof(struct ie_header)) {
893 				/*
894 				 * Expected QBSS IE length is 5Bytes; For some
895 				 * old cisco AP, QBSS IE length is 4Bytes, which
896 				 * doesn't match with latest spec, So ignore
897 				 * QBSS IE in such case.
898 				 */
899 				break;
900 			}
901 			scan_params->ie_list.qbssload = (uint8_t *)ie;
902 			break;
903 		case WLAN_ELEMID_CHANSWITCHANN:
904 			if (ie->ie_len != WLAN_CSA_IE_MAX_LEN)
905 				goto err;
906 			scan_params->ie_list.csa = (uint8_t *)ie;
907 			break;
908 		case WLAN_ELEMID_IBSSDFS:
909 			if (ie->ie_len < WLAN_IBSSDFS_IE_MIN_LEN)
910 				goto err;
911 			scan_params->ie_list.ibssdfs = (uint8_t *)ie;
912 			break;
913 		case WLAN_ELEMID_QUIET:
914 			if (ie->ie_len != WLAN_QUIET_IE_MAX_LEN)
915 				goto err;
916 			scan_params->ie_list.quiet = (uint8_t *)ie;
917 			break;
918 		case WLAN_ELEMID_ERP:
919 			if (ie->ie_len != (sizeof(struct erp_ie) -
920 					    sizeof(struct ie_header)))
921 				goto err;
922 			scan_params->erp = ((struct erp_ie *)ie)->value;
923 			break;
924 		case WLAN_ELEMID_HTCAP_ANA:
925 			if (ie->ie_len != sizeof(struct htcap_cmn_ie))
926 				goto err;
927 			scan_params->ie_list.htcap =
928 				(uint8_t *)&(((struct htcap_ie *)ie)->ie);
929 			break;
930 		case WLAN_ELEMID_RSN:
931 			if (ie->ie_len < WLAN_RSN_IE_MIN_LEN)
932 				goto err;
933 			scan_params->ie_list.rsn = (uint8_t *)ie;
934 			break;
935 		case WLAN_ELEMID_XRATES:
936 			scan_params->ie_list.xrates = (uint8_t *)ie;
937 			break;
938 		case WLAN_ELEMID_EXTCHANSWITCHANN:
939 			if (ie->ie_len != WLAN_XCSA_IE_MAX_LEN)
940 				goto err;
941 			scan_params->ie_list.xcsa = (uint8_t *)ie;
942 			break;
943 		case WLAN_ELEMID_SECCHANOFFSET:
944 			if (ie->ie_len != WLAN_SECCHANOFF_IE_MAX_LEN)
945 				goto err;
946 			scan_params->ie_list.secchanoff = (uint8_t *)ie;
947 			break;
948 		case WLAN_ELEMID_HTINFO_ANA:
949 			if (ie->ie_len != sizeof(struct wlan_ie_htinfo_cmn))
950 				goto err;
951 			scan_params->ie_list.htinfo =
952 			  (uint8_t *)&(((struct wlan_ie_htinfo *) ie)->hi_ie);
953 			*chan_idx =
954 				((struct wlan_ie_htinfo_cmn *)
955 			  (scan_params->ie_list.htinfo))->hi_ctrlchannel;
956 			break;
957 		case WLAN_ELEMID_WAPI:
958 			if (ie->ie_len < WLAN_WAPI_IE_MIN_LEN)
959 				goto err;
960 			scan_params->ie_list.wapi = (uint8_t *)ie;
961 			break;
962 		case WLAN_ELEMID_XCAPS:
963 			if (ie->ie_len > WLAN_EXTCAP_IE_MAX_LEN)
964 				goto err;
965 			scan_params->ie_list.extcaps = (uint8_t *)ie;
966 			break;
967 		case WLAN_ELEMID_VHTCAP:
968 			if (ie->ie_len != (sizeof(struct wlan_ie_vhtcaps) -
969 					   sizeof(struct ie_header)))
970 				goto err;
971 			scan_params->ie_list.vhtcap = (uint8_t *)ie;
972 			break;
973 		case WLAN_ELEMID_VHTOP:
974 			if (ie->ie_len != (sizeof(struct wlan_ie_vhtop) -
975 					   sizeof(struct ie_header)))
976 				goto err;
977 			scan_params->ie_list.vhtop = (uint8_t *)ie;
978 			break;
979 		case WLAN_ELEMID_OP_MODE_NOTIFY:
980 			if (ie->ie_len != WLAN_OPMODE_IE_MAX_LEN)
981 				goto err;
982 			scan_params->ie_list.opmode = (uint8_t *)ie;
983 			break;
984 		case WLAN_ELEMID_MOBILITY_DOMAIN:
985 			if (ie->ie_len != WLAN_MOBILITY_DOMAIN_IE_MAX_LEN)
986 				goto err;
987 			scan_params->ie_list.mdie = (uint8_t *)ie;
988 			break;
989 		case WLAN_ELEMID_VENDOR:
990 			status = util_scan_parse_vendor_ie(scan_params,
991 							   ie);
992 			if (QDF_IS_STATUS_ERROR(status))
993 				goto err_status;
994 			break;
995 		case WLAN_ELEMID_CHAN_SWITCH_WRAP:
996 			scan_params->ie_list.cswrp = (uint8_t *)ie;
997 			/* Go to next sub IE */
998 			sub_ie = (struct ie_header *)
999 			(((uint8_t *)ie) + sizeof(struct ie_header));
1000 			sub_ie_len = ie->ie_len;
1001 			status =
1002 				util_scan_parse_chan_switch_wrapper_ie(
1003 					scan_params, sub_ie, sub_ie_len);
1004 			if (QDF_IS_STATUS_ERROR(status)) {
1005 				goto err_status;
1006 			}
1007 			break;
1008 		case WLAN_ELEMID_FILS_INDICATION:
1009 			if (ie->ie_len < WLAN_FILS_INDICATION_IE_MIN_LEN)
1010 				goto err;
1011 			scan_params->ie_list.fils_indication = (uint8_t *)ie;
1012 			break;
1013 		case WLAN_ELEMID_EXTN_ELEM:
1014 			status = util_scan_parse_extn_ie(scan_params, ie);
1015 			if (QDF_IS_STATUS_ERROR(status))
1016 				goto err_status;
1017 			break;
1018 		case WLAN_ELEMID_REDUCED_NEIGHBOR_REPORT:
1019 			if (ie->ie_len < WLAN_RNR_IE_MIN_LEN)
1020 				goto err;
1021 			scan_params->ie_list.rnrie = (uint8_t *)ie;
1022 			status = util_scan_parse_rnr_ie(scan_params, ie);
1023 			if (QDF_IS_STATUS_ERROR(status))
1024 				goto err_status;
1025 			break;
1026 		default:
1027 			break;
1028 		}
1029 
1030 		/* Consume info element */
1031 		ie_len -= ie->ie_len;
1032 		/* Go to next IE */
1033 		ie = (struct ie_header *)
1034 			(((uint8_t *) ie) +
1035 			sizeof(struct ie_header) +
1036 			ie->ie_len);
1037 	}
1038 
1039 	return QDF_STATUS_SUCCESS;
1040 
1041 err:
1042 	status = QDF_STATUS_E_INVAL;
1043 err_status:
1044 	scm_debug("failed to parse IE - id: %d, len: %d",
1045 		  ie->ie_id, ie->ie_len);
1046 
1047 	return status;
1048 }
1049 
1050 /**
1051  * util_scan_update_esp_data: update ESP params from beacon/probe response
1052  * @esp_information: pointer to wlan_esp_information
1053  * @scan_entry: new received entry
1054  *
1055  * The Estimated Service Parameters element is
1056  * used by a AP to provide information to another STA which
1057  * can then use the information as input to an algorithm to
1058  * generate an estimate of throughput between the two STAs.
