xref: /wlan-dirver/qca-wifi-host-cmn/umac/dfs/core/src/misc/dfs_random_chan_sel.c (revision a86b23ee68a2491aede2e03991f3fb37046f4e41)
1 /*
2  * Copyright (c) 2012-2020 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "../dfs.h"
20 #include "../dfs_random_chan_sel.h"
21 #include <qdf_mc_timer.h>
22 #include <wlan_utility.h>
23 #include <wlan_reg_services_api.h>
24 #include "../dfs_process_radar_found_ind.h"
25 
26 #ifdef WLAN_ENABLE_CHNL_MATRIX_RESTRICTION
27 /*
28  * TODO: At present SAP Channel leakage matrix for ch 144
29  * is not available from system's team. So to play it safe
30  * and avoid crash if channel 144 is request, in following
31  * matix channel 144 is added such that it will cause code
32  * to avoid selecting channel 144.
33  *
34  * THESE ENTRIES SHOULD BE REPLACED WITH CORRECT VALUES AS
35  * PROVIDED BY SYSTEM'S TEAM.
36  */
37 
38 /* channel tx leakage table - ht80 */
39 struct dfs_matrix_tx_leak_info ht80_chan[] = {
40 	{52, 5260,
41 	 {{36, 5180, 148}, {40, 5200, 199},
42 	  {44, 5520, 193}, {48, 5240, 197},
43 	  {52, 5260, DFS_TX_LEAKAGE_MIN}, {56, 5280, 153},
44 	  {60, 5300, 137}, {64, 5320, 134},
45 	  {100, 5500, 358}, {104, 5520, 350},
46 	  {108, 5540, 404}, {112, 5560, 344},
47 	  {116, 5580, 424}, {120, 5600, 429},
48 	  {124, 5620, 437}, {128, 5640, 435},
49 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
50 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
51 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
52 	  } },
53 
54 
55 	{56, 5280,
56 	 {{36, 5180, 171}, {40, 5200, 178},
57 	  {44, 5220, 171}, {48, 5240, 178},
58 	  {52, 5260, DFS_TX_LEAKAGE_MIN}, {56, 5280, DFS_TX_LEAKAGE_MIN},
59 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, 280},
60 	  {100, 5500, 351}, {104, 5520, 376},
61 	  {108, 5540, 362}, {112, 5560, 362},
62 	  {116, 5580, 403}, {120, 5600, 397},
63 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
64 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
65 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
66 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
67 	  } },
68 
69 	{60,5300,
70 	 {{36, 5180, 156}, {40, 5200, 146},
71 	  {44, 5220, DFS_TX_LEAKAGE_MIN}, {48, 5240, DFS_TX_LEAKAGE_MIN},
72 	  {52, 5260, 180}, {56, 5280, DFS_TX_LEAKAGE_MIN},
73 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
74 	  {100, 5500, 376}, {104, 5520, 360},
75 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, DFS_TX_LEAKAGE_MAX},
76 	  {116, 5580, 395}, {120, 5600, 399},
77 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
78 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
79 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
80 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
81 	  } },
82 
83 	{64, 5320,
84 	 {{36, 5180,  217}, {40, 5200, 221},
85 	  {44, 5220, DFS_TX_LEAKAGE_MIN}, {48, 5240, DFS_TX_LEAKAGE_MIN},
86 	  {52, 5260, 176}, {56, 5280, 176},
87 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
88 	  {100, 5500, 384}, {104, 5520, 390},
89 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, DFS_TX_LEAKAGE_MAX},
90 	  {116, 5580, 375}, {120, 5600, 374},
91 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
92 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
93 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
94 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
95 	  } },
96 
97 	{100, 5500,
98 	 {{36, 5180, 357}, {40, 5200, 326},
99 	  {44, 5220, 321}, {48, 5240, 326},
100 	  {52, 5260, 378}, {56, 5280, 396},
101 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
102 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
103 	  {108, 5540, 196}, {112, 5560, 116},
104 	  {116, 5580, 166}, {120, 5600, DFS_TX_LEAKAGE_MIN},
105 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
106 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
