xref: /wlan-dirver/qca-wifi-host-cmn/umac/mlme/connection_mgr/core/src/wlan_cm_bss_scoring.c (revision d3be64a66deb873bac895fb0ecea12cbfca02017)
1 /*
2  * Copyright (c) 2017-2021, The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 /**
19  * DOC: contains bss scoring logic
20  */
21 
22 #ifdef WLAN_POLICY_MGR_ENABLE
23 #include "wlan_policy_mgr_api.h"
24 #endif
25 #include <include/wlan_psoc_mlme.h>
26 #include "wlan_psoc_mlme_api.h"
27 #include "cfg_ucfg_api.h"
28 #include "wlan_cm_bss_score_param.h"
29 #include "wlan_scan_api.h"
30 #include "wlan_crypto_global_api.h"
31 #include "wlan_mgmt_txrx_utils_api.h"
32 #ifdef CONN_MGR_ADV_FEATURE
33 #include "wlan_mlme_api.h"
34 #include "wlan_wfa_tgt_if_tx_api.h"
35 #endif
36 
37 #define CM_PCL_RSSI_THRESHOLD -75
38 
39 #define CM_BAND_2G_INDEX                   0
40 #define CM_BAND_5G_INDEX                   1
41 #define CM_BAND_6G_INDEX                   2
42 /* 3 is reserved */
43 #define CM_MAX_BAND_INDEX                  4
44 
45 #define CM_SCORE_INDEX_0                   0
46 #define CM_SCORE_INDEX_3                   3
47 #define CM_SCORE_INDEX_7                   7
48 #define CM_SCORE_OFFSET_INDEX_7_4          4
49 #define CM_SCORE_INDEX_11                  11
50 #define CM_SCORE_OFFSET_INDEX_11_8         8
51 #define CM_SCORE_MAX_INDEX                 15
52 #define CM_SCORE_OFFSET_INDEX_15_12        12
53 
54 #define CM_MAX_OCE_WAN_DL_CAP 16
55 
56 #define CM_MAX_CHANNEL_WEIGHT 100
57 #define CM_MAX_CHANNEL_UTILIZATION 100
58 #define CM_MAX_ESTIMATED_AIR_TIME_FRACTION 255
59 #define CM_MAX_AP_LOAD 255
60 
61 #define CM_MAX_WEIGHT_OF_PCL_CHANNELS 255
62 #define CM_PCL_GROUPS_WEIGHT_DIFFERENCE 20
63 
64 /* Congestion threshold (channel load %) to consider band and OCE WAN score */
65 #define CM_CONGESTION_THRSHOLD_FOR_BAND_OCE_SCORE 75
66 
67 #define CM_RSSI_WEIGHTAGE 20
68 #define CM_HT_CAPABILITY_WEIGHTAGE 2
69 #define CM_VHT_CAP_WEIGHTAGE 1
70 #define CM_HE_CAP_WEIGHTAGE 2
71 #define CM_CHAN_WIDTH_WEIGHTAGE 12
72 #define CM_CHAN_BAND_WEIGHTAGE 2
73 #define CM_NSS_WEIGHTAGE 20
74 #define CM_SECURITY_WEIGHTAGE 4
75 #define CM_BEAMFORMING_CAP_WEIGHTAGE 2
76 #define CM_PCL_WEIGHT 10
77 #define CM_CHANNEL_CONGESTION_WEIGHTAGE 5
78 #define CM_OCE_WAN_WEIGHTAGE 2
79 #define CM_OCE_AP_TX_POWER_WEIGHTAGE 5
80 #define CM_OCE_SUBNET_ID_WEIGHTAGE 3
81 #define CM_SAE_PK_AP_WEIGHTAGE 30
82 #define CM_BEST_CANDIDATE_MAX_WEIGHT 200
83 #define CM_MAX_PCT_SCORE 100
84 #define CM_MAX_INDEX_PER_INI 4
85 #define CM_SLO_CONGESTION_MAX_SCORE 80
86 #define CM_ASSOC_INK_BEST_BOOST 20
87 
88 /*
89  * This macro give percentage value of security_weightage to be used as per
90  * security Eg if AP security is WPA 10% will be given for AP.
91  *
92  * Indexes are defined in this way.
93  *     0 Index (BITS 0-7): WPA - Def 25%
94  *     1 Index (BITS 8-15): WPA2- Def 50%
95  *     2 Index (BITS 16-23): WPA3- Def 100%
96  *     3 Index (BITS 24-31): reserved
97  *
98  * if AP security is Open/WEP 0% will be given for AP
99  * These percentage values are stored in HEX. For any index max value, can be 64
100  */
101 #define CM_SECURITY_INDEX_WEIGHTAGE 0x00643219
102 
103 #define CM_BEST_CANDIDATE_MAX_BSS_SCORE (CM_BEST_CANDIDATE_MAX_WEIGHT * 100)
104 #define CM_AVOID_CANDIDATE_MIN_SCORE 1
105 
106 #define CM_GET_SCORE_PERCENTAGE(value32, bw_index) \
107 	QDF_GET_BITS(value32, (8 * (bw_index)), 8)
108 #define CM_SET_SCORE_PERCENTAGE(value32, score_pcnt, bw_index) \
109 	QDF_SET_BITS(value32, (8 * (bw_index)), 8, score_pcnt)
110 
111 #ifdef CONN_MGR_ADV_FEATURE
112 /* 3.2 us + 0.8 us(GI) */
113 #define PPDU_PAYLOAD_SYMBOL_DUR_US 4
114 /* 12.8 us + (0.8 + 1.6)/2 us(GI) */
115 #define HE_PPDU_PAYLOAD_SYMBOL_DUR_US 14
116 #define MAC_HEADER_LEN 26
117 /* Minimum snrDb supported by LUT */
118 #define SNR_DB_TO_BIT_PER_TONE_LUT_MIN -10
119 /* Maximum snrDb supported by LUT */
120 #define SNR_DB_TO_BIT_PER_TONE_LUT_MAX 9
121 #define DB_NUM 20
122 /*
123  * A fudge factor to represent HW implementation margin in dB.
124  * Predicted throughput matches pretty well with OTA throughput with this
125  * fudge factor.
126  */
127 #define SNR_MARGIN_DB 16
128 #define TWO_IN_DB 3
129 static int32_t
130 SNR_DB_TO_BIT_PER_TONE_LUT[DB_NUM] = {0, 171, 212, 262, 323, 396, 484,
131 586, 706, 844, 1000, 1176, 1370, 1583, 1812, 2058, 2317, 2588, 2870, 3161};
132 #endif
133 
134 /* MLO link types */
135 enum MLO_TYPE {
136 	SLO,
137 	MLSR,
138 	MLMR,
139 	MLO_TYPE_MAX
140 };
141 
142 static bool cm_is_better_bss(struct scan_cache_entry *bss1,
143 			     struct scan_cache_entry *bss2)
144 {
145 	if (bss1->bss_score > bss2->bss_score)
146 		return true;
147 	else if (bss1->bss_score == bss2->bss_score)
148 		if (bss1->rssi_raw > bss2->rssi_raw)
149 			return true;
150 
151 	return false;
152 }
153 
154 /**
155  * cm_get_rssi_pcnt_for_slot() - calculate rssi % score based on the slot
156  * index between the high rssi and low rssi threshold
157  * @high_rssi_threshold: High rssi of the window
158  * @low_rssi_threshold: low rssi of the window
159  * @high_rssi_pcnt: % score for the high rssi
160  * @low_rssi_pcnt: %score for the low rssi
161  * @bucket_size: bucket size of the window
162  * @bss_rssi: Input rssi for which value need to be calculated
163  *
164  * Return: rssi pct to use for the given rssi
165  */
166 static inline
167 int8_t cm_get_rssi_pcnt_for_slot(int32_t high_rssi_threshold,
168 				 int32_t low_rssi_threshold,
169 				 uint32_t high_rssi_pcnt,
170 				 uint32_t low_rssi_pcnt,
171 				 uint32_t bucket_size, int8_t bss_rssi)
172 {
173 	int8_t slot_index, slot_size, rssi_diff, num_slot, rssi_pcnt;
174 
175 	num_slot = ((high_rssi_threshold -
176 		     low_rssi_threshold) / bucket_size) + 1;
177 	slot_size = ((high_rssi_pcnt - low_rssi_pcnt) +
178 		     (num_slot / 2)) / (num_slot);
179 	rssi_diff = high_rssi_threshold - bss_rssi;
180 	slot_index = (rssi_diff / bucket_size) + 1;
181 	rssi_pcnt = high_rssi_pcnt - (slot_size * slot_index);
182 	if (rssi_pcnt < low_rssi_pcnt)
183 		rssi_pcnt = low_rssi_pcnt;
184 
185 	mlme_debug("Window %d -> %d pcnt range %d -> %d bucket_size %d bss_rssi %d num_slot %d slot_size %d rssi_diff %d slot_index %d rssi_pcnt %d",
186 		   high_rssi_threshold, low_rssi_threshold, high_rssi_pcnt,
187 		   low_rssi_pcnt, bucket_size, bss_rssi, num_slot, slot_size,
188 		   rssi_diff, slot_index, rssi_pcnt);
189 
190 	return rssi_pcnt;
191 }
192 
193 /**
194  * cm_calculate_rssi_score() - Calculate RSSI score based on AP RSSI
195  * @score_param: rssi score params
196  * @rssi: rssi of the AP
197  * @rssi_weightage: rssi_weightage out of total weightage
198  *
199  * Return: rssi score
200  */
201 static int32_t cm_calculate_rssi_score(struct rssi_config_score *score_param,
202 				       int32_t rssi, uint8_t rssi_weightage)
203 {
204 	int8_t rssi_pcnt;
205 	int32_t total_rssi_score;
206 	int32_t best_rssi_threshold;
207 	int32_t good_rssi_threshold;
208 	int32_t bad_rssi_threshold;
209 	uint32_t good_rssi_pcnt;
210 	uint32_t bad_rssi_pcnt;
211 	uint32_t good_bucket_size;
212 	uint32_t bad_bucket_size;
213 
214 	best_rssi_threshold = score_param->best_rssi_threshold * (-1);
215 	good_rssi_threshold = score_param->good_rssi_threshold * (-1);
216 	bad_rssi_threshold = score_param->bad_rssi_threshold * (-1);
217 	good_rssi_pcnt = score_param->good_rssi_pcnt;
218 	bad_rssi_pcnt = score_param->bad_rssi_pcnt;
219 	good_bucket_size = score_param->good_rssi_bucket_size;
220 	bad_bucket_size = score_param->bad_rssi_bucket_size;
221 
222 	total_rssi_score = (CM_MAX_PCT_SCORE * rssi_weightage);
223 
224 	/*
225 	 * If RSSI is better than the best rssi threshold then it return full
226 	 * score.
227 	 */
228 	if (rssi > best_rssi_threshold)
229 		return total_rssi_score;
230 	/*
231 	 * If RSSI is less or equal to bad rssi threshold then it return
232 	 * least score.
233 	 */
234 	if (rssi <= bad_rssi_threshold)
235 		return (total_rssi_score * bad_rssi_pcnt) / 100;
236 
237 	/* RSSI lies between best to good rssi threshold */
238 	if (rssi > good_rssi_threshold)
239 		rssi_pcnt = cm_get_rssi_pcnt_for_slot(best_rssi_threshold,
240 				good_rssi_threshold, 100, good_rssi_pcnt,
241 				good_bucket_size, rssi);
242 	else
243 		rssi_pcnt = cm_get_rssi_pcnt_for_slot(good_rssi_threshold,
244 				bad_rssi_threshold, good_rssi_pcnt,
245 				bad_rssi_pcnt, bad_bucket_size,
246 				rssi);
247 
248 	return (total_rssi_score * rssi_pcnt) / 100;
249 }
250 
251 /**
252  * cm_rssi_is_same_bucket() - check if both rssi fall in same bucket
253  * @rssi_top_thresh: high rssi threshold of the the window
254  * @rssi_ref1: rssi ref one
255  * @rssi_ref2: rssi ref two
256  * @bucket_size: bucket size of the window
257  *
258  * Return: true if both fall in same window
259  */
260 static inline bool cm_rssi_is_same_bucket(int8_t rssi_top_thresh,
261 					  int8_t rssi_ref1, int8_t rssi_ref2,
262 					  int8_t bucket_size)
263 {
264 	int8_t rssi_diff1 = 0;
265 	int8_t rssi_diff2 = 0;
266 
267 	rssi_diff1 = rssi_top_thresh - rssi_ref1;
268 	rssi_diff2 = rssi_top_thresh - rssi_ref2;
269 
270 	return (rssi_diff1 / bucket_size) == (rssi_diff2 / bucket_size);
271 }
272 
273 /**
274  * cm_get_rssi_prorate_pct() - Calculate prorated RSSI score
275  * based on AP RSSI. This will be used to determine HT VHT score
276  * @score_param: rssi score params
277  * @rssi: bss rssi
278  * @rssi_weightage: rssi_weightage out of total weightage
279  *
280  * If rssi is greater than good threshold return 100, if less than bad return 0,
281  * if between good and bad, return prorated rssi score for the index.
282  *
283  * Return: rssi prorated score
284  */
285 static int8_t
286 cm_get_rssi_prorate_pct(struct rssi_config_score *score_param,
287 			int32_t rssi, uint8_t rssi_weightage)
288 {
289 	int32_t good_rssi_threshold;
290 	int32_t bad_rssi_threshold;
291 	int8_t rssi_pref_5g_rssi_thresh;
292 	bool same_bucket;
293 
294 	good_rssi_threshold = score_param->good_rssi_threshold * (-1);
295 	bad_rssi_threshold = score_param->bad_rssi_threshold * (-1);
296 	rssi_pref_5g_rssi_thresh = score_param->rssi_pref_5g_rssi_thresh * (-1);
297 
298 	/* If RSSI is greater than good rssi return full weight */
299 	if (rssi > good_rssi_threshold)
300 		return CM_MAX_PCT_SCORE;
301 
302 	same_bucket = cm_rssi_is_same_bucket(good_rssi_threshold, rssi,
303 					     rssi_pref_5g_rssi_thresh,
304 					     score_param->bad_rssi_bucket_size);
305 	if (same_bucket || (rssi < rssi_pref_5g_rssi_thresh))
306 		return 0;
307 	/* If RSSI is less or equal to bad rssi threshold then it return 0 */
308 	if (rssi <= bad_rssi_threshold)
309 		return 0;
310 
311 	/* If RSSI is between good and bad threshold */
312 	return cm_get_rssi_pcnt_for_slot(good_rssi_threshold,
313 					 bad_rssi_threshold,
314 					 score_param->good_rssi_pcnt,
315 					 score_param->bad_rssi_pcnt,
316 					 score_param->bad_rssi_bucket_size,
317 					 rssi);
318 }
319 
320 /**
321  * cm_get_score_for_index() - get score for the given index
322  * @index: index for which we need the score
323  * @weightage: weigtage for the param
324  * @score: per slot score
325  *
326  * Return: score for the index
327  */
328 static int32_t cm_get_score_for_index(uint8_t index,
329 				      uint8_t weightage,
330 				      struct per_slot_score *score)
331 {
332 	if (index <= CM_SCORE_INDEX_3)
333 		return weightage * CM_GET_SCORE_PERCENTAGE(
334 				   score->score_pcnt3_to_0,
335 				   index);
336 	else if (index <= CM_SCORE_INDEX_7)
337 		return weightage * CM_GET_SCORE_PERCENTAGE(
338 				   score->score_pcnt7_to_4,
339 				   index - CM_SCORE_OFFSET_INDEX_7_4);
340 	else if (index <= CM_SCORE_INDEX_11)
341 		return weightage * CM_GET_SCORE_PERCENTAGE(
342 				   score->score_pcnt11_to_8,
343 				   index - CM_SCORE_OFFSET_INDEX_11_8);
344 	else
345 		return weightage * CM_GET_SCORE_PERCENTAGE(
346 				   score->score_pcnt15_to_12,
347 				   index - CM_SCORE_OFFSET_INDEX_15_12);
348 }
349 
350 /**
351  * cm_get_congestion_pct() - Calculate congestion pct from esp/qbss load
352  * @entry: bss information
353  *
354  * Return: congestion pct
355  */
356 static int32_t cm_get_congestion_pct(struct scan_cache_entry *entry)
357 {
358 	uint32_t ap_load = 0;
359 	uint32_t est_air_time_percentage = 0;
360 	uint32_t congestion = 0;
361 
362 	if (entry->air_time_fraction) {
363 		/* Convert 0-255 range to percentage */
364 		est_air_time_percentage = entry->air_time_fraction *
365 							CM_MAX_CHANNEL_WEIGHT;
366 		est_air_time_percentage = qdf_do_div(est_air_time_percentage,
367 					   CM_MAX_ESTIMATED_AIR_TIME_FRACTION);
368 		/*
369 		 * Calculate channel congestion from estimated air time
370 		 * fraction.