1059  * The ESP Information List field contains from 1 to 4 ESP
1060  * Information fields(each field 24 bits), each corresponding
1061  * to an access category for which estimated service parameters
1062  * information is provided.
1063  *
1064  * Return: None
1065  */
1066 static void util_scan_update_esp_data(struct wlan_esp_ie *esp_information,
1067 		struct scan_cache_entry *scan_entry)
1068 {
1069 
1070 	uint8_t *data;
1071 	int i = 0;
1072 	uint64_t total_elements;
1073 	struct wlan_esp_info *esp_info;
1074 	struct wlan_esp_ie *esp_ie;
1075 
1076 	esp_ie = (struct wlan_esp_ie *)
1077 		util_scan_entry_esp_info(scan_entry);
1078 
1079 	total_elements  = esp_ie->esp_len;
1080 	data = (uint8_t *)esp_ie + 3;
1081 	do_div(total_elements, ESP_INFORMATION_LIST_LENGTH);
1082 
1083 	if (total_elements > MAX_ESP_INFORMATION_FIELD) {
1084 		scm_err("No of Air time fractions are greater than supported");
1085 		return;
1086 	}
1087 
1088 	for (i = 0; i < total_elements; i++) {
1089 		esp_info = (struct wlan_esp_info *)data;
1090 		if (esp_info->access_category == ESP_AC_BK) {
1091 			qdf_mem_copy(&esp_information->esp_info_AC_BK,
1092 					data, 3);
1093 			data = data + ESP_INFORMATION_LIST_LENGTH;
1094 			continue;
1095 		}
1096 		if (esp_info->access_category == ESP_AC_BE) {
1097 			qdf_mem_copy(&esp_information->esp_info_AC_BE,
1098 					data, 3);
1099 			data = data + ESP_INFORMATION_LIST_LENGTH;
1100 			continue;
1101 		}
1102 		if (esp_info->access_category == ESP_AC_VI) {
1103 			qdf_mem_copy(&esp_information->esp_info_AC_VI,
1104 					data, 3);
1105 			data = data + ESP_INFORMATION_LIST_LENGTH;
1106 			continue;
1107 		}
1108 		if (esp_info->access_category == ESP_AC_VO) {
1109 			qdf_mem_copy(&esp_information->esp_info_AC_VO,
1110 					data, 3);
1111 			data = data + ESP_INFORMATION_LIST_LENGTH;
1112 			break;
1113 		}
1114 	}
1115 }
1116 
1117 /**
1118  * util_scan_scm_update_bss_with_esp_dataa: calculate estimated air time
1119  * fraction
1120  * @scan_entry: new received entry
1121  *
1122  * This function process all Access category ESP params and provide
1123  * best effort air time fraction.
1124  * If best effort is not available, it will choose VI, VO and BK in sequence
1125  *
1126  */
1127 static void util_scan_scm_update_bss_with_esp_data(
1128 		struct scan_cache_entry *scan_entry)
1129 {
1130 	uint8_t air_time_fraction = 0;
1131 	struct wlan_esp_ie esp_information;
1132 
1133 	if (!scan_entry->ie_list.esp)
1134 		return;
1135 
1136 	util_scan_update_esp_data(&esp_information, scan_entry);
1137 
1138 	/*
1139 	 * If the ESP metric is transmitting multiple airtime fractions, then
1140 	 * follow the sequence AC_BE, AC_VI, AC_VO, AC_BK and pick whichever is
1141 	 * the first one available
1142 	 */
1143 	if (esp_information.esp_info_AC_BE.access_category
1144 			== ESP_AC_BE)
1145 		air_time_fraction =
1146 			esp_information.esp_info_AC_BE.
1147 			estimated_air_fraction;
1148 	else if (esp_information.esp_info_AC_VI.access_category
1149 			== ESP_AC_VI)
1150 		air_time_fraction =
1151 			esp_information.esp_info_AC_VI.
1152 			estimated_air_fraction;
1153 	else if (esp_information.esp_info_AC_VO.access_category
1154 			== ESP_AC_VO)
1155 		air_time_fraction =
1156 			esp_information.esp_info_AC_VO.
1157 			estimated_air_fraction;
1158 	else if (esp_information.esp_info_AC_BK.access_category
1159 			== ESP_AC_BK)
1160 		air_time_fraction =
1161 			esp_information.esp_info_AC_BK.