107 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
108 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
109 	  } },
110 
111 	{104, 5520,
112 	 {{36, 5180,  325}, {40, 5200, 325},
113 	  {44, 5220, 305}, {48, 5240, 352},
114 	  {52, 5260, 411}, {56, 5280, 411},
115 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
116 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
117 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, 460},
118 	  {116, 5580, 198}, {120, 5600, DFS_TX_LEAKAGE_MIN},
119 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
120 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
121 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
122 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
123 	  } },
124 
125 	{108, 5540,
126 	 {{36,5180,  304}, {40, 5200, 332},
127 	  {44, 5220, 310}, {48, 5240, 335},
128 	  {52, 5260, 431}, {56, 5280, 391},
129 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
130 	  {100, 5500, 280}, {104, 5520, DFS_TX_LEAKAGE_MIN},
131 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
132 	  {116, 5580, 185}, {120, 5600, DFS_TX_LEAKAGE_MIN},
133 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
134 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
135 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
136 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
137 	  } },
138 
139 	{112,5560,
140 	 {{36, 5180, 327}, {40, 5200, 335},
141 	  {44, 5220, 331}, {48, 5240, 345},
142 	  {52, 5260, 367}, {56, 5280, 401},
143 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
144 	  {100, 5500, 131}, {104, 5520, 132},
145 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
146 	  {116, 5580, 189}, {120, 5600, DFS_TX_LEAKAGE_MIN},
147 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
148 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
149 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
150 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
151 	  } },
152 
153 	{116, 5580,
154 	 {{36, 5180, 384}, {40, 5200, 372},
155 	  {44, 5220, 389}, {48, 5240, 396},
156 	  {52, 5260, 348}, {56, 5280, 336},
157 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
158 	  {100, 5500, 172}, {104, 5520, 169},
159 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
160 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
161 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
162 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
163 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
164 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
165 	  } },
166 
167 	{120, 5600,
168 	 {{36, 5180, 395}, {40, 5200, 419},
169 	  {44, 5220, 439}, {48, 5240, 407},
170 	  {52, 5260, 321}, {56, 5280, 334},
171 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
172 	  {100, 5500, 134}, {104, 5520, 186},
173 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
174 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
175 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, 159},
176 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
177 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
178 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
179 	  } },
180 
181 	{124, 5620,
182 	 {{36, 5180, 469}, {40, 5200, 433},
183 	  {44, 5220, 434}, {48, 5240, 435},
184 	  {52, 5260, 332}, {56, 5280, 345},
185 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
186 	  {100, 5500, 146}, {104, 5520, 177},
187 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
188 	  {116, 5580, 350}, {120, 5600, DFS_TX_LEAKAGE_MIN},
189 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, 138},
190 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
191 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
192 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
193 	  } },
194 
195 	{128, 5640,
