xref: /wlan-dirver/qca-wifi-host-cmn/umac/mlme/connection_mgr/core/src/wlan_cm_bss_scoring.c (revision 8b3dca18206e1a0461492f082fa6e270b092c035)
1 /*
2  * Copyright (c) 2017-2021, The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 /*
19  * DOC: contains bss scoring logic
20  */
21 
22 #ifdef WLAN_POLICY_MGR_ENABLE
23 #include "wlan_policy_mgr_api.h"
24 #endif
25 #include <include/wlan_psoc_mlme.h>
26 #include "wlan_psoc_mlme_api.h"
27 #include "cfg_ucfg_api.h"
28 #include "wlan_cm_bss_score_param.h"
29 #include "wlan_scan_api.h"
30 #include "wlan_crypto_global_api.h"
31 #include "wlan_mgmt_txrx_utils_api.h"
32 #ifdef CONN_MGR_ADV_FEATURE
33 #include "wlan_mlme_api.h"
34 #include "wlan_wfa_tgt_if_tx_api.h"
35 #endif
36 
37 #define CM_PCL_RSSI_THRESHOLD -75
38 
39 #define CM_BAND_2G_INDEX                   0
40 #define CM_BAND_5G_INDEX                   1
41 #define CM_BAND_6G_INDEX                   2
42 /* 3 is reserved */
43 #define CM_MAX_BAND_INDEX                  4
44 
45 #define CM_SCORE_INDEX_0                   0
46 #define CM_SCORE_INDEX_3                   3
47 #define CM_SCORE_INDEX_7                   7
48 #define CM_SCORE_OFFSET_INDEX_7_4          4
49 #define CM_SCORE_INDEX_11                  11
50 #define CM_SCORE_OFFSET_INDEX_11_8         8
51 #define CM_SCORE_MAX_INDEX                 15
52 #define CM_SCORE_OFFSET_INDEX_15_12        12
53 
54 #define CM_MAX_OCE_WAN_DL_CAP 16
55 
56 #define CM_MAX_CHANNEL_WEIGHT 100
57 #define CM_MAX_CHANNEL_UTILIZATION 100
58 #define CM_MAX_ESTIMATED_AIR_TIME_FRACTION 255
59 #define CM_MAX_AP_LOAD 255
60 
61 #define CM_MAX_WEIGHT_OF_PCL_CHANNELS 255
62 #define CM_PCL_GROUPS_WEIGHT_DIFFERENCE 20
63 
64 /* Congestion threshold (channel load %) to consider band and OCE WAN score */
65 #define CM_CONGESTION_THRSHOLD_FOR_BAND_OCE_SCORE 75
66 
67 #define CM_RSSI_WEIGHTAGE 20
68 #define CM_HT_CAPABILITY_WEIGHTAGE 2
69 #define CM_VHT_CAP_WEIGHTAGE 1
70 #define CM_HE_CAP_WEIGHTAGE 2
71 #define CM_CHAN_WIDTH_WEIGHTAGE 12
72 #define CM_CHAN_BAND_WEIGHTAGE 2
73 #define CM_NSS_WEIGHTAGE 20
74 #define CM_SECURITY_WEIGHTAGE 4
75 #define CM_BEAMFORMING_CAP_WEIGHTAGE 2
76 #define CM_PCL_WEIGHT 10
77 #define CM_CHANNEL_CONGESTION_WEIGHTAGE 5
78 #define CM_OCE_WAN_WEIGHTAGE 2
79 #define CM_OCE_AP_TX_POWER_WEIGHTAGE 5
80 #define CM_OCE_SUBNET_ID_WEIGHTAGE 3
81 #define CM_SAE_PK_AP_WEIGHTAGE 30
82 #define CM_BEST_CANDIDATE_MAX_WEIGHT 200
83 #define CM_MAX_PCT_SCORE 100
84 #define CM_MAX_INDEX_PER_INI 4
85 #define CM_SLO_CONGESTION_MAX_SCORE 80
86 
87 /**
88  * This macro give percentage value of security_weightage to be used as per
89  * security Eg if AP security is WPA 10% will be given for AP.
90  *
91  * Indexes are defined in this way.
92  *     0 Index (BITS 0-7): WPA - Def 25%
93  *     1 Index (BITS 8-15): WPA2- Def 50%
94  *     2 Index (BITS 16-23): WPA3- Def 100%
95  *     3 Index (BITS 24-31): reserved
96  *
97  * if AP security is Open/WEP 0% will be given for AP
98  * These percentage values are stored in HEX. For any index max value, can be 64
99  */
100 #define CM_SECURITY_INDEX_WEIGHTAGE 0x00643219
101 
102 #define CM_BEST_CANDIDATE_MAX_BSS_SCORE (CM_BEST_CANDIDATE_MAX_WEIGHT * 100)
103 #define CM_AVOID_CANDIDATE_MIN_SCORE 1
104 
105 #define CM_GET_SCORE_PERCENTAGE(value32, bw_index) \
106 	QDF_GET_BITS(value32, (8 * (bw_index)), 8)
107 #define CM_SET_SCORE_PERCENTAGE(value32, score_pcnt, bw_index) \
108 	QDF_SET_BITS(value32, (8 * (bw_index)), 8, score_pcnt)
109 
110 #ifdef CONN_MGR_ADV_FEATURE
111 /* 3.2 us + 0.8 us(GI) */
112 #define PPDU_PAYLOAD_SYMBOL_DUR_US 4
113 /* 12.8 us + (0.8 + 1.6)/2 us(GI) */
114 #define HE_PPDU_PAYLOAD_SYMBOL_DUR_US 14
115 #define MAC_HEADER_LEN 26
116 /* Minimum snrDb supported by LUT */
117 #define SNR_DB_TO_BIT_PER_TONE_LUT_MIN -10
118 /* Maximum snrDb supported by LUT */
119 #define SNR_DB_TO_BIT_PER_TONE_LUT_MAX 9
120 #define DB_NUM 20
121 /*
122  * A fudge factor to represent HW implementation margin in dB.
123  * Predicted throughput matches pretty well with OTA throughput with this
124  * fudge factor.
125  */
126 #define SNR_MARGIN_DB 16
127 #define TWO_IN_DB 3
128 static int32_t
129 SNR_DB_TO_BIT_PER_TONE_LUT[DB_NUM] = {0, 171, 212, 262, 323, 396, 484,
130 586, 706, 844, 1000, 1176, 1370, 1583, 1812, 2058, 2317, 2588, 2870, 3161};
131 #endif
132 
133 /* MLO link types */
134 enum MLO_TYPE {
135 	SLO,
136 	MLSR,
137 	MLMR,
138 	MLO_TYPE_MAX
139 };
140 
141 static bool cm_is_better_bss(struct scan_cache_entry *bss1,
142 			     struct scan_cache_entry *bss2)
143 {
144 	if (bss1->bss_score > bss2->bss_score)
145 		return true;
146 	else if (bss1->bss_score == bss2->bss_score)
147 		if (bss1->rssi_raw > bss2->rssi_raw)
148 			return true;
149 
150 	return false;
151 }
152 
153 /**
154  * cm_get_rssi_pcnt_for_slot() - calculate rssi % score based on the slot
155  * index between the high rssi and low rssi threshold
156  * @high_rssi_threshold: High rssi of the window
157  * @low_rssi_threshold: low rssi of the window
158  * @high_rssi_pcnt: % score for the high rssi
159  * @low_rssi_pcnt: %score for the low rssi
160  * @bucket_size: bucket size of the window
161  * @bss_rssi: Input rssi for which value need to be calculated
162  *
163  * Return: rssi pct to use for the given rssi
164  */
165 static inline
166 int8_t cm_get_rssi_pcnt_for_slot(int32_t high_rssi_threshold,
167 				 int32_t low_rssi_threshold,
168 				 uint32_t high_rssi_pcnt,
169 				 uint32_t low_rssi_pcnt,
170 				 uint32_t bucket_size, int8_t bss_rssi)
171 {
172 	int8_t slot_index, slot_size, rssi_diff, num_slot, rssi_pcnt;
173 
174 	num_slot = ((high_rssi_threshold -
175 		     low_rssi_threshold) / bucket_size) + 1;
176 	slot_size = ((high_rssi_pcnt - low_rssi_pcnt) +
177 		     (num_slot / 2)) / (num_slot);
178 	rssi_diff = high_rssi_threshold - bss_rssi;
179 	slot_index = (rssi_diff / bucket_size) + 1;
180 	rssi_pcnt = high_rssi_pcnt - (slot_size * slot_index);
181 	if (rssi_pcnt < low_rssi_pcnt)
182 		rssi_pcnt = low_rssi_pcnt;
183 
184 	mlme_debug("Window %d -> %d pcnt range %d -> %d bucket_size %d bss_rssi %d num_slot %d slot_size %d rssi_diff %d slot_index %d rssi_pcnt %d",
185 		   high_rssi_threshold, low_rssi_threshold, high_rssi_pcnt,
186 		   low_rssi_pcnt, bucket_size, bss_rssi, num_slot, slot_size,
187 		   rssi_diff, slot_index, rssi_pcnt);
188 
189 	return rssi_pcnt;
190 }
191 
192 /**
193  * cm_calculate_rssi_score() - Calculate RSSI score based on AP RSSI
194  * @score_param: rssi score params
195  * @rssi: rssi of the AP
196  * @rssi_weightage: rssi_weightage out of total weightage
197  *
198  * Return: rssi score
199  */
200 static int32_t cm_calculate_rssi_score(struct rssi_config_score *score_param,
201 				       int32_t rssi, uint8_t rssi_weightage)
202 {
203 	int8_t rssi_pcnt;
204 	int32_t total_rssi_score;
205 	int32_t best_rssi_threshold;
206 	int32_t good_rssi_threshold;
207 	int32_t bad_rssi_threshold;
208 	uint32_t good_rssi_pcnt;
209 	uint32_t bad_rssi_pcnt;
210 	uint32_t good_bucket_size;
211 	uint32_t bad_bucket_size;
212 
213 	best_rssi_threshold = score_param->best_rssi_threshold * (-1);
214 	good_rssi_threshold = score_param->good_rssi_threshold * (-1);
215 	bad_rssi_threshold = score_param->bad_rssi_threshold * (-1);
216 	good_rssi_pcnt = score_param->good_rssi_pcnt;
217 	bad_rssi_pcnt = score_param->bad_rssi_pcnt;
218 	good_bucket_size = score_param->good_rssi_bucket_size;
219 	bad_bucket_size = score_param->bad_rssi_bucket_size;
220 
221 	total_rssi_score = (CM_MAX_PCT_SCORE * rssi_weightage);
222 
223 	/*
224 	 * If RSSI is better than the best rssi threshold then it return full
225 	 * score.
226 	 */
227 	if (rssi > best_rssi_threshold)
228 		return total_rssi_score;
229 	/*
230 	 * If RSSI is less or equal to bad rssi threshold then it return
231 	 * least score.
232 	 */
233 	if (rssi <= bad_rssi_threshold)
234 		return (total_rssi_score * bad_rssi_pcnt) / 100;
235 
236 	/* RSSI lies between best to good rssi threshold */
237 	if (rssi > good_rssi_threshold)
238 		rssi_pcnt = cm_get_rssi_pcnt_for_slot(best_rssi_threshold,
239 				good_rssi_threshold, 100, good_rssi_pcnt,
240 				good_bucket_size, rssi);
241 	else
242 		rssi_pcnt = cm_get_rssi_pcnt_for_slot(good_rssi_threshold,
243 				bad_rssi_threshold, good_rssi_pcnt,
244 				bad_rssi_pcnt, bad_bucket_size,
245 				rssi);
246 
247 	return (total_rssi_score * rssi_pcnt) / 100;
248 }
249 
250 /**
251  * cm_rssi_is_same_bucket() - check if both rssi fall in same bucket
252  * @rssi_top_thresh: high rssi threshold of the the window
253  * @low_rssi_threshold: low rssi of the window
254  * @rssi_ref1: rssi ref one
255  * @rssi_ref2: rssi ref two
256  * @bucket_size: bucket size of the window
257  *
258  * Return: true if both fall in same window
259  */
260 static inline bool cm_rssi_is_same_bucket(int8_t rssi_top_thresh,
261 					  int8_t rssi_ref1, int8_t rssi_ref2,
262 					  int8_t bucket_size)
263 {
264 	int8_t rssi_diff1 = 0;
265 	int8_t rssi_diff2 = 0;
266 
267 	rssi_diff1 = rssi_top_thresh - rssi_ref1;
268 	rssi_diff2 = rssi_top_thresh - rssi_ref2;
269 
270 	return (rssi_diff1 / bucket_size) == (rssi_diff2 / bucket_size);
271 }
272 
273 /**
274  * cm_get_rssi_prorate_pct() - Calculate prorated RSSI score
275  * based on AP RSSI. This will be used to determine HT VHT score
276  * @score_param: rssi score params
277  * @rssi: bss rssi
278  * @rssi_weightage: rssi_weightage out of total weightage
279  *
280  * If rssi is greater than good threshold return 100, if less than bad return 0,
281  * if between good and bad, return prorated rssi score for the index.
282  *
283  * Return: rssi prorated score
284  */
285 static int8_t
286 cm_get_rssi_prorate_pct(struct rssi_config_score *score_param,
287 			int32_t rssi, uint8_t rssi_weightage)
288 {
289 	int32_t good_rssi_threshold;
290 	int32_t bad_rssi_threshold;
291 	int8_t rssi_pref_5g_rssi_thresh;
292 	bool same_bucket;
293 
294 	good_rssi_threshold = score_param->good_rssi_threshold * (-1);
295 	bad_rssi_threshold = score_param->bad_rssi_threshold * (-1);
296 	rssi_pref_5g_rssi_thresh = score_param->rssi_pref_5g_rssi_thresh * (-1);
297 
298 	/* If RSSI is greater than good rssi return full weight */
299 	if (rssi > good_rssi_threshold)
300 		return CM_MAX_PCT_SCORE;
301 
302 	same_bucket = cm_rssi_is_same_bucket(good_rssi_threshold, rssi,
303 					     rssi_pref_5g_rssi_thresh,
304 					     score_param->bad_rssi_bucket_size);
305 	if (same_bucket || (rssi < rssi_pref_5g_rssi_thresh))
306 		return 0;
307 	/* If RSSI is less or equal to bad rssi threshold then it return 0 */
308 	if (rssi <= bad_rssi_threshold)
309 		return 0;
310 
311 	/* If RSSI is between good and bad threshold */
312 	return cm_get_rssi_pcnt_for_slot(good_rssi_threshold,
313 					 bad_rssi_threshold,
314 					 score_param->good_rssi_pcnt,
315 					 score_param->bad_rssi_pcnt,
316 					 score_param->bad_rssi_bucket_size,
317 					 rssi);
318 }
319 
320 /**
321  * cm_get_score_for_index() - get score for the given index
322  * @index: index for which we need the score
323  * @weightage: weigtage for the param
324  * @score: per slot score
325  *
326  * Return: score for the index
327  */
328 static int32_t cm_get_score_for_index(uint8_t index,
329 				      uint8_t weightage,
330 				      struct per_slot_score *score)
331 {
332 	if (index <= CM_SCORE_INDEX_3)
333 		return weightage * CM_GET_SCORE_PERCENTAGE(
334 				   score->score_pcnt3_to_0,
335 				   index);
336 	else if (index <= CM_SCORE_INDEX_7)
337 		return weightage * CM_GET_SCORE_PERCENTAGE(
338 				   score->score_pcnt7_to_4,
339 				   index - CM_SCORE_OFFSET_INDEX_7_4);
340 	else if (index <= CM_SCORE_INDEX_11)
341 		return weightage * CM_GET_SCORE_PERCENTAGE(
342 				   score->score_pcnt11_to_8,
343 				   index - CM_SCORE_OFFSET_INDEX_11_8);
344 	else
345 		return weightage * CM_GET_SCORE_PERCENTAGE(
346 				   score->score_pcnt15_to_12,
347 				   index - CM_SCORE_OFFSET_INDEX_15_12);
348 }
349 
350 /**
351  * cm_get_congestion_pct() - Calculate congestion pct from esp/qbss load
352  * @entry: bss information
353  *
354  * Return: congestion pct
355  */
356 static int32_t cm_get_congestion_pct(struct scan_cache_entry *entry)
357 {
358 	uint32_t ap_load = 0;
359 	uint32_t est_air_time_percentage = 0;
360 	uint32_t congestion = 0;
361 
362 	if (entry->air_time_fraction) {
363 		/* Convert 0-255 range to percentage */
364 		est_air_time_percentage = entry->air_time_fraction *
365 							CM_MAX_CHANNEL_WEIGHT;
366 		est_air_time_percentage = qdf_do_div(est_air_time_percentage,
367 					   CM_MAX_ESTIMATED_AIR_TIME_FRACTION);
368 		/*
369 		 * Calculate channel congestion from estimated air time
370 		 * fraction.