1162 				estimated_air_fraction;
1163 	scan_entry->air_time_fraction = air_time_fraction;
1164 }
1165 
1166 /**
1167  * util_scan_scm_calc_nss_supported_by_ap() - finds out nss from AP
1168  * @scan_entry: new received entry
1169  *
1170  * Return: number of nss advertised by AP
1171  */
1172 static int util_scan_scm_calc_nss_supported_by_ap(
1173 		struct scan_cache_entry *scan_params)
1174 {
1175 	struct htcap_cmn_ie *htcap;
1176 	struct wlan_ie_vhtcaps *vhtcaps;
1177 	uint8_t rx_mcs_map;
1178 
1179 	htcap = (struct htcap_cmn_ie *)
1180 		util_scan_entry_htcap(scan_params);
1181 	vhtcaps = (struct wlan_ie_vhtcaps *)
1182 		util_scan_entry_vhtcap(scan_params);
1183 	if (vhtcaps) {
1184 		rx_mcs_map = vhtcaps->rx_mcs_map;
1185 		if ((rx_mcs_map & 0xC0) != 0xC0)
1186 			return 4;
1187 
1188 		if ((rx_mcs_map & 0x30) != 0x30)
1189 			return 3;
1190 
1191 		if ((rx_mcs_map & 0x0C) != 0x0C)
1192 			return 2;
1193 	} else if (htcap) {
1194 		if (htcap->mcsset[3])
1195 			return 4;
1196 
1197 		if (htcap->mcsset[2])
1198 			return 3;
1199 
1200 		if (htcap->mcsset[1])
1201 			return 2;
1202 
1203 	}
1204 	return 1;
1205 }
1206 
1207 #ifdef WLAN_DFS_CHAN_HIDDEN_SSID
1208 QDF_STATUS
1209 util_scan_add_hidden_ssid(struct wlan_objmgr_pdev *pdev, qdf_nbuf_t bcnbuf)
1210 {
1211 	struct wlan_frame_hdr *hdr;
1212 	struct wlan_bcn_frame *bcn;
1213 	struct wlan_scan_obj *scan_obj;
1214 	struct wlan_ssid *conf_ssid;
1215 	struct  ie_header *ie;
1216 	uint32_t frame_len = qdf_nbuf_len(bcnbuf);
1217 	uint16_t bcn_ie_offset, ssid_ie_start_offset, ssid_ie_end_offset;
1218 	uint16_t tmplen, ie_length;
1219 	uint8_t *pbeacon, *tmp;
1220 	bool     set_ssid_flag = false;
1221 	struct ie_ssid *ssid;
1222 	uint8_t pdev_id;
1223 
1224 	if (!pdev) {
1225 		scm_warn("pdev: 0x%pK is NULL", pdev);
1226 		return QDF_STATUS_E_NULL_VALUE;
1227 	}
1228 	pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
1229 	scan_obj = wlan_pdev_get_scan_obj(pdev);
1230 	if (!scan_obj) {
1231 		scm_warn("null scan_obj");
1232 		return QDF_STATUS_E_NULL_VALUE;
1233 	}
1234 
1235 	conf_ssid = &scan_obj->pdev_info[pdev_id].conf_ssid;
1236 
1237 	hdr = (struct wlan_frame_hdr *)qdf_nbuf_data(bcnbuf);
1238 
1239 	/* received bssid does not match configured bssid */
1240 	if (qdf_mem_cmp(hdr->i_addr3, scan_obj->pdev_info[pdev_id].conf_bssid,
1241 			QDF_MAC_ADDR_SIZE) ||
1242 			conf_ssid->length == 0) {
1243 		return QDF_STATUS_SUCCESS;
1244 	}
1245 
1246 	bcn = (struct wlan_bcn_frame *)(qdf_nbuf_data(bcnbuf) + sizeof(*hdr));
1247 	pbeacon = (uint8_t *)bcn;
1248 
1249 	ie = (struct ie_header *)(pbeacon +
1250 				  offsetof(struct wlan_bcn_frame, ie));
1251 
1252 	bcn_ie_offset = offsetof(struct wlan_bcn_frame, ie);
1253 	ie_length = (uint16_t)(frame_len - sizeof(*hdr) -
1254 			       bcn_ie_offset);
1255 
1256 	while (ie_length >=  sizeof(struct ie_header)) {
1257 		ie_length -= sizeof(struct ie_header);
1258 
1259 		bcn_ie_offset += sizeof(struct ie_header);
1260 
1261 		if (ie_length < ie->ie_len) {
1262 			scm_debug("Incomplete corrupted IE:%x", ie->ie_id);
1263 			return QDF_STATUS_E_INVAL;
1264 		}
1265 		if (ie->ie_id == WLAN_ELEMID_SSID) {
1266 			if (ie->ie_len > (sizeof(struct ie_ssid) -
1267 						 sizeof(struct ie_header))) {
1268 				return QDF_STATUS_E_INVAL;
1269 			}
1270 			ssid = (struct ie_ssid *)ie;
1271 			if (util_scan_is_hidden_ssid(ssid)) {
1272 				set_ssid_flag  = true;
1273 				ssid_ie_start_offset = bcn_ie_offset -
1274 					sizeof(struct ie_header);
1275 				ssid_ie_end_offset = bcn_ie_offset +
1276 					ie->ie_len;
1277 			}
1278 		}
1279 		if (ie->ie_len == 0) {
1280 			ie += 1;    /* next IE */
1281 			continue;
1282 		}
1283 		if (ie->ie_id == WLAN_ELEMID_VENDOR &&
1284 		    is_wps_oui((uint8_t *)ie)) {
1285 			set_ssid_flag = false;
1286 			break;
1287 		}
1288 		/* Consume info element */
1289 		ie_length -=  ie->ie_len;
1290 		/* Go to next IE */
1291 		ie = (struct ie_header *)(((uint8_t *)ie) +
1292 				sizeof(struct ie_header) +
1293 				ie->ie_len);
1294 	}
1295 
1296 	if (set_ssid_flag) {
1297 		/* Hidden SSID if the Length is 0 */
1298 		if (!ssid->ssid_len) {
1299 			/* increase the taillength by length of ssid */
1300 			if (qdf_nbuf_put_tail(bcnbuf,
1301 					      conf_ssid->length) == NULL) {
1302 				scm_debug("No enough tailroom");
1303 				return  QDF_STATUS_E_NOMEM;
1304 			}
1305 			/* length of the buffer to be copied */
1306 			tmplen = frame_len -
1307 				sizeof(*hdr) - ssid_ie_end_offset;
1308 			/*
1309 			 * tmp memory to copy the beacon info
1310 			 * after ssid ie.