371 		 */
372 		congestion = CM_MAX_CHANNEL_UTILIZATION -
373 					est_air_time_percentage;
374 		if (!congestion)
375 			congestion = 1;
376 	} else if (util_scan_entry_qbssload(entry)) {
377 		ap_load = (entry->qbss_chan_load * CM_MAX_PCT_SCORE);
378 		/*
379 		 * Calculate ap_load in % from qbss channel load from
380 		 * 0-255 range
381 		 */
382 		congestion = qdf_do_div(ap_load, CM_MAX_AP_LOAD);
383 		if (!congestion)
384 			congestion = 1;
385 	}
386 
387 	return congestion;
388 }
389 
390 /**
391  * cm_calculate_congestion_score() - Calculate congestion score
392  * @entry: bss information
393  * @score_params: bss score params
394  * @congestion_pct: congestion pct
395  * @rssi_bad_zone:
396  *
397  * Return: congestion score
398  */
399 static int32_t cm_calculate_congestion_score(struct scan_cache_entry *entry,
400 					     struct scoring_cfg *score_params,
401 					     uint32_t *congestion_pct,
402 					     bool rssi_bad_zone)
403 {
404 	uint32_t window_size;
405 	uint8_t index;
406 	int32_t good_rssi_threshold;
407 	uint8_t chan_congestion_weight;
408 
409 	chan_congestion_weight =
410 		score_params->weight_config.channel_congestion_weightage;
411 
412 	if (!entry)
413 		return chan_congestion_weight *
414 			   CM_GET_SCORE_PERCENTAGE(
415 			   score_params->esp_qbss_scoring.score_pcnt3_to_0,
416 			   CM_SCORE_INDEX_0);
417 
418 	*congestion_pct = cm_get_congestion_pct(entry);
419 
420 	if (!score_params->esp_qbss_scoring.num_slot)
421 		return 0;
422 
423 	if (score_params->esp_qbss_scoring.num_slot >
424 	    CM_SCORE_MAX_INDEX)
425 		score_params->esp_qbss_scoring.num_slot =
426 			CM_SCORE_MAX_INDEX;
427 
428 	good_rssi_threshold =
429 		score_params->rssi_score.good_rssi_threshold * (-1);
430 
431 	/* For bad zone rssi get score from last index */
432 	if (rssi_bad_zone || entry->rssi_raw <= good_rssi_threshold)
433 		return cm_get_score_for_index(
434 			score_params->esp_qbss_scoring.num_slot,
435 			chan_congestion_weight,
436 			&score_params->esp_qbss_scoring);
437 
438 	if (!*congestion_pct)
439 		return chan_congestion_weight *
440 			   CM_GET_SCORE_PERCENTAGE(
441 			   score_params->esp_qbss_scoring.score_pcnt3_to_0,
442 			   CM_SCORE_INDEX_0);
443 
444 	window_size = CM_MAX_PCT_SCORE /
445 			score_params->esp_qbss_scoring.num_slot;
446 
447 	/* Desired values are from 1 to 15, as 0 is for not present. so do +1 */
448 	index = qdf_do_div(*congestion_pct, window_size) + 1;
449 
450 	if (index > score_params->esp_qbss_scoring.num_slot)
451 		index = score_params->esp_qbss_scoring.num_slot;
452 
453 	return cm_get_score_for_index(index,
454 				      chan_congestion_weight,
455 				      &score_params->esp_qbss_scoring);
456 }
457 
458 /**
459  * cm_calculate_nss_score() - Calculate congestion score
460  * @psoc: psoc ptr
461  * @score_config: scoring config
462  * @ap_nss: ap nss
463  * @prorated_pct: prorated % to return dependent on RSSI
464  * @sta_nss: Sta NSS
465  *
466  * Return: nss score
467  */
468 static int32_t cm_calculate_nss_score(struct wlan_objmgr_psoc *psoc,
469 				      struct scoring_cfg *score_config,
470 				      uint8_t ap_nss, uint8_t prorated_pct,
471 				      uint32_t sta_nss)
472 {
473 	uint8_t nss;
474 	uint8_t score_pct;
475 
476 	nss = ap_nss;
477 	if (sta_nss < nss)
478 		nss = sta_nss;
479 
480 	if (nss == 8)
481 		score_pct = CM_MAX_PCT_SCORE;
482 	if (nss == 4)
483 		score_pct = CM_GET_SCORE_PERCENTAGE(
484 				score_config->nss_weight_per_index[0],
485 				CM_NSS_4x4_INDEX);
486 	else if (nss == 3)
487 		score_pct = CM_GET_SCORE_PERCENTAGE(
488 				score_config->nss_weight_per_index[0],
489 				CM_NSS_3x3_INDEX);
490 	else if (nss == 2)
491 		score_pct = CM_GET_SCORE_PERCENTAGE(
492 				score_config->nss_weight_per_index[0],
493 				CM_NSS_2x2_INDEX);
494 	else
495 		score_pct = CM_GET_SCORE_PERCENTAGE(
496 				score_config->nss_weight_per_index[0],
497 				CM_NSS_1x1_INDEX);
498 
499 	return (score_config->weight_config.nss_weightage * score_pct *
500 		prorated_pct) / CM_MAX_PCT_SCORE;
501 }
502 
503 static int32_t cm_calculate_security_score(struct scoring_cfg *score_config,
504 					   struct security_info neg_sec_info)
505 {
506 	uint32_t authmode, key_mgmt, ucastcipherset;
507 	uint8_t score_pct = 0;
508 
509 	authmode = neg_sec_info.authmodeset;
510 	key_mgmt = neg_sec_info.key_mgmt;
511 	ucastcipherset = neg_sec_info.ucastcipherset;
512 
513 	if (QDF_HAS_PARAM(authmode, WLAN_CRYPTO_AUTH_FILS_SK) ||
514 	    QDF_HAS_PARAM(authmode, WLAN_CRYPTO_AUTH_SAE) ||
515 	    QDF_HAS_PARAM(authmode, WLAN_CRYPTO_AUTH_CCKM) ||
516 	    QDF_HAS_PARAM(authmode, WLAN_CRYPTO_AUTH_RSNA) ||
517 	    QDF_HAS_PARAM(authmode, WLAN_CRYPTO_AUTH_8021X)) {
518 		if (QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_SAE) ||
519 		    QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_FT_SAE) ||
520 		    QDF_HAS_PARAM(key_mgmt,
521 				  WLAN_CRYPTO_KEY_MGMT_IEEE8021X_SUITE_B) ||
522 		    QDF_HAS_PARAM(key_mgmt,
523 				  WLAN_CRYPTO_KEY_MGMT_IEEE8021X_SUITE_B_192) ||
524 		    QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_FILS_SHA256) ||
525 		    QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_FILS_SHA384) ||
526 		    QDF_HAS_PARAM(key_mgmt,
527 				  WLAN_CRYPTO_KEY_MGMT_FT_FILS_SHA256) ||
528 		    QDF_HAS_PARAM(key_mgmt,
529 				  WLAN_CRYPTO_KEY_MGMT_FT_FILS_SHA384) ||
530 		    QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_OWE) ||
531 		    QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_DPP) ||
532 		    QDF_HAS_PARAM(key_mgmt,
533 				  WLAN_CRYPTO_KEY_MGMT_FT_IEEE8021X_SHA384) ||
534 		    QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_SAE_EXT_KEY) ||
535 		    QDF_HAS_PARAM(key_mgmt,
536 				  WLAN_CRYPTO_KEY_MGMT_FT_SAE_EXT_KEY)) {
537 			/*If security is WPA3, consider score_pct = 100%*/
538 			score_pct = CM_GET_SCORE_PERCENTAGE(
539 					score_config->security_weight_per_index,
540 					CM_SECURITY_WPA3_INDEX);
541 		} else if (QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_PSK) ||
542 			   QDF_HAS_PARAM(key_mgmt,
543 					 WLAN_CRYPTO_KEY_MGMT_FT_IEEE8021X) ||
544 			   QDF_HAS_PARAM(key_mgmt,
545 					 WLAN_CRYPTO_KEY_MGMT_FT_PSK) ||
546 			   QDF_HAS_PARAM(key_mgmt,
547 				WLAN_CRYPTO_KEY_MGMT_IEEE8021X_SHA256) ||
548 			   QDF_HAS_PARAM(key_mgmt,
549 					 WLAN_CRYPTO_KEY_MGMT_PSK_SHA256)) {
550 			/*If security is WPA2, consider score_pct = 50%*/
551 			score_pct = CM_GET_SCORE_PERCENTAGE(
552 				score_config->security_weight_per_index,
553 				CM_SECURITY_WPA2_INDEX);
554 		}
555 	} else if (QDF_HAS_PARAM(authmode, WLAN_CRYPTO_AUTH_SHARED) ||
556 		   QDF_HAS_PARAM(authmode, WLAN_CRYPTO_AUTH_WPA) ||
557 		   QDF_HAS_PARAM(authmode, WLAN_CRYPTO_AUTH_WAPI)) {
558 		/*If security is WPA, consider score_pct = 25%*/
559 		score_pct = CM_GET_SCORE_PERCENTAGE(
560 				score_config->security_weight_per_index,
561 				CM_SECURITY_WPA_INDEX);
562 	}
563 
564 	return (score_config->weight_config.security_weightage * score_pct) /
565 			CM_MAX_PCT_SCORE;
566 }
567 
568 #ifdef WLAN_POLICY_MGR_ENABLE
569 static uint32_t cm_get_sta_nss(struct wlan_objmgr_psoc *psoc,
570 			       qdf_freq_t bss_channel_freq,
571 			       uint8_t vdev_nss_2g, uint8_t vdev_nss_5g)
572 {
573 	/*
574 	 * If station support nss as 2*2 but AP support NSS as 1*1,
575 	 * this AP will be given half weight compare to AP which are having
576 	 * NSS as 2*2.
577 	 */
578 
579 	if (policy_mgr_is_chnl_in_diff_band(
580 	    psoc, bss_channel_freq) &&
581 	    policy_mgr_is_hw_dbs_capable(psoc) &&
582 	    !(policy_mgr_is_hw_dbs_2x2_capable(psoc)))
583 		return 1;
584 
585 	return (WLAN_REG_IS_24GHZ_CH_FREQ(bss_channel_freq) ?
586 		vdev_nss_2g :
587 		vdev_nss_5g);
588 }
589 #else
590 static uint32_t cm_get_sta_nss(struct wlan_objmgr_psoc *psoc,
591 			       qdf_freq_t bss_channel_freq,
592 			       uint8_t vdev_nss_2g, uint8_t vdev_nss_5g)
593 {
594 	return (WLAN_REG_IS_24GHZ_CH_FREQ(bss_channel_freq) ?
595 		vdev_nss_2g :
596 		vdev_nss_5g);
597 }
598 #endif
599 
600 #ifdef CONN_MGR_ADV_FEATURE
601 static bool
602 cm_get_pcl_weight_of_channel(uint32_t chan_freq,
603 			     struct pcl_freq_weight_list *pcl_lst,
604 			     int *pcl_chan_weight)
605 {
606 	int i;
607 	bool found = false;
608 
609 	if (!pcl_lst)
610 		return found;
611 
612 	for (i = 0; i < pcl_lst->num_of_pcl_channels; i++) {
613 		if (pcl_lst->pcl_freq_list[i] == chan_freq) {
614 			*pcl_chan_weight = pcl_lst->pcl_weight_list[i];
615 			found = true;
616 			break;
617 		}
618 	}
619 
620 	return found;
621 }
622 
623 /**
624  * cm_calculate_pcl_score() - Calculate PCL score based on PCL weightage
625  * @psoc: psoc ptr
626  * @pcl_chan_weight: pcl weight of BSS channel
627  * @pcl_weightage: PCL _weightage out of total weightage
628  *
629  * Return: pcl score
630  */
631 static int32_t cm_calculate_pcl_score(struct wlan_objmgr_psoc *psoc,
632 				      int pcl_chan_weight,
633 				      uint8_t pcl_weightage)
634 {
635 	int32_t pcl_score = 0;
636 	int32_t temp_pcl_chan_weight = 0;
637 
638 	/*
639 	 * Don’t consider pcl weightage for STA connection,
640 	 * if primary interface is configured.
641 	 */
642 	if (!policy_mgr_is_pcl_weightage_required(psoc))
643 		return 0;
644 
645 	if (pcl_chan_weight) {
646 		temp_pcl_chan_weight =
647 			(CM_MAX_WEIGHT_OF_PCL_CHANNELS - pcl_chan_weight);
648 		temp_pcl_chan_weight = qdf_do_div(
649 					temp_pcl_chan_weight,
650 					CM_PCL_GROUPS_WEIGHT_DIFFERENCE);
651 		pcl_score = pcl_weightage - temp_pcl_chan_weight;
652 		if (pcl_score < 0)
653 			pcl_score = 0;
654 	}
655 
656 	return pcl_score * CM_MAX_PCT_SCORE;
657 }
658 
659 /**
660  * cm_calculate_oce_wan_score() - Calculate oce wan score
661  * @entry: bss information
662  * @score_params: bss score params
663  *
664  * Return: oce wan score
665  */
666 static int32_t cm_calculate_oce_wan_score(
667 	struct scan_cache_entry *entry,
668 	struct scoring_cfg *score_params)
669 {
670 	uint32_t window_size;
671 	uint8_t index;
672 	struct oce_reduced_wan_metrics wan_metrics;
673 	uint8_t *mbo_oce_ie;
674 
675 	if (!score_params->oce_wan_scoring.num_slot)
676 		return 0;
677 
678 	if (score_params->oce_wan_scoring.num_slot >
679 	    CM_SCORE_MAX_INDEX)
680 		score_params->oce_wan_scoring.num_slot =
681 			CM_SCORE_MAX_INDEX;
682 
683 	window_size = CM_SCORE_MAX_INDEX /
684 			score_params->oce_wan_scoring.num_slot;
685 	mbo_oce_ie = util_scan_entry_mbo_oce(entry);
686 	if (wlan_parse_oce_reduced_wan_metrics_ie(mbo_oce_ie, &wan_metrics)) {
687 		mlme_err("downlink_av_cap %d", wan_metrics.downlink_av_cap);
688 		/* if capacity is 0 return 0 score */
689 		if (!wan_metrics.downlink_av_cap)
690 			return 0;
691 		/* Desired values are from 1 to WLAN_SCORE_MAX_INDEX */
692 		index = qdf_do_div(wan_metrics.downlink_av_cap,
693 				   window_size);
694 	} else {
695 		index = CM_SCORE_INDEX_0;
696 	}
697 
698 	if (index > score_params->oce_wan_scoring.num_slot)
699 		index = score_params->oce_wan_scoring.num_slot;
700 
701 	return cm_get_score_for_index(index,
702 			score_params->weight_config.oce_wan_weightage,
703 			&score_params->oce_wan_scoring);
704 }
705 
706 /**
707  * cm_calculate_oce_subnet_id_weightage() - Calculate oce subnet id weightage
708  * @entry: bss entry
709  * @score_params: bss score params
710  * @oce_subnet_id_present: check if subnet id subelement is present in OCE IE
711  *
712  * Return: oce subnet id score
713  */
714 static uint32_t
715 cm_calculate_oce_subnet_id_weightage(struct scan_cache_entry *entry,
716 				     struct scoring_cfg *score_params,
717 				     bool *oce_subnet_id_present)
718 {
719 	uint32_t score = 0;
720 	uint8_t *mbo_oce_ie;
721 
722 	mbo_oce_ie = util_scan_entry_mbo_oce(entry);
723 	*oce_subnet_id_present = wlan_parse_oce_subnet_id_ie(mbo_oce_ie);
724 
725 	/* Consider 50% weightage if subnet id sub element is present */
726 	if (*oce_subnet_id_present)
727 		score  = score_params->weight_config.oce_subnet_id_weightage *
728 				(CM_MAX_PCT_SCORE / 2);
729 
730 	return score;
731 }
732 
733 /**
734  * cm_calculate_sae_pk_ap_weightage() - Calculate SAE-PK AP weightage
735  * @entry: bss entry
736  * @score_params: bss score params
737  * @sae_pk_cap_present: sae_pk cap presetn in RSNXE capability field
738  *
739  * Return: SAE-PK AP weightage score
740  */
741 static uint32_t
742 cm_calculate_sae_pk_ap_weightage(struct scan_cache_entry *entry,
743 				 struct scoring_cfg *score_params,
744 				 bool *sae_pk_cap_present)
745 {
746 	const uint8_t *rsnxe_ie;
747 	const uint8_t *rsnxe_cap;
748 	uint8_t cap_len;
749 
750 	rsnxe_ie = util_scan_entry_rsnxe(entry);
751 
752 	rsnxe_cap = wlan_crypto_parse_rsnxe_ie(rsnxe_ie, &cap_len);
753 
754 	if (!rsnxe_cap)
755 		return 0;
756 
757 	*sae_pk_cap_present = *rsnxe_cap & WLAN_CRYPTO_RSNX_CAP_SAE_PK;
758 	if (*sae_pk_cap_present)
759 		return score_params->weight_config.sae_pk_ap_weightage *
760 			CM_MAX_PCT_SCORE;
761 
762 	return 0;
763 }
764 
765 /**
766  * cm_calculate_oce_ap_tx_pwr_weightage() - Calculate oce ap tx pwr weightage
767  * @entry: bss entry
768  * @score_params: bss score params
769  * @ap_tx_pwr_dbm: pointer to hold ap tx power
770  *
771  * Return: oce ap tx power score
772  */
773 static uint32_t
774 cm_calculate_oce_ap_tx_pwr_weightage(struct scan_cache_entry *entry,
775 				     struct scoring_cfg *score_params,
776 				     int8_t *ap_tx_pwr_dbm)
777 {
778 	uint8_t *mbo_oce_ie, ap_tx_pwr_factor;
779 	struct rssi_config_score *rssi_score_param;
780 	int32_t best_rssi_threshold, good_rssi_threshold, bad_rssi_threshold;
781 	uint32_t good_rssi_pcnt, bad_rssi_pcnt, good_bucket_size;
782 	uint32_t score, normalized_ap_tx_pwr, bad_bucket_size;
783 	bool ap_tx_pwr_cap_present = true;
784 
785 	mbo_oce_ie = util_scan_entry_mbo_oce(entry);
786 	if (!wlan_parse_oce_ap_tx_pwr_ie(mbo_oce_ie, ap_tx_pwr_dbm)) {
787 		ap_tx_pwr_cap_present = false;
788 		/* If no OCE AP TX pwr, consider Uplink RSSI = Downlink RSSI */
789 		normalized_ap_tx_pwr = entry->rssi_raw;
790 	} else {
791 		/*
792 		 * Normalized ap_tx_pwr =
793 		 * Uplink RSSI = (STA TX Power - * (AP TX power - RSSI)) in dBm.
794 		 * Currently assuming STA Tx Power to be 20dBm, though later it
795 		 * need to fetched from hal-phy API.