371 		 */
372 		congestion = CM_MAX_CHANNEL_UTILIZATION -
373 					est_air_time_percentage;
374 		if (!congestion)
375 			congestion = 1;
376 	} else if (util_scan_entry_qbssload(entry)) {
377 		ap_load = (entry->qbss_chan_load * CM_MAX_PCT_SCORE);
378 		/*
379 		 * Calculate ap_load in % from qbss channel load from
380 		 * 0-255 range
381 		 */
382 		congestion = qdf_do_div(ap_load, CM_MAX_AP_LOAD);
383 		if (!congestion)
384 			congestion = 1;
385 	}
386 
387 	return congestion;
388 }
389 
390 /**
391  * cm_calculate_congestion_score() - Calculate congestion score
392  * @entry: bss information
393  * @score_params: bss score params
394  * @congestion_pct: congestion pct
395  *
396  * Return: congestion score
397  */
398 static int32_t cm_calculate_congestion_score(struct scan_cache_entry *entry,
399 					     struct scoring_cfg *score_params,
400 					     uint32_t *congestion_pct,
401 					     bool rssi_bad_zone)
402 {
403 	uint32_t window_size;
404 	uint8_t index;
405 	int32_t good_rssi_threshold;
406 	uint8_t chan_congestion_weight;
407 
408 	chan_congestion_weight =
409 		score_params->weight_config.channel_congestion_weightage;
410 
411 	if (!entry)
412 		return chan_congestion_weight *
413 			   CM_GET_SCORE_PERCENTAGE(
414 			   score_params->esp_qbss_scoring.score_pcnt3_to_0,
415 			   CM_SCORE_INDEX_0);
416 
417 	*congestion_pct = cm_get_congestion_pct(entry);
418 
419 	if (!score_params->esp_qbss_scoring.num_slot)
420 		return 0;
421 
422 	if (score_params->esp_qbss_scoring.num_slot >
423 	    CM_SCORE_MAX_INDEX)
424 		score_params->esp_qbss_scoring.num_slot =
425 			CM_SCORE_MAX_INDEX;
426 
427 	good_rssi_threshold =
428 		score_params->rssi_score.good_rssi_threshold * (-1);
429 
430 	/* For bad zone rssi get score from last index */
431 	if (rssi_bad_zone || entry->rssi_raw <= good_rssi_threshold)
432 		return cm_get_score_for_index(
433 			score_params->esp_qbss_scoring.num_slot,
434 			chan_congestion_weight,
435 			&score_params->esp_qbss_scoring);
436 
437 	if (!*congestion_pct)
438 		return chan_congestion_weight *
439 			   CM_GET_SCORE_PERCENTAGE(
440 			   score_params->esp_qbss_scoring.score_pcnt3_to_0,
441 			   CM_SCORE_INDEX_0);
442 
443 	window_size = CM_MAX_PCT_SCORE /
444 			score_params->esp_qbss_scoring.num_slot;
445 
446 	/* Desired values are from 1 to 15, as 0 is for not present. so do +1 */
447 	index = qdf_do_div(*congestion_pct, window_size) + 1;
448 
449 	if (index > score_params->esp_qbss_scoring.num_slot)
450 		index = score_params->esp_qbss_scoring.num_slot;
451 
452 	return cm_get_score_for_index(index,
453 				      chan_congestion_weight,
454 				      &score_params->esp_qbss_scoring);
455 }
456 
457 /**
458  * cm_calculate_nss_score() - Calculate congestion score
459  * @psoc: psoc ptr
460  * @score_config: scoring config
461  * @ap_nss: ap nss
462  * @prorated_pct: prorated % to return dependent on RSSI
463  *
464  * Return: nss score
465  */
466 static int32_t cm_calculate_nss_score(struct wlan_objmgr_psoc *psoc,
467 				      struct scoring_cfg *score_config,
468 				      uint8_t ap_nss, uint8_t prorated_pct,
469 				      uint32_t sta_nss)
470 {
471 	uint8_t nss;
472 	uint8_t score_pct;
473 
474 	nss = ap_nss;
475 	if (sta_nss < nss)
476 		nss = sta_nss;
477 
478 	if (nss == 8)
479 		score_pct = CM_MAX_PCT_SCORE;
480 	if (nss == 4)
481 		score_pct = CM_GET_SCORE_PERCENTAGE(
482 				score_config->nss_weight_per_index[0],
483 				CM_NSS_4x4_INDEX);
484 	else if (nss == 3)
485 		score_pct = CM_GET_SCORE_PERCENTAGE(
486 				score_config->nss_weight_per_index[0],
487 				CM_NSS_3x3_INDEX);
488 	else if (nss == 2)
489 		score_pct = CM_GET_SCORE_PERCENTAGE(
490 				score_config->nss_weight_per_index[0],
491 				CM_NSS_2x2_INDEX);
492 	else
493 		score_pct = CM_GET_SCORE_PERCENTAGE(
494 				score_config->nss_weight_per_index[0],
495 				CM_NSS_1x1_INDEX);
496 
497 	return (score_config->weight_config.nss_weightage * score_pct *
498 		prorated_pct) / CM_MAX_PCT_SCORE;
499 }
500 
501 static int32_t cm_calculate_security_score(struct scoring_cfg *score_config,
502 					   struct security_info neg_sec_info)
503 {
504 	uint32_t authmode, key_mgmt, ucastcipherset;
505 	uint8_t score_pct = 0;
506 
507 	authmode = neg_sec_info.authmodeset;
508 	key_mgmt = neg_sec_info.key_mgmt;
509 	ucastcipherset = neg_sec_info.ucastcipherset;
510 
511 	if (QDF_HAS_PARAM(authmode, WLAN_CRYPTO_AUTH_FILS_SK) ||
512 	    QDF_HAS_PARAM(authmode, WLAN_CRYPTO_AUTH_SAE) ||
513 	    QDF_HAS_PARAM(authmode, WLAN_CRYPTO_AUTH_CCKM) ||
514 	    QDF_HAS_PARAM(authmode, WLAN_CRYPTO_AUTH_RSNA) ||
515 	    QDF_HAS_PARAM(authmode, WLAN_CRYPTO_AUTH_8021X)) {
516 		if (QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_SAE) ||
517 		    QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_FT_SAE) ||
518 		    QDF_HAS_PARAM(key_mgmt,
519 				  WLAN_CRYPTO_KEY_MGMT_IEEE8021X_SUITE_B) ||
520 		    QDF_HAS_PARAM(key_mgmt,
521 				  WLAN_CRYPTO_KEY_MGMT_IEEE8021X_SUITE_B_192) ||
522 		    QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_FILS_SHA256) ||
523 		    QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_FILS_SHA384) ||
524 		    QDF_HAS_PARAM(key_mgmt,
525 				  WLAN_CRYPTO_KEY_MGMT_FT_FILS_SHA256) ||
526 		    QDF_HAS_PARAM(key_mgmt,
527 				  WLAN_CRYPTO_KEY_MGMT_FT_FILS_SHA384) ||
528 		    QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_OWE) ||
529 		    QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_DPP) ||
530 		    QDF_HAS_PARAM(key_mgmt,
531 				  WLAN_CRYPTO_KEY_MGMT_FT_IEEE8021X_SHA384)) {
532 			/*If security is WPA3, consider score_pct = 100%*/
533 			score_pct = CM_GET_SCORE_PERCENTAGE(
534 					score_config->security_weight_per_index,
535 					CM_SECURITY_WPA3_INDEX);
536 		} else if (QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_PSK) ||
537 			   QDF_HAS_PARAM(key_mgmt,
538 					 WLAN_CRYPTO_KEY_MGMT_FT_IEEE8021X) ||
539 			   QDF_HAS_PARAM(key_mgmt,
540 					 WLAN_CRYPTO_KEY_MGMT_FT_PSK) ||
541 			   QDF_HAS_PARAM(key_mgmt,
542 				WLAN_CRYPTO_KEY_MGMT_IEEE8021X_SHA256) ||
543 			   QDF_HAS_PARAM(key_mgmt,
544 					 WLAN_CRYPTO_KEY_MGMT_PSK_SHA256)) {
545 			/*If security is WPA2, consider score_pct = 50%*/
546 			score_pct = CM_GET_SCORE_PERCENTAGE(
547 				score_config->security_weight_per_index,
548 				CM_SECURITY_WPA2_INDEX);
549 		}
550 	} else if (QDF_HAS_PARAM(authmode, WLAN_CRYPTO_AUTH_SHARED) ||
551 		   QDF_HAS_PARAM(authmode, WLAN_CRYPTO_AUTH_WPA) ||
552 		   QDF_HAS_PARAM(authmode, WLAN_CRYPTO_AUTH_WAPI)) {
553 		/*If security is WPA, consider score_pct = 25%*/
554 		score_pct = CM_GET_SCORE_PERCENTAGE(
555 				score_config->security_weight_per_index,
556 				CM_SECURITY_WPA_INDEX);
557 	}
558 
559 	return (score_config->weight_config.security_weightage * score_pct) /
560 			CM_MAX_PCT_SCORE;
561 }
562 
563 #ifdef WLAN_POLICY_MGR_ENABLE
564 static uint32_t cm_get_sta_nss(struct wlan_objmgr_psoc *psoc,
565 			       qdf_freq_t bss_channel_freq,
566 			       uint8_t vdev_nss_2g, uint8_t vdev_nss_5g)
567 {
568 	/*
569 	 * If station support nss as 2*2 but AP support NSS as 1*1,
570 	 * this AP will be given half weight compare to AP which are having
571 	 * NSS as 2*2.
572 	 */
573 
574 	if (policy_mgr_is_chnl_in_diff_band(
575 	    psoc, bss_channel_freq) &&
576 	    policy_mgr_is_hw_dbs_capable(psoc) &&
577 	    !(policy_mgr_is_hw_dbs_2x2_capable(psoc)))
578 		return 1;
579 
580 	return (WLAN_REG_IS_24GHZ_CH_FREQ(bss_channel_freq) ?
581 		vdev_nss_2g :
582 		vdev_nss_5g);
583 }
584 #else
585 static uint32_t cm_get_sta_nss(struct wlan_objmgr_psoc *psoc,
586 			       qdf_freq_t bss_channel_freq,
587 			       uint8_t vdev_nss_2g, uint8_t vdev_nss_5g)
588 {
589 	return (WLAN_REG_IS_24GHZ_CH_FREQ(bss_channel_freq) ?
590 		vdev_nss_2g :
591 		vdev_nss_5g);
592 }
593 #endif
594 
595 #ifdef CONN_MGR_ADV_FEATURE
596 static bool
597 cm_get_pcl_weight_of_channel(uint32_t chan_freq,
598 			     struct pcl_freq_weight_list *pcl_lst,
599 			     int *pcl_chan_weight)
600 {
601 	int i;
602 	bool found = false;
603 
604 	if (!pcl_lst)
605 		return found;
606 
607 	for (i = 0; i < pcl_lst->num_of_pcl_channels; i++) {
608 		if (pcl_lst->pcl_freq_list[i] == chan_freq) {
609 			*pcl_chan_weight = pcl_lst->pcl_weight_list[i];
610 			found = true;
611 			break;
612 		}
613 	}
614 
615 	return found;
616 }
617 
618 /**
619  * cm_calculate_pcl_score() - Calculate PCL score based on PCL weightage
620  * @psoc: psoc ptr
621  * @pcl_chan_weight: pcl weight of BSS channel
622  * @pcl_weightage: PCL _weightage out of total weightage
623  *
624  * Return: pcl score
625  */
626 static int32_t cm_calculate_pcl_score(struct wlan_objmgr_psoc *psoc,
627 				      int pcl_chan_weight,
628 				      uint8_t pcl_weightage)
629 {
630 	int32_t pcl_score = 0;
631 	int32_t temp_pcl_chan_weight = 0;
632 
633 	/*
634 	 * Don’t consider pcl weightage for STA connection,
635 	 * if primary interface is configured.
636 	 */
637 	if (!policy_mgr_is_pcl_weightage_required(psoc))
638 		return 0;
639 
640 	if (pcl_chan_weight) {
641 		temp_pcl_chan_weight =
642 			(CM_MAX_WEIGHT_OF_PCL_CHANNELS - pcl_chan_weight);
643 		temp_pcl_chan_weight = qdf_do_div(
644 					temp_pcl_chan_weight,
645 					CM_PCL_GROUPS_WEIGHT_DIFFERENCE);
646 		pcl_score = pcl_weightage - temp_pcl_chan_weight;
647 		if (pcl_score < 0)
648 			pcl_score = 0;
649 	}
650 
651 	return pcl_score * CM_MAX_PCT_SCORE;
652 }
653 
654 /**
655  * cm_calculate_oce_wan_score() - Calculate oce wan score
656  * @entry: bss information
657  * @score_params: bss score params
658  *
659  * Return: oce wan score
660  */
661 static int32_t cm_calculate_oce_wan_score(
662 	struct scan_cache_entry *entry,
663 	struct scoring_cfg *score_params)
664 {
665 	uint32_t window_size;
666 	uint8_t index;
667 	struct oce_reduced_wan_metrics wan_metrics;
668 	uint8_t *mbo_oce_ie;
669 
670 	if (!score_params->oce_wan_scoring.num_slot)
671 		return 0;
672 
673 	if (score_params->oce_wan_scoring.num_slot >
674 	    CM_SCORE_MAX_INDEX)
675 		score_params->oce_wan_scoring.num_slot =
676 			CM_SCORE_MAX_INDEX;
677 
678 	window_size = CM_SCORE_MAX_INDEX /
679 			score_params->oce_wan_scoring.num_slot;
680 	mbo_oce_ie = util_scan_entry_mbo_oce(entry);
681 	if (wlan_parse_oce_reduced_wan_metrics_ie(mbo_oce_ie, &wan_metrics)) {
682 		mlme_err("downlink_av_cap %d", wan_metrics.downlink_av_cap);
683 		/* if capacity is 0 return 0 score */
684 		if (!wan_metrics.downlink_av_cap)
685 			return 0;
686 		/* Desired values are from 1 to WLAN_SCORE_MAX_INDEX */
687 		index = qdf_do_div(wan_metrics.downlink_av_cap,
688 				   window_size);
689 	} else {
690 		index = CM_SCORE_INDEX_0;
691 	}
692 
693 	if (index > score_params->oce_wan_scoring.num_slot)
694 		index = score_params->oce_wan_scoring.num_slot;
695 
696 	return cm_get_score_for_index(index,
697 			score_params->weight_config.oce_wan_weightage,
698 			&score_params->oce_wan_scoring);
699 }
700 
701 /**
702  * cm_calculate_oce_subnet_id_weightage() - Calculate oce subnet id weightage
703  * @entry: bss entry
704  * @score_params: bss score params
705  * @oce_subnet_id_present: check if subnet id subelement is present in OCE IE
706  *
707  * Return: oce subnet id score
708  */
709 static uint32_t
710 cm_calculate_oce_subnet_id_weightage(struct scan_cache_entry *entry,
711 				     struct scoring_cfg *score_params,
712 				     bool *oce_subnet_id_present)
713 {
714 	uint32_t score = 0;
715 	uint8_t *mbo_oce_ie;
716 
717 	mbo_oce_ie = util_scan_entry_mbo_oce(entry);
718 	*oce_subnet_id_present = wlan_parse_oce_subnet_id_ie(mbo_oce_ie);
719 
720 	/* Consider 50% weightage if subnet id sub element is present */
721 	if (*oce_subnet_id_present)
722 		score  = score_params->weight_config.oce_subnet_id_weightage *
723 				(CM_MAX_PCT_SCORE / 2);
724 
725 	return score;
726 }
727 
728 /**
729  * cm_calculate_sae_pk_ap_weightage() - Calculate SAE-PK AP weightage
730  * @entry: bss entry
731  * @score_params: bss score params
732  * @sae_pk_cap_present: sae_pk cap presetn in RSNXE capability field
733  *
734  * Return: SAE-PK AP weightage score
735  */
736 static uint32_t
737 cm_calculate_sae_pk_ap_weightage(struct scan_cache_entry *entry,
738 				 struct scoring_cfg *score_params,
739 				 bool *sae_pk_cap_present)
740 {
741 	const uint8_t *rsnxe_ie;
742 	const uint8_t *rsnxe_cap;
743 	uint8_t cap_len;
744 
745 	rsnxe_ie = util_scan_entry_rsnxe(entry);
746 
747 	rsnxe_cap = wlan_crypto_parse_rsnxe_ie(rsnxe_ie, &cap_len);
748 
749 	if (!rsnxe_cap)
750 		return 0;
751 
752 	*sae_pk_cap_present = *rsnxe_cap & WLAN_CRYPTO_RSNX_CAP_SAE_PK;
753 	if (*sae_pk_cap_present)
754 		return score_params->weight_config.sae_pk_ap_weightage *
755 			CM_MAX_PCT_SCORE;
756 
757 	return 0;
758 }
759 
760 /**
761  * cm_calculate_oce_ap_tx_pwr_weightage() - Calculate oce ap tx pwr weightage
762  * @entry: bss entry
763  * @score_params: bss score params
764  * @ap_tx_pwr_dbm: pointer to hold ap tx power
765  *
766  * Return: oce ap tx power score
767  */
768 static uint32_t
769 cm_calculate_oce_ap_tx_pwr_weightage(struct scan_cache_entry *entry,
770 				     struct scoring_cfg *score_params,
771 				     int8_t *ap_tx_pwr_dbm)
772 {
773 	uint8_t *mbo_oce_ie, ap_tx_pwr_factor;
774 	struct rssi_config_score *rssi_score_param;
775 	int32_t best_rssi_threshold, good_rssi_threshold, bad_rssi_threshold;
776 	uint32_t good_rssi_pcnt, bad_rssi_pcnt, good_bucket_size;
777 	uint32_t score, normalized_ap_tx_pwr, bad_bucket_size;
778 	bool ap_tx_pwr_cap_present = true;
779 
780 	mbo_oce_ie = util_scan_entry_mbo_oce(entry);
781 	if (!wlan_parse_oce_ap_tx_pwr_ie(mbo_oce_ie, ap_tx_pwr_dbm)) {
782 		ap_tx_pwr_cap_present = false;
783 		/* If no OCE AP TX pwr, consider Uplink RSSI = Downlink RSSI */
784 		normalized_ap_tx_pwr = entry->rssi_raw;
785 	} else {
786 		/*
787 		 * Normalized ap_tx_pwr =
788 		 * Uplink RSSI = (STA TX Power - * (AP TX power - RSSI)) in dBm.