1311 			 */
1312 			tmp = qdf_mem_malloc(tmplen * sizeof(u_int8_t));
1313 			if (!tmp)
1314 				return  QDF_STATUS_E_NOMEM;
1315 
1316 			/* Copy beacon data after ssid ie to tmp */
1317 			qdf_nbuf_copy_bits(bcnbuf, (sizeof(*hdr) +
1318 					   ssid_ie_end_offset), tmplen, tmp);
1319 			/* Add ssid length */
1320 			*(pbeacon + (ssid_ie_start_offset + 1))
1321 				= conf_ssid->length;
1322 			/* Insert the  SSID string */
1323 			qdf_mem_copy((pbeacon + ssid_ie_end_offset),
1324 				     conf_ssid->ssid, conf_ssid->length);
1325 			/* Copy rest of the beacon data */
1326 			qdf_mem_copy((pbeacon + ssid_ie_end_offset +
1327 				      conf_ssid->length), tmp, tmplen);
1328 			qdf_mem_free(tmp);
1329 
1330 			/* Hidden ssid with all 0's */
1331 		} else if (ssid->ssid_len == conf_ssid->length) {
1332 			/* Insert the  SSID string */
1333 			qdf_mem_copy((pbeacon + ssid_ie_start_offset +
1334 				      sizeof(struct ie_header)),
1335 				      conf_ssid->ssid, conf_ssid->length);
1336 		} else {
1337 			scm_debug("mismatch in hidden ssid length");
1338 			return QDF_STATUS_E_INVAL;
1339 		}
1340 	}
1341 	return QDF_STATUS_SUCCESS;
1342 }
1343 #endif /* WLAN_DFS_CHAN_HIDDEN_SSID */
1344 
1345 #ifdef WLAN_ADAPTIVE_11R
1346 /**
1347  * scm_fill_adaptive_11r_cap() - Check if the AP supports adaptive 11r
1348  * @scan_entry: Pointer to the scan entry
1349  *
1350  * Return: true if adaptive 11r is advertised else false
1351  */
1352 static void scm_fill_adaptive_11r_cap(struct scan_cache_entry *scan_entry)
1353 {
1354 	uint8_t *ie;
1355 	uint8_t data;
1356 	bool adaptive_11r;
1357 
1358 	ie = util_scan_entry_adaptive_11r(scan_entry);
1359 	if (!ie)
1360 		return;
1361 
1362 	data = *(ie + OUI_LENGTH);
1363 	adaptive_11r = (data & 0x1) ? true : false;
1364 
1365 	scan_entry->adaptive_11r_ap = adaptive_11r;
1366 }
1367 #else
1368 static void scm_fill_adaptive_11r_cap(struct scan_cache_entry *scan_entry)
1369 {
1370 	scan_entry->adaptive_11r_ap = false;
1371 }
1372 #endif
1373 
1374 static void util_scan_set_security(struct scan_cache_entry *scan_params)
1375 {
1376 	if (util_scan_entry_wpa(scan_params))
1377 		scan_params->security_type |= SCAN_SECURITY_TYPE_WPA;
1378 
1379 	if (util_scan_entry_rsn(scan_params))
1380 		scan_params->security_type |= SCAN_SECURITY_TYPE_RSN;
1381 	if (util_scan_entry_wapi(scan_params))
1382 		scan_params->security_type |= SCAN_SECURITY_TYPE_WAPI;
1383 
1384 	if (!scan_params->security_type &&
1385 	    scan_params->cap_info.wlan_caps.privacy)
1386 		scan_params->security_type |= SCAN_SECURITY_TYPE_WEP;
1387 }
1388 
1389 static QDF_STATUS
1390 util_scan_gen_scan_entry(struct wlan_objmgr_pdev *pdev,
1391 			 uint8_t *frame, qdf_size_t frame_len,
1392 			 uint32_t frm_subtype,
1393 			 struct mgmt_rx_event_params *rx_param,
1394 			 struct scan_mbssid_info *mbssid_info,
1395 			 qdf_list_t *scan_list)
1396 {
1397 	struct wlan_frame_hdr *hdr;
1398 	struct wlan_bcn_frame *bcn;
1399 	QDF_STATUS status = QDF_STATUS_SUCCESS;
1400 	struct ie_ssid *ssid;
1401 	struct scan_cache_entry *scan_entry;
1402 	struct qbss_load_ie *qbss_load;
1403 	struct scan_cache_node *scan_node;
1404 	uint8_t i, chan_idx = 0;
1405 
1406 	scan_entry = qdf_mem_malloc_atomic(sizeof(*scan_entry));
1407 	if (!scan_entry) {
1408 		scm_err("failed to allocate memory for scan_entry");
1409 		return QDF_STATUS_E_NOMEM;
1410 	}
1411 	scan_entry->raw_frame.ptr =
1412 			qdf_mem_malloc_atomic(frame_len);
1413 	if (!scan_entry->raw_frame.ptr) {
1414 		scm_err("failed to allocate memory for frame");
1415 		qdf_mem_free(scan_entry);
1416 		return QDF_STATUS_E_NOMEM;
1417 	}
1418 
1419 	bcn = (struct wlan_bcn_frame *)
1420 			   (frame + sizeof(*hdr));
1421 	hdr = (struct wlan_frame_hdr *)frame;
1422 
1423 	/* update timestamp in nanoseconds needed by kernel layers */