796 		 */
797 		normalized_ap_tx_pwr =
798 			(20 - (*ap_tx_pwr_dbm - entry->rssi_raw));
799 	}
800 
801 	rssi_score_param = &score_params->rssi_score;
802 
803 	best_rssi_threshold = rssi_score_param->best_rssi_threshold * (-1);
804 	good_rssi_threshold = rssi_score_param->good_rssi_threshold * (-1);
805 	bad_rssi_threshold = rssi_score_param->bad_rssi_threshold * (-1);
806 	good_rssi_pcnt = rssi_score_param->good_rssi_pcnt;
807 	bad_rssi_pcnt = rssi_score_param->bad_rssi_pcnt;
808 	good_bucket_size = rssi_score_param->good_rssi_bucket_size;
809 	bad_bucket_size = rssi_score_param->bad_rssi_bucket_size;
810 
811 	/* Uplink RSSI is better than best rssi threshold */
812 	if (normalized_ap_tx_pwr > best_rssi_threshold) {
813 		ap_tx_pwr_factor = CM_MAX_PCT_SCORE;
814 	} else if (normalized_ap_tx_pwr <= bad_rssi_threshold) {
815 		/* Uplink RSSI is less or equal to bad rssi threshold */
816 		ap_tx_pwr_factor = rssi_score_param->bad_rssi_pcnt;
817 	} else if (normalized_ap_tx_pwr > good_rssi_threshold) {
818 		/* Uplink RSSI lies between best to good rssi threshold */
819 		ap_tx_pwr_factor =
820 			cm_get_rssi_pcnt_for_slot(
821 					best_rssi_threshold,
822 					good_rssi_threshold, 100,
823 					good_rssi_pcnt,
824 					good_bucket_size, normalized_ap_tx_pwr);
825 	} else {
826 		/* Uplink RSSI lies between good to best rssi threshold */
827 		ap_tx_pwr_factor =
828 			cm_get_rssi_pcnt_for_slot(
829 					good_rssi_threshold,
830 					bad_rssi_threshold, good_rssi_pcnt,
831 					bad_rssi_pcnt, bad_bucket_size,
832 					normalized_ap_tx_pwr);
833 	}
834 
835 	score  = score_params->weight_config.oce_ap_tx_pwr_weightage *
836 			ap_tx_pwr_factor;
837 
838 	return score;
839 }
840 
841 static bool cm_is_assoc_allowed(struct psoc_mlme_obj *mlme_psoc_obj,
842 				struct scan_cache_entry *entry)
843 {
844 	uint8_t reason;
845 	uint8_t *mbo_oce;
846 	bool check_assoc_disallowed;
847 
848 	mbo_oce = util_scan_entry_mbo_oce(entry);
849 
850 	check_assoc_disallowed =
851 	   mlme_psoc_obj->psoc_cfg.score_config.check_assoc_disallowed;
852 
853 	if (check_assoc_disallowed &&
854 	    wlan_parse_oce_assoc_disallowed_ie(mbo_oce, &reason)) {
855 		mlme_nofl_debug("Candidate("QDF_MAC_ADDR_FMT" freq %d): rssi %d, assoc disallowed set in MBO/OCE IE reason %d",
856 				QDF_MAC_ADDR_REF(entry->bssid.bytes),
857 				entry->channel.chan_freq,
858 				entry->rssi_raw, reason);
859 		return false;
860 	}
861 
862 	return true;
863 }
864 
865 void wlan_cm_set_check_assoc_disallowed(struct wlan_objmgr_psoc *psoc,
866 					bool value)
867 {
868 	struct psoc_mlme_obj *mlme_psoc_obj;
869 
870 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
871 	if (!mlme_psoc_obj)
872 		return;
873 
874 	mlme_psoc_obj->psoc_cfg.score_config.check_assoc_disallowed = value;
875 }
876 
877 void wlan_cm_get_check_assoc_disallowed(struct wlan_objmgr_psoc *psoc,
878 					bool *value)
879 {
880 	struct psoc_mlme_obj *mlme_psoc_obj;
881 
882 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
883 	if (!mlme_psoc_obj) {
884 		*value = false;
885 		return;
886 	}
887 
888 	*value = mlme_psoc_obj->psoc_cfg.score_config.check_assoc_disallowed;
889 }
890 
891 static enum phy_ch_width
892 cm_calculate_bandwidth(struct scan_cache_entry *entry,
893 		       struct psoc_phy_config *phy_config)
894 {
895 	uint8_t bw_above_20 = 0;
896 	bool is_vht = false;
897 	enum phy_ch_width ch_width;
898 
899 	if (WLAN_REG_IS_24GHZ_CH_FREQ(entry->channel.chan_freq)) {
900 		bw_above_20 = phy_config->bw_above_20_24ghz;
901 		if (phy_config->vht_24G_cap)
902 			is_vht = true;
903 	} else if (phy_config->vht_cap) {
904 		is_vht = true;
905 		bw_above_20 = phy_config->bw_above_20_5ghz;
906 	}
907 
908 	if (IS_WLAN_PHYMODE_160MHZ(entry->phy_mode))
909 		ch_width = CH_WIDTH_160MHZ;
910 	else if (IS_WLAN_PHYMODE_80MHZ(entry->phy_mode))
911 		ch_width = CH_WIDTH_80MHZ;
912 	else if (IS_WLAN_PHYMODE_40MHZ(entry->phy_mode))
913 		ch_width = CH_WIDTH_40MHZ;
914 	else
915 		ch_width = CH_WIDTH_20MHZ;
916 
917 	if (!phy_config->ht_cap &&
918 	    ch_width >= CH_WIDTH_20MHZ)
919 		ch_width = CH_WIDTH_20MHZ;
920 
921 	if (!is_vht && ch_width > CH_WIDTH_40MHZ)
922 		ch_width = CH_WIDTH_40MHZ;
923 
924 	if (!bw_above_20)
925 		ch_width = CH_WIDTH_20MHZ;
926 
927 	return ch_width;
928 }
929 
930 static uint8_t cm_etp_get_ba_win_size_from_esp(uint8_t esp_ba_win_size)
931 {
932 	/*
933 	 * BA Window Size subfield is three bits in length and indicates the
934 	 * size of the Block Ack window that is.
935 	 * 802.11-2016.pdf Table 9-262 BA Window Size subfield encoding
936 	 */
937 	switch (esp_ba_win_size) {
938 	case 1: return 2;
939 	case 2: return 4;
940 	case 3: return 6;
941 	case 4: return 8;
942 	case 5: return 16;
943 	case 6: return 32;
944 	case 7: return 64;
945 	default: return 1;
946 	}
947 }
948 
949 static uint16_t cm_get_etp_ntone(bool is_ht, bool is_vht,
950 				 enum phy_ch_width ch_width)
951 {
952 	uint16_t n_sd = 52, n_seg = 1;
953 
954 	if (is_vht) {
955 		/* Refer Table 21-5 in IEEE80211-2016 Spec */
956 		if (ch_width == CH_WIDTH_20MHZ)
957 			n_sd = 52;
958 		else if (ch_width == CH_WIDTH_40MHZ)
959 			n_sd = 108;
960 		else if (ch_width == CH_WIDTH_80MHZ)
961 			n_sd = 234;
962 		else if (ch_width == CH_WIDTH_80P80MHZ)
963 			n_sd = 234, n_seg = 2;
964 		else if (ch_width == CH_WIDTH_160MHZ)
965 			n_sd = 468;
966 	} else if (is_ht) {
967 		/* Refer Table 19-6 in IEEE80211-2016 Spec */
968 		if (ch_width == CH_WIDTH_20MHZ)
969 			n_sd = 52;
970 		if (ch_width == CH_WIDTH_40MHZ)
971 			n_sd = 108;
972 	} else {
973 		n_sd = 48;
974 	}
975 
976 	return (n_sd * n_seg);
977 }
978 
979 /* Refer Table 27-64 etc in Draft P802.11ax_D7.0.txt */
980 static uint16_t cm_get_etp_he_ntone(enum phy_ch_width ch_width)
981 {
982 	uint16_t n_sd = 234, n_seg = 1;
983 
984 	if (ch_width == CH_WIDTH_20MHZ)
985 		n_sd = 234;
986 	else if (ch_width == CH_WIDTH_40MHZ)
987 		n_sd = 468;
988 	else if (ch_width == CH_WIDTH_80MHZ)
989 		n_sd = 980;
990 	else if (ch_width == CH_WIDTH_80P80MHZ)
991 		n_sd = 980, n_seg = 2;
992 	else if (ch_width == CH_WIDTH_160MHZ)
993 		n_sd = 1960;
994 
995 	return (n_sd * n_seg);
996 }
997 
998 static uint16_t cm_get_etp_phy_header_dur_us(bool is_ht, bool is_vht,
999 					     uint8_t nss)
1000 {
1001 	uint16_t dur_us = 0;
1002 
1003 	if (is_vht) {
1004 		/*
1005 		 * Refer Figure 21-4 in 80211-2016 Spec
1006 		 * 8 (L-STF) + 8 (L-LTF) + 4 (L-SIG) +
1007 		 * 8 (VHT-SIG-A) + 4 (VHT-STF) + 4 (VHT-SIG-B)
1008 		 */
1009 		dur_us = 36;
1010 		/* (nss * VHT-LTF) = (nss * 4) */
1011 		dur_us += (nss << 2);
1012 	} else if (is_ht) {
1013 		/*
1014 		 * Refer Figure 19-1 in 80211-2016 Spec
1015 		 * 8 (L-STF) + 8 (L-LTF) + 4 (L-SIG) + 8 (HT-SIG) +
1016 		 * 4 (HT-STF)
1017 		 */
1018 		dur_us = 32;
1019 		/* (nss * HT-LTF = nss * 4) */
1020 		dur_us += (nss << 2);
1021 	} else {
1022 		/*
1023 		 * non-HT
1024 		 * Refer Figure 19-1 in 80211-2016 Spec
1025 		 * 8 (L-STF) + 8 (L-LTF) + 4 (L-SIG)
1026 		 */
1027 		dur_us = 20;
1028 	}
1029 	return dur_us;
1030 }
1031 
1032 static uint32_t
1033 cm_get_etp_max_bits_per_sc_1000x_for_nss(struct wlan_objmgr_psoc *psoc,
1034 					 struct scan_cache_entry *entry,
1035 					 uint8_t nss,
1036 					 struct psoc_phy_config *phy_config)
1037 {
1038 	uint32_t max_bits_per_sc_1000x = 5000; /* 5 * 1000 */
1039 	uint8_t mcs_map;
1040 	struct wlan_ie_vhtcaps *bss_vht_cap;
1041 	struct wlan_ie_hecaps *bss_he_cap;
1042 	uint32_t self_rx_mcs_map;
1043 	QDF_STATUS status;
1044 
1045 	bss_vht_cap = (struct wlan_ie_vhtcaps *)util_scan_entry_vhtcap(entry);
1046 	bss_he_cap = (struct wlan_ie_hecaps *)util_scan_entry_hecap(entry);
1047 	if (!phy_config->vht_cap || !bss_vht_cap) {
1048 		mlme_err("vht unsupported");
1049 		return max_bits_per_sc_1000x;
1050 	}
1051 
1052 	status = wlan_mlme_cfg_get_vht_rx_mcs_map(psoc, &self_rx_mcs_map);
1053 	if (QDF_IS_STATUS_ERROR(status))
1054 		return max_bits_per_sc_1000x;
1055 
1056 	if (nss == 4) {
1057 		mcs_map = (self_rx_mcs_map & 0xC0) >> 6;
1058 		mcs_map = QDF_MIN(mcs_map,
1059 				  (bss_vht_cap->rx_mcs_map & 0xC0) >> 6);
1060 	} else if (nss == 3) {
1061 		mcs_map = (self_rx_mcs_map & 0x30) >> 4;
1062 		mcs_map = QDF_MIN(mcs_map,
1063 				  (bss_vht_cap->rx_mcs_map & 0x30) >> 4);
1064 	} else if (nss == 2) {
1065 		mcs_map = (self_rx_mcs_map & 0x0C) >> 2;
1066 		mcs_map = QDF_MIN(mcs_map,
1067 				  (bss_vht_cap->rx_mcs_map & 0x0C) >> 2);
1068 	} else {
1069 		mcs_map = (self_rx_mcs_map & 0x03);
1070 		mcs_map = QDF_MIN(mcs_map, (bss_vht_cap->rx_mcs_map & 0x03));
1071 	}
1072 	if (bss_he_cap) {
1073 		if (mcs_map == 2)
1074 			max_bits_per_sc_1000x = 8333; /* 10 *5/6 * 1000 */
1075 		else if (mcs_map == 1)
1076 			max_bits_per_sc_1000x = 7500; /* 10 * 3/4 * 1000 */
1077 	} else {
1078 		if (mcs_map == 2)
1079 			max_bits_per_sc_1000x = 6667; /* 8 * 5/6 * 1000 */
1080 		else if (mcs_map == 1)
1081 			max_bits_per_sc_1000x = 6000; /* 8 * 3/4 * 1000 */
1082 	}
1083 	return max_bits_per_sc_1000x;
1084 }
1085 
1086 /* Refer Table 9-163 in 80211-2016 Spec */
1087 static uint32_t cm_etp_get_min_mpdu_ss_us_100x(struct htcap_cmn_ie *htcap)
1088 {
1089 	tSirMacHTParametersInfo *ampdu_param;
1090 	uint8_t ampdu_density;
1091 
1092 	ampdu_param = (tSirMacHTParametersInfo *)&htcap->ampdu_param;
1093 	ampdu_density = ampdu_param->mpduDensity;
1094 
1095 	if (ampdu_density == 1)
1096 		return 25; /* (1/4) * 100 */
1097 	else if (ampdu_density == 2)
1098 		return 50; /* (1/2) * 100 */
1099 	else if (ampdu_density == 3)
1100 		return 100; /* 1 * 100 */
1101 	else if (ampdu_density == 4)
1102 		return 200; /* 2 * 100 */
1103 	else if (ampdu_density == 5)
1104 		return 400; /* 4 * 100 */
1105 	else if (ampdu_density == 6)
1106 		return 800; /* 8 * 100 */
1107 	else if (ampdu_density == 7)
1108 		return 1600; /* 16 * 100 */
1109 	else
1110 		return 100;
1111 }
1112 
1113 /* Refer Table 9-162 in 80211-2016 Spec */
1114 static uint32_t cm_etp_get_max_amsdu_len(struct wlan_objmgr_psoc *psoc,
1115 					 struct htcap_cmn_ie *htcap)
1116 {
1117 	uint8_t bss_max_amsdu;
1118 	uint32_t bss_max_amsdu_len;
1119 	QDF_STATUS status;
1120 
1121 	status = wlan_mlme_get_max_amsdu_num(psoc, &bss_max_amsdu);
1122 	if (QDF_IS_STATUS_ERROR(status))
1123 		bss_max_amsdu_len = 3839;
1124 	else if (bss_max_amsdu == 1)
1125 		bss_max_amsdu_len =  7935;
1126 	else
1127 		bss_max_amsdu_len = 3839;
1128 
1129 	return bss_max_amsdu_len;
1130 }
1131 
1132    // Calculate the number of bits per tone based on the input of SNR in dB
1133     // The output is scaled up by BIT_PER_TONE_SCALE for integer representation
1134 static uint32_t
1135 calculate_bit_per_tone(int32_t rssi, enum phy_ch_width ch_width)
1136 {
1137 	int32_t noise_floor_db_boost;
1138 	int32_t noise_floor_dbm;
1139 	int32_t snr_db;
1140 	int32_t bit_per_tone;
1141 	int32_t lut_in_idx;
1142 
1143 	noise_floor_db_boost = TWO_IN_DB * ch_width;
1144 	noise_floor_dbm = WLAN_NOISE_FLOOR_DBM_DEFAULT + noise_floor_db_boost +
1145 			SNR_MARGIN_DB;
1146 	snr_db = rssi - noise_floor_dbm;
1147 	if (snr_db <= SNR_DB_TO_BIT_PER_TONE_LUT_MAX) {
1148 		lut_in_idx = QDF_MAX(snr_db, SNR_DB_TO_BIT_PER_TONE_LUT_MIN)
1149 			- SNR_DB_TO_BIT_PER_TONE_LUT_MIN;
1150 		lut_in_idx = QDF_MIN(lut_in_idx, DB_NUM - 1);
1151 		bit_per_tone = SNR_DB_TO_BIT_PER_TONE_LUT[lut_in_idx];
1152 	} else {
1153 		/*
1154 		 * SNR_tone = 10^(SNR/10)
1155 		 * log2(1+SNR_tone) ~= log2(SNR_tone) =
1156 		 * log10(SNR_tone)/log10(2) = log10(10^(SNR/10)) / 0.3
1157 		 * = (SNR/10) / 0.3 = SNR/3
1158 		 * So log2(1+SNR_tone) = SNR/3. 1000x for this is SNR*334
1159 		 */
1160 		bit_per_tone = snr_db * 334;
1161 	}
1162 
1163 	return bit_per_tone;
1164 }
1165 
1166 static uint32_t
1167 cm_calculate_etp(struct wlan_objmgr_psoc *psoc,
1168 		 struct scan_cache_entry *entry,
1169 		 struct etp_params  *etp_param,
1170 		 uint8_t max_nss, enum phy_ch_width ch_width,
1171 		 bool is_ht, bool is_vht, bool is_he,
1172 		 int8_t rssi,
1173 		 struct psoc_phy_config *phy_config)
1174 {
1175 	uint16_t ntone;
1176 	uint16_t phy_hdr_dur_us, max_amsdu_len = 1500, min_mpdu_ss_us_100x = 0;
1177 	uint32_t max_bits_per_sc_1000x, log_2_snr_tone_1000x;
1178 	uint32_t ppdu_payload_dur_us = 0, mpdu_per_ampdu, mpdu_per_ppdu;
1179 	uint32_t single_ppdu_dur_us, estimated_throughput_mbps, data_rate_kbps;
1180 	struct htcap_cmn_ie *htcap;
1181 
1182 	htcap = (struct htcap_cmn_ie *)util_scan_entry_htcap(entry);
1183 	if (ch_width > CH_WIDTH_160MHZ)
1184 		return CM_AVOID_CANDIDATE_MIN_SCORE;
1185 
1186 	if (is_he)
1187 		ntone = cm_get_etp_he_ntone(ch_width);
1188 	else
1189 		ntone = cm_get_etp_ntone(is_ht, is_vht, ch_width);
1190 	phy_hdr_dur_us = cm_get_etp_phy_header_dur_us(is_ht, is_vht, max_nss);
1191 
1192 	max_bits_per_sc_1000x =
1193 		cm_get_etp_max_bits_per_sc_1000x_for_nss(psoc, entry,
1194 							 max_nss, phy_config);
1195 	if (rssi < WLAN_NOISE_FLOOR_DBM_DEFAULT)
1196 		return CM_AVOID_CANDIDATE_MIN_SCORE;
1197 
1198 	log_2_snr_tone_1000x = calculate_bit_per_tone(rssi, ch_width);
1199 
1200 	/* Eq. R-2 Pg:3508 in 80211-2016 Spec */
1201 	if (is_he)
1202 		data_rate_kbps =
1203 			QDF_MIN(log_2_snr_tone_1000x, max_bits_per_sc_1000x) *
1204 			(max_nss * ntone) / HE_PPDU_PAYLOAD_SYMBOL_DUR_US;
1205 	else
1206 		data_rate_kbps =
1207 			QDF_MIN(log_2_snr_tone_1000x, max_bits_per_sc_1000x) *
1208 			(max_nss * ntone) / PPDU_PAYLOAD_SYMBOL_DUR_US;
1209 	mlme_debug("data_rate_kbps: %d", data_rate_kbps);
1210 	if (data_rate_kbps < 1000) {
1211 		/* Return ETP as 1 since datarate is not even 1 Mbps */
1212 		return CM_AVOID_CANDIDATE_MIN_SCORE;
1213 	}
1214 	/* compute MPDU_p_PPDU */
1215 	if (is_ht) {
1216 		min_mpdu_ss_us_100x =
1217 			cm_etp_get_min_mpdu_ss_us_100x(htcap);
1218 		max_amsdu_len =
1219 			cm_etp_get_max_amsdu_len(psoc, htcap);
1220 		ppdu_payload_dur_us =
1221 			etp_param->data_ppdu_dur_target_us - phy_hdr_dur_us;
1222 		mpdu_per_ampdu =
1223 			QDF_MIN(qdf_ceil(ppdu_payload_dur_us * 100,
1224 					 min_mpdu_ss_us_100x),
1225 				qdf_ceil(ppdu_payload_dur_us *
1226 					 (data_rate_kbps / 1000),
1227 					 (MAC_HEADER_LEN + max_amsdu_len) * 8));
1228 		mpdu_per_ppdu = QDF_MIN(etp_param->ba_window_size,
1229 					QDF_MAX(1, mpdu_per_ampdu));
1230 	} else {
1231 		mpdu_per_ppdu = 1;
1232 	}
1233 
1234 	/* compute PPDU_Dur */
1235 	single_ppdu_dur_us =
1236 		qdf_ceil((MAC_HEADER_LEN + max_amsdu_len) * mpdu_per_ppdu * 8,
1237 			 (data_rate_kbps / 1000) * PPDU_PAYLOAD_SYMBOL_DUR_US);
1238 	single_ppdu_dur_us *= PPDU_PAYLOAD_SYMBOL_DUR_US;
1239 	single_ppdu_dur_us += phy_hdr_dur_us;
1240 
1241 	estimated_throughput_mbps =
1242 		qdf_ceil(mpdu_per_ppdu * max_amsdu_len * 8, single_ppdu_dur_us);
1243 	estimated_throughput_mbps =
1244 		(estimated_throughput_mbps *
1245 		 etp_param->airtime_fraction) /
1246 		 CM_MAX_ESTIMATED_AIR_TIME_FRACTION;
1247 
1248 	if (estimated_throughput_mbps < CM_AVOID_CANDIDATE_MIN_SCORE)
1249 		estimated_throughput_mbps = CM_AVOID_CANDIDATE_MIN_SCORE;