789 		 * Currently assuming STA Tx Power to be 20dBm, though later it
790 		 * need to fetched from hal-phy API.
791 		 */
792 		normalized_ap_tx_pwr =
793 			(20 - (*ap_tx_pwr_dbm - entry->rssi_raw));
794 	}
795 
796 	rssi_score_param = &score_params->rssi_score;
797 
798 	best_rssi_threshold = rssi_score_param->best_rssi_threshold * (-1);
799 	good_rssi_threshold = rssi_score_param->good_rssi_threshold * (-1);
800 	bad_rssi_threshold = rssi_score_param->bad_rssi_threshold * (-1);
801 	good_rssi_pcnt = rssi_score_param->good_rssi_pcnt;
802 	bad_rssi_pcnt = rssi_score_param->bad_rssi_pcnt;
803 	good_bucket_size = rssi_score_param->good_rssi_bucket_size;
804 	bad_bucket_size = rssi_score_param->bad_rssi_bucket_size;
805 
806 	/* Uplink RSSI is better than best rssi threshold */
807 	if (normalized_ap_tx_pwr > best_rssi_threshold) {
808 		ap_tx_pwr_factor = CM_MAX_PCT_SCORE;
809 	} else if (normalized_ap_tx_pwr <= bad_rssi_threshold) {
810 		/* Uplink RSSI is less or equal to bad rssi threshold */
811 		ap_tx_pwr_factor = rssi_score_param->bad_rssi_pcnt;
812 	} else if (normalized_ap_tx_pwr > good_rssi_threshold) {
813 		/* Uplink RSSI lies between best to good rssi threshold */
814 		ap_tx_pwr_factor =
815 			cm_get_rssi_pcnt_for_slot(
816 					best_rssi_threshold,
817 					good_rssi_threshold, 100,
818 					good_rssi_pcnt,
819 					good_bucket_size, normalized_ap_tx_pwr);
820 	} else {
821 		/* Uplink RSSI lies between good to best rssi threshold */
822 		ap_tx_pwr_factor =
823 			cm_get_rssi_pcnt_for_slot(
824 					good_rssi_threshold,
825 					bad_rssi_threshold, good_rssi_pcnt,
826 					bad_rssi_pcnt, bad_bucket_size,
827 					normalized_ap_tx_pwr);
828 	}
829 
830 	score  = score_params->weight_config.oce_ap_tx_pwr_weightage *
831 			ap_tx_pwr_factor;
832 
833 	return score;
834 }
835 
836 static bool cm_is_assoc_allowed(struct psoc_mlme_obj *mlme_psoc_obj,
837 				struct scan_cache_entry *entry)
838 {
839 	uint8_t reason;
840 	uint8_t *mbo_oce;
841 	bool check_assoc_disallowed;
842 
843 	mbo_oce = util_scan_entry_mbo_oce(entry);
844 
845 	check_assoc_disallowed =
846 	   mlme_psoc_obj->psoc_cfg.score_config.check_assoc_disallowed;
847 
848 	if (check_assoc_disallowed &&
849 	    wlan_parse_oce_assoc_disallowed_ie(mbo_oce, &reason)) {
850 		mlme_nofl_debug("Candidate("QDF_MAC_ADDR_FMT" freq %d): rssi %d, assoc disallowed set in MBO/OCE IE reason %d",
851 				QDF_MAC_ADDR_REF(entry->bssid.bytes),
852 				entry->channel.chan_freq,
853 				entry->rssi_raw, reason);
854 		return false;
855 	}
856 
857 	return true;
858 }
859 
860 void wlan_cm_set_check_assoc_disallowed(struct wlan_objmgr_psoc *psoc,
861 					bool value)
862 {
863 	struct psoc_mlme_obj *mlme_psoc_obj;
864 
865 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
866 	if (!mlme_psoc_obj)
867 		return;
868 
869 	mlme_psoc_obj->psoc_cfg.score_config.check_assoc_disallowed = value;
870 }
871 
872 void wlan_cm_get_check_assoc_disallowed(struct wlan_objmgr_psoc *psoc,
873 					bool *value)
874 {
875 	struct psoc_mlme_obj *mlme_psoc_obj;
876 
877 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
878 	if (!mlme_psoc_obj) {
879 		*value = false;
880 		return;
881 	}
882 
883 	*value = mlme_psoc_obj->psoc_cfg.score_config.check_assoc_disallowed;
884 }
885 
886 static enum phy_ch_width
887 cm_calculate_bandwidth(struct scan_cache_entry *entry,
888 		       struct psoc_phy_config *phy_config)
889 {
890 	uint8_t bw_above_20 = 0;
891 	bool is_vht = false;
892 	enum phy_ch_width ch_width;
893 
894 	if (WLAN_REG_IS_24GHZ_CH_FREQ(entry->channel.chan_freq)) {
895 		bw_above_20 = phy_config->bw_above_20_24ghz;
896 		if (phy_config->vht_24G_cap)
897 			is_vht = true;
898 	} else if (phy_config->vht_cap) {
899 		is_vht = true;
900 		bw_above_20 = phy_config->bw_above_20_5ghz;
901 	}
902 
903 	if (IS_WLAN_PHYMODE_160MHZ(entry->phy_mode))
904 		ch_width = CH_WIDTH_160MHZ;
905 	else if (IS_WLAN_PHYMODE_80MHZ(entry->phy_mode))
906 		ch_width = CH_WIDTH_80MHZ;
907 	else if (IS_WLAN_PHYMODE_40MHZ(entry->phy_mode))
908 		ch_width = CH_WIDTH_40MHZ;
909 	else
910 		ch_width = CH_WIDTH_20MHZ;
911 
912 	if (!phy_config->ht_cap &&
913 	    ch_width >= CH_WIDTH_20MHZ)
914 		ch_width = CH_WIDTH_20MHZ;
915 
916 	if (!is_vht && ch_width > CH_WIDTH_40MHZ)
917 		ch_width = CH_WIDTH_40MHZ;
918 
919 	if (!bw_above_20)
920 		ch_width = CH_WIDTH_20MHZ;
921 
922 	return ch_width;
923 }
924 
925 static uint8_t cm_etp_get_ba_win_size_from_esp(uint8_t esp_ba_win_size)
926 {
927 	/*
928 	 * BA Window Size subfield is three bits in length and indicates the
929 	 * size of the Block Ack window that is.
930 	 * 802.11-2016.pdf Table 9-262 BA Window Size subfield encoding
931 	 */
932 	switch (esp_ba_win_size) {
933 	case 1: return 2;
934 	case 2: return 4;
935 	case 3: return 6;
936 	case 4: return 8;
937 	case 5: return 16;
938 	case 6: return 32;
939 	case 7: return 64;
940 	default: return 1;
941 	}
942 }
943 
944 static uint16_t cm_get_etp_ntone(bool is_ht, bool is_vht,
945 				 enum phy_ch_width ch_width)
946 {
947 	uint16_t n_sd = 52, n_seg = 1;
948 
949 	if (is_vht) {
950 		/* Refer Table 21-5 in IEEE80211-2016 Spec */
951 		if (ch_width == CH_WIDTH_20MHZ)
952 			n_sd = 52;
953 		else if (ch_width == CH_WIDTH_40MHZ)
954 			n_sd = 108;
955 		else if (ch_width == CH_WIDTH_80MHZ)
956 			n_sd = 234;
957 		else if (ch_width == CH_WIDTH_80P80MHZ)
958 			n_sd = 234, n_seg = 2;
959 		else if (ch_width == CH_WIDTH_160MHZ)
960 			n_sd = 468;
961 	} else if (is_ht) {
962 		/* Refer Table 19-6 in IEEE80211-2016 Spec */
963 		if (ch_width == CH_WIDTH_20MHZ)
964 			n_sd = 52;
965 		if (ch_width == CH_WIDTH_40MHZ)
966 			n_sd = 108;
967 	} else {
968 		n_sd = 48;
969 	}
970 
971 	return (n_sd * n_seg);
972 }
973 
974 /* Refer Table 27-64 etc in Draft P802.11ax_D7.0.txt */
975 static uint16_t cm_get_etp_he_ntone(enum phy_ch_width ch_width)
976 {
977 	uint16_t n_sd = 234, n_seg = 1;
978 
979 	if (ch_width == CH_WIDTH_20MHZ)
980 		n_sd = 234;
981 	else if (ch_width == CH_WIDTH_40MHZ)
982 		n_sd = 468;
983 	else if (ch_width == CH_WIDTH_80MHZ)
984 		n_sd = 980;
985 	else if (ch_width == CH_WIDTH_80P80MHZ)
986 		n_sd = 980, n_seg = 2;
987 	else if (ch_width == CH_WIDTH_160MHZ)
988 		n_sd = 1960;
989 
990 	return (n_sd * n_seg);
991 }
992 
993 static uint16_t cm_get_etp_phy_header_dur_us(bool is_ht, bool is_vht,
994 					     uint8_t nss)
995 {
996 	uint16_t dur_us = 0;
997 
998 	if (is_vht) {
999 		/*
1000 		 * Refer Figure 21-4 in 80211-2016 Spec
1001 		 * 8 (L-STF) + 8 (L-LTF) + 4 (L-SIG) +
1002 		 * 8 (VHT-SIG-A) + 4 (VHT-STF) + 4 (VHT-SIG-B)
1003 		 */
1004 		dur_us = 36;
1005 		/* (nss * VHT-LTF) = (nss * 4) */
1006 		dur_us += (nss << 2);
1007 	} else if (is_ht) {
1008 		/*
1009 		 * Refer Figure 19-1 in 80211-2016 Spec
1010 		 * 8 (L-STF) + 8 (L-LTF) + 4 (L-SIG) + 8 (HT-SIG) +
1011 		 * 4 (HT-STF)
1012 		 */
1013 		dur_us = 32;
1014 		/* (nss * HT-LTF = nss * 4) */
1015 		dur_us += (nss << 2);
1016 	} else {
1017 		/*
1018 		 * non-HT
1019 		 * Refer Figure 19-1 in 80211-2016 Spec
1020 		 * 8 (L-STF) + 8 (L-LTF) + 4 (L-SIG)
1021 		 */
1022 		dur_us = 20;
1023 	}
1024 	return dur_us;
1025 }
1026 
1027 static uint32_t
1028 cm_get_etp_max_bits_per_sc_1000x_for_nss(struct wlan_objmgr_psoc *psoc,
1029 					 struct scan_cache_entry *entry,
1030 					 uint8_t nss,
1031 					 struct psoc_phy_config *phy_config)
1032 {
1033 	uint32_t max_bits_per_sc_1000x = 5000; /* 5 * 1000 */
1034 	uint8_t mcs_map;
1035 	struct wlan_ie_vhtcaps *bss_vht_cap;
1036 	struct wlan_ie_hecaps *bss_he_cap;
1037 	uint32_t self_rx_mcs_map;
1038 	QDF_STATUS status;
1039 
1040 	bss_vht_cap = (struct wlan_ie_vhtcaps *)util_scan_entry_vhtcap(entry);
1041 	bss_he_cap = (struct wlan_ie_hecaps *)util_scan_entry_hecap(entry);
1042 	if (!phy_config->vht_cap || !bss_vht_cap) {
1043 		mlme_err("vht unsupported");
1044 		return max_bits_per_sc_1000x;
1045 	}
1046 
1047 	status = wlan_mlme_cfg_get_vht_rx_mcs_map(psoc, &self_rx_mcs_map);
1048 	if (QDF_IS_STATUS_ERROR(status))
1049 		return max_bits_per_sc_1000x;
1050 
1051 	if (nss == 4) {
1052 		mcs_map = (self_rx_mcs_map & 0xC0) >> 6;
1053 		mcs_map = QDF_MIN(mcs_map,
1054 				  (bss_vht_cap->rx_mcs_map & 0xC0) >> 6);
1055 	} else if (nss == 3) {
1056 		mcs_map = (self_rx_mcs_map & 0x30) >> 4;
1057 		mcs_map = QDF_MIN(mcs_map,
1058 				  (bss_vht_cap->rx_mcs_map & 0x30) >> 4);
1059 	} else if (nss == 2) {
1060 		mcs_map = (self_rx_mcs_map & 0x0C) >> 2;
1061 		mcs_map = QDF_MIN(mcs_map,
1062 				  (bss_vht_cap->rx_mcs_map & 0x0C) >> 2);
1063 	} else {
1064 		mcs_map = (self_rx_mcs_map & 0x03);
1065 		mcs_map = QDF_MIN(mcs_map, (bss_vht_cap->rx_mcs_map & 0x03));
1066 	}
1067 	if (bss_he_cap) {
1068 		if (mcs_map == 2)
1069 			max_bits_per_sc_1000x = 8333; /* 10 *5/6 * 1000 */
1070 		else if (mcs_map == 1)
1071 			max_bits_per_sc_1000x = 7500; /* 10 * 3/4 * 1000 */
1072 	} else {
1073 		if (mcs_map == 2)
1074 			max_bits_per_sc_1000x = 6667; /* 8 * 5/6 * 1000 */
1075 		else if (mcs_map == 1)
1076 			max_bits_per_sc_1000x = 6000; /* 8 * 3/4 * 1000 */
1077 	}
1078 	return max_bits_per_sc_1000x;
1079 }
1080 
1081 /* Refer Table 9-163 in 80211-2016 Spec */
1082 static uint32_t cm_etp_get_min_mpdu_ss_us_100x(struct htcap_cmn_ie *htcap)
1083 {
1084 	tSirMacHTParametersInfo *ampdu_param;
1085 	uint8_t ampdu_density;
1086 
1087 	ampdu_param = (tSirMacHTParametersInfo *)&htcap->ampdu_param;
1088 	ampdu_density = ampdu_param->mpduDensity;
1089 
1090 	if (ampdu_density == 1)
1091 		return 25; /* (1/4) * 100 */
1092 	else if (ampdu_density == 2)
1093 		return 50; /* (1/2) * 100 */
1094 	else if (ampdu_density == 3)
1095 		return 100; /* 1 * 100 */
1096 	else if (ampdu_density == 4)
1097 		return 200; /* 2 * 100 */
1098 	else if (ampdu_density == 5)
1099 		return 400; /* 4 * 100 */
1100 	else if (ampdu_density == 6)
1101 		return 800; /* 8 * 100 */
1102 	else if (ampdu_density == 7)
1103 		return 1600; /* 16 * 100 */
1104 	else
1105 		return 100;
1106 }
1107 
1108 /* Refer Table 9-162 in 80211-2016 Spec */
1109 static uint32_t cm_etp_get_max_amsdu_len(struct wlan_objmgr_psoc *psoc,
1110 					 struct htcap_cmn_ie *htcap)
1111 {
1112 	uint8_t bss_max_amsdu;
1113 	uint32_t bss_max_amsdu_len;
1114 	QDF_STATUS status;
1115 
1116 	status = wlan_mlme_get_max_amsdu_num(psoc, &bss_max_amsdu);
1117 	if (QDF_IS_STATUS_ERROR(status))