196 	 {{36, 5180, 408}, {40, 5200, 434},
197 	  {44, 5220, 449}, {48, 5240, 444},
198 	  {52, 5260, 341}, {56, 5280, 374},
199 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
200 	  {100, 5500, 205}, {104, 5520, 208},
201 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
202 	  {116, 5580, 142}, {120, 5600, DFS_TX_LEAKAGE_MIN},
203 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
204 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
205 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
206 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
207 	  } },
208 
209 	{132, 5660,
210 	 {{36, 5180, DFS_TX_LEAKAGE_MAX}, {40, 5200, DFS_TX_LEAKAGE_MAX},
211 	  {44, 5220, DFS_TX_LEAKAGE_MAX}, {48, 5240, DFS_TX_LEAKAGE_MAX},
212 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
213 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
214 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
215 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
216 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
217 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
218 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
219 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
220 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
221 	  } },
222 
223 	{136, 5680,
224 	 {{36, 5180, DFS_TX_LEAKAGE_MAX}, {40, 5200, DFS_TX_LEAKAGE_MAX},
225 	  {44, 5220, DFS_TX_LEAKAGE_MAX}, {48, 5240, DFS_TX_LEAKAGE_MAX},
226 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
227 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
228 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
229 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
230 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
231 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
232 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
233 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
234 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
235 	  } },
236 
237 	{140, 5700,
238 	 {{36, 5180,  DFS_TX_LEAKAGE_MAX}, {40, 5200, DFS_TX_LEAKAGE_MAX},
239 	  {44, 5220, DFS_TX_LEAKAGE_MAX}, {48, 5240, DFS_TX_LEAKAGE_MAX},
240 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
241 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
242 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
243 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
244 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
245 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
246 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
247 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
248 	  } },
249 
250 	{144, 5720,
251 	 {{36, 5180, DFS_TX_LEAKAGE_MAX}, {40, 5200, DFS_TX_LEAKAGE_MAX},
252 	  {44, 5220, DFS_TX_LEAKAGE_MAX}, {48, 5240, DFS_TX_LEAKAGE_MAX},
253 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
254 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
255 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
256 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
257 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
258 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
259 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
260 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
261 	  } },
262 };
263 
264 /* channel tx leakage table - ht40 */
265 struct dfs_matrix_tx_leak_info ht40_chan[] = {
266 	{52, 5260,
267 	 {{36, 5180, DFS_TX_LEAKAGE_AUTO_MIN}, {40, 5200, DFS_TX_LEAKAGE_AUTO_MIN},
268 	  {44, 5220, 230}, {48, 5240, 230},
269 	  {52, 5260, DFS_TX_LEAKAGE_MIN}, {56, 5280, DFS_TX_LEAKAGE_MIN},
270 	  {60, 5300, DFS_TX_LEAKAGE_AUTO_MIN}, {64, 5320, DFS_TX_LEAKAGE_AUTO_MIN},
271 	  {100, 5500, 625}, {104, 5520, 323},
272 	  {108, 5540, 646}, {112, 5560, 646},
273 	  {116, 5580, DFS_TX_LEAKAGE_MAX}, {120, 5600, DFS_TX_LEAKAGE_MAX},
274 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