1250 	if (estimated_throughput_mbps > CM_BEST_CANDIDATE_MAX_BSS_SCORE)
1251 		estimated_throughput_mbps = CM_BEST_CANDIDATE_MAX_BSS_SCORE;
1252 
1253 	mlme_nofl_debug("Candidate("QDF_MAC_ADDR_FMT" freq %d): rssi %d HT %d VHT %d HE %d ATF: %d NSS %d, ch_width: %d",
1254 			QDF_MAC_ADDR_REF(entry->bssid.bytes),
1255 			entry->channel.chan_freq,
1256 			entry->rssi_raw, is_ht, is_vht, is_he,
1257 			etp_param->airtime_fraction,
1258 			entry->nss, ch_width);
1259 	if (is_ht)
1260 		mlme_nofl_debug("min_mpdu_ss_us_100x = %d, max_amsdu_len = %d, ppdu_payload_dur_us = %d, mpdu_per_ampdu = %d, mpdu_per_ppdu = %d, ba_window_size = %d",
1261 				min_mpdu_ss_us_100x, max_amsdu_len,
1262 				ppdu_payload_dur_us, mpdu_per_ampdu,
1263 				mpdu_per_ppdu, etp_param->ba_window_size);
1264 	mlme_nofl_debug("ETP score params: ntone: %d, phy_hdr_dur_us: %d, max_bits_per_sc_1000x: %d, log_2_snr_tone_1000x: %d mpdu_p_ppdu = %d, max_amsdu_len = %d, ppdu_dur_us = %d, total score = %d",
1265 			ntone, phy_hdr_dur_us, max_bits_per_sc_1000x,
1266 			log_2_snr_tone_1000x, mpdu_per_ppdu, max_amsdu_len,
1267 			single_ppdu_dur_us, estimated_throughput_mbps);
1268 
1269 	return estimated_throughput_mbps;
1270 }
1271 
1272 static uint32_t
1273 cm_calculate_etp_score(struct wlan_objmgr_psoc *psoc,
1274 		       struct scan_cache_entry *entry,
1275 		       struct psoc_phy_config *phy_config,
1276 		       enum MLO_TYPE bss_mlo_type)
1277 {
1278 	enum phy_ch_width ch_width;
1279 	uint32_t nss;
1280 	bool is_he_intersect = false;
1281 	bool is_vht_intersect = false;
1282 	bool is_ht_intersect = false;
1283 	struct wlan_esp_info *esp;
1284 	struct wlan_esp_ie *esp_ie;
1285 	struct etp_params etp_param;
1286 	int8_t mlo_prefer_percentage = 0;
1287 	uint32_t score;
1288 	int32_t mlo_score = 0;
1289 
1290 	if (phy_config->he_cap && entry->ie_list.hecap)
1291 		is_he_intersect = true;
1292 	if ((phy_config->vht_cap || phy_config->vht_24G_cap) &&
1293 	    (entry->ie_list.vhtcap ||
1294 	     WLAN_REG_IS_6GHZ_CHAN_FREQ(entry->channel.chan_freq)))
1295 		is_vht_intersect = true;
1296 	if (phy_config->ht_cap && entry->ie_list.htcap)
1297 		is_ht_intersect = true;
1298 	nss = cm_get_sta_nss(psoc, entry->channel.chan_freq,
1299 			     phy_config->vdev_nss_24g,
1300 			     phy_config->vdev_nss_5g);
1301 	nss = QDF_MIN(nss, entry->nss);
1302 	ch_width = cm_calculate_bandwidth(entry, phy_config);
1303 
1304 	/* Initialize default ETP params */
1305 	etp_param.airtime_fraction = 255 / 2;
1306 	etp_param.ba_window_size = 32;
1307 	etp_param.data_ppdu_dur_target_us = 5000; /* 5 msec */
1308 
1309 	if (entry->air_time_fraction) {
1310 		etp_param.airtime_fraction = entry->air_time_fraction;
1311 		esp_ie = (struct wlan_esp_ie *)
1312 			util_scan_entry_esp_info(entry);
1313 		if (esp_ie) {
1314 			esp = &esp_ie->esp_info_AC_BE;
1315 			etp_param.ba_window_size =
1316 				cm_etp_get_ba_win_size_from_esp(esp->ba_window_size);
1317 			etp_param.data_ppdu_dur_target_us =
1318 					50 * esp->ppdu_duration;
1319 			mlme_debug("esp ba_window_size: %d, ppdu_duration: %d",
1320 				   esp->ba_window_size, esp->ppdu_duration);
1321 		}
1322 	} else if (entry->qbss_chan_load) {
1323 		mlme_debug("qbss_chan_load: %d", entry->qbss_chan_load);
1324 		etp_param.airtime_fraction =
1325 			CM_MAX_ESTIMATED_AIR_TIME_FRACTION -
1326 			entry->qbss_chan_load;
1327 	}
1328 	/* If ini vendor_roam_score_algorithm=1, just calculate ETP of all
1329 	 * bssid of ssid selected by high layer, and try to connect AP by
1330 	 * order of ETP, legacy algorithm with following Parameters/Weightage
1331 	 * becomes useless. ETP should be [1Mbps, 20000Mbps],matches score
1332 	 * range: [1, 20000]
1333 	 */
1334 	score = cm_calculate_etp(psoc, entry,
1335 				 &etp_param,
1336 				 nss,
1337 				 ch_width,
1338 				 is_ht_intersect,
1339 				 is_vht_intersect,
1340 				 is_he_intersect,
1341 				 entry->rssi_raw,
1342 				 phy_config);
1343 	if (bss_mlo_type == SLO)
1344 		return score;
1345 	wlan_mlme_get_mlo_prefer_percentage(psoc, &mlo_prefer_percentage);
1346 	if (mlo_prefer_percentage) {
1347 		mlo_score = score;
1348 		mlo_score = mlo_score +
1349 			   (mlo_score * mlo_prefer_percentage) / 100;
1350 		score = mlo_score;
1351 	}
1352 	return score;
1353 }
1354 #else
1355 static bool
1356 cm_get_pcl_weight_of_channel(uint32_t chan_freq,
1357 			     struct pcl_freq_weight_list *pcl_lst,
1358 			     int *pcl_chan_weight)
1359 {
1360 	return false;
1361 }
1362 
1363 static int32_t cm_calculate_pcl_score(struct wlan_objmgr_psoc *psoc,
1364 				      int pcl_chan_weight,
1365 				      uint8_t pcl_weightage)
1366 {
1367 	return 0;
1368 }
1369 
1370 static int32_t cm_calculate_oce_wan_score(struct scan_cache_entry *entry,
1371 					  struct scoring_cfg *score_params)
1372 {
1373 	return 0;
1374 }
1375 
1376 static uint32_t
1377 cm_calculate_oce_subnet_id_weightage(struct scan_cache_entry *entry,
1378 				     struct scoring_cfg *score_params,
1379 				     bool *oce_subnet_id_present)
1380 {
1381 	return 0;
1382 }
1383 
1384 static uint32_t
1385 cm_calculate_sae_pk_ap_weightage(struct scan_cache_entry *entry,
1386 				 struct scoring_cfg *score_params,
1387 				 bool *sae_pk_cap_present)
1388 {
1389 	return 0;
1390 }
1391 
1392 static uint32_t
1393 cm_calculate_oce_ap_tx_pwr_weightage(struct scan_cache_entry *entry,
1394 				     struct scoring_cfg *score_params,
1395 				     int8_t *ap_tx_pwr_dbm)
1396 {
1397 	return 0;
1398 }
1399 
1400 static inline bool cm_is_assoc_allowed(struct psoc_mlme_obj *mlme_psoc_obj,
1401 				       struct scan_cache_entry *entry)
1402 {
1403 	return true;
1404 }
1405 
1406 static uint32_t
1407 cm_calculate_etp_score(struct wlan_objmgr_psoc *psoc,
1408 		       struct scan_cache_entry *entry,
1409 		       struct psoc_phy_config *phy_config,
1410 		       enum MLO_TYPE bss_mlo_type)
1411 {
1412 	return 0;
1413 }
1414 #endif
1415 
1416 /**
1417  * cm_get_band_score() - Get band preference weightage
1418  * @freq: Operating frequency of the AP
1419  * @score_config: Score configuration
1420  *
1421  * Return: Band score for AP.
1422  */
1423 static int
1424 cm_get_band_score(uint32_t freq, struct scoring_cfg *score_config)
1425 {
1426 	uint8_t band_index;
1427 	struct weight_cfg *weight_config;
1428 
1429 	weight_config = &score_config->weight_config;
1430 
1431 	if (WLAN_REG_IS_5GHZ_CH_FREQ(freq))
1432 		band_index = CM_BAND_5G_INDEX;
1433 	else if (WLAN_REG_IS_24GHZ_CH_FREQ(freq))
1434 		band_index = CM_BAND_2G_INDEX;
1435 	else if (WLAN_REG_IS_6GHZ_CHAN_FREQ(freq))
1436 		band_index = CM_BAND_6G_INDEX;
1437 	else
1438 		return 0;
1439 
1440 	return weight_config->chan_band_weightage *
1441 	       CM_GET_SCORE_PERCENTAGE(score_config->band_weight_per_index,
1442 				       band_index);
1443 }
1444 
1445 #ifdef WLAN_FEATURE_11BE
1446 static int cm_calculate_eht_score(struct scan_cache_entry *entry,
1447 				  struct scoring_cfg *score_config,
1448 				  struct psoc_phy_config *phy_config,
1449 				  uint8_t prorated_pcnt)
1450 {
1451 	uint32_t eht_caps_score;
1452 	struct weight_cfg *weight_config;
1453 
1454 	if (!phy_config->eht_cap || !entry->ie_list.ehtcap)
1455 		return 0;
1456 
1457 	weight_config = &score_config->weight_config;
1458 	eht_caps_score = prorated_pcnt * weight_config->eht_caps_weightage;
1459 
1460 	return eht_caps_score;
1461 }
1462 
1463 /**
1464  * cm_get_puncture_bw() - Get puncture band width
1465  * @entry: Bss scan entry
1466  *
1467  * Return: Total bandwidth of punctured subchannels (unit: MHz)
1468  */
1469 static uint16_t cm_get_puncture_bw(struct scan_cache_entry *entry)
1470 {
1471 	uint16_t puncture_bitmap;
1472 	uint8_t num_puncture_bw = 0;
1473 
1474 	puncture_bitmap = entry->channel.puncture_bitmap;
1475 	while (puncture_bitmap) {
1476 		if (puncture_bitmap & 1)
1477 			++num_puncture_bw;
1478 		puncture_bitmap >>= 1;
1479 	}
1480 	return num_puncture_bw * 20;
1481 }
1482 
1483 static bool cm_get_su_beam_former(struct scan_cache_entry *entry)
1484 {
1485 	struct wlan_ie_ehtcaps *eht_cap;
1486 	struct wlan_eht_cap_info *eht_cap_info;
1487 
1488 	eht_cap = (struct wlan_ie_ehtcaps *)util_scan_entry_ehtcap(entry);
1489 	if (eht_cap) {
1490 		eht_cap_info = (struct wlan_eht_cap_info *)eht_cap->eht_mac_cap;
1491 		if (eht_cap_info->su_beamformer)
1492 			return true;
1493 	}
1494 
1495 	return false;
1496 }
1497 #else
1498 static int cm_calculate_eht_score(struct scan_cache_entry *entry,
1499 				  struct scoring_cfg *score_config,
1500 				  struct psoc_phy_config *phy_config,
1501 				uint8_t prorated_pcnt)
1502 {
1503 	return 0;
1504 }
1505 
1506 static uint16_t cm_get_puncture_bw(struct scan_cache_entry *entry)
1507 {
1508 	return 0;
1509 }
1510 
1511 static bool cm_get_su_beam_former(struct scan_cache_entry *entry)
1512 {
1513 	return false;
1514 }
1515 #endif
1516 
1517 #define CM_BAND_WIDTH_NUM 16
1518 #define CM_BAND_WIDTH_UNIT 20
1519 uint16_t link_bw_score[CM_BAND_WIDTH_NUM] = {
1520 9, 18, 27, 35, 44, 53, 56, 67, 74, 80, 86, 90, 93, 96, 98, 100};
1521 
1522 static uint32_t cm_get_bw_score(uint8_t bw_weightage, uint16_t bw,
1523 				uint8_t prorated_pcnt)
1524 {
1525 	uint32_t score;
1526 	uint8_t index;
1527 
1528 	index = bw / CM_BAND_WIDTH_UNIT - 1;
1529 	if (index >= CM_BAND_WIDTH_NUM)
1530 		index = CM_BAND_WIDTH_NUM - 1;
1531 	score = bw_weightage * link_bw_score[index]
1532 		* prorated_pcnt / CM_MAX_PCT_SCORE;
1533 
1534 	return score;
1535 }
1536 
1537 /**
1538  * cm_get_ch_width() - Get channel width of bss scan entry
1539  * @entry: Bss scan entry
1540  * @phy_config: Phy config
1541  *
1542  * Return: Channel width (unit: MHz)
1543  */
1544 static uint16_t cm_get_ch_width(struct scan_cache_entry *entry,
1545 				struct psoc_phy_config *phy_config)
1546 {
1547 	uint16_t bw, total_bw = 0;
1548 	uint8_t bw_above_20 = 0;
1549 	bool is_vht = false;
1550 
1551 	if (WLAN_REG_IS_24GHZ_CH_FREQ(entry->channel.chan_freq)) {
1552 		bw_above_20 = phy_config->bw_above_20_24ghz;
1553 		if (phy_config->vht_24G_cap)
1554 			is_vht = true;
1555 	} else if (phy_config->vht_cap) {
1556 		is_vht = true;
1557 		bw_above_20 = phy_config->bw_above_20_5ghz;
1558 	}
1559 	if (IS_WLAN_PHYMODE_320MHZ(entry->phy_mode))
1560 		bw = 320;
1561 	else if (IS_WLAN_PHYMODE_160MHZ(entry->phy_mode))
1562 		bw = 160;
1563 	else if (IS_WLAN_PHYMODE_80MHZ(entry->phy_mode))
1564 		bw = 80;
1565 	else if (IS_WLAN_PHYMODE_40MHZ(entry->phy_mode))
1566 		bw = 40;
1567 	else
1568 		bw = 20;
1569 	if (!phy_config->ht_cap && bw > 20)
1570 		bw = 20;
1571 
1572 	if (!is_vht && bw > 40)
1573 		bw = 40;
1574 
1575 	total_bw = bw - cm_get_puncture_bw(entry);
1576 
1577 	return total_bw;
1578 }
1579 
1580 #ifdef WLAN_FEATURE_11BE_MLO
1581 #define CM_MLO_BAD_RSSI_PCT 61
1582 #define CM_MLO_CONGESTION_PCT_BAD_RSSI 6
1583 
1584 static uint8_t mlo_boost_pct[MLO_TYPE_MAX] = {0, 10, CM_MAX_PCT_SCORE};
1585 
1586 /**
1587  * struct mlo_rssi_pct: MLO AP rssi joint factor and score percent
1588  * @joint_factor: rssi joint factor (0 - 100)
1589  * @rssi_pcnt: Rssi score percent (0 - 100)
1590  * @prorate_pcnt: RSSI prorated percent
1591  */
1592 struct mlo_rssi_pct {
1593 	uint16_t joint_factor;
1594 	uint16_t rssi_pcnt;
1595 	uint16_t prorate_pcnt;
1596 };
1597 
1598 #define CM_RSSI_BUCKET_NUM 7
1599 static struct mlo_rssi_pct mlo_rssi_pcnt[CM_RSSI_BUCKET_NUM] = {
1600 {80, 100, 100}, {60, 87, 100}, {44, 74, 100}, {30, 61, 100}, {20, 48, 54},
1601 {10, 35, 28}, {0, 22, 1} };
1602 
1603 /**
1604  * cm_get_mlo_rssi_score() - Calculate joint rssi score for MLO AP
1605  * @rssi_weightage: rssi weightage
1606  * @link1_rssi: link1 rssi
1607  * @link2_rssi: link2 rssi
1608  * @prorate_pcnt: pointer to store RSSI prorated percent
1609  *
1610  * Return: MLO AP joint rssi score
1611  */
1612 static uint32_t cm_get_mlo_rssi_score(uint8_t rssi_weightage, int8_t link1_rssi,
1613 				      int8_t link2_rssi, uint16_t *prorate_pcnt)
1614 {
1615 	int8_t link1_factor = 0, link2_factor = 0;
1616 	int32_t joint_factor = 0;
1617 	int16_t rssi_pcnt = 0;
1618 	int8_t i;
1619 
1620 	/* Calculate RSSI score -- using joint rssi, but limit to 2 links */
1621 	link1_factor = QDF_MAX(QDF_MIN(link1_rssi, -50), -95) + 95;
1622 	link2_factor = QDF_MAX(QDF_MIN(link2_rssi, -50), -95) + 95;
1623 	joint_factor = QDF_MIN((link1_factor * link1_factor +
1624 			    link2_factor * link2_factor) * 100 / (2 * 45 * 45),
1625 			    100);
1626 	for (i = 0; i < CM_RSSI_BUCKET_NUM; i++)
1627 		if (joint_factor > mlo_rssi_pcnt[i].joint_factor) {
1628 			rssi_pcnt = mlo_rssi_pcnt[i].rssi_pcnt;
1629 			*prorate_pcnt = mlo_rssi_pcnt[i].prorate_pcnt;
1630 			break;
1631 		}
1632 
1633 	return (rssi_weightage * rssi_pcnt);
1634 }
1635 
1636 static inline int cm_calculate_emlsr_score(struct weight_cfg *weight_config)
1637 {
1638 	return weight_config->emlsr_weightage * mlo_boost_pct[MLSR];
1639 }
1640 
1641 /**
1642  * cm_get_entry() - Get bss scan entry by link mac address
1643  * @scan_list: Scan entry list of bss candidates after filtering
1644  * @link_addr: link mac address
1645  *
1646  * Return: Pointer to bss scan entry
1647  */
1648 static struct scan_cache_entry *cm_get_entry(qdf_list_t *scan_list,
1649 					     struct qdf_mac_addr *link_addr)
1650 {
1651 	qdf_list_node_t *cur_node = NULL, *next_node = NULL;
1652 	struct scan_cache_node *curr_entry = NULL;
1653 
1654 	qdf_list_peek_front(scan_list, &cur_node);
1655 	while (cur_node) {
1656 		curr_entry = qdf_container_of(cur_node, struct scan_cache_node,
1657 					      node);
1658 		if (!qdf_mem_cmp(&curr_entry->entry->mac_addr,
1659 				 link_addr, QDF_MAC_ADDR_SIZE))
1660 			return curr_entry->entry;
1661 
1662 		qdf_list_peek_next(scan_list, cur_node, &next_node);
1663 		cur_node = next_node;
1664 		next_node = NULL;
1665 	}
1666 
1667 	return NULL;
1668 }
1669 
1670 #ifdef CONN_MGR_ADV_FEATURE
1671 static uint8_t cm_get_sta_mlo_conn_max_num(struct wlan_objmgr_psoc *psoc)
1672 {
1673 	return wlan_mlme_get_sta_mlo_conn_max_num(psoc);
1674 }
1675 
1676 static bool is_freq_dbs_or_sbs(struct wlan_objmgr_psoc *psoc,
1677 			       qdf_freq_t freq_1,
1678 			       qdf_freq_t freq_2)
1679 {
1680 	if ((policy_mgr_is_hw_sbs_capable(psoc) &&
1681 	     policy_mgr_are_sbs_chan(psoc, freq_1, freq_2)) ||
1682 	    (policy_mgr_is_hw_dbs_capable(psoc) &&
1683 	     !wlan_reg_is_same_band_freqs(freq_1, freq_2))) {
1684 		return true;
1685 	}
1686 
1687 	return false;
1688 }
1689 
1690 #else
1691 static inline
1692 uint8_t cm_get_sta_mlo_conn_max_num(struct wlan_objmgr_psoc *psoc)
1693 {
1694 	return WLAN_UMAC_MLO_MAX_DEV;
1695 }
1696 
1697 static inline bool is_freq_dbs_or_sbs(struct wlan_objmgr_psoc *psoc,
1698 				      qdf_freq_t freq_1,
1699 				      qdf_freq_t freq_2)
1700 {
1701 	return false;
1702 }
1703 #endif
1704 
1705 /**
1706  * cm_bss_mlo_type() - Get mlo type of bss scan entry
1707  * @psoc: Pointer of psoc object
1708  * @entry: Bss scan entry
1709  * @scan_list:
1710  *
1711  * Return: MLO AP type: SLO, MLMR or EMLSR.