1424 	scan_entry->boottime_ns = qdf_get_bootbased_boottime_ns();
1425 
1426 	scan_entry->frm_subtype = frm_subtype;
1427 	qdf_mem_copy(scan_entry->bssid.bytes,
1428 		hdr->i_addr3, QDF_MAC_ADDR_SIZE);
1429 	/* Scr addr */
1430 	qdf_mem_copy(scan_entry->mac_addr.bytes,
1431 		hdr->i_addr2, QDF_MAC_ADDR_SIZE);
1432 	scan_entry->seq_num =
1433 		(le16toh(*(uint16_t *)hdr->i_seq) >> WLAN_SEQ_SEQ_SHIFT);
1434 
1435 	scan_entry->snr = rx_param->snr;
1436 	scan_entry->avg_snr = WLAN_SNR_IN(scan_entry->snr);
1437 	scan_entry->rssi_raw = rx_param->rssi;
1438 	scan_entry->avg_rssi = WLAN_RSSI_IN(scan_entry->rssi_raw);
1439 	scan_entry->tsf_delta = rx_param->tsf_delta;
1440 	scan_entry->pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
1441 
1442 	/* Copy per chain rssi to scan entry */
1443 	qdf_mem_copy(scan_entry->per_chain_rssi, rx_param->rssi_ctl,
1444 		     WLAN_MGMT_TXRX_HOST_MAX_ANTENNA);
1445 
1446 	if (!wlan_psoc_nif_fw_ext_cap_get(wlan_pdev_get_psoc(pdev),
1447 					  WLAN_SOC_CEXT_HW_DB2DBM)) {
1448 		for (i = 0; i < WLAN_MGMT_TXRX_HOST_MAX_ANTENNA; i++) {
1449 			if (scan_entry->per_chain_rssi[i] !=
1450 			    WLAN_INVALID_PER_CHAIN_SNR)
1451 				scan_entry->per_chain_rssi[i] +=
1452 						WLAN_NOISE_FLOOR_DBM_DEFAULT;
1453 			else
1454 				scan_entry->per_chain_rssi[i] =
1455 						WLAN_INVALID_PER_CHAIN_RSSI;
1456 		}
1457 	}
1458 
1459 	/* store jiffies */
1460 	scan_entry->rrm_parent_tsf = (uint32_t)qdf_system_ticks();
1461 
1462 	scan_entry->bcn_int = le16toh(bcn->beacon_interval);
1463 
1464 	/*
1465 	 * In case if the beacon dosnt have
1466 	 * valid beacon interval falback to def
1467 	 */
1468 	if (!scan_entry->bcn_int)
1469 		scan_entry->bcn_int = 100;
1470 	scan_entry->cap_info.value = le16toh(bcn->capability.value);
1471 	qdf_mem_copy(scan_entry->tsf_info.data,
1472 		bcn->timestamp, 8);
1473 	scan_entry->erp = ERP_NON_ERP_PRESENT;
1474 
1475 	scan_entry->scan_entry_time =
1476 		qdf_mc_timer_get_system_time();
1477 
1478 	scan_entry->raw_frame.len = frame_len;
1479 	qdf_mem_copy(scan_entry->raw_frame.ptr,
1480 		frame, frame_len);
1481 	status = util_scan_populate_bcn_ie_list(scan_entry, &chan_idx);
1482 	if (QDF_IS_STATUS_ERROR(status)) {
1483 		scm_debug("failed to parse beacon IE");
1484 		qdf_mem_free(scan_entry->raw_frame.ptr);
1485 		qdf_mem_free(scan_entry);
1486 		return QDF_STATUS_E_FAILURE;
1487 	}
1488 
1489 	ssid = (struct ie_ssid *)
1490 		scan_entry->ie_list.ssid;
1491 
1492 	if (ssid && (ssid->ssid_len > WLAN_SSID_MAX_LEN)) {
1493 		qdf_mem_free(scan_entry->raw_frame.ptr);
1494 		qdf_mem_free(scan_entry);
1495 		return QDF_STATUS_E_FAILURE;
1496 	}
1497 
1498 	if (scan_entry->ie_list.p2p)
1499 		scan_entry->is_p2p = true;
1500 
1501 	if (!chan_idx && util_scan_entry_hecap(scan_entry))
1502 		util_scan_get_chan_from_he_6g_params(scan_entry, &chan_idx);
1503 
1504 	if (chan_idx) {
1505 		uint8_t band_mask = BIT(wlan_reg_freq_to_band(
1506 							rx_param->chan_freq));
1507 
1508 		scan_entry->channel.chan_freq =
1509 			wlan_reg_chan_band_to_freq(
1510 				pdev, chan_idx,
1511 				band_mask);
1512 	}
1513 	/* If no channel info is present in beacon use meta channel */
1514 	if (!scan_entry->channel.chan_freq) {
1515 		scan_entry->channel.chan_freq = rx_param->chan_freq;
1516 	} else if (rx_param->chan_freq !=
1517 	   scan_entry->channel.chan_freq) {
1518 		if (!wlan_reg_is_49ghz_freq(scan_entry->channel.chan_freq))
1519 			scan_entry->channel_mismatch = true;
1520 	}
1521 
1522 	if (util_scan_is_hidden_ssid(ssid)) {
1523 		scan_entry->ie_list.ssid = NULL;
1524 		scan_entry->is_hidden_ssid = true;
1525 	} else {
1526 		qdf_mem_copy(scan_entry->ssid.ssid,
1527 				ssid->ssid, ssid->ssid_len);
1528 		scan_entry->ssid.length = ssid->ssid_len;
1529 		scan_entry->hidden_ssid_timestamp =