1118 		bss_max_amsdu_len = 3839;
1119 	else if (bss_max_amsdu == 1)
1120 		bss_max_amsdu_len =  7935;
1121 	else
1122 		bss_max_amsdu_len = 3839;
1123 
1124 	return bss_max_amsdu_len;
1125 }
1126 
1127    // Calculate the number of bits per tone based on the input of SNR in dB
1128     // The output is scaled up by BIT_PER_TONE_SCALE for integer representation
1129 static uint32_t
1130 calculate_bit_per_tone(int32_t rssi, enum phy_ch_width ch_width)
1131 {
1132 	int32_t noise_floor_db_boost;
1133 	int32_t noise_floor_dbm;
1134 	int32_t snr_db;
1135 	int32_t bit_per_tone;
1136 	int32_t lut_in_idx;
1137 
1138 	noise_floor_db_boost = TWO_IN_DB * ch_width;
1139 	noise_floor_dbm = WLAN_NOISE_FLOOR_DBM_DEFAULT + noise_floor_db_boost +
1140 			SNR_MARGIN_DB;
1141 	snr_db = rssi - noise_floor_dbm;
1142 	if (snr_db <= SNR_DB_TO_BIT_PER_TONE_LUT_MAX) {
1143 		lut_in_idx = QDF_MAX(snr_db, SNR_DB_TO_BIT_PER_TONE_LUT_MIN)
1144 			- SNR_DB_TO_BIT_PER_TONE_LUT_MIN;
1145 		lut_in_idx = QDF_MIN(lut_in_idx, DB_NUM - 1);
1146 		bit_per_tone = SNR_DB_TO_BIT_PER_TONE_LUT[lut_in_idx];
1147 	} else {
1148 		/*
1149 		 * SNR_tone = 10^(SNR/10)
1150 		 * log2(1+SNR_tone) ~= log2(SNR_tone) =
1151 		 * log10(SNR_tone)/log10(2) = log10(10^(SNR/10)) / 0.3
1152 		 * = (SNR/10) / 0.3 = SNR/3
1153 		 * So log2(1+SNR_tone) = SNR/3. 1000x for this is SNR*334
1154 		 */
1155 		bit_per_tone = snr_db * 334;
1156 	}
1157 
1158 	return bit_per_tone;
1159 }
1160 
1161 static uint32_t
1162 cm_calculate_etp(struct wlan_objmgr_psoc *psoc,
1163 		 struct scan_cache_entry *entry,
1164 		 struct etp_params  *etp_param,
1165 		 uint8_t max_nss, enum phy_ch_width ch_width,
1166 		 bool is_ht, bool is_vht, bool is_he,
1167 		 int8_t rssi,
1168 		 struct psoc_phy_config *phy_config)
1169 {
1170 	uint16_t ntone;
1171 	uint16_t phy_hdr_dur_us, max_amsdu_len = 1500, min_mpdu_ss_us_100x = 0;
1172 	uint32_t max_bits_per_sc_1000x, log_2_snr_tone_1000x;
1173 	uint32_t ppdu_payload_dur_us = 0, mpdu_per_ampdu, mpdu_per_ppdu;
1174 	uint32_t single_ppdu_dur_us, estimated_throughput_mbps, data_rate_kbps;
1175 	struct htcap_cmn_ie *htcap;
1176 
1177 	htcap = (struct htcap_cmn_ie *)util_scan_entry_htcap(entry);
1178 	if (ch_width > CH_WIDTH_160MHZ)
1179 		return CM_AVOID_CANDIDATE_MIN_SCORE;
1180 
1181 	if (is_he)
1182 		ntone = cm_get_etp_he_ntone(ch_width);
1183 	else
1184 		ntone = cm_get_etp_ntone(is_ht, is_vht, ch_width);
1185 	phy_hdr_dur_us = cm_get_etp_phy_header_dur_us(is_ht, is_vht, max_nss);
1186 
1187 	max_bits_per_sc_1000x =
1188 		cm_get_etp_max_bits_per_sc_1000x_for_nss(psoc, entry,
1189 							 max_nss, phy_config);
1190 	if (rssi < WLAN_NOISE_FLOOR_DBM_DEFAULT)
1191 		return CM_AVOID_CANDIDATE_MIN_SCORE;
1192 
1193 	log_2_snr_tone_1000x = calculate_bit_per_tone(rssi, ch_width);
1194 
1195 	/* Eq. R-2 Pg:3508 in 80211-2016 Spec */
1196 	if (is_he)
1197 		data_rate_kbps =
1198 			QDF_MIN(log_2_snr_tone_1000x, max_bits_per_sc_1000x) *
1199 			(max_nss * ntone) / HE_PPDU_PAYLOAD_SYMBOL_DUR_US;
1200 	else
1201 		data_rate_kbps =
1202 			QDF_MIN(log_2_snr_tone_1000x, max_bits_per_sc_1000x) *
1203 			(max_nss * ntone) / PPDU_PAYLOAD_SYMBOL_DUR_US;
1204 	mlme_debug("data_rate_kbps: %d", data_rate_kbps);
1205 	if (data_rate_kbps < 1000) {
1206 		/* Return ETP as 1 since datarate is not even 1 Mbps */
1207 		return CM_AVOID_CANDIDATE_MIN_SCORE;
1208 	}
1209 	/* compute MPDU_p_PPDU */
1210 	if (is_ht) {
1211 		min_mpdu_ss_us_100x =
1212 			cm_etp_get_min_mpdu_ss_us_100x(htcap);
1213 		max_amsdu_len =
1214 			cm_etp_get_max_amsdu_len(psoc, htcap);
1215 		ppdu_payload_dur_us =
1216 			etp_param->data_ppdu_dur_target_us - phy_hdr_dur_us;
1217 		mpdu_per_ampdu =
1218 			QDF_MIN(qdf_ceil(ppdu_payload_dur_us * 100,
1219 					 min_mpdu_ss_us_100x),
1220 				qdf_ceil(ppdu_payload_dur_us *
1221 					 (data_rate_kbps / 1000),
1222 					 (MAC_HEADER_LEN + max_amsdu_len) * 8));
1223 		mpdu_per_ppdu = QDF_MIN(etp_param->ba_window_size,
1224 					QDF_MAX(1, mpdu_per_ampdu));
1225 	} else {
1226 		mpdu_per_ppdu = 1;
1227 	}
1228 
1229 	/* compute PPDU_Dur */
1230 	single_ppdu_dur_us =
1231 		qdf_ceil((MAC_HEADER_LEN + max_amsdu_len) * mpdu_per_ppdu * 8,
1232 			 (data_rate_kbps / 1000) * PPDU_PAYLOAD_SYMBOL_DUR_US);
1233 	single_ppdu_dur_us *= PPDU_PAYLOAD_SYMBOL_DUR_US;
1234 	single_ppdu_dur_us += phy_hdr_dur_us;
1235 
1236 	estimated_throughput_mbps =
1237 		qdf_ceil(mpdu_per_ppdu * max_amsdu_len * 8, single_ppdu_dur_us);
1238 	estimated_throughput_mbps =
1239 		(estimated_throughput_mbps *
1240 		 etp_param->airtime_fraction) /
1241 		 CM_MAX_ESTIMATED_AIR_TIME_FRACTION;
1242 
1243 	if (estimated_throughput_mbps < CM_AVOID_CANDIDATE_MIN_SCORE)
1244 		estimated_throughput_mbps = CM_AVOID_CANDIDATE_MIN_SCORE;
1245 	if (estimated_throughput_mbps > CM_BEST_CANDIDATE_MAX_BSS_SCORE)
1246 		estimated_throughput_mbps = CM_BEST_CANDIDATE_MAX_BSS_SCORE;
1247 
1248 	mlme_nofl_debug("Candidate("QDF_MAC_ADDR_FMT" freq %d): rssi %d HT %d VHT %d HE %d ATF: %d NSS %d, ch_width: %d",
1249 			QDF_MAC_ADDR_REF(entry->bssid.bytes),
1250 			entry->channel.chan_freq,
1251 			entry->rssi_raw, is_ht, is_vht, is_he,
1252 			etp_param->airtime_fraction,
1253 			entry->nss, ch_width);
1254 	if (is_ht)
1255 		mlme_nofl_debug("min_mpdu_ss_us_100x = %d, max_amsdu_len = %d, ppdu_payload_dur_us = %d, mpdu_per_ampdu = %d, mpdu_per_ppdu = %d, ba_window_size = %d",
1256 				min_mpdu_ss_us_100x, max_amsdu_len,
1257 				ppdu_payload_dur_us, mpdu_per_ampdu,
1258 				mpdu_per_ppdu, etp_param->ba_window_size);
1259 	mlme_nofl_debug("ETP score params: ntone: %d, phy_hdr_dur_us: %d, max_bits_per_sc_1000x: %d, log_2_snr_tone_1000x: %d mpdu_p_ppdu = %d, max_amsdu_len = %d, ppdu_dur_us = %d, total score = %d",
1260 			ntone, phy_hdr_dur_us, max_bits_per_sc_1000x,
1261 			log_2_snr_tone_1000x, mpdu_per_ppdu, max_amsdu_len,
1262 			single_ppdu_dur_us, estimated_throughput_mbps);
1263 
1264 	return estimated_throughput_mbps;
1265 }
1266 
1267 static uint32_t
1268 cm_calculate_etp_score(struct wlan_objmgr_psoc *psoc,
1269 		       struct scan_cache_entry *entry,
1270 		       struct psoc_phy_config *phy_config)
1271 {
1272 	enum phy_ch_width ch_width;
1273 	uint32_t nss;
1274 	bool is_he_intersect = false;
1275 	bool is_vht_intersect = false;
1276 	bool is_ht_intersect = false;
1277 	struct wlan_esp_info *esp;
1278 	struct wlan_esp_ie *esp_ie;
1279 	struct etp_params etp_param;
1280 
1281 	if (phy_config->he_cap && entry->ie_list.hecap)
1282 		is_he_intersect = true;
1283 	if ((phy_config->vht_cap || phy_config->vht_24G_cap) &&
1284 	    (entry->ie_list.vhtcap ||
1285 	     WLAN_REG_IS_6GHZ_CHAN_FREQ(entry->channel.chan_freq)))
1286 		is_vht_intersect = true;
1287 	if (phy_config->ht_cap && entry->ie_list.htcap)
1288 		is_ht_intersect = true;
1289 	nss = cm_get_sta_nss(psoc, entry->channel.chan_freq,
1290 			     phy_config->vdev_nss_24g,
1291 			     phy_config->vdev_nss_5g);
1292 	nss = QDF_MIN(nss, entry->nss);
1293 	ch_width = cm_calculate_bandwidth(entry, phy_config);
1294 
1295 	/* Initialize default ETP params */
1296 	etp_param.airtime_fraction = 255 / 2;
1297 	etp_param.ba_window_size = 32;
1298 	etp_param.data_ppdu_dur_target_us = 5000; /* 5 msec */
1299 
1300 	if (entry->air_time_fraction) {
1301 		etp_param.airtime_fraction = entry->air_time_fraction;
1302 		esp_ie = (struct wlan_esp_ie *)
1303 			util_scan_entry_esp_info(entry);
1304 		if (esp_ie) {
1305 			esp = &esp_ie->esp_info_AC_BE;
1306 			etp_param.ba_window_size =
1307 				cm_etp_get_ba_win_size_from_esp(esp->ba_window_size);
1308 			etp_param.data_ppdu_dur_target_us =
1309 					50 * esp->ppdu_duration;
1310 			mlme_debug("esp ba_window_size: %d, ppdu_duration: %d",
1311 				   esp->ba_window_size, esp->ppdu_duration);
1312 		}
1313 	} else if (entry->qbss_chan_load) {
1314 		mlme_debug("qbss_chan_load: %d", entry->qbss_chan_load);
1315 		etp_param.airtime_fraction =
1316 			CM_MAX_ESTIMATED_AIR_TIME_FRACTION -
1317 			entry->qbss_chan_load;
1318 	}
1319 	/* If ini vendor_roam_score_algorithm=1, just calculate ETP of all
1320 	 * bssid of ssid selected by high layer, and try to connect AP by
1321 	 * order of ETP, legacy algorithm with following Parameters/Weightage
1322 	 * becomes useless. ETP should be [1Mbps, 20000Mbps],matches score
1323 	 * range: [1, 20000]
1324 	 */
1325 	return cm_calculate_etp(psoc, entry,
1326 				  &etp_param,
1327 				  nss,
1328 				  ch_width,
1329 				  is_ht_intersect,
1330 				  is_vht_intersect,
1331 				  is_he_intersect,
1332 				  entry->rssi_raw,
1333 				  phy_config);
1334 }
1335 #else
1336 static bool
1337 cm_get_pcl_weight_of_channel(uint32_t chan_freq,
1338 			     struct pcl_freq_weight_list *pcl_lst,
1339 			     int *pcl_chan_weight)
1340 {
1341 	return false;
1342 }
1343 
1344 static int32_t cm_calculate_pcl_score(struct wlan_objmgr_psoc *psoc,
1345 				      int pcl_chan_weight,
1346 				      uint8_t pcl_weightage)
1347 {
1348 	return 0;
1349 }
1350 
1351 static int32_t cm_calculate_oce_wan_score(struct scan_cache_entry *entry,
1352 					  struct scoring_cfg *score_params)
1353 {
1354 	return 0;
1355 }
1356 
1357 static uint32_t
1358 cm_calculate_oce_subnet_id_weightage(struct scan_cache_entry *entry,
1359 				     struct scoring_cfg *score_params,
1360 				     bool *oce_subnet_id_present)
1361 {
1362 	return 0;
1363 }
1364 
1365 static uint32_t
1366 cm_calculate_sae_pk_ap_weightage(struct scan_cache_entry *entry,
1367 				 struct scoring_cfg *score_params,
1368 				 bool *sae_pk_cap_present)
1369 {
1370 	return 0;
1371 }
1372 
1373 static uint32_t
1374 cm_calculate_oce_ap_tx_pwr_weightage(struct scan_cache_entry *entry,
1375 				     struct scoring_cfg *score_params,
1376 				     int8_t *ap_tx_pwr_dbm)
1377 {
1378 	return 0;
1379 }
1380 
1381 static inline bool cm_is_assoc_allowed(struct psoc_mlme_obj *mlme_psoc_obj,
1382 				       struct scan_cache_entry *entry)
1383 {
1384 	return true;
1385 }
1386 
1387 static uint32_t
1388 cm_calculate_etp_score(struct wlan_objmgr_psoc *psoc,
1389 		       struct scan_cache_entry *entry,
1390 		       struct psoc_phy_config *phy_config)
1391 {
1392 	return 0;
1393 }
1394 #endif
1395 
1396 /**
1397  * cm_get_band_score() - Get band prefernce weightage
1398  * freq: Operating frequency of the AP
1399  * @score_config: Score configuration
1400  *
1401  * Return: Band score for AP.