1712  */
1713 static enum MLO_TYPE  cm_bss_mlo_type(struct wlan_objmgr_psoc *psoc,
1714 				      struct scan_cache_entry *entry,
1715 				      qdf_list_t *scan_list)
1716 {
1717 	uint8_t mlo_link_num;
1718 	uint8_t i;
1719 	uint32_t freq_entry;
1720 	uint32_t freq[MLD_MAX_LINKS - 1];
1721 	struct scan_cache_entry *entry_partner[MLD_MAX_LINKS - 1];
1722 	bool multi_link = false;
1723 
1724 	mlo_link_num = cm_get_sta_mlo_conn_max_num(psoc);
1725 	if (!entry->ie_list.multi_link_bv)
1726 		return SLO;
1727 	else if (!entry->ml_info.num_links)
1728 		return SLO;
1729 	else if (mlo_link_num == 1)
1730 		return SLO;
1731 
1732 	for (i = 0; i < entry->ml_info.num_links; i++) {
1733 		if (!entry->ml_info.link_info[i].is_valid_link)
1734 			continue;
1735 		multi_link = true;
1736 		freq_entry = entry->channel.chan_freq;
1737 		freq[i] = entry->ml_info.link_info[i].freq;
1738 		entry_partner[i] =
1739 			cm_get_entry(scan_list,
1740 				     &entry->ml_info.link_info[i].link_addr);
1741 		if (entry_partner[i])
1742 			freq[i] = entry_partner[i]->channel.chan_freq;
1743 		if (is_freq_dbs_or_sbs(psoc, freq[i], freq_entry))
1744 			return MLMR;
1745 	}
1746 
1747 	if (multi_link)
1748 		return MLSR;
1749 	else
1750 		return SLO;
1751 }
1752 
1753 /**
1754  * cm_get_mlo_congestion_score() - Get mlo jointer congestion percent
1755  * @bw1: channel width of link1
1756  * @bw2: channel width of link2
1757  * @congestion_score1: congestion score of link1
1758  * @congestion_score2: congestion score of link2
1759  * @score_params: score param
1760  *
1761  * Return: Mlo jointer congestion percent
1762  */
1763 static uint32_t
1764 cm_get_mlo_congestion_score(uint16_t bw1,
1765 			    uint16_t bw2,
1766 			    uint32_t congestion_score1,
1767 			    uint32_t congestion_score2,
1768 			    struct scoring_cfg *score_params)
1769 {
1770 	uint32_t congestion_best;
1771 	uint32_t congestion_worst;
1772 	uint32_t congestion_weight;
1773 
1774 	congestion_weight =
1775 		score_params->weight_config.channel_congestion_weightage;
1776 	if (congestion_score1 > congestion_score2) {
1777 		congestion_best = congestion_score1;
1778 		congestion_worst = congestion_score2 * bw1 / (bw1 + bw2);
1779 	} else if (congestion_score1 < congestion_score2) {
1780 		congestion_best = congestion_score2;
1781 		congestion_worst = congestion_score1 * bw2 / (bw1 + bw2);
1782 	} else {
1783 		congestion_best = congestion_score1;
1784 		congestion_worst = congestion_score2 / 2;
1785 	}
1786 	congestion_best = congestion_best * CM_SLO_CONGESTION_MAX_SCORE /
1787 			 CM_MAX_PCT_SCORE;
1788 	congestion_worst = congestion_worst * CM_SLO_CONGESTION_MAX_SCORE /
1789 			 CM_MAX_PCT_SCORE;
1790 	congestion_worst = QDF_MIN(congestion_worst, 20 * congestion_weight);
1791 
1792 	return congestion_best + congestion_worst;
1793 }
1794 
1795 /**
1796  * cm_estimate_rssi() - Get estimated rssi by frequency
1797  * @rssi_entry: Rssi of bss scan entry
1798  * @freq_entry: Frequency of bss scan entry
1799  * @freq_partner: Frequency of partner link of MLO
1800  *
1801  * Estimated equation: RSSI(2G) = RSSI(5G) + 7 = RSSI(6G) + 8
1802  *
1803  * Return: Estimated rssi of partner link of MLO
1804  */
1805 static int8_t cm_estimate_rssi(int8_t rssi_entry, uint32_t freq_entry,
1806 			       uint32_t freq_partner)
1807 {
1808 	if (wlan_reg_is_24ghz_ch_freq(freq_entry)) {
1809 		if (wlan_reg_is_5ghz_ch_freq(freq_partner))
1810 			return rssi_entry - 7;
1811 		else if (wlan_reg_is_6ghz_chan_freq(freq_partner))
1812 			return rssi_entry - 8;
1813 	} else if (wlan_reg_is_5ghz_ch_freq(freq_entry)) {
1814 		if (wlan_reg_is_24ghz_ch_freq(freq_partner))
1815 			return rssi_entry + 7;
1816 		else if (wlan_reg_is_6ghz_chan_freq(freq_partner))
1817 			return rssi_entry - 1;
1818 	} else if (wlan_reg_is_6ghz_chan_freq(freq_entry)) {
1819 		if (wlan_reg_is_24ghz_ch_freq(freq_partner))
1820 			return rssi_entry + 8;
1821 		else if (wlan_reg_is_5ghz_ch_freq(freq_partner))
1822 			return rssi_entry + 1;
1823 	}
1824 
1825 	return rssi_entry;
1826 }
1827 
1828 static int cm_calculate_bss_score(struct wlan_objmgr_psoc *psoc,
1829 				  struct scan_cache_entry *entry,
1830 				  int pcl_chan_weight,
1831 				  struct qdf_mac_addr *bssid_hint,
1832 				  qdf_list_t *scan_list,
1833 				  bool is_link_score);
1834 
1835 /**
1836  * cm_calculate_mlo_bss_score() - Calculate mlo bss score
1837  * @psoc: Pointer to psoc object
1838  * @entry: Bss scan entry
1839  * @score_params: score parameters
1840  * @phy_config: Phy config
1841  * @scan_list: Scan entry list of bss candidates after filtering
1842  * @rssi_prorated_pct: Rssi prorated percent
1843  * @pcl_chan_weight: PCL chan weight
1844  *
1845  * For MLMR case, besides adding MLMR boost score,
1846  * calculate joint RSSI/band width/congestion score for combination of
1847  * scan entry + each partner link, select highest total score as candidate
1848  * combination, only activate that partner link.
1849  *
1850  * Return: MLO AP joint total score
1851  */
1852 static int cm_calculate_mlo_bss_score(struct wlan_objmgr_psoc *psoc,
1853 				      struct scan_cache_entry *entry,
1854 				      struct scoring_cfg *score_params,
1855 				      struct psoc_phy_config *phy_config,
1856 				      qdf_list_t *scan_list,
1857 				      uint8_t *rssi_prorated_pct,
1858 				      int pcl_chan_weight)
1859 {
1860 	struct scan_cache_entry *entry_partner[MLD_MAX_LINKS - 1];
1861 	int32_t rssi[MLD_MAX_LINKS - 1];
1862 	uint32_t rssi_score[MLD_MAX_LINKS - 1] = {};
1863 	uint16_t prorated_pct[MLD_MAX_LINKS - 1] = {};
1864 	uint32_t freq[MLD_MAX_LINKS - 1];
1865 	uint16_t ch_width[MLD_MAX_LINKS - 1];
1866 	uint32_t bandwidth_score[MLD_MAX_LINKS - 1] = {};
1867 	uint32_t congestion_pct[MLD_MAX_LINKS - 1] = {};
1868 	uint32_t congestion_score[MLD_MAX_LINKS - 1] = {};
1869 	uint32_t cong_total_score[MLD_MAX_LINKS - 1] = {};
1870 	uint32_t total_score[MLD_MAX_LINKS - 1] = {};
1871 	uint8_t i, j;
1872 	uint16_t chan_width;
1873 	uint32_t best_total_score = 0;
1874 	uint8_t best_partner_index = 0;
1875 	uint32_t cong_pct = 0;
1876 	uint32_t cong_score = 0;
1877 	uint32_t freq_entry;
1878 	struct weight_cfg *weight_config;
1879 	struct partner_link_info *link;
1880 	struct wlan_objmgr_pdev *pdev;
1881 	bool rssi_bad_zone;
1882 	bool eht_capab;
1883 	struct partner_link_info tmp_link_info;
1884 	uint32_t tmp_total_score = 0;
1885 	uint32_t assoc_score = 0;
1886 	uint32_t link_score[MLD_MAX_LINKS - 1] = {0};
1887 	bool is_assoc_link_best = true;
1888 	uint32_t assoc_band_score;
1889 	uint32_t link_band_score[MLD_MAX_LINKS - 1] = {0};
1890 	uint32_t total_band_score[MLD_MAX_LINKS - 1] = {0};
1891 
1892 
1893 	wlan_psoc_mlme_get_11be_capab(psoc, &eht_capab);
1894 	if (!eht_capab)
1895 		return 0;
1896 
1897 	weight_config = &score_params->weight_config;
1898 	freq_entry = entry->channel.chan_freq;
1899 	chan_width = cm_get_ch_width(entry, phy_config);
1900 	cong_score = cm_calculate_congestion_score(entry,
1901 						   score_params,
1902 						   &cong_pct, false);
1903 
1904 	assoc_score =
1905 		cm_calculate_bss_score(psoc, entry, pcl_chan_weight,
1906 				       NULL, scan_list, true);
1907 	entry->ml_info.link_score = assoc_score;
1908 
1909 	assoc_band_score = cm_get_band_score(entry->channel.chan_freq,
1910 					     score_params);
1911 
1912 	link = &entry->ml_info.link_info[0];
1913 	for (i = 0; i < entry->ml_info.num_links; i++) {
1914 		if (!link[i].is_valid_link)
1915 			continue;
1916 		entry_partner[i] = cm_get_entry(scan_list, &link[i].link_addr);
1917 		if (entry_partner[i])
1918 			freq[i] = entry_partner[i]->channel.chan_freq;
1919 		else
1920 			freq[i] = link[i].freq;
1921 		if (!is_freq_dbs_or_sbs(psoc, freq[i], freq_entry)) {
1922 			mlme_nofl_debug("freq %d and %d can't be MLMR",
1923 					freq[i], freq_entry);
1924 			continue;
1925 		}
1926 
1927 		if (entry_partner[i]) {
1928 			link_score[i] =
1929 				cm_calculate_bss_score(psoc, entry_partner[i],
1930 						       pcl_chan_weight,
1931 						       NULL, scan_list, true);
1932 			entry_partner[i]->ml_info.link_score = link_score[i];
1933 
1934 			rssi[i] = entry_partner[i]->rssi_raw;
1935 			ch_width[i] = cm_get_ch_width(entry_partner[i],
1936 						      phy_config);
1937 		} else {
1938 			rssi[i] = cm_estimate_rssi(entry->rssi_raw,
1939 						   freq_entry,
1940 						   freq[i]);
1941 			pdev = psoc->soc_objmgr.wlan_pdev_list[0];
1942 			ch_width[i] =
1943 				wlan_reg_get_op_class_width(pdev,
1944 							    link[i].op_class,
1945 							    true);
1946 			mlme_nofl_debug("No entry for partner, estimate with rnr");
1947 		}
1948 		rssi_score[i] =
1949 			cm_get_mlo_rssi_score(weight_config->rssi_weightage,
1950 					      entry->rssi_raw, rssi[i],
1951 					      &prorated_pct[i]);
1952 
1953 		bandwidth_score[i] =
1954 			cm_get_bw_score(weight_config->chan_width_weightage,
1955 					chan_width + ch_width[i],
1956 					prorated_pct[i]);
1957 
1958 		rssi_bad_zone = prorated_pct[i] < CM_MAX_PCT_SCORE;
1959 		congestion_score[i] =
1960 			cm_calculate_congestion_score(entry_partner[i],
1961 						      score_params,
1962 						      &congestion_pct[i],
1963 						      rssi_bad_zone);
1964 		cong_total_score[i] =
1965 			cm_get_mlo_congestion_score(chan_width,
1966 						    ch_width[i],
1967 						    cong_score,
1968 						    congestion_score[i],
1969 						    score_params);
1970 
1971 		link_band_score[i] = cm_get_band_score(freq[i], score_params);
1972 		total_band_score[i] =
1973 			(assoc_band_score + link_band_score[i]) / 2;
1974 
1975 		total_score[i] = rssi_score[i] + bandwidth_score[i] +
1976 				 cong_total_score[i] + total_band_score[i];
1977 		if (total_score[i] > best_total_score) {
1978 			best_total_score = total_score[i];
1979 			best_partner_index = i;
1980 		}
1981 
1982 		mlme_nofl_debug("ML score: link index %u rssi %d %d rssi score %u pror %u freq %u %u bw %u %u, bw score %u congest score %u %u %u, band score: %u %u, total %u",
1983 				i, entry->rssi_raw,  rssi[i], rssi_score[i],
1984 				prorated_pct[i], freq_entry, freq[i],
1985 				chan_width, ch_width[i], bandwidth_score[i],
1986 				cong_score, congestion_score[i],
1987 				cong_total_score[i],
1988 				assoc_band_score, link_band_score[i],
1989 				total_score[i]);
1990 	}
1991 
1992 	*rssi_prorated_pct = prorated_pct[best_partner_index];
1993 
1994 	/* reorder the link idx per score */
1995 	for (j = 0; j < entry->ml_info.num_links; j++) {
1996 		tmp_total_score = total_score[j];
1997 		best_partner_index = j;
1998 		for (i = j + 1; i < entry->ml_info.num_links; i++) {
1999 			if (tmp_total_score < total_score[i]) {
2000 				tmp_total_score = total_score[i];
2001 				best_partner_index = i;
2002 			}
2003 		}
2004 
2005 		if (best_partner_index != j) {
2006 			tmp_link_info = entry->ml_info.link_info[j];
2007 			entry->ml_info.link_info[j] =
2008 				entry->ml_info.link_info[best_partner_index];
2009 			entry->ml_info.link_info[best_partner_index] =
2010 							tmp_link_info;
2011 			total_score[best_partner_index] = total_score[j];
2012 		}
2013 		total_score[j] = 0;
2014 	}
2015 
2016 	for (i = 0; i < entry->ml_info.num_links; i++) {
2017 		if (link_score[i] > assoc_score) {
2018 			is_assoc_link_best = false;
2019 			break;
2020 		}
2021 	}
2022 	if (is_assoc_link_best) {
2023 		mlme_nofl_debug("asoc link is best, boost %d",
2024 				CM_ASSOC_INK_BEST_BOOST);
2025 		best_total_score += CM_ASSOC_INK_BEST_BOOST;
2026 	}
2027 
2028 	best_total_score += weight_config->mlo_weightage *
2029 			    mlo_boost_pct[MLMR];
2030 	entry->ml_info.ml_bss_score = best_total_score;
2031 
2032 	return best_total_score;
2033 }
2034 
2035 #else
2036 static inline int cm_calculate_emlsr_score(struct weight_cfg *weight_config)
2037 {
2038 	return 0;
2039 }
2040 
2041 static enum MLO_TYPE cm_bss_mlo_type(struct wlan_objmgr_psoc *psoc,
2042 				     struct scan_cache_entry *entry,
2043 				     qdf_list_t *scan_list)
2044 {
2045 	return SLO;
2046 }
2047 
2048 static int cm_calculate_mlo_bss_score(struct wlan_objmgr_psoc *psoc,
2049 				      struct scan_cache_entry *entry,
2050 				      struct scoring_cfg *score_params,
2051 				      struct psoc_phy_config *phy_config,
2052 				      qdf_list_t *scan_list,
2053 				      uint8_t *rssi_prorated_pct,
2054 				      int pcl_chan_weight)
2055 {
2056 	return 0;
2057 }
2058 #endif
2059 
2060 #if defined(WLAN_FEATURE_11BE_MLO) && defined(CONN_MGR_ADV_FEATURE)
2061 static void
2062 cm_sort_vendor_algo_mlo_bss_entry(struct wlan_objmgr_psoc *psoc,
2063 				  struct scan_cache_entry *entry,
2064 				  struct psoc_phy_config *phy_config,
2065 				  qdf_list_t *scan_list,
2066 				  enum MLO_TYPE bss_mlo_type)
2067 {
2068 	struct scan_cache_entry *entry_partner[MLD_MAX_LINKS - 1];
2069 	uint32_t freq[MLD_MAX_LINKS - 1];
2070 	uint32_t etp_score[MLD_MAX_LINKS - 1] = {0};
2071 	uint32_t total_score[MLD_MAX_LINKS - 1] = {0};
2072 	uint8_t i, j;
2073 	uint32_t best_total_score = 0;
2074 	uint8_t best_partner_index = 0;
2075 	uint32_t freq_entry;
2076 	struct partner_link_info *link;
2077 	bool eht_capab;
2078 	struct partner_link_info tmp_link_info;
2079 	uint32_t tmp_total_score = 0;
2080 
2081 	wlan_psoc_mlme_get_11be_capab(psoc, &eht_capab);
2082 	if (!eht_capab)
2083 		return;
2084 
2085 	link = &entry->ml_info.link_info[0];
2086 	freq_entry = entry->channel.chan_freq;
2087 	for (i = 0; i < entry->ml_info.num_links; i++) {
2088 		mlme_debug("freq: %d, link id: %d is valid %d "QDF_MAC_ADDR_FMT,
2089 			   link[i].freq, link[i].link_id,
2090 			   link[i].is_valid_link,
2091 			   QDF_MAC_ADDR_REF(link[i].link_addr.bytes));
2092 		if (!link[i].is_valid_link)
2093 			continue;
2094 
2095 		entry_partner[i] = cm_get_entry(scan_list, &link[i].link_addr);
2096 		if (entry_partner[i])
2097 			freq[i] = entry_partner[i]->channel.chan_freq;
2098 		else
2099 			freq[i] = link[i].freq;
2100 
2101 		if (policy_mgr_are_2_freq_on_same_mac(psoc, freq[i],
2102 						      freq_entry)) {
2103 			link[i].is_valid_link = false;
2104 			total_score[i] = 0;
2105 			mlme_nofl_debug("freq %d and %d can't be MLMR",
2106 					freq[i], freq_entry);
2107 			continue;
2108 		}
2109 
2110 		if (!entry_partner[i])
2111 			continue;
2112 
2113 		etp_score[i] = cm_calculate_etp_score(psoc, entry_partner[i],
2114 						      phy_config, bss_mlo_type);
2115 
2116 		total_score[i] = etp_score[i];
2117 		if (total_score[i] > best_total_score) {
2118 			best_total_score = total_score[i];
2119 			best_partner_index = i;
2120 		}
2121 	}
2122 
2123 	/* reorder the link idx per score */
2124 	for (j = 0; j < entry->ml_info.num_links; j++) {
2125 		tmp_total_score = total_score[j];
2126 		best_partner_index = j;
2127 		for (i = j + 1; i < entry->ml_info.num_links; i++) {
2128 			if (tmp_total_score < total_score[i]) {
2129 				tmp_total_score = total_score[i];
2130 				best_partner_index = i;
2131 			}
2132 		}
2133 
2134 		if (best_partner_index != j) {
2135 			tmp_link_info = entry->ml_info.link_info[j];
2136 			entry->ml_info.link_info[j] =
2137 				entry->ml_info.link_info[best_partner_index];
2138 			entry->ml_info.link_info[best_partner_index] =
2139 							tmp_link_info;
2140 			total_score[best_partner_index] = total_score[j];
2141 		}
2142 		total_score[j] = 0;
2143 	}
2144 }
2145 #else
2146 static void
2147 cm_sort_vendor_algo_mlo_bss_entry(struct wlan_objmgr_psoc *psoc,
2148 				  struct scan_cache_entry *entry,
2149 				  struct psoc_phy_config *phy_config,
2150 				  qdf_list_t *scan_list,
2151 				  enum MLO_TYPE bss_mlo_type)
2152 {}
2153 #endif
2154 
2155 /**
2156  * cm_calculate_bss_score() - Calculate score of AP or 1 link of MLO AP
2157  * @psoc: Pointer to psoc object
2158  * @entry: Bss scan entry
2159  * @pcl_chan_weight: pcl chan weight
2160  * @bssid_hint: bssid hint
2161  * @scan_list: Scan entry list of bss candidates after filtering
2162  * @is_link_score: true: calculate 1 link score of MLO AP
2163  *
2164  * For MLO AP, consider partner link to calculate combined score, prefer to
2165  * select best link as assoc link.