1530 			scan_entry->scan_entry_time;
1531 	}
1532 	qdf_mem_copy(&scan_entry->mbssid_info, mbssid_info,
1533 		     sizeof(scan_entry->mbssid_info));
1534 
1535 	scan_entry->phy_mode = util_scan_get_phymode(pdev, scan_entry);
1536 
1537 	scan_entry->nss = util_scan_scm_calc_nss_supported_by_ap(scan_entry);
1538 	scm_fill_adaptive_11r_cap(scan_entry);
1539 	util_scan_set_security(scan_entry);
1540 
1541 	util_scan_scm_update_bss_with_esp_data(scan_entry);
1542 	qbss_load = (struct qbss_load_ie *)
1543 			util_scan_entry_qbssload(scan_entry);
1544 	if (qbss_load)
1545 		scan_entry->qbss_chan_load = qbss_load->qbss_chan_load;
1546 
1547 	scan_node = qdf_mem_malloc_atomic(sizeof(*scan_node));
1548 	if (!scan_node) {
1549 		qdf_mem_free(scan_entry->raw_frame.ptr);
1550 		qdf_mem_free(scan_entry);
1551 		return QDF_STATUS_E_FAILURE;
1552 	}
1553 
1554 	scan_node->entry = scan_entry;
1555 	qdf_list_insert_front(scan_list, &scan_node->node);
1556 
1557 	return status;
1558 }
1559 
1560 /**
1561  * util_scan_find_ie() - find information element
1562  * @eid: element id
1563  * @ies: pointer consisting of IEs
1564  * @len: IE length
1565  *
1566  * Return: NULL if the element ID is not found or
1567  * a pointer to the first byte of the requested
1568  * element
1569  */
1570 static uint8_t *util_scan_find_ie(uint8_t eid, uint8_t *ies,
1571 				  int32_t len)
1572 {
1573 	while (len >= 2 && len >= ies[1] + 2) {
1574 		if (ies[0] == eid)
1575 			return ies;
1576 		len -= ies[1] + 2;
1577 		ies += ies[1] + 2;
1578 	}
1579 
1580 	return NULL;
1581 }
1582 
1583 #ifdef WLAN_FEATURE_MBSSID
1584 static void util_gen_new_bssid(uint8_t *bssid, uint8_t max_bssid,
1585 			       uint8_t mbssid_index,
1586 			       uint8_t *new_bssid_addr)
1587 {
1588 	uint8_t lsb_n;
1589 	int i;
1590 
1591 	for (i = 0; i < QDF_MAC_ADDR_SIZE; i++)
1592 		new_bssid_addr[i] = bssid[i];
1593 
1594 	lsb_n = new_bssid_addr[5] & ((1 << max_bssid) - 1);
1595 
1596 	new_bssid_addr[5] &= ~((1 << max_bssid) - 1);
1597 	new_bssid_addr[5] |= (lsb_n + mbssid_index) % (1 << max_bssid);
1598 }
1599 
1600 static uint32_t util_gen_new_ie(uint8_t *ie, uint32_t ielen,
1601 				uint8_t *subelement,
1602 				size_t subie_len, uint8_t *new_ie)
1603 {
1604 	uint8_t *pos, *tmp;
1605 	const uint8_t *tmp_old, *tmp_new;
1606 	uint8_t *sub_copy;
1607 
1608 	/* copy subelement as we need to change its content to
1609 	 * mark an ie after it is processed.
1610 	 */
1611 	sub_copy = qdf_mem_malloc(subie_len);
1612 	if (!sub_copy)
1613 		return 0;
1614 	qdf_mem_copy(sub_copy, subelement, subie_len);
1615 
1616 	pos = &new_ie[0];
1617 
1618 	/* new ssid */
1619 	tmp_new = util_scan_find_ie(WLAN_ELEMID_SSID, sub_copy, subie_len);
1620 	if (tmp_new) {
1621 		qdf_mem_copy(pos, tmp_new, tmp_new[1] + 2);
1622 		pos += (tmp_new[1] + 2);
1623 	}
1624 
1625 	/* go through IEs in ie (skip SSID) and subelement,
1626 	 * merge them into new_ie
1627 	 */
1628 	tmp_old = util_scan_find_ie(WLAN_ELEMID_SSID, ie, ielen);
1629 	tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
1630 
1631 	while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
1632 		if (tmp_old[0] == 0) {
1633 			tmp_old++;
1634 			continue;
1635 		}
1636 
1637 		tmp = (uint8_t *)util_scan_find_ie(tmp_old[0], sub_copy,
1638 				subie_len);
1639 		if (!tmp) {
1640 			/* ie in old ie but not in subelement */
1641 			if (tmp_old[0] != WLAN_ELEMID_MULTIPLE_BSSID) {
1642 				qdf_mem_copy(pos, tmp_old, tmp_old[1] + 2);
1643 				pos += tmp_old[1] + 2;
1644 			}
1645 		} else {
1646 			/* ie in transmitting ie also in subelement,
1647 			 * copy from subelement and flag the ie in subelement
1648 			 * as copied (by setting eid field to 0xff). For
1649 			 * vendor ie, compare OUI + type + subType to
1650 			 * determine if they are the same ie.