1402  */
1403 static int
1404 cm_get_band_score(uint32_t freq, struct scoring_cfg *score_config)
1405 {
1406 	uint8_t band_index;
1407 	struct weight_cfg *weight_config;
1408 
1409 	weight_config = &score_config->weight_config;
1410 
1411 	if (WLAN_REG_IS_5GHZ_CH_FREQ(freq))
1412 		band_index = CM_BAND_5G_INDEX;
1413 	else if (WLAN_REG_IS_24GHZ_CH_FREQ(freq))
1414 		band_index = CM_BAND_2G_INDEX;
1415 	else if (WLAN_REG_IS_6GHZ_CHAN_FREQ(freq))
1416 		band_index = CM_BAND_6G_INDEX;
1417 	else
1418 		return 0;
1419 
1420 	return weight_config->chan_band_weightage *
1421 	       CM_GET_SCORE_PERCENTAGE(score_config->band_weight_per_index,
1422 				       band_index);
1423 }
1424 
1425 #ifdef WLAN_FEATURE_11BE
1426 static int cm_calculate_eht_score(struct scan_cache_entry *entry,
1427 				  struct scoring_cfg *score_config,
1428 				  struct psoc_phy_config *phy_config,
1429 				  uint8_t prorated_pcnt)
1430 {
1431 	uint32_t eht_caps_score;
1432 	struct weight_cfg *weight_config;
1433 
1434 	if (!phy_config->eht_cap || !entry->ie_list.ehtcap)
1435 		return 0;
1436 
1437 	weight_config = &score_config->weight_config;
1438 	eht_caps_score = prorated_pcnt * weight_config->eht_caps_weightage;
1439 
1440 	return eht_caps_score;
1441 }
1442 
1443 /**
1444  * cm_get_puncture_bw() - Get puncture band width
1445  * @entry: Bss scan entry
1446  *
1447  * Return: Total bandwidth of punctured subchannels (unit: MHz)
1448  */
1449 static uint16_t cm_get_puncture_bw(struct scan_cache_entry *entry)
1450 {
1451 	uint16_t puncture_bitmap;
1452 	uint8_t num_puncture_bw = 0;
1453 
1454 	puncture_bitmap = entry->channel.puncture_bitmap;
1455 	while (puncture_bitmap) {
1456 		if (puncture_bitmap & 1)
1457 			++num_puncture_bw;
1458 		puncture_bitmap >>= 1;
1459 	}
1460 	return num_puncture_bw * 20;
1461 }
1462 
1463 static bool cm_get_su_beam_former(struct scan_cache_entry *entry)
1464 {
1465 	struct wlan_ie_ehtcaps *eht_cap;
1466 	struct wlan_eht_cap_info *eht_cap_info;
1467 
1468 	eht_cap = (struct wlan_ie_ehtcaps *)util_scan_entry_ehtcap(entry);
1469 	if (eht_cap) {
1470 		eht_cap_info = (struct wlan_eht_cap_info *)eht_cap->eht_mac_cap;
1471 		if (eht_cap_info->su_beamformer)
1472 			return true;
1473 	}
1474 
1475 	return false;
1476 }
1477 #else
1478 static int cm_calculate_eht_score(struct scan_cache_entry *entry,
1479 				  struct scoring_cfg *score_config,
1480 				  struct psoc_phy_config *phy_config,
1481 				uint8_t prorated_pcnt)
1482 {
1483 	return 0;
1484 }
1485 
1486 static uint16_t cm_get_puncture_bw(struct scan_cache_entry *entry)
1487 {
1488 	return 0;
1489 }
1490 
1491 static bool cm_get_su_beam_former(struct scan_cache_entry *entry)
1492 {
1493 	return false;
1494 }
1495 #endif
1496 
1497 #define CM_BAND_WIDTH_NUM 16
1498 #define CM_BAND_WIDTH_UNIT 20
1499 uint16_t link_bw_score[CM_BAND_WIDTH_NUM] = {
1500 9, 18, 27, 35, 44, 53, 56, 67, 74, 80, 86, 90, 93, 96, 98, 100};
1501 
1502 static uint32_t cm_get_bw_score(uint8_t bw_weightage, uint16_t bw,
1503 				uint8_t prorated_pcnt)
1504 {
1505 	uint32_t score;
1506 	uint8_t index;
1507 
1508 	index = bw / CM_BAND_WIDTH_UNIT - 1;
1509 	if (index >= CM_BAND_WIDTH_NUM)
1510 		index = CM_BAND_WIDTH_NUM - 1;
1511 	score = bw_weightage * link_bw_score[index]
1512 		* prorated_pcnt / CM_MAX_PCT_SCORE;
1513 
1514 	return score;
1515 }
1516 
1517 /**
1518  * cm_get_ch_width() - Get channel width of bss scan entry
1519  * @entry: Bss scan entry
1520  * @phy_config: Phy config
1521  *
1522  * Return: Channel width (unit: MHz)
1523  */
1524 static uint16_t cm_get_ch_width(struct scan_cache_entry *entry,
1525 				struct psoc_phy_config *phy_config)
1526 {
1527 	uint16_t bw, total_bw = 0;
1528 	uint8_t bw_above_20 = 0;
1529 	bool is_vht = false;
1530 
1531 	if (WLAN_REG_IS_24GHZ_CH_FREQ(entry->channel.chan_freq)) {
1532 		bw_above_20 = phy_config->bw_above_20_24ghz;
1533 		if (phy_config->vht_24G_cap)
1534 			is_vht = true;
1535 	} else if (phy_config->vht_cap) {
1536 		is_vht = true;
1537 		bw_above_20 = phy_config->bw_above_20_5ghz;
1538 	}
1539 	if (IS_WLAN_PHYMODE_320MHZ(entry->phy_mode))
1540 		bw = 320;
1541 	else if (IS_WLAN_PHYMODE_160MHZ(entry->phy_mode))
1542 		bw = 160;
1543 	else if (IS_WLAN_PHYMODE_80MHZ(entry->phy_mode))
1544 		bw = 80;
1545 	else if (IS_WLAN_PHYMODE_40MHZ(entry->phy_mode))
1546 		bw = 40;
1547 	else
1548 		bw = 20;
1549 	if (!phy_config->ht_cap && bw > 20)
1550 		bw = 20;
1551 
1552 	if (!is_vht && bw > 40)
1553 		bw = 40;
1554 
1555 	total_bw = bw - cm_get_puncture_bw(entry);
1556 
1557 	return total_bw;
1558 }
1559 
1560 #ifdef WLAN_FEATURE_11BE_MLO
1561 #define CM_MLO_BAD_RSSI_PCT 61
1562 #define CM_MLO_CONGESTION_PCT_BAD_RSSI 6
1563 
1564 static uint8_t mlo_boost_pct[MLO_TYPE_MAX] = {0, 10, CM_MAX_PCT_SCORE};
1565 
1566 /**
1567  * struct mlo_rssi_pct: MLO AP rssi joint factor and score percent
1568  * @joint_factor: rssi joint factor (0 - 100)
1569  * @rssi_pcnt: Rssi score percent (0 - 100)
1570  * @prorate_pcnt: RSSI prorated percent
1571  */
1572 struct mlo_rssi_pct {
1573 	uint16_t joint_factor;
1574 	uint16_t rssi_pcnt;
1575 	uint16_t prorate_pcnt;
1576 };
1577 
1578 #define CM_RSSI_BUCKET_NUM 7
1579 static struct mlo_rssi_pct mlo_rssi_pcnt[CM_RSSI_BUCKET_NUM] = {
1580 {80, 100, 100}, {60, 87, 100}, {44, 74, 100}, {30, 61, 100}, {20, 48, 54},
1581 {10, 35, 28}, {0, 22, 1} };
1582 
1583 /**
1584  * cm_get_mlo_rssi_score() - Calculate joint rssi score for MLO AP
1585  * @rssi_weightage: rssi weightage
1586  * @link1_rssi: link1 rssi
1587  * @link2_rssi: link2 rssi
1588  *
1589  * Return: MLO AP joint rssi score
1590  */
1591 static uint32_t cm_get_mlo_rssi_score(uint8_t rssi_weightage, int8_t link1_rssi,
1592 				      int8_t link2_rssi, uint16_t *prorate_pcnt)
1593 {
1594 	int8_t link1_factor = 0, link2_factor = 0;
1595 	int32_t joint_factor = 0;
1596 	int16_t rssi_pcnt = 0;
1597 	int8_t i;
1598 
1599 	/* Calculate RSSI score -- using joint rssi, but limit to 2 links */
1600 	link1_factor = QDF_MAX(QDF_MIN(link1_rssi, -50), -95) + 95;
1601 	link2_factor = QDF_MAX(QDF_MIN(link2_rssi, -50), -95) + 95;
1602 	joint_factor = QDF_MIN((link1_factor * link1_factor +
1603 			    link2_factor * link2_factor) * 100 / (2 * 45 * 45),
1604 			    100);
1605 	for (i = 0; i < CM_RSSI_BUCKET_NUM; i++)
1606 		if (joint_factor > mlo_rssi_pcnt[i].joint_factor) {
1607 			rssi_pcnt = mlo_rssi_pcnt[i].rssi_pcnt;
1608 			*prorate_pcnt = mlo_rssi_pcnt[i].prorate_pcnt;
1609 			break;
1610 		}
1611 
1612 	return (rssi_weightage * rssi_pcnt);
1613 }
1614 
1615 static inline int cm_calculate_emlsr_score(struct weight_cfg *weight_config)
1616 {
1617 	return weight_config->emlsr_weightage * mlo_boost_pct[MLSR];
1618 }
1619 
1620 /**
1621  * cm_get_entry() - Get bss scan entry by link mac address
1622  * @scan_list: Scan entry list of bss candidates after filtering
1623  * @link_addr: link mac address
1624  *
1625  * Return: Pointer to bss scan entry
1626  */
1627 static struct scan_cache_entry *cm_get_entry(qdf_list_t *scan_list,
1628 					     struct qdf_mac_addr *link_addr)
1629 {
1630 	qdf_list_node_t *cur_node = NULL, *next_node = NULL;
1631 	struct scan_cache_node *curr_entry = NULL;
1632 
1633 	qdf_list_peek_front(scan_list, &cur_node);
1634 	while (cur_node) {
1635 		curr_entry = qdf_container_of(cur_node, struct scan_cache_node,
1636 					      node);
1637 		if (!qdf_mem_cmp(&curr_entry->entry->mac_addr,
1638 				 link_addr, QDF_MAC_ADDR_SIZE))
1639 			return curr_entry->entry;
1640 
1641 		qdf_list_peek_next(scan_list, cur_node, &next_node);
1642 		cur_node = next_node;
1643 		next_node = NULL;
1644 	}
1645 
1646 	return NULL;
1647 }
1648 
1649 #ifdef CONN_MGR_ADV_FEATURE
1650 static uint8_t cm_get_sta_mlo_conn_max_num(struct wlan_objmgr_psoc *psoc)
1651 {
1652 	return wlan_mlme_get_sta_mlo_conn_max_num(psoc);
1653 }
1654 
1655 static bool is_freq_dbs_or_sbs(struct wlan_objmgr_psoc *psoc,
1656 			       qdf_freq_t freq_1,
1657 			       qdf_freq_t freq_2)
1658 {
1659 	if ((policy_mgr_is_hw_sbs_capable(psoc) &&
1660 	     policy_mgr_are_sbs_chan(psoc, freq_1, freq_2)) ||
1661 	    (policy_mgr_is_hw_dbs_capable(psoc) &&
1662 	     !wlan_reg_is_same_band_freqs(freq_1, freq_2))) {
1663 		return true;
1664 	}
1665 
1666 	return false;
1667 }
1668 
1669 #else
1670 static inline
1671 uint8_t cm_get_sta_mlo_conn_max_num(struct wlan_objmgr_psoc *psoc)
1672 {
1673 	return WLAN_UMAC_MLO_MAX_DEV;
1674 }
1675 
1676 static inline bool is_freq_dbs_or_sbs(struct wlan_objmgr_psoc *psoc,
1677 				      qdf_freq_t freq_1,
1678 				      qdf_freq_t freq_2)
1679 {
1680 	return false;
1681 }
1682 #endif
1683 
1684 /**
1685  * cm_bss_mlo_type() - Get mlo type of bss scan entry
1686  * @psoc: Pointer of psoc object
1687  * @entry: Bss scan entry
1688  *
1689  * Return: MLO AP type: SLO, MLMR or EMLSR.
1690  */
1691 static enum MLO_TYPE  cm_bss_mlo_type(struct wlan_objmgr_psoc *psoc,
1692 				      struct scan_cache_entry *entry,
1693 				      qdf_list_t *scan_list)
1694 {
1695 	uint8_t mlo_link_num;
1696 	uint8_t i;
1697 	uint32_t freq_entry;
1698 	uint32_t freq[MLD_MAX_LINKS - 1];
1699 	struct scan_cache_entry *entry_partner[MLD_MAX_LINKS - 1];
1700 	bool multi_link = false;
1701 
1702 	mlo_link_num = cm_get_sta_mlo_conn_max_num(psoc);
1703 	if (!entry->ie_list.multi_link)
1704 		return SLO;
1705 	else if (!entry->ml_info.num_links)
1706 		return SLO;
1707 	else if (mlo_link_num == 1)
1708 		return SLO;
1709 
1710 	for (i = 0; i < entry->ml_info.num_links; i++) {
1711 		if (!entry->ml_info.link_info[i].is_valid_link)
1712 			continue;
1713 		multi_link = true;
1714 		freq_entry = entry->channel.chan_freq;
1715 		freq[i] = entry->ml_info.link_info[i].freq;
1716 		entry_partner[i] =
1717 			cm_get_entry(scan_list,
1718 				     &entry->ml_info.link_info[i].link_addr);
1719 		if (entry_partner[i])
1720 			freq[i] = entry_partner[i]->channel.chan_freq;
1721 		if (is_freq_dbs_or_sbs(psoc, freq[i], freq_entry))
1722 			return MLMR;
1723 	}
1724 
1725 	if (multi_link)
1726 		return MLSR;
1727 	else
1728 		return SLO;
1729 }
1730 
1731 /**
1732  * cm_get_mlo_congestion_score() - Get mlo jointer congestion percent
1733  * @bw1: channel width of link1
1734  * @bw2: channel width of link2
1735  * @congestion_score1: congestion score of link1
1736  * @congestion_score2: congestion score of link2
1737  * @score_params: score param
1738  *
1739  * Return: Mlo jointer congestion percent
1740  */
1741 static uint32_t
1742 cm_get_mlo_congestion_score(uint16_t bw1,
1743 			    uint16_t bw2,
1744 			    uint32_t congestion_score1,
1745 			    uint32_t congestion_score2,
1746 			    struct scoring_cfg *score_params)
1747 {
1748 	uint32_t congestion_best;
1749 	uint32_t congestion_worst;
1750 	uint32_t congestion_weight;
1751 
1752 	congestion_weight =
1753 		score_params->weight_config.channel_congestion_weightage;
1754 	if (congestion_score1 > congestion_score2) {
1755 		congestion_best = congestion_score1;
1756 		congestion_worst = congestion_score2 * bw1 / (bw1 + bw2);
1757 	} else if (congestion_score1 < congestion_score2) {
1758 		congestion_best = congestion_score2;
1759 		congestion_worst = congestion_score1 * bw2 / (bw1 + bw2);
1760 	} else {
1761 		congestion_best = congestion_score1;
1762 		congestion_worst = congestion_score2 / 2;
1763 	}
1764 	congestion_best = congestion_best * CM_SLO_CONGESTION_MAX_SCORE /
1765 			 CM_MAX_PCT_SCORE;
1766 	congestion_worst = congestion_worst * CM_SLO_CONGESTION_MAX_SCORE /
1767 			 CM_MAX_PCT_SCORE;
1768 	congestion_worst = QDF_MIN(congestion_worst, 20 * congestion_weight);
1769 
1770 	return congestion_best + congestion_worst;
1771 }
1772 
1773 /**
1774  * cm_estimate_rssi() - Get estimated rssi by frequency
1775  * @rssi_entry: Rssi of bss scan entry
1776  * @freq_entry: Frequency of bss scan entry
1777  * @freq_partner: Frequency of partner link of MLO
1778  *
1779  * Estimated equation: RSSI(2G) = RSSI(5G) + 7 = RSSI(6G) + 8
1780  *
1781  * Return: Estimated rssi of partner link of MLO
1782  */
1783 static int8_t cm_estimate_rssi(int8_t rssi_entry, uint32_t freq_entry,
1784 			       uint32_t freq_partner)
1785 {
1786 	if (wlan_reg_is_24ghz_ch_freq(freq_entry)) {
1787 		if (wlan_reg_is_5ghz_ch_freq(freq_partner))
1788 			return rssi_entry - 7;
1789 		else if (wlan_reg_is_6ghz_chan_freq(freq_partner))
1790 			return rssi_entry - 8;
1791 	} else if (wlan_reg_is_5ghz_ch_freq(freq_entry)) {
1792 		if (wlan_reg_is_24ghz_ch_freq(freq_partner))
1793 			return rssi_entry + 7;
1794 		else if (wlan_reg_is_6ghz_chan_freq(freq_partner))
1795 			return rssi_entry - 1;
1796 	} else if (wlan_reg_is_6ghz_chan_freq(freq_entry)) {
1797 		if (wlan_reg_is_24ghz_ch_freq(freq_partner))
1798 			return rssi_entry + 8;
1799 		else if (wlan_reg_is_5ghz_ch_freq(freq_partner))
1800 			return rssi_entry + 1;
1801 	}
1802 
1803 	return rssi_entry;
1804 }
1805 
1806 /**
1807  * cm_calculate_mlo_bss_score() - Calculate mlo bss score
1808  * @psoc: Pointer to psoc object
1809  * @entry: Bss scan entry
1810  * @score_params: score parameters
1811  * @phy_config: Phy config
1812  * @scan_list: Scan entry list of bss candidates after filtering
1813  * @rssi_prorated_pct: Rssi prorated percent
1814  *
1815  * For MLMR case, besides adding MLMR boost score,
1816  * calculate joint RSSI/band width/congestion score for combination of
1817  * scan entry + each partner link, select highest total score as candidate
1818  * combination, only activate that partner link.