275 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
276 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
277 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
278 	  } },
279 
280 	{56, 5280,
281 	 {{36, 5180, DFS_TX_LEAKAGE_AUTO_MIN}, {40, 5200, DFS_TX_LEAKAGE_AUTO_MIN},
282 	  {44, 5220, DFS_TX_LEAKAGE_AUTO_MIN}, {48, 5240, DFS_TX_LEAKAGE_AUTO_MIN},
283 	  {52, 5260, DFS_TX_LEAKAGE_MIN}, {56, 5280, DFS_TX_LEAKAGE_MIN},
284 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
285 	  {100, 5500, 611}, {104, 5520, 611},
286 	  {108, 5540, 617}, {112, 5560, 617},
287 	  {116, 5580, DFS_TX_LEAKAGE_MAX}, {120, 5600, DFS_TX_LEAKAGE_MAX},
288 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
289 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
290 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
291 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
292 	  } },
293 
294 	{60, 5300,
295 	 {{36, 5180, DFS_TX_LEAKAGE_AUTO_MIN}, {40, 5200, DFS_TX_LEAKAGE_AUTO_MIN},
296 	  {44, 5220, DFS_TX_LEAKAGE_AUTO_MIN}, {48, 5240, DFS_TX_LEAKAGE_AUTO_MIN},
297 	  {52, 5260, 190}, {56, 5280, 190},
298 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
299 	  {100, 5500, 608}, {104, 5520, 608},
300 	  {108, 5540, 623}, {112, 5560, 623},
301 	  {116, 5580, DFS_TX_LEAKAGE_MAX}, {120, 5600, DFS_TX_LEAKAGE_MAX},
302 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
303 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
304 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
305 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
306 	  } },
307 
308 	{64, 5320,
309 	 {{36, 5180, DFS_TX_LEAKAGE_AUTO_MIN}, {40, 5200, DFS_TX_LEAKAGE_AUTO_MIN},
310 	  {44, 5220, DFS_TX_LEAKAGE_AUTO_MIN}, {48, 5240, DFS_TX_LEAKAGE_AUTO_MIN},
311 	  {52, 5260, 295}, {56, 5280, 295},
312 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
313 	  {100, 5500, 594}, {104, 5520, 594},
314 	  {108, 5540, 625}, {112, 5560, 625},
315 	  {116, 5580, DFS_TX_LEAKAGE_MAX}, {120, 5600, DFS_TX_LEAKAGE_MAX},
316 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
317 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
318 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
319 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
320 	  } },
321 
322 	{100, 5500,
323 	 {{36, 5180, 618}, {40, 5200, 618},
324 	  {44, 5220, 604}, {48, 5240, 604},
325 	  {52, 5260, 596}, {56, 5280, 596},
326 	  {60, 5300, 584}, {64, 5320, 584},
327 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
328 	  {108, 5540, 299}, {112, 5560, 299},
329 	  {116, 5580, DFS_TX_LEAKAGE_AUTO_MIN}, {120, 5600, DFS_TX_LEAKAGE_AUTO_MIN},
330 	  {124, 5620, DFS_TX_LEAKAGE_AUTO_MIN}, {128, 5640, DFS_TX_LEAKAGE_AUTO_MIN},
331 	  {132, 5660, 538}, {136,5680, 538},
332 	  {140, 5700, 598},
333 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
334 	  } },
335 
336 	{104, 5520,
337 	 {{36, 5180, 636}, {40, 5200, 636},
338 	  {44, 5220, 601}, {48, 5240, 601},
339 	  {52, 5260, 616}, {56, 5280, 616},
340 	  {60, 5300, 584}, {64, 5320, 584},
341 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
342 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
343 	  {116, 5580, DFS_TX_LEAKAGE_AUTO_MIN}, {120, 5600, DFS_TX_LEAKAGE_AUTO_MIN},
344 	  {124, 5620, DFS_TX_LEAKAGE_AUTO_MIN}, {128, 5640, DFS_TX_LEAKAGE_AUTO_MIN},
345 	  {132, 5660, 553}, {136, 5680, 553},
346 	  {140, 5700, 568},
347 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
348 	  } },
349 
350 	{108, 5540,
351 	 {{36, 5180, 600}, {40, 5200, 600},
352 	  {44, 5220, 627}, {48, 5240, 627},
353 	  {52, 5260, 611}, {56, 5280, 611},
354 	  {60, 5300, 611}, {64, 5320, 611},
355 	  {100, 5500, 214}, {104, 5520, 214},
356 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
357 	  {116, 5580, DFS_TX_LEAKAGE_AUTO_MIN}, {120, 5600, DFS_TX_LEAKAGE_AUTO_MIN},