1651 			 */
1652 			if (tmp_old[0] == WLAN_ELEMID_VENDOR) {
1653 				if (!qdf_mem_cmp(tmp_old + 2, tmp + 2, 5)) {
1654 					/* same vendor ie, copy from
1655 					 * subelement
1656 					 */
1657 					qdf_mem_copy(pos, tmp, tmp[1] + 2);
1658 					pos += tmp[1] + 2;
1659 					tmp[0] = 0xff;
1660 				} else {
1661 					qdf_mem_copy(pos, tmp_old,
1662 						     tmp_old[1] + 2);
1663 					pos += tmp_old[1] + 2;
1664 				}
1665 			} else {
1666 				/* copy ie from subelement into new ie */
1667 				qdf_mem_copy(pos, tmp, tmp[1] + 2);
1668 				pos += tmp[1] + 2;
1669 				tmp[0] = 0xff;
1670 			}
1671 		}
1672 
1673 		if (tmp_old + tmp_old[1] + 2 - ie == ielen)
1674 			break;
1675 
1676 		tmp_old += tmp_old[1] + 2;
1677 	}
1678 
1679 	/* go through subelement again to check if there is any ie not
1680 	 * copied to new ie, skip ssid, capability, bssid-index ie
1681 	 */
1682 	tmp_new = sub_copy;
1683 	while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
1684 		if (!(tmp_new[0] == WLAN_ELEMID_NONTX_BSSID_CAP ||
1685 		      tmp_new[0] == WLAN_ELEMID_SSID ||
1686 		      tmp_new[0] == WLAN_ELEMID_MULTI_BSSID_IDX ||
1687 		      tmp_new[0] == 0xff)) {
1688 			qdf_mem_copy(pos, tmp_new, tmp_new[1] + 2);
1689 			pos += tmp_new[1] + 2;
1690 		}
1691 		if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
1692 			break;
1693 		tmp_new += tmp_new[1] + 2;
1694 	}
1695 
1696 	qdf_mem_free(sub_copy);
1697 	return pos - new_ie;
1698 }
1699 
1700 static QDF_STATUS util_scan_parse_mbssid(struct wlan_objmgr_pdev *pdev,
1701 					 uint8_t *frame, qdf_size_t frame_len,
1702 					 uint32_t frm_subtype,
1703 					 struct mgmt_rx_event_params *rx_param,
1704 					 qdf_list_t *scan_list)
1705 {
1706 	struct wlan_bcn_frame *bcn;
1707 	struct wlan_frame_hdr *hdr;
1708 	struct scan_mbssid_info mbssid_info;
1709 	QDF_STATUS status;
1710 	uint8_t *pos, *subelement, *mbssid_end_pos;
1711 	uint8_t *tmp, *mbssid_index_ie;
1712 	uint32_t subie_len, new_ie_len;
1713 	uint8_t new_bssid[QDF_MAC_ADDR_SIZE], bssid[QDF_MAC_ADDR_SIZE];
1714 	uint8_t *new_ie;
1715 	uint8_t *ie, *new_frame = NULL;
1716 	uint64_t ielen, new_frame_len;
1717 
1718 	hdr = (struct wlan_frame_hdr *)frame;
1719 	bcn = (struct wlan_bcn_frame *)(frame + sizeof(struct wlan_frame_hdr));
1720 	ie = (uint8_t *)&bcn->ie;
1721 	ielen = (uint16_t)(frame_len -
1722 		sizeof(struct wlan_frame_hdr) -
1723 		offsetof(struct wlan_bcn_frame, ie));
1724 	qdf_mem_copy(bssid, hdr->i_addr3, QDF_MAC_ADDR_SIZE);
1725 
1726 	if (!util_scan_find_ie(WLAN_ELEMID_MULTIPLE_BSSID, ie, ielen))
1727 		return QDF_STATUS_E_FAILURE;
1728 
1729 	pos = ie;
1730 
1731 	new_ie = qdf_mem_malloc(MAX_IE_LEN);
1732 	if (!new_ie)
1733 		return QDF_STATUS_E_NOMEM;
1734 
1735 	while (pos < ie + ielen + 2) {
1736 		tmp = util_scan_find_ie(WLAN_ELEMID_MULTIPLE_BSSID, pos,
1737 					ielen - (pos - ie));
1738 		if (!tmp)
1739 			break;
1740 
1741 		mbssid_info.profile_count = 1 << tmp[2];
1742 		mbssid_end_pos = tmp + tmp[1] + 2;
1743 		/* Skip Element ID, Len, MaxBSSID Indicator */
1744 		if (tmp[1] < 4)
1745 			break;
1746 		for (subelement = tmp + 3; subelement < mbssid_end_pos - 1;
1747 		     subelement += 2 + subelement[1]) {
1748 			subie_len = subelement[1];
1749 			if (mbssid_end_pos - subelement < 2 + subie_len)
1750 				break;
1751 			if (subelement[0] != 0 || subelement[1] < 4) {
1752 				/* not a valid BSS profile */
1753 				continue;
1754 			}
1755 
1756 			if (subelement[2] != WLAN_ELEMID_NONTX_BSSID_CAP ||
1757 			    subelement[3] != 2) {
1758 				/* The first element within the Nontransmitted
1759 				 * BSSID Profile is not the Nontransmitted
1760 				 * BSSID Capability element.
1761 				 */
1762 				continue;
1763 			}
1764 
1765 			/* found a Nontransmitted BSSID Profile */
1766 			mbssid_index_ie =
1767 				util_scan_find_ie(WLAN_ELEMID_MULTI_BSSID_IDX,
1768 						  subelement + 2, subie_len);
1769 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
1770 			    mbssid_index_ie[2] == 0) {
1771 				/* No valid Multiple BSSID-Index element */
1772 				continue;
1773 			}
1774 			qdf_mem_copy(&mbssid_info.trans_bssid, bssid,
1775 				     QDF_MAC_ADDR_SIZE);
1776 			mbssid_info.profile_num = mbssid_index_ie[2];
1777 			util_gen_new_bssid(bssid, tmp[2], mbssid_index_ie[2],
1778 					   new_bssid);
1779 			new_ie_len = util_gen_new_ie(ie, ielen, subelement + 2,
1780 						     subie_len, new_ie);
1781 			if (!new_ie_len)
1782 				continue;
1783 
1784 			new_frame_len = frame_len - ielen + new_ie_len;
1785 			new_frame = qdf_mem_malloc(new_frame_len);
1786 			if (!new_frame) {
1787 				qdf_mem_free(new_ie);
1788 				return QDF_STATUS_E_NOMEM;
1789 			}
1790 
1791 			/*
1792 			 * Copy the header(24byte), timestamp(8 byte),
1793 			 * beaconinterval(2byte) and capability(2byte)