2166  * For legacy AP or 1 link of MLO AP, just consider single link.
2167  * Prefer to select AP of higher score to connect by sort AP by score.
2168  *
2169  * Return: score of AP or 1 link of MLO AP
2170  */
2171 static int cm_calculate_bss_score(struct wlan_objmgr_psoc *psoc,
2172 				  struct scan_cache_entry *entry,
2173 				  int pcl_chan_weight,
2174 				  struct qdf_mac_addr *bssid_hint,
2175 				  qdf_list_t *scan_list,
2176 				  bool is_link_score)
2177 {
2178 	int32_t score = 0;
2179 	int32_t rssi_score = 0;
2180 	int32_t pcl_score = 0;
2181 	int32_t ht_score = 0;
2182 	int32_t vht_score = 0;
2183 	int32_t he_score = 0;
2184 	int32_t bandwidth_score = 0;
2185 	int32_t beamformee_score = 0;
2186 	int32_t band_score = 0;
2187 	int32_t nss_score = 0;
2188 	int32_t security_score = 0;
2189 	int32_t congestion_score = 0;
2190 	int32_t congestion_pct = 0;
2191 	int32_t oce_wan_score = 0;
2192 	uint8_t oce_ap_tx_pwr_score = 0;
2193 	uint8_t oce_subnet_id_score = 0;
2194 	uint32_t sae_pk_score = 0;
2195 	bool oce_subnet_id_present = 0;
2196 	bool sae_pk_cap_present = 0;
2197 	int8_t ap_tx_pwr_dbm = 0;
2198 	uint8_t prorated_pcnt;
2199 	bool is_vht = false;
2200 	int8_t good_rssi_threshold;
2201 	int8_t rssi_pref_5g_rssi_thresh;
2202 	bool same_bucket = false;
2203 	bool ap_su_beam_former = false;
2204 	struct wlan_ie_vhtcaps *vht_cap;
2205 	struct wlan_ie_hecaps *he_cap;
2206 	struct scoring_cfg *score_config;
2207 	struct weight_cfg *weight_config;
2208 	uint32_t sta_nss;
2209 	struct psoc_mlme_obj *mlme_psoc_obj;
2210 	struct psoc_phy_config *phy_config;
2211 	uint32_t eht_score;
2212 	enum MLO_TYPE bss_mlo_type;
2213 
2214 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2215 	if (!mlme_psoc_obj)
2216 		return 0;
2217 
2218 	phy_config = &mlme_psoc_obj->psoc_cfg.phy_config;
2219 	score_config = &mlme_psoc_obj->psoc_cfg.score_config;
2220 	weight_config = &score_config->weight_config;
2221 
2222 	if (score_config->is_bssid_hint_priority && bssid_hint &&
2223 	    qdf_is_macaddr_equal(bssid_hint, &entry->bssid)) {
2224 		entry->bss_score = CM_BEST_CANDIDATE_MAX_BSS_SCORE;
2225 		mlme_nofl_debug("Candidate("QDF_MAC_ADDR_FMT" freq %d): rssi %d BSSID hint given, give max score %d",
2226 				QDF_MAC_ADDR_REF(entry->bssid.bytes),
2227 				entry->channel.chan_freq,
2228 				entry->rssi_raw,
2229 				CM_BEST_CANDIDATE_MAX_BSS_SCORE);
2230 		return CM_BEST_CANDIDATE_MAX_BSS_SCORE;
2231 	}
2232 
2233 	bss_mlo_type = cm_bss_mlo_type(psoc, entry, scan_list);
2234 	if (score_config->vendor_roam_score_algorithm) {
2235 		score = cm_calculate_etp_score(psoc, entry, phy_config,
2236 					       bss_mlo_type);
2237 		entry->bss_score = score;
2238 		if (bss_mlo_type == MLMR) {
2239 			cm_sort_vendor_algo_mlo_bss_entry(psoc, entry,
2240 							  phy_config, scan_list,
2241 							  bss_mlo_type);
2242 		}
2243 		mlme_nofl_debug("Candidate("QDF_MAC_ADDR_FMT" freq %d): rssi %d score %d",
2244 				QDF_MAC_ADDR_REF(entry->bssid.bytes),
2245 				entry->channel.chan_freq,
2246 				entry->rssi_raw, entry->bss_score);
2247 		return score;
2248 	}
2249 
2250 	if (is_link_score || bss_mlo_type == SLO || bss_mlo_type == MLSR) {
2251 		rssi_score =
2252 			cm_calculate_rssi_score(&score_config->rssi_score,
2253 						entry->rssi_raw,
2254 						weight_config->rssi_weightage);
2255 		prorated_pcnt =
2256 			cm_get_rssi_prorate_pct(&score_config->rssi_score,
2257 						entry->rssi_raw,
2258 						weight_config->rssi_weightage);
2259 		score += rssi_score;
2260 		bandwidth_score =
2261 			cm_get_bw_score(weight_config->chan_width_weightage,
2262 					cm_get_ch_width(entry, phy_config),
2263 					prorated_pcnt);
2264 		score += bandwidth_score;
2265 
2266 		congestion_score =
2267 			cm_calculate_congestion_score(entry,
2268 						      score_config,
2269 						      &congestion_pct, 0);
2270 		score += congestion_score * CM_SLO_CONGESTION_MAX_SCORE /
2271 			 CM_MAX_PCT_SCORE;
2272 
2273 		band_score = cm_get_band_score(entry->channel.chan_freq,
2274 					       score_config);
2275 		score += band_score;
2276 
2277 		if (bss_mlo_type == MLSR)
2278 			score += cm_calculate_emlsr_score(weight_config);
2279 	} else {
2280 		score += cm_calculate_mlo_bss_score(psoc, entry, score_config,
2281 						    phy_config, scan_list,
2282 						    &prorated_pcnt,
2283 						    pcl_chan_weight);
2284 	}
2285 
2286 	pcl_score = cm_calculate_pcl_score(psoc, pcl_chan_weight,
2287 					   weight_config->pcl_weightage);
2288 	score += pcl_score;
2289 
2290 	/*
2291 	 * Add HT weight if HT is supported by the AP. In case
2292 	 * of 6 GHZ AP, HT and VHT won't be supported so that
2293 	 * these weightage to the same by default to match
2294 	 * with 2.4/5 GHZ APs where HT, VHT is supported
2295 	 */
2296 	if (phy_config->ht_cap && (entry->ie_list.htcap ||
2297 	    WLAN_REG_IS_6GHZ_CHAN_FREQ(entry->channel.chan_freq)))
2298 		ht_score = prorated_pcnt *
2299 				weight_config->ht_caps_weightage;
2300 	score += ht_score;
2301 
2302 	if (WLAN_REG_IS_24GHZ_CH_FREQ(entry->channel.chan_freq)) {
2303 		if (phy_config->vht_24G_cap)
2304 			is_vht = true;
2305 	} else if (phy_config->vht_cap) {
2306 		is_vht = true;
2307 	}
2308 
2309 	/* Add VHT score to 6 GHZ AP to match with 2.4/5 GHZ APs */
2310 	if (is_vht && (entry->ie_list.vhtcap ||
2311 	    WLAN_REG_IS_6GHZ_CHAN_FREQ(entry->channel.chan_freq)))
2312 		vht_score = prorated_pcnt *
2313 				 weight_config->vht_caps_weightage;
2314 	score += vht_score;
2315 
2316 	if (phy_config->he_cap && entry->ie_list.hecap)
2317 		he_score = prorated_pcnt *
2318 			   weight_config->he_caps_weightage;
2319 	score += he_score;
2320 
2321 	good_rssi_threshold =
2322 		score_config->rssi_score.good_rssi_threshold * (-1);
2323 	rssi_pref_5g_rssi_thresh =
2324 		score_config->rssi_score.rssi_pref_5g_rssi_thresh * (-1);
2325 	if (entry->rssi_raw < good_rssi_threshold)
2326 		same_bucket = cm_rssi_is_same_bucket(good_rssi_threshold,
2327 				entry->rssi_raw, rssi_pref_5g_rssi_thresh,
2328 				score_config->rssi_score.bad_rssi_bucket_size);
2329 
2330 	vht_cap = (struct wlan_ie_vhtcaps *)util_scan_entry_vhtcap(entry);
2331 	he_cap = (struct wlan_ie_hecaps *)util_scan_entry_hecap(entry);
2332 
2333 	if (vht_cap && vht_cap->su_beam_former) {
2334 		ap_su_beam_former = true;
2335 	} else if (he_cap && QDF_GET_BITS(*(he_cap->he_phy_cap.phy_cap_bytes +
2336 		   WLAN_HE_PHYCAP_SU_BFER_OFFSET), WLAN_HE_PHYCAP_SU_BFER_IDX,
2337 		   WLAN_HE_PHYCAP_SU_BFER_BITS)) {
2338 		ap_su_beam_former = true;
2339 	} else {
2340 		ap_su_beam_former = cm_get_su_beam_former(entry);
2341 	}
2342 
2343 	if (phy_config->beamformee_cap && is_vht &&
2344 	    ap_su_beam_former &&
2345 	    (entry->rssi_raw > rssi_pref_5g_rssi_thresh) && !same_bucket)
2346 		beamformee_score = CM_MAX_PCT_SCORE *
2347 				weight_config->beamforming_cap_weightage;
2348 	score += beamformee_score;
2349 
2350 	/*
2351 	 * Consider OCE WAN score score only if
2352 	 * congestion_pct is greater than CONGESTION_THRSHOLD_FOR_BAND_OCE_SCORE
2353 	 */
2354 	if (congestion_pct < CM_CONGESTION_THRSHOLD_FOR_BAND_OCE_SCORE) {
2355 		oce_wan_score = cm_calculate_oce_wan_score(entry, score_config);
2356 		score += oce_wan_score;
2357 	}
2358 
2359 	oce_ap_tx_pwr_score =
2360 		cm_calculate_oce_ap_tx_pwr_weightage(entry, score_config,
2361 						     &ap_tx_pwr_dbm);
2362 	score += oce_ap_tx_pwr_score;
2363 
2364 	oce_subnet_id_score = cm_calculate_oce_subnet_id_weightage(entry,
2365 						score_config,
2366 						&oce_subnet_id_present);
2367 	score += oce_subnet_id_score;
2368 
2369 	sae_pk_score = cm_calculate_sae_pk_ap_weightage(entry, score_config,
2370 							&sae_pk_cap_present);
2371 	score += sae_pk_score;
2372 
2373 	sta_nss = cm_get_sta_nss(psoc, entry->channel.chan_freq,
2374 				 phy_config->vdev_nss_24g,
2375 				 phy_config->vdev_nss_5g);
2376 
2377 	/*
2378 	 * If station support nss as 2*2 but AP support NSS as 1*1,
2379 	 * this AP will be given half weight compare to AP which are having
2380 	 * NSS as 2*2.
2381 	 */
2382 	nss_score = cm_calculate_nss_score(psoc, score_config, entry->nss,
2383 					   prorated_pcnt, sta_nss);
2384 	score += nss_score;
2385 
2386 	/*
2387 	 * Since older FW will stick to the single AKM for roaming,
2388 	 * no need to check the fw capability.
2389 	 */
2390 	security_score = cm_calculate_security_score(score_config,
2391 						     entry->neg_sec_info);
2392 	score += security_score;
2393 
2394 	eht_score = cm_calculate_eht_score(entry, score_config, phy_config,
2395 					   prorated_pcnt);
2396 	score += eht_score;
2397 
2398 	if (!is_link_score)
2399 		entry->bss_score = score;
2400 
2401 	mlme_nofl_debug("Candidate("QDF_MAC_ADDR_FMT" freq %d): rssi %d HT %d VHT %d HE %d EHT %d su bfer %d phy %d  air time frac %d qbss %d cong_pct %d NSS %d ap_tx_pwr_dbm %d oce_subnet_id_present %d sae_pk_cap_present %d prorated_pcnt %d keymgmt 0x%x mlo type %d",
2402 			QDF_MAC_ADDR_REF(entry->bssid.bytes),
2403 			entry->channel.chan_freq,
2404 			entry->rssi_raw, util_scan_entry_htcap(entry) ? 1 : 0,
2405 			util_scan_entry_vhtcap(entry) ? 1 : 0,
2406 			util_scan_entry_hecap(entry) ? 1 : 0,
2407 			util_scan_entry_ehtcap(entry) ? 1 : 0,
2408 			ap_su_beam_former,
2409 			entry->phy_mode, entry->air_time_fraction,
2410 			entry->qbss_chan_load, congestion_pct, entry->nss,
2411 			ap_tx_pwr_dbm, oce_subnet_id_present,
2412 			sae_pk_cap_present, prorated_pcnt,
2413 			entry->neg_sec_info.key_mgmt, bss_mlo_type);
2414 
2415 	mlme_nofl_debug("%s score: rssi %d pcl %d ht %d vht %d he %d bfee %d bw %d band %d congestion %d nss %d oce wan %d oce ap tx pwr %d subnet %d sae_pk %d eht %d security %d TOTAL %d",
2416 			is_link_score ? "Link" : "AP",
2417 			rssi_score, pcl_score, ht_score,
2418 			vht_score, he_score, beamformee_score, bandwidth_score,
2419 			band_score, congestion_score, nss_score, oce_wan_score,
2420 			oce_ap_tx_pwr_score, oce_subnet_id_score,
2421 			sae_pk_score, eht_score, security_score, score);
2422 
2423 	return score;
2424 }
2425 
2426 static void cm_list_insert_sorted(qdf_list_t *scan_list,
2427 				  struct scan_cache_node *scan_entry)
2428 {
2429 	qdf_list_node_t *cur_node = NULL, *next_node = NULL;
2430 	struct scan_cache_node *curr_entry;
2431 
2432 	qdf_list_peek_front(scan_list, &cur_node);
2433 	while (cur_node) {
2434 		curr_entry = qdf_container_of(cur_node, struct scan_cache_node,
2435 					      node);
2436 		if (cm_is_better_bss(scan_entry->entry, curr_entry->entry)) {
2437 			qdf_list_insert_before(scan_list, &scan_entry->node,
2438 					       &curr_entry->node);
2439 			break;
2440 		}
2441 		qdf_list_peek_next(scan_list, cur_node, &next_node);
2442 		cur_node = next_node;
2443 		next_node = NULL;
2444 	}
2445 
2446 	if (!cur_node)
2447 		qdf_list_insert_back(scan_list, &scan_entry->node);
2448 }
2449 
2450 #ifdef CONN_MGR_ADV_FEATURE
2451 /**
2452  * cm_is_bad_rssi_entry() - check the entry have rssi value, if rssi is lower
2453  * than threshold limit, then it is considered ad bad rssi value.
2454  * @scan_entry: pointer to scan cache entry
2455  * @score_config: pointer to score config structure
2456  * @bssid_hint: bssid hint
2457  *
2458  * Return: true if rssi is lower than threshold
2459  */
2460 static
2461 bool cm_is_bad_rssi_entry(struct scan_cache_entry *scan_entry,
2462 			  struct scoring_cfg *score_config,
2463 			  struct qdf_mac_addr *bssid_hint)
2464 {
2465 	int8_t rssi_threshold =
2466 		score_config->rssi_score.con_non_hint_target_rssi_threshold;
2467 
2468 	 /* do not need to consider BSSID hint if it is invalid entry(zero) */
2469 	if (qdf_is_macaddr_zero(bssid_hint))
2470 		return false;
2471 
2472 	if (score_config->is_bssid_hint_priority &&
2473 	    !qdf_is_macaddr_equal(bssid_hint, &scan_entry->bssid) &&
2474 	    scan_entry->rssi_raw < rssi_threshold) {
2475 		mlme_nofl_debug("Candidate(  " QDF_MAC_ADDR_FMT "  freq %d): remove entry, rssi %d lower than rssi_threshold %d",
2476 				QDF_MAC_ADDR_REF(scan_entry->bssid.bytes),
2477 				scan_entry->channel.chan_freq,
2478 				scan_entry->rssi_raw, rssi_threshold);
2479 		return true;
2480 	}
2481 
2482 	return false;
2483 }
2484 
2485 /**
2486  * cm_update_bss_score_for_mac_addr_matching() - boost score based on mac
2487  * address matching
2488  * @scan_entry: pointer to scan cache entry
2489  * @self_mac: pointer to bssid to be matched
2490  *
2491  * Some IOT APs only allow to connect if last 3 bytes of BSSID
2492  * and self MAC is same. They create a new bssid on receiving
2493  * unicast probe/auth req from STA and allow STA to connect to
2494  * this matching BSSID only. So boost the matching BSSID to try
2495  * to connect to this BSSID.