358 	  {124, 5620, DFS_TX_LEAKAGE_AUTO_MIN}, {128, 5640, DFS_TX_LEAKAGE_AUTO_MIN},
359 	  {132, 5660, DFS_TX_LEAKAGE_AUTO_MIN}, {136, 5680, DFS_TX_LEAKAGE_AUTO_MIN},
360 	  {140, 5700, 534},
361 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
362 	  } },
363 
364 	{112, 5560,
365 	 {{36, 5180, 645}, {40, 5200, 645},
366 	  {44, 5220, 641}, {48, 5240, 641},
367 	  {52, 5260, 618}, {56, 5280, 618},
368 	  {60, 5300, 612}, {64, 5320, 612},
369 	  {100, 5500, 293}, {104, 5520, 293},
370 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
371 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
372 	  {124, 5620, DFS_TX_LEAKAGE_AUTO_MIN}, {128, 5640, DFS_TX_LEAKAGE_AUTO_MIN},
373 	  {132, 5660, DFS_TX_LEAKAGE_AUTO_MIN}, {136, 5680, DFS_TX_LEAKAGE_AUTO_MIN},
374 	  {140, 5700, 521},
375 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
376 	  } },
377 
378 	{116, 5580,
379 	 {{36, 5180, 661}, {40, 5200, 661},
380 	  {44, 5220, 624}, {48, 5240, 624},
381 	  {52, 5260, 634}, {56, 5280, 634},
382 	  {60, 5300, 611}, {64, 5320, 611},
383 	  {100, 5500, DFS_TX_LEAKAGE_AUTO_MIN}, {104, 5520, DFS_TX_LEAKAGE_AUTO_MIN},
384 	  {108, 5540, 217}, {112, 5560, 217},
385 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
386 	  {124, 5620, DFS_TX_LEAKAGE_AUTO_MIN}, {128, 5640, DFS_TX_LEAKAGE_AUTO_MIN},
387 	  {132, 5660, DFS_TX_LEAKAGE_AUTO_MIN}, {136, 5680, DFS_TX_LEAKAGE_AUTO_MIN},
388 	  {140, 5700, DFS_TX_LEAKAGE_AUTO_MIN},
389 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
390 	  } },
391 
392 	{120, 5600,
393 	 {{36, 5180, 667}, {40, 5200, 667},
394 	  {44, 5220, 645}, {48, 5240, 645},
395 	  {52, 5260, 633}, {56, 5280, 633},
396 	  {60, 5300, 619}, {64, 5320, 619},
397 	  {100, 5500, DFS_TX_LEAKAGE_AUTO_MIN}, {104, 5520, DFS_TX_LEAKAGE_AUTO_MIN},
398 	  {108, 5540, 291}, {112, 5560, 291},
399 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
400 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
401 	  {132, 5660, DFS_TX_LEAKAGE_AUTO_MIN}, {136, 5680, DFS_TX_LEAKAGE_AUTO_MIN},
402 	  {140, 5700, DFS_TX_LEAKAGE_AUTO_MIN},
403 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
404 	  } },
405 
406 	{124, 5620,
407 	 {{36, 5180,  676}, {40, 5200, 676},
408 	  {44, 5220, 668}, {48, 5240, 668},
409 	  {52, 5260, 595}, {56, 5280, 595},
410 	  {60, 5300, 622}, {64, 5320, 622},
411 	  {100, 5500, DFS_TX_LEAKAGE_AUTO_MIN}, {104, 5520, DFS_TX_LEAKAGE_AUTO_MIN},
412 	  {108, 5540, DFS_TX_LEAKAGE_AUTO_MIN}, {112, 5560, DFS_TX_LEAKAGE_AUTO_MIN},
413 	  {116, 5580, 225}, {120, 5600, 225},
414 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
415 	  {132, 5660, DFS_TX_LEAKAGE_AUTO_MIN}, {136, 5680, DFS_TX_LEAKAGE_AUTO_MIN},
416 	  {140, 5700, DFS_TX_LEAKAGE_AUTO_MIN},
417 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
418 	  } },
419 
420 	{128, 5640,
421 	 {{36, 5180, 678}, {40, 5200, 678},
422 	  {44, 5220, 664}, {48, 5240, 664},
423 	  {52, 5260, 651}, {56, 5280, 651},
424 	  {60, 5300, 643}, {64, 5320, 643},
425 	  {100, 5500, DFS_TX_LEAKAGE_AUTO_MIN}, {104, 5520, DFS_TX_LEAKAGE_AUTO_MIN},
426 	  {108, 5540, DFS_TX_LEAKAGE_AUTO_MIN}, {112, 5560, DFS_TX_LEAKAGE_AUTO_MIN},
427 	  {116, 5580, 293}, {120, 5600, 293},
428 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
429 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
430 	  {140, 5700, DFS_TX_LEAKAGE_AUTO_MIN},
431 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
432 	  } },
433 
434 	{132, 5660,
435 	 {{36, 5180, 689}, {40, 5200, 689},
436 	  {44, 5220, 669}, {48, 5240, 669},
437 	  {52, 5260, 662}, {56, 5280, 662},
438 	  {60, 5300, 609}, {64, 5320, 609},
439 	  {100, 5500, 538}, {104, 5520, 538},
440 	  {108, 5540, DFS_TX_LEAKAGE_AUTO_MIN}, {112, 5560, DFS_TX_LEAKAGE_AUTO_MIN},
441 	  {116, 5580, DFS_TX_LEAKAGE_AUTO_MIN}, {120, 5600, DFS_TX_LEAKAGE_AUTO_MIN},