1819  *
1820  * Return: MLO AP joint total score
1821  */
1822 static int cm_calculate_mlo_bss_score(struct wlan_objmgr_psoc *psoc,
1823 				      struct scan_cache_entry *entry,
1824 				      struct scoring_cfg *score_params,
1825 				      struct psoc_phy_config *phy_config,
1826 				      qdf_list_t *scan_list,
1827 				      uint8_t *rssi_prorated_pct)
1828 {
1829 	struct scan_cache_entry *entry_partner[MLD_MAX_LINKS - 1];
1830 	int32_t rssi[MLD_MAX_LINKS - 1];
1831 	uint32_t rssi_score[MLD_MAX_LINKS - 1] = {0, 0};
1832 	uint16_t prorated_pct[MLD_MAX_LINKS - 1] = {0, 0};
1833 	uint32_t freq[MLD_MAX_LINKS - 1];
1834 	uint16_t ch_width[MLD_MAX_LINKS - 1];
1835 	uint32_t bandwidth_score[MLD_MAX_LINKS - 1] = {0, 0};
1836 	uint32_t congestion_pct[MLD_MAX_LINKS - 1] = {0, 0};
1837 	uint32_t congestion_score[MLD_MAX_LINKS - 1] = {0, 0};
1838 	uint32_t cong_total_score[MLD_MAX_LINKS - 1] = {0, 0};
1839 	uint32_t total_score[MLD_MAX_LINKS - 1] = {0, 0};
1840 	uint8_t i;
1841 	uint16_t chan_width;
1842 	uint32_t best_total_score = 0;
1843 	uint8_t best_partner_index = 0;
1844 	uint32_t cong_pct = 0;
1845 	uint32_t cong_score = 0;
1846 	uint32_t freq_entry;
1847 	struct weight_cfg *weight_config;
1848 	struct partner_link_info *link;
1849 	struct wlan_objmgr_pdev *pdev;
1850 	bool rssi_bad_zone;
1851 	bool eht_capab;
1852 
1853 	wlan_psoc_mlme_get_11be_capab(psoc, &eht_capab);
1854 	if (!eht_capab)
1855 		return 0;
1856 
1857 	weight_config = &score_params->weight_config;
1858 	freq_entry = entry->channel.chan_freq;
1859 	chan_width = cm_get_ch_width(entry, phy_config);
1860 	cong_score = cm_calculate_congestion_score(entry,
1861 						   score_params,
1862 						   &cong_pct, false);
1863 	for (i = 0; i < entry->ml_info.num_links; i++) {
1864 		link = &entry->ml_info.link_info[0];
1865 		if (!link[i].is_valid_link)
1866 			continue;
1867 		entry_partner[i] = cm_get_entry(scan_list, &link[i].link_addr);
1868 		if (entry_partner[i])
1869 			freq[i] = entry_partner[i]->channel.chan_freq;
1870 		else
1871 			freq[i] = link[i].freq;
1872 		if (!is_freq_dbs_or_sbs(psoc, freq[i], freq_entry)) {
1873 			mlme_nofl_debug("freq %d and %d can't be MLMR",
1874 					freq[i], freq_entry);
1875 			continue;
1876 		}
1877 		if (entry_partner[i]) {
1878 			rssi[i] = entry_partner[i]->rssi_raw;
1879 			ch_width[i] = cm_get_ch_width(entry_partner[i],
1880 						      phy_config);
1881 		} else {
1882 			rssi[i] = cm_estimate_rssi(entry->rssi_raw,
1883 						   freq_entry,
1884 						   freq[i]);
1885 			pdev = psoc->soc_objmgr.wlan_pdev_list[0];
1886 			ch_width[i] =
1887 				wlan_reg_get_op_class_width(pdev,
1888 							    link[i].op_class,
1889 							    true);
1890 			mlme_nofl_debug("No entry for partner, estimate with rnr");
1891 		}
1892 		rssi_score[i] =
1893 			cm_get_mlo_rssi_score(weight_config->rssi_weightage,
1894 					      entry->rssi_raw, rssi[i],
1895 					      &prorated_pct[i]);
1896 
1897 		bandwidth_score[i] =
1898 			cm_get_bw_score(weight_config->chan_width_weightage,
1899 					chan_width + ch_width[i],
1900 					prorated_pct[i]);
1901 
1902 		rssi_bad_zone = prorated_pct[i] < CM_MAX_PCT_SCORE;
1903 		congestion_score[i] =
1904 			cm_calculate_congestion_score(entry_partner[i],
1905 						      score_params,
1906 						      &congestion_pct[i],
1907 						      rssi_bad_zone);
1908 		cong_total_score[i] =
1909 			cm_get_mlo_congestion_score(chan_width,
1910 						    ch_width[i],
1911 						    cong_score,
1912 						    congestion_score[i],
1913 						    score_params);
1914 
1915 		total_score[i] = rssi_score[i] + bandwidth_score[i] +
1916 				   congestion_score[i];
1917 		if (total_score[i] > best_total_score) {
1918 			best_total_score = total_score[i];
1919 			best_partner_index = i;
1920 		}
1921 		mlme_nofl_debug("ML score: link index %u rssi %d %d rssi score %u pror %u freq %u %u bw %u %u, bw score %u congest score %u %u %u, total score %u",
1922 				i, entry->rssi_raw,  rssi[i], rssi_score[i],
1923 				prorated_pct[i], freq_entry, freq[i],
1924 				chan_width, ch_width[i], bandwidth_score[i],
1925 				cong_score, congestion_score[i],
1926 				cong_total_score[i], total_score[i]);
1927 	}
1928 	*rssi_prorated_pct = prorated_pct[best_partner_index];
1929 
1930 	/* STA only support at most 2 links, only select 1 partner link */
1931 	for (i = 0; i < entry->ml_info.num_links; i++) {
1932 		if (i != best_partner_index)
1933 			entry->ml_info.link_info[i].is_valid_link = false;
1934 	}
1935 
1936 	best_total_score += weight_config->mlo_weightage *
1937 			    mlo_boost_pct[MLMR];
1938 	entry->ml_info.ml_bss_score = best_total_score;
1939 
1940 	return best_total_score;
1941 }
1942 #else
1943 static inline int cm_calculate_emlsr_score(struct weight_cfg *weight_config)
1944 {
1945 	return 0;
1946 }
1947 
1948 static enum MLO_TYPE cm_bss_mlo_type(struct wlan_objmgr_psoc *psoc,
1949 				     struct scan_cache_entry *entry,
1950 				     qdf_list_t *scan_list)
1951 {
1952 	return SLO;
1953 }
1954 
1955 static int cm_calculate_mlo_bss_score(struct wlan_objmgr_psoc *psoc,
1956 				      struct scan_cache_entry *entry,
1957 				      struct scoring_cfg *score_params,
1958 				      struct psoc_phy_config *phy_config,
1959 				      qdf_list_t *scan_list,
1960 				      uint8_t *rssi_prorated_pct)
1961 {
1962 	return 0;
1963 }
1964 #endif
1965 
1966 static int cm_calculate_bss_score(struct wlan_objmgr_psoc *psoc,
1967 				  struct scan_cache_entry *entry,
1968 				  int pcl_chan_weight,
1969 				  struct qdf_mac_addr *bssid_hint,
1970 				  qdf_list_t *scan_list)
1971 {
1972 	int32_t score = 0;
1973 	int32_t rssi_score = 0;
1974 	int32_t pcl_score = 0;
1975 	int32_t ht_score = 0;
1976 	int32_t vht_score = 0;
1977 	int32_t he_score = 0;
1978 	int32_t bandwidth_score = 0;
1979 	int32_t beamformee_score = 0;
1980 	int32_t band_score = 0;
1981 	int32_t nss_score = 0;
1982 	int32_t security_score = 0;
1983 	int32_t congestion_score = 0;
1984 	int32_t congestion_pct = 0;
1985 	int32_t oce_wan_score = 0;
1986 	uint8_t oce_ap_tx_pwr_score = 0;
1987 	uint8_t oce_subnet_id_score = 0;
1988 	uint32_t sae_pk_score = 0;
1989 	bool oce_subnet_id_present = 0;
1990 	bool sae_pk_cap_present = 0;
1991 	int8_t ap_tx_pwr_dbm = 0;
1992 	uint8_t prorated_pcnt;
1993 	bool is_vht = false;
1994 	int8_t good_rssi_threshold;
1995 	int8_t rssi_pref_5g_rssi_thresh;
1996 	bool same_bucket = false;
1997 	bool ap_su_beam_former = false;
1998 	struct wlan_ie_vhtcaps *vht_cap;
1999 	struct scoring_cfg *score_config;
2000 	struct weight_cfg *weight_config;
2001 	uint32_t sta_nss;
2002 	struct psoc_mlme_obj *mlme_psoc_obj;
2003 	struct psoc_phy_config *phy_config;
2004 	uint32_t eht_score;
2005 	enum MLO_TYPE bss_mlo_type;
2006 
2007 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2008 	if (!mlme_psoc_obj)
2009 		return 0;
2010 
2011 	phy_config = &mlme_psoc_obj->psoc_cfg.phy_config;
2012 	score_config = &mlme_psoc_obj->psoc_cfg.score_config;
2013 	weight_config = &score_config->weight_config;
2014 
2015 	if (score_config->is_bssid_hint_priority && bssid_hint &&
2016 	    qdf_is_macaddr_equal(bssid_hint, &entry->bssid)) {
2017 		entry->bss_score = CM_BEST_CANDIDATE_MAX_BSS_SCORE;
2018 		mlme_nofl_debug("Candidate("QDF_MAC_ADDR_FMT" freq %d): rssi %d BSSID hint given, give max score %d",
2019 				QDF_MAC_ADDR_REF(entry->bssid.bytes),
2020 				entry->channel.chan_freq,
2021 				entry->rssi_raw,
2022 				CM_BEST_CANDIDATE_MAX_BSS_SCORE);
2023 		return CM_BEST_CANDIDATE_MAX_BSS_SCORE;
2024 	}
2025 	if (score_config->vendor_roam_score_algorithm) {
2026 		score = cm_calculate_etp_score(psoc, entry, phy_config);
2027 		entry->bss_score = score;
2028 		return score;
2029 	}
2030 
2031 	bss_mlo_type = cm_bss_mlo_type(psoc, entry, scan_list);
2032 	if (bss_mlo_type == SLO || bss_mlo_type == MLSR) {
2033 		rssi_score =
2034 			cm_calculate_rssi_score(&score_config->rssi_score,
2035 						entry->rssi_raw,
2036 						weight_config->rssi_weightage);
2037 		prorated_pcnt =
2038 			cm_get_rssi_prorate_pct(&score_config->rssi_score,
2039 						entry->rssi_raw,
2040 						weight_config->rssi_weightage);
2041 		score += rssi_score;
2042 		bandwidth_score =
2043 			cm_get_bw_score(weight_config->chan_width_weightage,
2044 					cm_get_ch_width(entry, phy_config),
2045 					prorated_pcnt);
2046 		score += bandwidth_score;
2047 
2048 		congestion_score =
2049 			cm_calculate_congestion_score(entry,
2050 						      score_config,
2051 						      &congestion_pct, 0);
2052 		score += congestion_score * CM_SLO_CONGESTION_MAX_SCORE /
2053 			 CM_MAX_PCT_SCORE;
2054 		if (bss_mlo_type == MLSR)
2055 			score += cm_calculate_emlsr_score(weight_config);
2056 	} else {
2057 		score += cm_calculate_mlo_bss_score(psoc, entry, score_config,
2058 						    phy_config, scan_list,
2059 						    &prorated_pcnt);
2060 	}
2061 
2062 	pcl_score = cm_calculate_pcl_score(psoc, pcl_chan_weight,
2063 					   weight_config->pcl_weightage);
2064 	score += pcl_score;
2065 
2066 	/*
2067 	 * Add HT weight if HT is supported by the AP. In case
2068 	 * of 6 GHZ AP, HT and VHT won't be supported so that
2069 	 * these weightage to the same by default to match
2070 	 * with 2.4/5 GHZ APs where HT, VHT is supported
2071 	 */
2072 	if (phy_config->ht_cap && (entry->ie_list.htcap ||
2073 	    WLAN_REG_IS_6GHZ_CHAN_FREQ(entry->channel.chan_freq)))
2074 		ht_score = prorated_pcnt *
2075 				weight_config->ht_caps_weightage;
2076 	score += ht_score;
2077 
2078 	if (WLAN_REG_IS_24GHZ_CH_FREQ(entry->channel.chan_freq)) {
2079 		if (phy_config->vht_24G_cap)
2080 			is_vht = true;
2081 	} else if (phy_config->vht_cap) {
2082 		is_vht = true;
2083 	}
2084 
2085 	/* Add VHT score to 6 GHZ AP to match with 2.4/5 GHZ APs */
2086 	if (is_vht && (entry->ie_list.vhtcap ||
2087 	    WLAN_REG_IS_6GHZ_CHAN_FREQ(entry->channel.chan_freq)))
2088 		vht_score = prorated_pcnt *
2089 				 weight_config->vht_caps_weightage;
2090 	score += vht_score;
2091 
2092 	if (phy_config->he_cap && entry->ie_list.hecap)
2093 		he_score = prorated_pcnt *
2094 			   weight_config->he_caps_weightage;
2095 	score += he_score;
2096 
2097 	good_rssi_threshold =
2098 		score_config->rssi_score.good_rssi_threshold * (-1);
2099 	rssi_pref_5g_rssi_thresh =
2100 		score_config->rssi_score.rssi_pref_5g_rssi_thresh * (-1);
2101 	if (entry->rssi_raw < good_rssi_threshold)
2102 		same_bucket = cm_rssi_is_same_bucket(good_rssi_threshold,
2103 				entry->rssi_raw, rssi_pref_5g_rssi_thresh,
2104 				score_config->rssi_score.bad_rssi_bucket_size);
2105 
2106 	vht_cap = (struct wlan_ie_vhtcaps *)util_scan_entry_vhtcap(entry);
2107 	if (vht_cap && vht_cap->su_beam_former)
2108 		ap_su_beam_former = true;
2109 	else
2110 		ap_su_beam_former = cm_get_su_beam_former(entry);
2111 	if (phy_config->beamformee_cap && is_vht &&
2112 	    ap_su_beam_former &&
2113 	    (entry->rssi_raw > rssi_pref_5g_rssi_thresh) && !same_bucket)
2114 		beamformee_score = CM_MAX_PCT_SCORE *
2115 				weight_config->beamforming_cap_weightage;
2116 	score += beamformee_score;
2117 
2118 	/*
2119 	 * Consider OCE WAN score and band preference score only if
2120 	 * congestion_pct is greater than CONGESTION_THRSHOLD_FOR_BAND_OCE_SCORE
2121 	 */
2122 	if (congestion_pct < CM_CONGESTION_THRSHOLD_FOR_BAND_OCE_SCORE) {
2123 		/*
2124 		 * If AP is on 5/6 GHZ channel , extra weigtage is added to BSS
2125 		 * score. if RSSI is greater tha 5g rssi threshold or fall in
2126 		 * same bucket else give weigtage to 2.4 GHZ AP.
2127 		 */
2128 		if ((entry->rssi_raw > rssi_pref_5g_rssi_thresh) &&
2129 		    !same_bucket) {
2130 			if (!WLAN_REG_IS_24GHZ_CH_FREQ(entry->channel.chan_freq))
2131 				band_score = cm_get_band_score(
2132 						entry->channel.chan_freq,
2133 						score_config);
2134 		} else if (WLAN_REG_IS_24GHZ_CH_FREQ(
2135 			   entry->channel.chan_freq)) {
2136 			band_score = cm_get_band_score(entry->channel.chan_freq,
2137 						       score_config);
2138 		}
2139 		score += band_score;
2140 
2141 		oce_wan_score = cm_calculate_oce_wan_score(entry, score_config);
2142 		score += oce_wan_score;
2143 	}
2144 
2145 	oce_ap_tx_pwr_score =
2146 		cm_calculate_oce_ap_tx_pwr_weightage(entry, score_config,
2147 						     &ap_tx_pwr_dbm);
2148 	score += oce_ap_tx_pwr_score;
2149 
2150 	oce_subnet_id_score = cm_calculate_oce_subnet_id_weightage(entry,
2151 						score_config,
2152 						&oce_subnet_id_present);
2153 	score += oce_subnet_id_score;
2154 
2155 	sae_pk_score = cm_calculate_sae_pk_ap_weightage(entry, score_config,
2156 							&sae_pk_cap_present);
2157 	score += sae_pk_score;
2158 
2159 	sta_nss = cm_get_sta_nss(psoc, entry->channel.chan_freq,
2160 				 phy_config->vdev_nss_24g,
2161 				 phy_config->vdev_nss_5g);
2162 
2163 	/*
2164 	 * If station support nss as 2*2 but AP support NSS as 1*1,
2165 	 * this AP will be given half weight compare to AP which are having
2166 	 * NSS as 2*2.
2167 	 */
2168 	nss_score = cm_calculate_nss_score(psoc, score_config, entry->nss,
2169 					   prorated_pcnt, sta_nss);
2170 	score += nss_score;
2171 
2172 	/*
2173 	 * Since older FW will stick to the single AKM for roaming,
2174 	 * no need to check the fw capability.