2496  *
2497  * Return: void
2498  */
2499 static void
2500 cm_update_bss_score_for_mac_addr_matching(struct scan_cache_node *scan_entry,
2501 					  struct qdf_mac_addr *self_mac)
2502 {
2503 	struct qdf_mac_addr *scan_entry_bssid;
2504 
2505 	if (!self_mac)
2506 		return;
2507 	scan_entry_bssid = &scan_entry->entry->bssid;
2508 	if (QDF_IS_LAST_3_BYTES_OF_MAC_SAME(
2509 		self_mac, scan_entry_bssid)) {
2510 		mlme_nofl_debug("Candidate("QDF_MAC_ADDR_FMT" freq %d): boost bss score due to same last 3 byte match",
2511 				QDF_MAC_ADDR_REF(
2512 				scan_entry_bssid->bytes),
2513 				scan_entry->entry->channel.chan_freq);
2514 		scan_entry->entry->bss_score =
2515 			CM_BEST_CANDIDATE_MAX_BSS_SCORE;
2516 	}
2517 }
2518 #else
2519 static inline
2520 bool cm_is_bad_rssi_entry(struct scan_cache_entry *scan_entry,
2521 			  struct scoring_cfg *score_config,
2522 			  struct qdf_mac_addr *bssid_hint)
2523 
2524 {
2525 	return false;
2526 }
2527 
2528 static void
2529 cm_update_bss_score_for_mac_addr_matching(struct scan_cache_node *scan_entry,
2530 					  struct qdf_mac_addr *self_mac)
2531 {
2532 }
2533 #endif
2534 
2535 void wlan_cm_calculate_bss_score(struct wlan_objmgr_pdev *pdev,
2536 				 struct pcl_freq_weight_list *pcl_lst,
2537 				 qdf_list_t *scan_list,
2538 				 struct qdf_mac_addr *bssid_hint,
2539 				 struct qdf_mac_addr *self_mac)
2540 {
2541 	struct scan_cache_node *scan_entry;
2542 	qdf_list_node_t *cur_node = NULL, *next_node = NULL;
2543 	struct psoc_mlme_obj *mlme_psoc_obj;
2544 	struct scoring_cfg *score_config;
2545 	int pcl_chan_weight;
2546 	QDF_STATUS status;
2547 	struct psoc_phy_config *config;
2548 	enum cm_denylist_action denylist_action;
2549 	struct wlan_objmgr_psoc *psoc;
2550 	bool assoc_allowed;
2551 	struct scan_cache_node *force_connect_candidate = NULL;
2552 	bool are_all_candidate_denylisted = true;
2553 	bool is_rssi_bad = false;
2554 
2555 	psoc = wlan_pdev_get_psoc(pdev);
2556 
2557 	if (!psoc) {
2558 		mlme_err("psoc NULL");
2559 		return;
2560 	}
2561 	if (!scan_list) {
2562 		mlme_err("Scan list NULL");
2563 		return;
2564 	}
2565 
2566 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2567 	if (!mlme_psoc_obj)
2568 		return;
2569 
2570 	score_config = &mlme_psoc_obj->psoc_cfg.score_config;
2571 	config = &mlme_psoc_obj->psoc_cfg.phy_config;
2572 
2573 	mlme_nofl_debug("Self caps: HT %d VHT %d HE %d EHT %d VHT_24Ghz %d BF cap %d bw_above_20_24ghz %d bw_above_20_5ghz %d 2.4G NSS %d 5G NSS %d",
2574 			config->ht_cap, config->vht_cap,
2575 			config->he_cap, config->eht_cap, config->vht_24G_cap,
2576 			config->beamformee_cap, config->bw_above_20_24ghz,
2577 			config->bw_above_20_5ghz, config->vdev_nss_24g,
2578 			config->vdev_nss_5g);
2579 
2580 	/* calculate score for each AP */
2581 	if (qdf_list_peek_front(scan_list, &cur_node) != QDF_STATUS_SUCCESS) {
2582 		mlme_err("failed to peer front of scan list");
2583 		return;
2584 	}
2585 
2586 	while (cur_node) {
2587 		qdf_list_peek_next(scan_list, cur_node, &next_node);
2588 		pcl_chan_weight = 0;
2589 		scan_entry = qdf_container_of(cur_node, struct scan_cache_node,
2590 					      node);
2591 
2592 		is_rssi_bad = cm_is_bad_rssi_entry(scan_entry->entry,
2593 						   score_config, bssid_hint);
2594 
2595 		assoc_allowed = cm_is_assoc_allowed(mlme_psoc_obj,
2596 						    scan_entry->entry);
2597 
2598 		if (assoc_allowed && !is_rssi_bad)
2599 			denylist_action = wlan_denylist_action_on_bssid(pdev,
2600 							scan_entry->entry);
2601 		else
2602 			denylist_action = CM_DLM_FORCE_REMOVE;
2603 
2604 		if (denylist_action == CM_DLM_NO_ACTION ||
2605 		    denylist_action == CM_DLM_AVOID)
2606 			are_all_candidate_denylisted = false;
2607 
2608 		if (denylist_action == CM_DLM_NO_ACTION &&
2609 		    pcl_lst && pcl_lst->num_of_pcl_channels &&
2610 		    scan_entry->entry->rssi_raw > CM_PCL_RSSI_THRESHOLD &&
2611 		    score_config->weight_config.pcl_weightage) {
2612 			if (cm_get_pcl_weight_of_channel(
2613 					scan_entry->entry->channel.chan_freq,
2614 					pcl_lst, &pcl_chan_weight)) {
2615 				mlme_debug("pcl freq %d pcl_chan_weight %d",
2616 					   scan_entry->entry->channel.chan_freq,
2617 					   pcl_chan_weight);
2618 			}
2619 		}
2620 
2621 		if (denylist_action == CM_DLM_NO_ACTION ||
2622 		    (are_all_candidate_denylisted && denylist_action ==
2623 		     CM_DLM_REMOVE)) {
2624 			cm_calculate_bss_score(psoc, scan_entry->entry,
2625 					       pcl_chan_weight, bssid_hint,
2626 					       scan_list, false);
2627 		} else if (denylist_action == CM_DLM_AVOID) {
2628 			/* add min score so that it is added back in the end */
2629 			scan_entry->entry->bss_score =
2630 					CM_AVOID_CANDIDATE_MIN_SCORE;
2631 			mlme_nofl_debug("Candidate("QDF_MAC_ADDR_FMT" freq %d): rssi %d, is in Avoidlist, give min score %d",
2632 					QDF_MAC_ADDR_REF(scan_entry->entry->bssid.bytes),
2633 					scan_entry->entry->channel.chan_freq,
2634 					scan_entry->entry->rssi_raw,
2635 					scan_entry->entry->bss_score);
2636 		} else {
2637 			mlme_nofl_debug("Candidate("QDF_MAC_ADDR_FMT" freq %d): denylist_action %d",
2638 					QDF_MAC_ADDR_REF(scan_entry->entry->bssid.bytes),
2639 					scan_entry->entry->channel.chan_freq,
2640 					denylist_action);
2641 		}
2642 
2643 		cm_update_bss_score_for_mac_addr_matching(scan_entry, self_mac);
2644 		/*
2645 		 * The below logic is added to select the best candidate
2646 		 * amongst the denylisted candidates. This is done to
2647 		 * handle a case where all the BSSIDs become denylisted
2648 		 * and hence there are continuous connection failures.
2649 		 * With the below logic if the action on BSSID is to remove
2650 		 * then we keep a backup node and restore the candidate
2651 		 * list.
2652 		 */
2653 		if (denylist_action == CM_DLM_REMOVE &&
2654 		    are_all_candidate_denylisted) {
2655 			if (!force_connect_candidate) {
2656 				force_connect_candidate =
2657 					qdf_mem_malloc(
2658 					   sizeof(*force_connect_candidate));
2659 				if (!force_connect_candidate)
2660 					return;
2661 				force_connect_candidate->entry =
2662 					util_scan_copy_cache_entry(scan_entry->entry);
2663 				if (!force_connect_candidate->entry)
2664 					return;
2665 			} else if (cm_is_better_bss(
2666 				   scan_entry->entry,
2667 				   force_connect_candidate->entry)) {
2668 				util_scan_free_cache_entry(
2669 					force_connect_candidate->entry);
2670 				force_connect_candidate->entry =
2671 				  util_scan_copy_cache_entry(scan_entry->entry);
2672 				if (!force_connect_candidate->entry)
2673 					return;
2674 			}
2675 		}
2676 
2677 		/* Remove node from current location to add node back sorted */
2678 		status = qdf_list_remove_node(scan_list, cur_node);
2679 		if (QDF_IS_STATUS_ERROR(status)) {
2680 			mlme_err("failed to remove node for BSS "QDF_MAC_ADDR_FMT" from scan list",
2681 				 QDF_MAC_ADDR_REF(scan_entry->entry->bssid.bytes));
2682 			return;
2683 		}
2684 
2685 		/*
2686 		 * If CM_DLM_REMOVE ie denylisted or assoc not allowed then
2687 		 * free the entry else add back to the list sorted
2688 		 */
2689 		if (denylist_action == CM_DLM_REMOVE ||
2690 		    denylist_action == CM_DLM_FORCE_REMOVE) {
2691 			if (assoc_allowed && !is_rssi_bad)
2692 				mlme_nofl_debug("Candidate( " QDF_MAC_ADDR_FMT " freq %d): rssi %d, dlm action %d is in Denylist, remove entry",
2693 					QDF_MAC_ADDR_REF(scan_entry->entry->bssid.bytes),
2694 					scan_entry->entry->channel.chan_freq,
2695 					scan_entry->entry->rssi_raw,
2696 					denylist_action);
2697 			util_scan_free_cache_entry(scan_entry->entry);
2698 			qdf_mem_free(scan_entry);
2699 		} else {
2700 			cm_list_insert_sorted(scan_list, scan_entry);
2701 		}
2702 
2703 		cur_node = next_node;
2704 		next_node = NULL;
2705 	}
2706 
2707 	if (are_all_candidate_denylisted && force_connect_candidate) {
2708 		mlme_nofl_debug("All candidates in denylist, Candidate( " QDF_MAC_ADDR_FMT " freq %d): rssi %d, selected for connection",
2709 			QDF_MAC_ADDR_REF(force_connect_candidate->entry->bssid.bytes),
2710 			force_connect_candidate->entry->channel.chan_freq,
2711 			force_connect_candidate->entry->rssi_raw);
2712 		cm_list_insert_sorted(scan_list, force_connect_candidate);
2713 	} else if (force_connect_candidate) {
2714 		util_scan_free_cache_entry(force_connect_candidate->entry);
2715 		qdf_mem_free(force_connect_candidate);
2716 	}
2717 }
2718 
2719 #ifdef CONFIG_BAND_6GHZ
2720 static bool cm_check_h2e_support(const uint8_t *rsnxe)
2721 {
2722 	const uint8_t *rsnxe_cap;
2723 	uint8_t cap_len;
2724 
2725 	rsnxe_cap = wlan_crypto_parse_rsnxe_ie(rsnxe, &cap_len);
2726 	if (!rsnxe_cap) {
2727 		mlme_debug("RSNXE caps not present");
2728 		return false;
2729 	}
2730 
2731 	if (*rsnxe_cap & WLAN_CRYPTO_RSNX_CAP_SAE_H2E)
2732 		return true;
2733 
2734 	mlme_debug("RSNXE caps %x dont have H2E support", *rsnxe_cap);
2735 
2736 	return false;
2737 }
2738 
2739 #ifdef CONN_MGR_ADV_FEATURE
2740 static bool wlan_cm_wfa_get_test_feature_flags(struct wlan_objmgr_psoc *psoc)
2741 {
2742 	return wlan_wfa_get_test_feature_flags(psoc, WFA_TEST_IGNORE_RSNXE);
2743 }
2744 #else
2745 static bool wlan_cm_wfa_get_test_feature_flags(struct wlan_objmgr_psoc *psoc)
2746 {
2747 	return false;
2748 }
2749 #endif
2750 
2751 bool wlan_cm_6ghz_allowed_for_akm(struct wlan_objmgr_psoc *psoc,
2752 				  uint32_t key_mgmt, uint16_t rsn_caps,
2753 				  const uint8_t *rsnxe, uint8_t sae_pwe,
2754 				  bool is_wps)
2755 {
2756 	struct psoc_mlme_obj *mlme_psoc_obj;
2757 	struct scoring_cfg *config;
2758 
2759 	/* Allow connection for WPS security */
2760 	if (is_wps)
2761 		return true;
2762 
2763 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2764 	if (!mlme_psoc_obj)
2765 		return false;
2766 
2767 	config = &mlme_psoc_obj->psoc_cfg.score_config;
2768 	/*
2769 	 * if check_6ghz_security is not set check if key_mgmt_mask_6ghz is set
2770 	 * if key_mgmt_mask_6ghz is set check if AKM matches the user configured
2771 	 * 6Ghz security
2772 	 */
2773 	if (!config->check_6ghz_security) {
2774 		if (!config->key_mgmt_mask_6ghz)
2775 			return true;
2776 		/*
2777 		 * Check if any AKM is allowed as per user 6Ghz allowed AKM mask
2778 		 */
2779 		if (!(config->key_mgmt_mask_6ghz & key_mgmt)) {
2780 			mlme_debug("user configured mask %x didn't match AKM %x",
2781 				   config->key_mgmt_mask_6ghz , key_mgmt);
2782 			return false;
2783 		}
2784 
2785 		return true;
2786 	}
2787 
2788 	/* Check if any AKM is allowed as per the 6Ghz allowed AKM mask */
2789 	if (!(key_mgmt & ALLOWED_KEYMGMT_6G_MASK)) {
2790 		mlme_debug("AKM 0x%x didn't match with allowed 6ghz AKM 0x%x",
2791 			   key_mgmt, ALLOWED_KEYMGMT_6G_MASK);
2792 		return false;
2793 	}
2794 
2795 	/* if check_6ghz_security is set validate all checks for 6Ghz */
2796 	if (!(rsn_caps & WLAN_CRYPTO_RSN_CAP_MFP_ENABLED)) {
2797 		mlme_debug("PMF not enabled for 6GHz AP");
2798 		return false;
2799 	}
2800 
2801 	/* for SAE we need to check H2E support */
2802 	if (!(QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_SAE) ||
2803 	    QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_FT_SAE) ||
2804 	    QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_SAE_EXT_KEY) ||
2805 	    QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_FT_SAE_EXT_KEY)))
2806 		return true;
2807 
2808 	return (cm_check_h2e_support(rsnxe) ||
2809 		wlan_cm_wfa_get_test_feature_flags(psoc));
2810 }
2811 
2812 void wlan_cm_set_check_6ghz_security(struct wlan_objmgr_psoc *psoc,
2813 				     bool value)
2814 {
2815 	struct psoc_mlme_obj *mlme_psoc_obj;
2816 
2817 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2818 	if (!mlme_psoc_obj)
2819 		return;
2820 
2821 	mlme_debug("6ghz security check val %x", value);
2822 	mlme_psoc_obj->psoc_cfg.score_config.check_6ghz_security = value;
2823 }
2824 
2825 void wlan_cm_reset_check_6ghz_security(struct wlan_objmgr_psoc *psoc)
2826 {
2827 	struct psoc_mlme_obj *mlme_psoc_obj;
2828 
2829 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2830 	if (!mlme_psoc_obj)
2831 		return;
2832 
2833 	mlme_psoc_obj->psoc_cfg.score_config.check_6ghz_security =
2834 					cfg_get(psoc, CFG_CHECK_6GHZ_SECURITY);
2835 }
2836 
2837 bool wlan_cm_get_check_6ghz_security(struct wlan_objmgr_psoc *psoc)
2838 {
2839 	struct psoc_mlme_obj *mlme_psoc_obj;
2840 
2841 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2842 	if (!mlme_psoc_obj)
2843 		return false;
2844 
2845 	return mlme_psoc_obj->psoc_cfg.score_config.check_6ghz_security;
2846 }
2847 
2848 void wlan_cm_set_standard_6ghz_conn_policy(struct wlan_objmgr_psoc *psoc,
2849 					   bool value)
2850 {
2851 	struct psoc_mlme_obj *mlme_psoc_obj;
2852 
2853 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2854 	if (!mlme_psoc_obj)
2855 		return;
2856 
2857 	mlme_debug("6ghz standard connection policy val %x", value);
2858 	mlme_psoc_obj->psoc_cfg.score_config.standard_6ghz_conn_policy = value;
2859 }
2860 
2861 bool wlan_cm_get_standard_6ghz_conn_policy(struct wlan_objmgr_psoc *psoc)
2862 {
2863 	struct psoc_mlme_obj *mlme_psoc_obj;
2864 
2865 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2866 	if (!mlme_psoc_obj)
2867 		return false;
2868 
2869 	return mlme_psoc_obj->psoc_cfg.score_config.standard_6ghz_conn_policy;
2870 }
2871 
2872 void wlan_cm_set_disable_vlp_sta_conn_to_sp_ap(struct wlan_objmgr_psoc *psoc,
2873 					       bool value)
2874 {
2875 	struct psoc_mlme_obj *mlme_psoc_obj;
2876 
2877 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2878 	if (!mlme_psoc_obj)
2879 		return;
2880 
2881 	mlme_debug("disable_vlp_sta_conn_to_sp_ap val %x", value);
2882 	mlme_psoc_obj->psoc_cfg.score_config.disable_vlp_sta_conn_to_sp_ap = value;
2883 }
2884 
2885 bool wlan_cm_get_disable_vlp_sta_conn_to_sp_ap(struct wlan_objmgr_psoc *psoc)
2886 {
2887 	struct psoc_mlme_obj *mlme_psoc_obj;
2888 
2889 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2890 	if (!mlme_psoc_obj)
2891 		return false;
2892 
2893 	return mlme_psoc_obj->psoc_cfg.score_config.disable_vlp_sta_conn_to_sp_ap;
2894 }
2895 
2896 void wlan_cm_set_6ghz_key_mgmt_mask(struct wlan_objmgr_psoc *psoc,
2897 				     uint32_t value)
2898 {
2899 	struct psoc_mlme_obj *mlme_psoc_obj;
2900 
2901 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2902 	if (!mlme_psoc_obj)
2903 		return;
2904 
2905 	mlme_debug("key_mgmt_mask_6ghz %x", value);