442 	  {124, 5620, 247}, {128, 5640, 247},
443 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
444 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
445 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
446 	  } },
447 
448 	{136, 5680,
449 	 {{36, 5180, 703}, {40, 5200, 703},
450 	  {44, 5220, 688}, {48, 5240, DFS_TX_LEAKAGE_MIN},
451 	  {52, 5260, 671}, {56, 5280, 671},
452 	  {60, 5300, 658}, {64, 5320, 658},
453 	  {100, 5500, 504}, {104, 5520, 504},
454 	  {108, 5540, DFS_TX_LEAKAGE_AUTO_MIN}, {112, 5560, DFS_TX_LEAKAGE_AUTO_MIN},
455 	  {116, 5580, DFS_TX_LEAKAGE_AUTO_MIN}, {120, 5600, DFS_TX_LEAKAGE_AUTO_MIN},
456 	  {124, 5620, 289}, {128, 5640, 289},
457 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
458 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
459 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
460 	  } },
461 
462 	{140, 5700,
463 	 {{36, 5180, 695}, {40, 5200, 695},
464 	  {44, 5220, 684}, {48, 5240, 684},
465 	  {52, 5260, 664}, {56, 5280, 664},
466 	  {60, 5300, 658}, {64, 5320, 658},
467 	  {100, 5500, 601}, {104, 5520, 601},
468 	  {108, 5540, 545}, {112, 5560, 545},
469 	  {116, 5580, DFS_TX_LEAKAGE_AUTO_MIN}, {120, 5600, DFS_TX_LEAKAGE_AUTO_MIN},
470 	  {124, 5620, DFS_TX_LEAKAGE_AUTO_MIN}, {128, 5640, DFS_TX_LEAKAGE_AUTO_MIN},
471 	  {132, 5660, 262}, {136, 5680, 262},
472 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
473 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
474 	  } },
475 
476 	{144, 5720,
477 	 {{36, 5180, 695}, {40, 5200, 695},
478 	  {44, 5220, 684}, {48, 5240, 684},
479 	  {52, 5260, 664}, {56, 5280, 664},
480 	  {60, 5300, 658}, {64, 5320, 658},
481 	  {100, 5500, 601}, {104, 5520, 601},
482 	  {108, 5540, 545}, {112, 5560, 545},
483 	  {116, 5580, DFS_TX_LEAKAGE_AUTO_MIN}, {120, 5600, DFS_TX_LEAKAGE_AUTO_MIN},
484 	  {124, 5620, DFS_TX_LEAKAGE_AUTO_MIN}, {128, 5640, DFS_TX_LEAKAGE_AUTO_MIN},
485 	  {132, 5660, 262}, {136, 5680, 262},
486 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
487 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
488 	  } },
489 };
490 
491 /* channel tx leakage table - ht20 */
492 struct dfs_matrix_tx_leak_info ht20_chan[] = {
493 	{52, 5260,
494 	 {{36, 5180,DFS_TX_LEAKAGE_AUTO_MIN}, {40, 5200, 286},
495 	  {44, 5220, 225}, {48,5240, 121},
496 	  {52, 5260, DFS_TX_LEAKAGE_MIN}, {56, 5280, DFS_TX_LEAKAGE_MIN},
497 	  {60, 5300, 300}, {64, 5320, DFS_TX_LEAKAGE_AUTO_MIN},
498 	  {100, 5500, 637}, {104, 5520, DFS_TX_LEAKAGE_MAX},
499 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, DFS_TX_LEAKAGE_MAX},
500 	  {116, 5580, DFS_TX_LEAKAGE_MAX}, {120, 5600, DFS_TX_LEAKAGE_MAX},
501 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
502 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
503 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
504 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
505 	  } },
506 
507 	{56, 5280,
508 	 {{36, 5180, 468}, {40, 5200, DFS_TX_LEAKAGE_AUTO_MIN},
509 	  {44, 5220, DFS_TX_LEAKAGE_AUTO_MIN}, {48, 5240, 206},
510 	  {52, 5260, DFS_TX_LEAKAGE_MIN}, {56, 5280, DFS_TX_LEAKAGE_MIN},
511 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
512 	  {100, 5500, DFS_TX_LEAKAGE_MAX}, {104, 5520, DFS_TX_LEAKAGE_MAX},
513 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, DFS_TX_LEAKAGE_MAX},
514 	  {116, 5580, DFS_TX_LEAKAGE_MAX}, {120, 5600, DFS_TX_LEAKAGE_MAX},
515 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
516 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
517 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
518 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
519 	  } },
520 
521 	{60, 5300,
522 	 {{36, 5180, 507}, {40, 5200, 440},
523 	  {44, 5220, DFS_TX_LEAKAGE_AUTO_MIN}, {48,5240, 313},
524 	  {52, 5260, DFS_TX_LEAKAGE_MIN}, {56, 5280, DFS_TX_LEAKAGE_MIN},