2175 	 */
2176 	security_score = cm_calculate_security_score(score_config,
2177 						     entry->neg_sec_info);
2178 	score += security_score;
2179 
2180 	eht_score = cm_calculate_eht_score(entry, score_config, phy_config,
2181 					   prorated_pcnt);
2182 	score += eht_score;
2183 
2184 	mlme_nofl_debug("Candidate("QDF_MAC_ADDR_FMT" freq %d): rssi %d HT %d VHT %d HE %d EHT %d su bfer %d phy %d  air time frac %d qbss %d cong_pct %d NSS %d ap_tx_pwr_dbm %d oce_subnet_id_present %d sae_pk_cap_present %d prorated_pcnt %d keymgmt 0x%x mlo type %d",
2185 			QDF_MAC_ADDR_REF(entry->bssid.bytes),
2186 			entry->channel.chan_freq,
2187 			entry->rssi_raw, util_scan_entry_htcap(entry) ? 1 : 0,
2188 			util_scan_entry_vhtcap(entry) ? 1 : 0,
2189 			util_scan_entry_hecap(entry) ? 1 : 0,
2190 			util_scan_entry_ehtcap(entry) ? 1 : 0,
2191 			ap_su_beam_former,
2192 			entry->phy_mode, entry->air_time_fraction,
2193 			entry->qbss_chan_load, congestion_pct, entry->nss,
2194 			ap_tx_pwr_dbm, oce_subnet_id_present,
2195 			sae_pk_cap_present, prorated_pcnt,
2196 			entry->neg_sec_info.key_mgmt, bss_mlo_type);
2197 
2198 	mlme_nofl_debug("Scores: rssi %d pcl %d ht %d vht %d he %d bfee %d bw %d band %d congestion %d nss %d oce wan %d oce ap tx pwr %d subnet %d sae_pk %d eht %d security %d TOTAL %d",
2199 			rssi_score, pcl_score, ht_score,
2200 			vht_score, he_score, beamformee_score, bandwidth_score,
2201 			band_score, congestion_score, nss_score, oce_wan_score,
2202 			oce_ap_tx_pwr_score, oce_subnet_id_score,
2203 			sae_pk_score, eht_score, security_score, score);
2204 
2205 	entry->bss_score = score;
2206 
2207 	return score;
2208 }
2209 
2210 static void cm_list_insert_sorted(qdf_list_t *scan_list,
2211 				  struct scan_cache_node *scan_entry)
2212 {
2213 	qdf_list_node_t *cur_node = NULL, *next_node = NULL;
2214 	struct scan_cache_node *curr_entry;
2215 
2216 	qdf_list_peek_front(scan_list, &cur_node);
2217 	while (cur_node) {
2218 		curr_entry = qdf_container_of(cur_node, struct scan_cache_node,
2219 					      node);
2220 		if (cm_is_better_bss(scan_entry->entry, curr_entry->entry)) {
2221 			qdf_list_insert_before(scan_list, &scan_entry->node,
2222 					       &curr_entry->node);
2223 			break;
2224 		}
2225 		qdf_list_peek_next(scan_list, cur_node, &next_node);
2226 		cur_node = next_node;
2227 		next_node = NULL;
2228 	}
2229 
2230 	if (!cur_node)
2231 		qdf_list_insert_back(scan_list, &scan_entry->node);
2232 }
2233 
2234 void wlan_cm_calculate_bss_score(struct wlan_objmgr_pdev *pdev,
2235 				 struct pcl_freq_weight_list *pcl_lst,
2236 				 qdf_list_t *scan_list,
2237 				 struct qdf_mac_addr *bssid_hint)
2238 {
2239 	struct scan_cache_node *scan_entry;
2240 	qdf_list_node_t *cur_node = NULL, *next_node = NULL;
2241 	struct psoc_mlme_obj *mlme_psoc_obj;
2242 	struct scoring_cfg *score_config;
2243 	int pcl_chan_weight;
2244 	QDF_STATUS status;
2245 	struct psoc_phy_config *config;
2246 	enum cm_denylist_action denylist_action;
2247 	struct wlan_objmgr_psoc *psoc;
2248 	bool assoc_allowed;
2249 	struct scan_cache_node *force_connect_candidate = NULL;
2250 	bool are_all_candidate_denylisted = true;
2251 
2252 	psoc = wlan_pdev_get_psoc(pdev);
2253 
2254 	if (!psoc) {
2255 		mlme_err("psoc NULL");
2256 		return;
2257 	}
2258 	if (!scan_list) {
2259 		mlme_err("Scan list NULL");
2260 		return;
2261 	}
2262 
2263 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2264 	if (!mlme_psoc_obj)
2265 		return;
2266 
2267 	score_config = &mlme_psoc_obj->psoc_cfg.score_config;
2268 	config = &mlme_psoc_obj->psoc_cfg.phy_config;
2269 
2270 	mlme_nofl_debug("Self caps: HT %d VHT %d HE %d EHT %d VHT_24Ghz %d BF cap %d bw_above_20_24ghz %d bw_above_20_5ghz %d 2.4G NSS %d 5G NSS %d",
2271 			config->ht_cap, config->vht_cap,
2272 			config->he_cap, config->eht_cap, config->vht_24G_cap,
2273 			config->beamformee_cap, config->bw_above_20_24ghz,
2274 			config->bw_above_20_5ghz, config->vdev_nss_24g,
2275 			config->vdev_nss_5g);
2276 
2277 	/* calculate score for each AP */
2278 	if (qdf_list_peek_front(scan_list, &cur_node) != QDF_STATUS_SUCCESS) {
2279 		mlme_err("failed to peer front of scan list");
2280 		return;
2281 	}
2282 
2283 	while (cur_node) {
2284 		qdf_list_peek_next(scan_list, cur_node, &next_node);
2285 		pcl_chan_weight = 0;
2286 		scan_entry = qdf_container_of(cur_node, struct scan_cache_node,
2287 					      node);
2288 
2289 		assoc_allowed = cm_is_assoc_allowed(mlme_psoc_obj,
2290 						    scan_entry->entry);
2291 
2292 		if (assoc_allowed)
2293 			denylist_action = wlan_denylist_action_on_bssid(pdev,
2294 							scan_entry->entry);
2295 		else
2296 			denylist_action = CM_DLM_FORCE_REMOVE;
2297 
2298 		if (denylist_action == CM_DLM_NO_ACTION ||
2299 		    denylist_action == CM_DLM_AVOID)
2300 			are_all_candidate_denylisted = false;
2301 
2302 		if (denylist_action == CM_DLM_NO_ACTION &&
2303 		    pcl_lst && pcl_lst->num_of_pcl_channels &&
2304 		    scan_entry->entry->rssi_raw > CM_PCL_RSSI_THRESHOLD &&
2305 		    score_config->weight_config.pcl_weightage) {
2306 			if (cm_get_pcl_weight_of_channel(
2307 					scan_entry->entry->channel.chan_freq,
2308 					pcl_lst, &pcl_chan_weight)) {
2309 				mlme_debug("pcl freq %d pcl_chan_weight %d",
2310 					   scan_entry->entry->channel.chan_freq,
2311 					   pcl_chan_weight);
2312 			}
2313 		}
2314 
2315 		if (denylist_action == CM_DLM_NO_ACTION ||
2316 		    (are_all_candidate_denylisted && denylist_action ==
2317 		     CM_DLM_REMOVE)) {
2318 			cm_calculate_bss_score(psoc, scan_entry->entry,
2319 					       pcl_chan_weight, bssid_hint,
2320 					       scan_list);
2321 		} else if (denylist_action == CM_DLM_AVOID) {
2322 			/* add min score so that it is added back in the end */
2323 			scan_entry->entry->bss_score =
2324 					CM_AVOID_CANDIDATE_MIN_SCORE;
2325 			mlme_nofl_debug("Candidate("QDF_MAC_ADDR_FMT" freq %d): rssi %d, is in Avoidlist, give min score %d",
2326 					QDF_MAC_ADDR_REF(scan_entry->entry->bssid.bytes),
2327 					scan_entry->entry->channel.chan_freq,
2328 					scan_entry->entry->rssi_raw,
2329 					scan_entry->entry->bss_score);
2330 		}
2331 
2332 		/*
2333 		 * The below logic is added to select the best candidate
2334 		 * amongst the denylisted candidates. This is done to
2335 		 * handle a case where all the BSSIDs become denylisted
2336 		 * and hence there are continuous connection failures.
2337 		 * With the below logic if the action on BSSID is to remove
2338 		 * then we keep a backup node and restore the candidate
2339 		 * list.
2340 		 */
2341 		if (denylist_action == CM_DLM_REMOVE &&
2342 		    are_all_candidate_denylisted) {
2343 			if (!force_connect_candidate) {
2344 				force_connect_candidate =
2345 					qdf_mem_malloc(
2346 					   sizeof(*force_connect_candidate));
2347 				if (!force_connect_candidate)
2348 					return;
2349 				force_connect_candidate->entry =
2350 					util_scan_copy_cache_entry(scan_entry->entry);
2351 				if (!force_connect_candidate->entry)
2352 					return;
2353 			} else if (cm_is_better_bss(
2354 				   scan_entry->entry,
2355 				   force_connect_candidate->entry)) {
2356 				util_scan_free_cache_entry(
2357 					force_connect_candidate->entry);
2358 				force_connect_candidate->entry =
2359 				  util_scan_copy_cache_entry(scan_entry->entry);
2360 				if (!force_connect_candidate->entry)
2361 					return;
2362 			}
2363 		}
2364 
2365 		/* Remove node from current location to add node back sorted */
2366 		status = qdf_list_remove_node(scan_list, cur_node);
2367 		if (QDF_IS_STATUS_ERROR(status)) {
2368 			mlme_err("failed to remove node for BSS "QDF_MAC_ADDR_FMT" from scan list",
2369 				 QDF_MAC_ADDR_REF(scan_entry->entry->bssid.bytes));
2370 			return;
2371 		}
2372 
2373 		/*
2374 		 * If CM_DLM_REMOVE ie denylisted or assoc not allowed then
2375 		 * free the entry else add back to the list sorted
2376 		 */
2377 		if (denylist_action == CM_DLM_REMOVE ||
2378 		    denylist_action == CM_DLM_FORCE_REMOVE) {
2379 			if (assoc_allowed)
2380 				mlme_nofl_debug("Candidate( " QDF_MAC_ADDR_FMT " freq %d): rssi %d, dlm action %d is in Denylist, remove entry",
2381 					QDF_MAC_ADDR_REF(scan_entry->entry->bssid.bytes),
2382 					scan_entry->entry->channel.chan_freq,
2383 					scan_entry->entry->rssi_raw,
2384 					denylist_action);
2385 			util_scan_free_cache_entry(scan_entry->entry);
2386 			qdf_mem_free(scan_entry);
2387 		} else {
2388 			cm_list_insert_sorted(scan_list, scan_entry);
2389 		}
2390 
2391 		cur_node = next_node;
2392 		next_node = NULL;
2393 	}
2394 
2395 	if (are_all_candidate_denylisted && force_connect_candidate) {
2396 		mlme_nofl_debug("All candidates in denylist, Candidate( " QDF_MAC_ADDR_FMT " freq %d): rssi %d, selected for connection",
2397 			QDF_MAC_ADDR_REF(force_connect_candidate->entry->bssid.bytes),
2398 			force_connect_candidate->entry->channel.chan_freq,
2399 			force_connect_candidate->entry->rssi_raw);
2400 		cm_list_insert_sorted(scan_list, force_connect_candidate);
2401 	} else if (force_connect_candidate) {
2402 		util_scan_free_cache_entry(force_connect_candidate->entry);
2403 		qdf_mem_free(force_connect_candidate);
2404 	}
2405 }
2406 
2407 #ifdef CONFIG_BAND_6GHZ
2408 static bool cm_check_h2e_support(const uint8_t *rsnxe)
2409 {
2410 	const uint8_t *rsnxe_cap;
2411 	uint8_t cap_len;
2412 
2413 	rsnxe_cap = wlan_crypto_parse_rsnxe_ie(rsnxe, &cap_len);
2414 	if (!rsnxe_cap) {
2415 		mlme_debug("RSNXE caps not present");
2416 		return false;
2417 	}
2418 
2419 	if (*rsnxe_cap & WLAN_CRYPTO_RSNX_CAP_SAE_H2E)
2420 		return true;
2421 
2422 	mlme_debug("RSNXE caps %x dont have H2E support", *rsnxe_cap);
2423 
2424 	return false;
2425 }
2426 
2427 #ifdef CONN_MGR_ADV_FEATURE
2428 static bool wlan_cm_wfa_get_test_feature_flags(struct wlan_objmgr_psoc *psoc)
2429 {
2430 	return wlan_wfa_get_test_feature_flags(psoc, WFA_TEST_IGNORE_RSNXE);
2431 }
2432 #else
2433 static bool wlan_cm_wfa_get_test_feature_flags(struct wlan_objmgr_psoc *psoc)
2434 {
2435 	return false;
2436 }
2437 #endif
2438 
2439 bool wlan_cm_6ghz_allowed_for_akm(struct wlan_objmgr_psoc *psoc,
2440 				  uint32_t key_mgmt, uint16_t rsn_caps,
2441 				  const uint8_t *rsnxe, uint8_t sae_pwe,
2442 				  bool is_wps)
2443 {
2444 	struct psoc_mlme_obj *mlme_psoc_obj;
2445 	struct scoring_cfg *config;
2446 
2447 	/* Allow connection for WPS security */
2448 	if (is_wps)
2449 		return true;
2450 
2451 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2452 	if (!mlme_psoc_obj)
2453 		return false;
2454 
2455 	config = &mlme_psoc_obj->psoc_cfg.score_config;
2456 	/*
2457 	 * if check_6ghz_security is not set check if key_mgmt_mask_6ghz is set
2458 	 * if key_mgmt_mask_6ghz is set check if AKM matches the user configured
2459 	 * 6Ghz security
2460 	 */
2461 	if (!config->check_6ghz_security) {
2462 		if (!config->key_mgmt_mask_6ghz)
2463 			return true;
2464 		/*
2465 		 * Check if any AKM is allowed as per user 6Ghz allowed AKM mask
2466 		 */
2467 		if (!(config->key_mgmt_mask_6ghz & key_mgmt)) {
2468 			mlme_debug("user configured mask %x didnt match AKM %x",
2469 				   config->key_mgmt_mask_6ghz , key_mgmt);
2470 			return false;
2471 		}
2472 
2473 		return true;
2474 	}
2475 
2476 	/* Check if any AKM is allowed as per the 6Ghz allowed AKM mask */
2477 	if (!(key_mgmt & ALLOWED_KEYMGMT_6G_MASK)) {
2478 		mlme_debug("AKM 0x%x didn't match with allowed 6ghz AKM 0x%x",
2479 			   key_mgmt, ALLOWED_KEYMGMT_6G_MASK);
2480 		return false;
2481 	}
2482 
2483 	/* if check_6ghz_security is set validate all checks for 6Ghz */
2484 	if (!(rsn_caps & WLAN_CRYPTO_RSN_CAP_MFP_ENABLED)) {
2485 		mlme_debug("PMF not enabled for 6GHz AP");
2486 		return false;
2487 	}
2488 
2489 	/* for SAE we need to check H2E support */
2490 	if (!(QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_SAE) ||
2491 	    QDF_HAS_PARAM(key_mgmt, WLAN_CRYPTO_KEY_MGMT_FT_SAE)))
2492 		return true;
2493 
2494 	return (cm_check_h2e_support(rsnxe) ||
2495 		wlan_cm_wfa_get_test_feature_flags(psoc));
2496 }
2497 
2498 void wlan_cm_set_check_6ghz_security(struct wlan_objmgr_psoc *psoc,
2499 				     bool value)
2500 {
2501 	struct psoc_mlme_obj *mlme_psoc_obj;
2502 
2503 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2504 	if (!mlme_psoc_obj)
2505 		return;
2506 
2507 	mlme_debug("6ghz security check val %x", value);
2508 	mlme_psoc_obj->psoc_cfg.score_config.check_6ghz_security = value;
2509 }
2510 
2511 void wlan_cm_reset_check_6ghz_security(struct wlan_objmgr_psoc *psoc)
2512 {
2513 	struct psoc_mlme_obj *mlme_psoc_obj;
2514 
2515 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2516 	if (!mlme_psoc_obj)
2517 		return;
2518 
2519 	mlme_psoc_obj->psoc_cfg.score_config.check_6ghz_security =
2520 					cfg_get(psoc, CFG_CHECK_6GHZ_SECURITY);
2521 }
2522 
2523 bool wlan_cm_get_check_6ghz_security(struct wlan_objmgr_psoc *psoc)
2524 {
2525 	struct psoc_mlme_obj *mlme_psoc_obj;
2526 
2527 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2528 	if (!mlme_psoc_obj)
2529 		return false;
2530 
2531 	return mlme_psoc_obj->psoc_cfg.score_config.check_6ghz_security;
2532 }
2533 
2534 void wlan_cm_set_relaxed_6ghz_conn_policy(struct wlan_objmgr_psoc *psoc,
2535 					  bool value)
2536 {
2537 	struct psoc_mlme_obj *mlme_psoc_obj;
2538 
2539 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2540 	if (!mlme_psoc_obj)
2541 		return;
2542 
2543 	mlme_debug("6ghz relaxed connection policy val %x", value);
2544 	mlme_psoc_obj->psoc_cfg.score_config.relaxed_6ghz_conn_policy = value;
2545 }
2546 
2547 bool wlan_cm_get_relaxed_6ghz_conn_policy(struct wlan_objmgr_psoc *psoc)
2548 {
2549 	struct psoc_mlme_obj *mlme_psoc_obj;
2550 
2551 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2552 	if (!mlme_psoc_obj)
2553 		return false;
2554 
2555 	return mlme_psoc_obj->psoc_cfg.score_config.relaxed_6ghz_conn_policy;
2556 }
2557 
2558 void wlan_cm_set_6ghz_key_mgmt_mask(struct wlan_objmgr_psoc *psoc,
2559 				     uint32_t value)
2560 {
2561 	struct psoc_mlme_obj *mlme_psoc_obj;
2562 
2563 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2564 	if (!mlme_psoc_obj)
2565 		return;
2566 
2567 	mlme_debug("key_mgmt_mask_6ghz %x", value);