2906 	mlme_psoc_obj->psoc_cfg.score_config.key_mgmt_mask_6ghz = value;
2907 }
2908 
2909 uint32_t wlan_cm_get_6ghz_key_mgmt_mask(struct wlan_objmgr_psoc *psoc)
2910 {
2911 	struct psoc_mlme_obj *mlme_psoc_obj;
2912 
2913 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2914 	if (!mlme_psoc_obj)
2915 		return DEFAULT_KEYMGMT_6G_MASK;
2916 
2917 	return mlme_psoc_obj->psoc_cfg.score_config.key_mgmt_mask_6ghz;
2918 }
2919 
2920 static void cm_fill_6ghz_params(struct wlan_objmgr_psoc *psoc,
2921 				struct scoring_cfg *score_cfg)
2922 {
2923 	/* Allow all security in 6Ghz by default */
2924 	score_cfg->check_6ghz_security = cfg_get(psoc, CFG_CHECK_6GHZ_SECURITY);
2925 	score_cfg->key_mgmt_mask_6ghz =
2926 				cfg_get(psoc, CFG_6GHZ_ALLOWED_AKM_MASK);
2927 }
2928 #else
2929 static inline void cm_fill_6ghz_params(struct wlan_objmgr_psoc *psoc,
2930 				       struct scoring_cfg *score_cfg)
2931 {
2932 }
2933 #endif
2934 
2935 static uint32_t
2936 cm_limit_max_per_index_score(uint32_t per_index_score)
2937 {
2938 	uint8_t i, score;
2939 
2940 	for (i = 0; i < CM_MAX_INDEX_PER_INI; i++) {
2941 		score = CM_GET_SCORE_PERCENTAGE(per_index_score, i);
2942 		if (score > CM_MAX_PCT_SCORE)
2943 			CM_SET_SCORE_PERCENTAGE(per_index_score,
2944 						CM_MAX_PCT_SCORE, i);
2945 	}
2946 
2947 	return per_index_score;
2948 }
2949 
2950 #ifdef WLAN_FEATURE_11BE_MLO
2951 
2952 #define CM_EHT_CAP_WEIGHTAGE 2
2953 #define CM_MLO_WEIGHTAGE 3
2954 #define CM_WLM_INDICATION_WEIGHTAGE 2
2955 #define CM_EMLSR_WEIGHTAGE 3
2956 static void cm_init_mlo_score_config(struct wlan_objmgr_psoc *psoc,
2957 				     struct scoring_cfg *score_cfg,
2958 				     uint32_t *total_weight)
2959 {
2960 	score_cfg->weight_config.eht_caps_weightage =
2961 		cfg_get(psoc, CFG_SCORING_EHT_CAPS_WEIGHTAGE);
2962 
2963 	score_cfg->weight_config.mlo_weightage =
2964 		cfg_get(psoc, CFG_SCORING_MLO_WEIGHTAGE);
2965 
2966 	score_cfg->weight_config.wlm_indication_weightage =
2967 		cfg_get(psoc, CFG_SCORING_WLM_INDICATION_WEIGHTAGE);
2968 
2969 	score_cfg->weight_config.joint_rssi_alpha =
2970 				cfg_get(psoc, CFG_SCORING_JOINT_RSSI_ALPHA);
2971 
2972 	score_cfg->weight_config.low_band_rssi_boost =
2973 				cfg_get(psoc, CFG_SCORING_LOW_BAND_RSSI_BOOST);
2974 
2975 	score_cfg->weight_config.joint_esp_alpha =
2976 				cfg_get(psoc, CFG_SCORING_JOINT_ESP_ALPHA);
2977 
2978 	score_cfg->weight_config.low_band_esp_boost =
2979 				cfg_get(psoc, CFG_SCORING_LOW_BAND_ESP_BOOST);
2980 
2981 	score_cfg->weight_config.joint_oce_alpha =
2982 				cfg_get(psoc, CFG_SCORING_JOINT_OCE_ALPHA);
2983 
2984 	score_cfg->weight_config.low_band_oce_boost =
2985 				cfg_get(psoc, CFG_SCORING_LOW_BAND_OCE_BOOST);
2986 
2987 	score_cfg->weight_config.emlsr_weightage =
2988 		cfg_get(psoc, CFG_SCORING_EMLSR_WEIGHTAGE);
2989 
2990 	score_cfg->mlsr_link_selection =
2991 		cfg_get(psoc, CFG_SCORING_MLSR_LINK_SELECTION);
2992 
2993 	*total_weight += score_cfg->weight_config.eht_caps_weightage +
2994 			 score_cfg->weight_config.mlo_weightage +
2995 			 score_cfg->weight_config.wlm_indication_weightage +
2996 			 score_cfg->weight_config.emlsr_weightage;
2997 }
2998 
2999 static void cm_set_default_mlo_weights(struct scoring_cfg *score_cfg)
3000 {
3001 	score_cfg->weight_config.eht_caps_weightage = CM_EHT_CAP_WEIGHTAGE;
3002 	score_cfg->weight_config.mlo_weightage = CM_MLO_WEIGHTAGE;
3003 	score_cfg->weight_config.wlm_indication_weightage =
3004 						CM_WLM_INDICATION_WEIGHTAGE;
3005 	score_cfg->weight_config.emlsr_weightage = CM_EMLSR_WEIGHTAGE;
3006 }
3007 
3008 static void cm_init_bw_weight_per_index(struct wlan_objmgr_psoc *psoc,
3009 					struct scoring_cfg *score_cfg)
3010 {
3011 	score_cfg->bandwidth_weight_per_index[0] =
3012 		cm_limit_max_per_index_score(
3013 			cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX));
3014 
3015 	score_cfg->bandwidth_weight_per_index[1] =
3016 		cm_limit_max_per_index_score(
3017 			cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_4_TO_7));
3018 
3019 	score_cfg->bandwidth_weight_per_index[2] =
3020 		cm_limit_max_per_index_score(
3021 		     cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_8_TO_11));
3022 
3023 	score_cfg->bandwidth_weight_per_index[3] =
3024 		cm_limit_max_per_index_score(
3025 		    cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_12_TO_15));
3026 
3027 	score_cfg->bandwidth_weight_per_index[4] =
3028 		cm_limit_max_per_index_score(
3029 		    cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_16_TO_19));
3030 
3031 	score_cfg->bandwidth_weight_per_index[5] =
3032 		cm_limit_max_per_index_score(
3033 		    cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_20_TO_23));
3034 
3035 	score_cfg->bandwidth_weight_per_index[6] =
3036 		cm_limit_max_per_index_score(
3037 		    cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_24_TO_27));
3038 
3039 	score_cfg->bandwidth_weight_per_index[7] =
3040 		cm_limit_max_per_index_score(
3041 		    cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_28_TO_31));
3042 
3043 	score_cfg->bandwidth_weight_per_index[8] =
3044 		cm_limit_max_per_index_score(
3045 		    cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_32_TO_35));
3046 }
3047 
3048 static void cm_init_nss_weight_per_index(struct wlan_objmgr_psoc *psoc,
3049 					 struct scoring_cfg *score_cfg)
3050 {
3051 	score_cfg->nss_weight_per_index[0] =
3052 		cm_limit_max_per_index_score(
3053 			cfg_get(psoc, CFG_SCORING_NSS_WEIGHT_PER_IDX));
3054 
3055 	score_cfg->nss_weight_per_index[1] =
3056 		cm_limit_max_per_index_score(
3057 		      cfg_get(psoc, CFG_SCORING_ML_NSS_WEIGHT_PER_IDX_4_TO_7));
3058 }
3059 #else
3060 static void cm_init_mlo_score_config(struct wlan_objmgr_psoc *psoc,
3061 				     struct scoring_cfg *score_cfg,
3062 				     uint32_t *total_weight)
3063 {
3064 }
3065 
3066 static void cm_set_default_mlo_weights(struct scoring_cfg *score_cfg)
3067 {
3068 }
3069 
3070 #ifdef WLAN_FEATURE_11BE
3071 static void cm_init_bw_weight_per_index(struct wlan_objmgr_psoc *psoc,
3072 					struct scoring_cfg *score_cfg)
3073 {
3074 	score_cfg->bandwidth_weight_per_index[0] =
3075 		cm_limit_max_per_index_score(
3076 			cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX));
3077 
3078 	score_cfg->bandwidth_weight_per_index[1] =
3079 		cm_limit_max_per_index_score(
3080 			cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_4_TO_7));
3081 
3082 	score_cfg->bandwidth_weight_per_index[2] =
3083 		cm_limit_max_per_index_score(
3084 		     cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_8_TO_11));
3085 }
3086 #else
3087 static void cm_init_bw_weight_per_index(struct wlan_objmgr_psoc *psoc,
3088 					struct scoring_cfg *score_cfg)
3089 {
3090 	score_cfg->bandwidth_weight_per_index[0] =
3091 		cm_limit_max_per_index_score(
3092 			cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX));
3093 }
3094 #endif
3095 
3096 static void cm_init_nss_weight_per_index(struct wlan_objmgr_psoc *psoc,
3097 					 struct scoring_cfg *score_cfg)
3098 {
3099 	score_cfg->nss_weight_per_index[0] =
3100 		cm_limit_max_per_index_score(
3101 			cfg_get(psoc, CFG_SCORING_NSS_WEIGHT_PER_IDX));
3102 }
3103 #endif
3104 
3105 void wlan_cm_init_score_config(struct wlan_objmgr_psoc *psoc,
3106 			       struct scoring_cfg *score_cfg)
3107 {
3108 	uint32_t total_weight;
3109 
3110 	score_cfg->weight_config.rssi_weightage =
3111 		cfg_get(psoc, CFG_SCORING_RSSI_WEIGHTAGE);
3112 	score_cfg->weight_config.ht_caps_weightage =
3113 		cfg_get(psoc, CFG_SCORING_HT_CAPS_WEIGHTAGE);
3114 	score_cfg->weight_config.vht_caps_weightage =
3115 		cfg_get(psoc, CFG_SCORING_VHT_CAPS_WEIGHTAGE);
3116 	score_cfg->weight_config.he_caps_weightage =
3117 		cfg_get(psoc, CFG_SCORING_HE_CAPS_WEIGHTAGE);
3118 	score_cfg->weight_config.chan_width_weightage =
3119 		cfg_get(psoc, CFG_SCORING_CHAN_WIDTH_WEIGHTAGE);
3120 	score_cfg->weight_config.chan_band_weightage =
3121 		cfg_get(psoc, CFG_SCORING_CHAN_BAND_WEIGHTAGE);
3122 	score_cfg->weight_config.nss_weightage =
3123 		cfg_get(psoc, CFG_SCORING_NSS_WEIGHTAGE);
3124 	score_cfg->weight_config.beamforming_cap_weightage =
3125 		cfg_get(psoc, CFG_SCORING_BEAMFORM_CAP_WEIGHTAGE);
3126 	score_cfg->weight_config.pcl_weightage =
3127 		cfg_get(psoc, CFG_SCORING_PCL_WEIGHTAGE);
3128 	score_cfg->weight_config.channel_congestion_weightage =
3129 		cfg_get(psoc, CFG_SCORING_CHAN_CONGESTION_WEIGHTAGE);
3130 	score_cfg->weight_config.oce_wan_weightage =
3131 		cfg_get(psoc, CFG_SCORING_OCE_WAN_WEIGHTAGE);
3132 	score_cfg->weight_config.oce_ap_tx_pwr_weightage =
3133 				cfg_get(psoc, CFG_OCE_AP_TX_PWR_WEIGHTAGE);
3134 	score_cfg->weight_config.oce_subnet_id_weightage =
3135 				cfg_get(psoc, CFG_OCE_SUBNET_ID_WEIGHTAGE);
3136 	score_cfg->weight_config.sae_pk_ap_weightage =
3137 				cfg_get(psoc, CFG_SAE_PK_AP_WEIGHTAGE);
3138 	score_cfg->weight_config.security_weightage = CM_SECURITY_WEIGHTAGE;
3139 
3140 	total_weight =  score_cfg->weight_config.rssi_weightage +
3141 			score_cfg->weight_config.ht_caps_weightage +
3142 			score_cfg->weight_config.vht_caps_weightage +
3143 			score_cfg->weight_config.he_caps_weightage +
3144 			score_cfg->weight_config.chan_width_weightage +
3145 			score_cfg->weight_config.chan_band_weightage +
3146 			score_cfg->weight_config.nss_weightage +
3147 			score_cfg->weight_config.beamforming_cap_weightage +
3148 			score_cfg->weight_config.pcl_weightage +
3149 			score_cfg->weight_config.channel_congestion_weightage +
3150 			score_cfg->weight_config.oce_wan_weightage +
3151 			score_cfg->weight_config.oce_ap_tx_pwr_weightage +
3152 			score_cfg->weight_config.oce_subnet_id_weightage +
3153 			score_cfg->weight_config.sae_pk_ap_weightage +
3154 			score_cfg->weight_config.security_weightage;
3155 
3156 	cm_init_mlo_score_config(psoc, score_cfg, &total_weight);
3157 
3158 	/*
3159 	 * If configured weights are greater than max weight,
3160 	 * fallback to default weights
3161 	 */
3162 	if (total_weight > CM_BEST_CANDIDATE_MAX_WEIGHT) {
3163 		mlme_err("Total weight greater than %d, using default weights",
3164 			 CM_BEST_CANDIDATE_MAX_WEIGHT);
3165 		score_cfg->weight_config.rssi_weightage = CM_RSSI_WEIGHTAGE;
3166 		score_cfg->weight_config.ht_caps_weightage =
3167 						CM_HT_CAPABILITY_WEIGHTAGE;
3168 		score_cfg->weight_config.vht_caps_weightage =
3169 						CM_VHT_CAP_WEIGHTAGE;
3170 		score_cfg->weight_config.he_caps_weightage =
3171 						CM_HE_CAP_WEIGHTAGE;
3172 		score_cfg->weight_config.chan_width_weightage =
3173 						CM_CHAN_WIDTH_WEIGHTAGE;
3174 		score_cfg->weight_config.chan_band_weightage =
3175 						CM_CHAN_BAND_WEIGHTAGE;
3176 		score_cfg->weight_config.nss_weightage = CM_NSS_WEIGHTAGE;
3177 		score_cfg->weight_config.beamforming_cap_weightage =
3178 						CM_BEAMFORMING_CAP_WEIGHTAGE;
3179 		score_cfg->weight_config.pcl_weightage = CM_PCL_WEIGHT;
3180 		score_cfg->weight_config.channel_congestion_weightage =
3181 						CM_CHANNEL_CONGESTION_WEIGHTAGE;
3182 		score_cfg->weight_config.oce_wan_weightage =
3183 						CM_OCE_WAN_WEIGHTAGE;
3184 		score_cfg->weight_config.oce_ap_tx_pwr_weightage =
3185 						CM_OCE_AP_TX_POWER_WEIGHTAGE;
3186 		score_cfg->weight_config.oce_subnet_id_weightage =
3187 						CM_OCE_SUBNET_ID_WEIGHTAGE;
3188 		score_cfg->weight_config.sae_pk_ap_weightage =
3189 						CM_SAE_PK_AP_WEIGHTAGE;
3190 		cm_set_default_mlo_weights(score_cfg);
3191 	}
3192 
3193 	score_cfg->rssi_score.best_rssi_threshold =
3194 		cfg_get(psoc, CFG_SCORING_BEST_RSSI_THRESHOLD);
3195 	score_cfg->rssi_score.good_rssi_threshold =
3196 		cfg_get(psoc, CFG_SCORING_GOOD_RSSI_THRESHOLD);
3197 	score_cfg->rssi_score.bad_rssi_threshold =
3198 		cfg_get(psoc, CFG_SCORING_BAD_RSSI_THRESHOLD);
3199 
3200 	score_cfg->rssi_score.good_rssi_pcnt =
3201 		cfg_get(psoc, CFG_SCORING_GOOD_RSSI_PERCENT);
3202 	score_cfg->rssi_score.bad_rssi_pcnt =
3203 		cfg_get(psoc, CFG_SCORING_BAD_RSSI_PERCENT);
3204 
3205 	score_cfg->rssi_score.good_rssi_bucket_size =
3206 		cfg_get(psoc, CFG_SCORING_GOOD_RSSI_BUCKET_SIZE);
3207 	score_cfg->rssi_score.bad_rssi_bucket_size =
3208 		cfg_get(psoc, CFG_SCORING_BAD_RSSI_BUCKET_SIZE);
3209 
3210 	score_cfg->rssi_score.rssi_pref_5g_rssi_thresh =
3211 		cfg_get(psoc, CFG_SCORING_RSSI_PREF_5G_THRESHOLD);
3212 
3213 	score_cfg->rssi_score.con_non_hint_target_rssi_threshold =
3214 		cfg_get(psoc, CFG_CON_NON_HINT_TARGET_MIN_RSSI);
3215 
3216 	score_cfg->esp_qbss_scoring.num_slot =
3217 		cfg_get(psoc, CFG_SCORING_NUM_ESP_QBSS_SLOTS);
3218 	score_cfg->esp_qbss_scoring.score_pcnt3_to_0 =
3219 		cm_limit_max_per_index_score(
3220 			cfg_get(psoc, CFG_SCORING_ESP_QBSS_SCORE_IDX_3_TO_0));
3221 	score_cfg->esp_qbss_scoring.score_pcnt7_to_4 =
3222 		cm_limit_max_per_index_score(
3223 			cfg_get(psoc, CFG_SCORING_ESP_QBSS_SCORE_IDX_7_TO_4));
3224 	score_cfg->esp_qbss_scoring.score_pcnt11_to_8 =
3225 		cm_limit_max_per_index_score(
3226 			cfg_get(psoc, CFG_SCORING_ESP_QBSS_SCORE_IDX_11_TO_8));
3227 	score_cfg->esp_qbss_scoring.score_pcnt15_to_12 =
3228 		cm_limit_max_per_index_score(
3229 			cfg_get(psoc, CFG_SCORING_ESP_QBSS_SCORE_IDX_15_TO_12));
3230 
3231 	score_cfg->oce_wan_scoring.num_slot =
3232 		cfg_get(psoc, CFG_SCORING_NUM_OCE_WAN_SLOTS);
3233 	score_cfg->oce_wan_scoring.score_pcnt3_to_0 =
3234 		cm_limit_max_per_index_score(
3235 			cfg_get(psoc, CFG_SCORING_OCE_WAN_SCORE_IDX_3_TO_0));
3236 	score_cfg->oce_wan_scoring.score_pcnt7_to_4 =
3237 		cm_limit_max_per_index_score(
3238 			cfg_get(psoc, CFG_SCORING_OCE_WAN_SCORE_IDX_7_TO_4));
3239 	score_cfg->oce_wan_scoring.score_pcnt11_to_8 =
3240 		cm_limit_max_per_index_score(
3241 			cfg_get(psoc, CFG_SCORING_OCE_WAN_SCORE_IDX_11_TO_8));
3242 	score_cfg->oce_wan_scoring.score_pcnt15_to_12 =
3243 		cm_limit_max_per_index_score(
3244 			cfg_get(psoc, CFG_SCORING_OCE_WAN_SCORE_IDX_15_TO_12));
3245 
3246 	score_cfg->band_weight_per_index =
3247 		cm_limit_max_per_index_score(
3248 			cfg_get(psoc, CFG_SCORING_BAND_WEIGHT_PER_IDX));
3249 	score_cfg->is_bssid_hint_priority =
3250 			cfg_get(psoc, CFG_IS_BSSID_HINT_PRIORITY);
3251 	score_cfg->vendor_roam_score_algorithm =
3252 			cfg_get(psoc, CFG_VENDOR_ROAM_SCORE_ALGORITHM);
3253 	score_cfg->check_assoc_disallowed = true;
3254 	cm_fill_6ghz_params(psoc, score_cfg);
3255 
3256 	cm_init_bw_weight_per_index(psoc, score_cfg);
3257 	cm_init_nss_weight_per_index(psoc, score_cfg);
3258 	score_cfg->security_weight_per_index = CM_SECURITY_INDEX_WEIGHTAGE;
3259 }
3260