1794 			 */
1795 			qdf_mem_copy(new_frame, frame, 36);
1796 			/* Copy the new ie generated from MBSSID profile*/
1797 			hdr = (struct wlan_frame_hdr *)new_frame;
1798 			qdf_mem_copy(hdr->i_addr2, new_bssid,
1799 				     QDF_MAC_ADDR_SIZE);
1800 			qdf_mem_copy(hdr->i_addr3, new_bssid,
1801 				     QDF_MAC_ADDR_SIZE);
1802 			/* Copy the new ie generated from MBSSID profile*/
1803 			qdf_mem_copy(new_frame +
1804 					offsetof(struct wlan_bcn_frame, ie) +
1805 					sizeof(struct wlan_frame_hdr),
1806 					new_ie, new_ie_len);
1807 			status = util_scan_gen_scan_entry(pdev, new_frame,
1808 							  new_frame_len,
1809 							  frm_subtype,
1810 							  rx_param,
1811 							  &mbssid_info,
1812 							  scan_list);
1813 			if (QDF_IS_STATUS_ERROR(status)) {
1814 				qdf_mem_free(new_frame);
1815 				scm_err("failed to generate a scan entry");
1816 				break;
1817 			}
1818 			/* scan entry makes its own copy so free the frame*/
1819 			qdf_mem_free(new_frame);
1820 		}
1821 
1822 		pos = mbssid_end_pos;
1823 	}
1824 	qdf_mem_free(new_ie);
1825 
1826 	return QDF_STATUS_SUCCESS;
1827 }
1828 #else
1829 static QDF_STATUS util_scan_parse_mbssid(struct wlan_objmgr_pdev *pdev,
1830 					 uint8_t *frame, qdf_size_t frame_len,
1831 					 uint32_t frm_subtype,
1832 					 struct mgmt_rx_event_params *rx_param,
1833 					 qdf_list_t *scan_list)
1834 {
1835 	return QDF_STATUS_SUCCESS;
1836 }
1837 #endif
1838 
1839 static QDF_STATUS
1840 util_scan_parse_beacon_frame(struct wlan_objmgr_pdev *pdev,
1841 			     uint8_t *frame,
1842 			     qdf_size_t frame_len,
1843 			     uint32_t frm_subtype,
1844 			     struct mgmt_rx_event_params *rx_param,
1845 			     qdf_list_t *scan_list)
1846 {
1847 	struct wlan_bcn_frame *bcn;
1848 	struct wlan_frame_hdr *hdr;
1849 	uint8_t *mbssid_ie = NULL;
1850 	uint32_t ie_len = 0;
1851 	QDF_STATUS status;
1852 	struct scan_mbssid_info mbssid_info = { 0 };
1853 
1854 	hdr = (struct wlan_frame_hdr *)frame;
1855 	bcn = (struct wlan_bcn_frame *)
1856 			   (frame + sizeof(struct wlan_frame_hdr));
1857 	ie_len = (uint16_t)(frame_len -
1858 		sizeof(struct wlan_frame_hdr) -
1859 		offsetof(struct wlan_bcn_frame, ie));
1860 
1861 	mbssid_ie = util_scan_find_ie(WLAN_ELEMID_MULTIPLE_BSSID,
1862 				      (uint8_t *)&bcn->ie, ie_len);
1863 	if (mbssid_ie) {
1864 		qdf_mem_copy(&mbssid_info.trans_bssid,
1865 			     hdr->i_addr3, QDF_MAC_ADDR_SIZE);
1866 		mbssid_info.profile_count = 1 << mbssid_ie[2];
1867 	}
1868 
1869 	status = util_scan_gen_scan_entry(pdev, frame, frame_len,
1870 					  frm_subtype, rx_param,
1871 					  &mbssid_info,
1872 					  scan_list);
1873 
1874 	/*
1875 	 * IF MBSSID IE is present in the beacon then
1876 	 * scan component will create a new entry for
1877 	 * each BSSID found in the MBSSID
1878 	 */
1879 	if (mbssid_ie)
1880 		status = util_scan_parse_mbssid(pdev, frame, frame_len,
1881 						frm_subtype, rx_param,
1882 						scan_list);
1883 
1884 	if (QDF_IS_STATUS_ERROR(status))
1885 		scm_debug_rl("Failed to create a scan entry");
1886 
1887 	return status;
1888 }
1889 
1890 qdf_list_t *
1891 util_scan_unpack_beacon_frame(struct wlan_objmgr_pdev *pdev, uint8_t *frame,
1892 			      qdf_size_t frame_len, uint32_t frm_subtype,
1893 			      struct mgmt_rx_event_params *rx_param)
1894 {
1895 	qdf_list_t *scan_list;
1896 	QDF_STATUS status;
1897 
1898 	scan_list = qdf_mem_malloc_atomic(sizeof(*scan_list));
1899 	if (!scan_list) {
1900 		scm_err("failed to allocate scan_list");
1901 		return NULL;
1902 	}
1903 	qdf_list_create(scan_list, MAX_SCAN_CACHE_SIZE);
1904 
1905 	status = util_scan_parse_beacon_frame(pdev, frame, frame_len,
1906 					      frm_subtype, rx_param,
1907 					      scan_list);
1908 	if (QDF_IS_STATUS_ERROR(status)) {
1909 		ucfg_scan_purge_results(scan_list);
1910 		return NULL;
1911 	}
1912 
1913 	return scan_list;
1914 }
1915 
1916 QDF_STATUS
1917 util_scan_entry_update_mlme_info(struct wlan_objmgr_pdev *pdev,
1918 	struct scan_cache_entry *scan_entry)
1919 {
1920 
1921 	if (!pdev || !scan_entry) {
1922 		scm_err("pdev 0x%pK, scan_entry: 0x%pK", pdev, scan_entry);
1923 		return QDF_STATUS_E_INVAL;
1924 	}
1925 
1926 	return scm_update_scan_mlme_info(pdev, scan_entry);
1927 }
1928 
1929 bool util_is_scan_completed(struct scan_event *event, bool *success)
1930 {
1931 	if ((event->type == SCAN_EVENT_TYPE_COMPLETED) ||
1932 	    (event->type == SCAN_EVENT_TYPE_DEQUEUED) ||
1933 	    (event->type == SCAN_EVENT_TYPE_START_FAILED)) {
1934 		if ((event->type == SCAN_EVENT_TYPE_COMPLETED) &&
1935 		    (event->reason == SCAN_REASON_COMPLETED))
1936 			*success = true;
1937 		else
1938 			*success = false;
1939 
1940 		return true;
1941 	}
1942 
1943 	*success = false;
1944 	return false;
1945 }
1946 
1947