2568 	mlme_psoc_obj->psoc_cfg.score_config.key_mgmt_mask_6ghz = value;
2569 }
2570 
2571 uint32_t wlan_cm_get_6ghz_key_mgmt_mask(struct wlan_objmgr_psoc *psoc)
2572 {
2573 	struct psoc_mlme_obj *mlme_psoc_obj;
2574 
2575 	mlme_psoc_obj = wlan_psoc_mlme_get_cmpt_obj(psoc);
2576 	if (!mlme_psoc_obj)
2577 		return DEFAULT_KEYMGMT_6G_MASK;
2578 
2579 	return mlme_psoc_obj->psoc_cfg.score_config.key_mgmt_mask_6ghz;
2580 }
2581 
2582 static void cm_fill_6ghz_params(struct wlan_objmgr_psoc *psoc,
2583 				struct scoring_cfg *score_cfg)
2584 {
2585 	/* Allow all security in 6Ghz by default */
2586 	score_cfg->check_6ghz_security = cfg_get(psoc, CFG_CHECK_6GHZ_SECURITY);
2587 	score_cfg->key_mgmt_mask_6ghz =
2588 				cfg_get(psoc, CFG_6GHZ_ALLOWED_AKM_MASK);
2589 }
2590 #else
2591 static inline void cm_fill_6ghz_params(struct wlan_objmgr_psoc *psoc,
2592 				       struct scoring_cfg *score_cfg)
2593 {
2594 }
2595 #endif
2596 
2597 static uint32_t
2598 cm_limit_max_per_index_score(uint32_t per_index_score)
2599 {
2600 	uint8_t i, score;
2601 
2602 	for (i = 0; i < CM_MAX_INDEX_PER_INI; i++) {
2603 		score = CM_GET_SCORE_PERCENTAGE(per_index_score, i);
2604 		if (score > CM_MAX_PCT_SCORE)
2605 			CM_SET_SCORE_PERCENTAGE(per_index_score,
2606 						CM_MAX_PCT_SCORE, i);
2607 	}
2608 
2609 	return per_index_score;
2610 }
2611 
2612 #ifdef WLAN_FEATURE_11BE_MLO
2613 
2614 #define CM_EHT_CAP_WEIGHTAGE 2
2615 #define CM_MLO_WEIGHTAGE 3
2616 #define CM_WLM_INDICATION_WEIGHTAGE 2
2617 #define CM_EMLSR_WEIGHTAGE 3
2618 static void cm_init_mlo_score_config(struct wlan_objmgr_psoc *psoc,
2619 				     struct scoring_cfg *score_cfg,
2620 				     uint32_t *total_weight)
2621 {
2622 	score_cfg->weight_config.eht_caps_weightage =
2623 		cfg_get(psoc, CFG_SCORING_EHT_CAPS_WEIGHTAGE);
2624 
2625 	score_cfg->weight_config.mlo_weightage =
2626 		cfg_get(psoc, CFG_SCORING_MLO_WEIGHTAGE);
2627 
2628 	score_cfg->weight_config.wlm_indication_weightage =
2629 		cfg_get(psoc, CFG_SCORING_WLM_INDICATION_WEIGHTAGE);
2630 
2631 	score_cfg->weight_config.joint_rssi_alpha =
2632 				cfg_get(psoc, CFG_SCORING_JOINT_RSSI_ALPHA);
2633 
2634 	score_cfg->weight_config.low_band_rssi_boost =
2635 				cfg_get(psoc, CFG_SCORING_LOW_BAND_RSSI_BOOST);
2636 
2637 	score_cfg->weight_config.joint_esp_alpha =
2638 				cfg_get(psoc, CFG_SCORING_JOINT_ESP_ALPHA);
2639 
2640 	score_cfg->weight_config.low_band_esp_boost =
2641 				cfg_get(psoc, CFG_SCORING_LOW_BAND_ESP_BOOST);
2642 
2643 	score_cfg->weight_config.joint_oce_alpha =
2644 				cfg_get(psoc, CFG_SCORING_JOINT_OCE_ALPHA);
2645 
2646 	score_cfg->weight_config.low_band_oce_boost =
2647 				cfg_get(psoc, CFG_SCORING_LOW_BAND_OCE_BOOST);
2648 
2649 	score_cfg->weight_config.emlsr_weightage =
2650 		cfg_get(psoc, CFG_SCORING_EMLSR_WEIGHTAGE);
2651 
2652 	score_cfg->mlsr_link_selection =
2653 		cfg_get(psoc, CFG_SCORING_MLSR_LINK_SELECTION);
2654 
2655 	*total_weight += score_cfg->weight_config.eht_caps_weightage +
2656 			 score_cfg->weight_config.mlo_weightage +
2657 			 score_cfg->weight_config.wlm_indication_weightage +
2658 			 score_cfg->weight_config.emlsr_weightage;
2659 }
2660 
2661 static void cm_set_default_mlo_weights(struct scoring_cfg *score_cfg)
2662 {
2663 	score_cfg->weight_config.eht_caps_weightage = CM_EHT_CAP_WEIGHTAGE;
2664 	score_cfg->weight_config.mlo_weightage = CM_MLO_WEIGHTAGE;
2665 	score_cfg->weight_config.wlm_indication_weightage =
2666 						CM_WLM_INDICATION_WEIGHTAGE;
2667 	score_cfg->weight_config.emlsr_weightage = CM_EMLSR_WEIGHTAGE;
2668 }
2669 
2670 static void cm_init_bw_weight_per_index(struct wlan_objmgr_psoc *psoc,
2671 					struct scoring_cfg *score_cfg)
2672 {
2673 	score_cfg->bandwidth_weight_per_index[0] =
2674 		cm_limit_max_per_index_score(
2675 			cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX));
2676 
2677 	score_cfg->bandwidth_weight_per_index[1] =
2678 		cm_limit_max_per_index_score(
2679 			cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_4_TO_7));
2680 
2681 	score_cfg->bandwidth_weight_per_index[2] =
2682 		cm_limit_max_per_index_score(
2683 		     cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_8_TO_11));
2684 
2685 	score_cfg->bandwidth_weight_per_index[3] =
2686 		cm_limit_max_per_index_score(
2687 		    cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_12_TO_15));
2688 
2689 	score_cfg->bandwidth_weight_per_index[4] =
2690 		cm_limit_max_per_index_score(
2691 		    cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_16_TO_19));
2692 
2693 	score_cfg->bandwidth_weight_per_index[5] =
2694 		cm_limit_max_per_index_score(
2695 		    cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_20_TO_23));
2696 
2697 	score_cfg->bandwidth_weight_per_index[6] =
2698 		cm_limit_max_per_index_score(
2699 		    cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_24_TO_27));
2700 
2701 	score_cfg->bandwidth_weight_per_index[7] =
2702 		cm_limit_max_per_index_score(
2703 		    cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_28_TO_31));
2704 
2705 	score_cfg->bandwidth_weight_per_index[8] =
2706 		cm_limit_max_per_index_score(
2707 		    cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_32_TO_35));
2708 }
2709 
2710 static void cm_init_nss_weight_per_index(struct wlan_objmgr_psoc *psoc,
2711 					 struct scoring_cfg *score_cfg)
2712 {
2713 	score_cfg->nss_weight_per_index[0] =
2714 		cm_limit_max_per_index_score(
2715 			cfg_get(psoc, CFG_SCORING_NSS_WEIGHT_PER_IDX));
2716 
2717 	score_cfg->nss_weight_per_index[1] =
2718 		cm_limit_max_per_index_score(
2719 		      cfg_get(psoc, CFG_SCORING_ML_NSS_WEIGHT_PER_IDX_4_TO_7));
2720 }
2721 #else
2722 static void cm_init_mlo_score_config(struct wlan_objmgr_psoc *psoc,
2723 				     struct scoring_cfg *score_cfg,
2724 				     uint32_t *total_weight)
2725 {
2726 }
2727 
2728 static void cm_set_default_mlo_weights(struct scoring_cfg *score_cfg)
2729 {
2730 }
2731 
2732 #ifdef WLAN_FEATURE_11BE
2733 static void cm_init_bw_weight_per_index(struct wlan_objmgr_psoc *psoc,
2734 					struct scoring_cfg *score_cfg)
2735 {
2736 	score_cfg->bandwidth_weight_per_index[0] =
2737 		cm_limit_max_per_index_score(
2738 			cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX));
2739 
2740 	score_cfg->bandwidth_weight_per_index[1] =
2741 		cm_limit_max_per_index_score(
2742 			cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_4_TO_7));
2743 
2744 	score_cfg->bandwidth_weight_per_index[2] =
2745 		cm_limit_max_per_index_score(
2746 		     cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX_8_TO_11));
2747 }
2748 #else
2749 static void cm_init_bw_weight_per_index(struct wlan_objmgr_psoc *psoc,
2750 					struct scoring_cfg *score_cfg)
2751 {
2752 	score_cfg->bandwidth_weight_per_index[0] =
2753 		cm_limit_max_per_index_score(
2754 			cfg_get(psoc, CFG_SCORING_BW_WEIGHT_PER_IDX));
2755 }
2756 #endif
2757 
2758 static void cm_init_nss_weight_per_index(struct wlan_objmgr_psoc *psoc,
2759 					 struct scoring_cfg *score_cfg)
2760 {
2761 	score_cfg->nss_weight_per_index[0] =
2762 		cm_limit_max_per_index_score(
2763 			cfg_get(psoc, CFG_SCORING_NSS_WEIGHT_PER_IDX));
2764 }
2765 #endif
2766 
2767 void wlan_cm_init_score_config(struct wlan_objmgr_psoc *psoc,
2768 			       struct scoring_cfg *score_cfg)
2769 {
2770 	uint32_t total_weight;
2771 
2772 	score_cfg->weight_config.rssi_weightage =
2773 		cfg_get(psoc, CFG_SCORING_RSSI_WEIGHTAGE);
2774 	score_cfg->weight_config.ht_caps_weightage =
2775 		cfg_get(psoc, CFG_SCORING_HT_CAPS_WEIGHTAGE);
2776 	score_cfg->weight_config.vht_caps_weightage =
2777 		cfg_get(psoc, CFG_SCORING_VHT_CAPS_WEIGHTAGE);
2778 	score_cfg->weight_config.he_caps_weightage =
2779 		cfg_get(psoc, CFG_SCORING_HE_CAPS_WEIGHTAGE);
2780 	score_cfg->weight_config.chan_width_weightage =
2781 		cfg_get(psoc, CFG_SCORING_CHAN_WIDTH_WEIGHTAGE);
2782 	score_cfg->weight_config.chan_band_weightage =
2783 		cfg_get(psoc, CFG_SCORING_CHAN_BAND_WEIGHTAGE);
2784 	score_cfg->weight_config.nss_weightage =
2785 		cfg_get(psoc, CFG_SCORING_NSS_WEIGHTAGE);
2786 	score_cfg->weight_config.beamforming_cap_weightage =
2787 		cfg_get(psoc, CFG_SCORING_BEAMFORM_CAP_WEIGHTAGE);
2788 	score_cfg->weight_config.pcl_weightage =
2789 		cfg_get(psoc, CFG_SCORING_PCL_WEIGHTAGE);
2790 	score_cfg->weight_config.channel_congestion_weightage =
2791 		cfg_get(psoc, CFG_SCORING_CHAN_CONGESTION_WEIGHTAGE);
2792 	score_cfg->weight_config.oce_wan_weightage =
2793 		cfg_get(psoc, CFG_SCORING_OCE_WAN_WEIGHTAGE);
2794 	score_cfg->weight_config.oce_ap_tx_pwr_weightage =
2795 				cfg_get(psoc, CFG_OCE_AP_TX_PWR_WEIGHTAGE);
2796 	score_cfg->weight_config.oce_subnet_id_weightage =
2797 				cfg_get(psoc, CFG_OCE_SUBNET_ID_WEIGHTAGE);
2798 	score_cfg->weight_config.sae_pk_ap_weightage =
2799 				cfg_get(psoc, CFG_SAE_PK_AP_WEIGHTAGE);
2800 	score_cfg->weight_config.security_weightage = CM_SECURITY_WEIGHTAGE;
2801 
2802 	total_weight =  score_cfg->weight_config.rssi_weightage +
2803 			score_cfg->weight_config.ht_caps_weightage +
2804 			score_cfg->weight_config.vht_caps_weightage +
2805 			score_cfg->weight_config.he_caps_weightage +
2806 			score_cfg->weight_config.chan_width_weightage +
2807 			score_cfg->weight_config.chan_band_weightage +
2808 			score_cfg->weight_config.nss_weightage +
2809 			score_cfg->weight_config.beamforming_cap_weightage +
2810 			score_cfg->weight_config.pcl_weightage +
2811 			score_cfg->weight_config.channel_congestion_weightage +
2812 			score_cfg->weight_config.oce_wan_weightage +
2813 			score_cfg->weight_config.oce_ap_tx_pwr_weightage +
2814 			score_cfg->weight_config.oce_subnet_id_weightage +
2815 			score_cfg->weight_config.sae_pk_ap_weightage +
2816 			score_cfg->weight_config.security_weightage;
2817 
2818 	cm_init_mlo_score_config(psoc, score_cfg, &total_weight);
2819 
2820 	/*
2821 	 * If configured weights are greater than max weight,
2822 	 * fallback to default weights
2823 	 */
2824 	if (total_weight > CM_BEST_CANDIDATE_MAX_WEIGHT) {
2825 		mlme_err("Total weight greater than %d, using default weights",
2826 			 CM_BEST_CANDIDATE_MAX_WEIGHT);
2827 		score_cfg->weight_config.rssi_weightage = CM_RSSI_WEIGHTAGE;
2828 		score_cfg->weight_config.ht_caps_weightage =
2829 						CM_HT_CAPABILITY_WEIGHTAGE;
2830 		score_cfg->weight_config.vht_caps_weightage =
2831 						CM_VHT_CAP_WEIGHTAGE;
2832 		score_cfg->weight_config.he_caps_weightage =
2833 						CM_HE_CAP_WEIGHTAGE;
2834 		score_cfg->weight_config.chan_width_weightage =
2835 						CM_CHAN_WIDTH_WEIGHTAGE;
2836 		score_cfg->weight_config.chan_band_weightage =
2837 						CM_CHAN_BAND_WEIGHTAGE;
2838 		score_cfg->weight_config.nss_weightage = CM_NSS_WEIGHTAGE;
2839 		score_cfg->weight_config.beamforming_cap_weightage =
2840 						CM_BEAMFORMING_CAP_WEIGHTAGE;
2841 		score_cfg->weight_config.pcl_weightage = CM_PCL_WEIGHT;
2842 		score_cfg->weight_config.channel_congestion_weightage =
2843 						CM_CHANNEL_CONGESTION_WEIGHTAGE;
2844 		score_cfg->weight_config.oce_wan_weightage =
2845 						CM_OCE_WAN_WEIGHTAGE;
2846 		score_cfg->weight_config.oce_ap_tx_pwr_weightage =
2847 						CM_OCE_AP_TX_POWER_WEIGHTAGE;
2848 		score_cfg->weight_config.oce_subnet_id_weightage =
2849 						CM_OCE_SUBNET_ID_WEIGHTAGE;
2850 		score_cfg->weight_config.sae_pk_ap_weightage =
2851 						CM_SAE_PK_AP_WEIGHTAGE;
2852 		cm_set_default_mlo_weights(score_cfg);
2853 	}
2854 
2855 	score_cfg->rssi_score.best_rssi_threshold =
2856 		cfg_get(psoc, CFG_SCORING_BEST_RSSI_THRESHOLD);
2857 	score_cfg->rssi_score.good_rssi_threshold =
2858 		cfg_get(psoc, CFG_SCORING_GOOD_RSSI_THRESHOLD);
2859 	score_cfg->rssi_score.bad_rssi_threshold =
2860 		cfg_get(psoc, CFG_SCORING_BAD_RSSI_THRESHOLD);
2861 
2862 	score_cfg->rssi_score.good_rssi_pcnt =
2863 		cfg_get(psoc, CFG_SCORING_GOOD_RSSI_PERCENT);
2864 	score_cfg->rssi_score.bad_rssi_pcnt =
2865 		cfg_get(psoc, CFG_SCORING_BAD_RSSI_PERCENT);
2866 
2867 	score_cfg->rssi_score.good_rssi_bucket_size =
2868 		cfg_get(psoc, CFG_SCORING_GOOD_RSSI_BUCKET_SIZE);
2869 	score_cfg->rssi_score.bad_rssi_bucket_size =
2870 		cfg_get(psoc, CFG_SCORING_BAD_RSSI_BUCKET_SIZE);
2871 
2872 	score_cfg->rssi_score.rssi_pref_5g_rssi_thresh =
2873 		cfg_get(psoc, CFG_SCORING_RSSI_PREF_5G_THRESHOLD);
2874 
2875 	score_cfg->esp_qbss_scoring.num_slot =
2876 		cfg_get(psoc, CFG_SCORING_NUM_ESP_QBSS_SLOTS);
2877 	score_cfg->esp_qbss_scoring.score_pcnt3_to_0 =
2878 		cm_limit_max_per_index_score(
2879 			cfg_get(psoc, CFG_SCORING_ESP_QBSS_SCORE_IDX_3_TO_0));
2880 	score_cfg->esp_qbss_scoring.score_pcnt7_to_4 =
2881 		cm_limit_max_per_index_score(
2882 			cfg_get(psoc, CFG_SCORING_ESP_QBSS_SCORE_IDX_7_TO_4));
2883 	score_cfg->esp_qbss_scoring.score_pcnt11_to_8 =
2884 		cm_limit_max_per_index_score(
2885 			cfg_get(psoc, CFG_SCORING_ESP_QBSS_SCORE_IDX_11_TO_8));
2886 	score_cfg->esp_qbss_scoring.score_pcnt15_to_12 =
2887 		cm_limit_max_per_index_score(
2888 			cfg_get(psoc, CFG_SCORING_ESP_QBSS_SCORE_IDX_15_TO_12));
2889 
2890 	score_cfg->oce_wan_scoring.num_slot =
2891 		cfg_get(psoc, CFG_SCORING_NUM_OCE_WAN_SLOTS);
2892 	score_cfg->oce_wan_scoring.score_pcnt3_to_0 =
2893 		cm_limit_max_per_index_score(
2894 			cfg_get(psoc, CFG_SCORING_OCE_WAN_SCORE_IDX_3_TO_0));
2895 	score_cfg->oce_wan_scoring.score_pcnt7_to_4 =
2896 		cm_limit_max_per_index_score(
2897 			cfg_get(psoc, CFG_SCORING_OCE_WAN_SCORE_IDX_7_TO_4));
2898 	score_cfg->oce_wan_scoring.score_pcnt11_to_8 =
2899 		cm_limit_max_per_index_score(
2900 			cfg_get(psoc, CFG_SCORING_OCE_WAN_SCORE_IDX_11_TO_8));
2901 	score_cfg->oce_wan_scoring.score_pcnt15_to_12 =
2902 		cm_limit_max_per_index_score(
2903 			cfg_get(psoc, CFG_SCORING_OCE_WAN_SCORE_IDX_15_TO_12));
2904 
2905 	score_cfg->band_weight_per_index =
2906 		cm_limit_max_per_index_score(
2907 			cfg_get(psoc, CFG_SCORING_BAND_WEIGHT_PER_IDX));
2908 	score_cfg->is_bssid_hint_priority =
2909 			cfg_get(psoc, CFG_IS_BSSID_HINT_PRIORITY);
2910 	score_cfg->vendor_roam_score_algorithm =
2911 			cfg_get(psoc, CFG_VENDOR_ROAM_SCORE_ALGORITHM);
2912 	score_cfg->check_assoc_disallowed = true;
2913 	cm_fill_6ghz_params(psoc, score_cfg);
2914 
2915 	cm_init_bw_weight_per_index(psoc, score_cfg);
2916 	cm_init_nss_weight_per_index(psoc, score_cfg);
2917 	score_cfg->security_weight_per_index = CM_SECURITY_INDEX_WEIGHTAGE;
2918 }
2919