525 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
526 	  {100, 5500, DFS_TX_LEAKAGE_MAX}, {104, 5520, DFS_TX_LEAKAGE_MAX},
527 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, DFS_TX_LEAKAGE_MAX},
528 	  {116, 5580, DFS_TX_LEAKAGE_MAX}, {120, 5600, DFS_TX_LEAKAGE_MAX},
529 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
530 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
531 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
532 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
533 	  } },
534 
535 	{64, 5320 ,
536 	 {{36, 5180, 516}, {40, 5200, 520},
537 	  {44, 5220, 506}, {48, 5240,DFS_TX_LEAKAGE_AUTO_MIN},
538 	  {52, 5260, 301}, {56, 5280, 258},
539 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
540 	  {100, 5500, 620}, {104, 5520, 617},
541 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, DFS_TX_LEAKAGE_MAX},
542 	  {116, 5580, DFS_TX_LEAKAGE_MAX}, {120, 5600, DFS_TX_LEAKAGE_MAX},
543 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
544 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
545 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
546 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
547 	  } },
548 
549 	{100, 5500,
550 	 {{36, 5180, 616}, {40, 5200, 601},
551 	  {44, 5220, 604}, {48, 5240, 589},
552 	  {52, 5260, 612}, {56, 5280, 592},
553 	  {60, 5300, 590}, {64, 5320, 582},
554 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, 131},
555 	  {108, 5540, DFS_TX_LEAKAGE_AUTO_MIN}, {112, 5560, DFS_TX_LEAKAGE_AUTO_MIN},
556 	  {116, 5580, DFS_TX_LEAKAGE_AUTO_MIN}, {120, 5600, 522},
557 	  {124, 5620, 571}, {128, 5640, 589},
558 	  {132, 5660, 593}, {136, 5680, 598},
559 	  {140, 5700, 594},
560 	  {144, 5720, DFS_TX_LEAKAGE_MIN},
561 	  } },
562 
563 	{104, 5520,
564 	 {{36, 5180, 622}, {40, 5200, 624},
565 	  {44, 5220, 618}, {48, 5240, 610},
566 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
567 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
568 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
569 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, 463},
570 	  {116, 5580, 483}, {120, 5600, 503},
571 	  {124, 5620, 523}, {128, 5640, 565},
572 	  {132, 5660, 570}, {136, 5680, 588},
573 	  {140, 5700, 585},
574 	  {144, 5720, DFS_TX_LEAKAGE_MIN},
575 	  } },
576 
577 	{108, 5540,
578 	 {{36, 5180, 620}, {40, 5200, 638},
579 	  {44, 5220, 611}, {48, 5240, 614},
580 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
581 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
582 	  {100, 5500, 477}, {104, 5520, DFS_TX_LEAKAGE_MIN},
583 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
584 	  {116, 5580, 477}, {120, 5600, 497},
585 	  {124, 5620, 517}, {128, 5640, 537},
586 	  {132, 5660, 557}, {136, 5680, 577},
587 	  {140, 5700, 603},
588 	  {144, 5720, DFS_TX_LEAKAGE_MIN},
589 	  } },
590 
591 	{112, 5560,
592 	 {{36, 5180, 636}, {40, 5200, 623},
593 	  {44, 5220, 638}, {48, 5240, 628},
594 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
595 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, 606},
596 	  {100, 5500, 501}, {104, 5520, 481},
597 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
598 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, 481},
599 	  {124, 5620, 501}, {128, 5640, 421},
600 	  {132, 5660, 541}, {136, 5680, 561},
601 	  {140, 5700, 583},
602 	  {144, 5720, DFS_TX_LEAKAGE_MIN},
603 	  } },
604 
605 	{116, 5580,
606 	 {{36, 5180, 646}, {40, 5200, 648},
607 	  {44, 5220, 633}, {48, 5240, 634},
608 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
609 	  {60, 5300, 615}, {64, 5320, 594},
610 	  {100, 5500, 575}, {104, 5520, 554},
611 	  {108, 5540, 534}, {112, 5560, DFS_TX_LEAKAGE_MIN},
612 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
613 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
614 	  {132, 5660, 534}, {136, 5680, 554},
615 	  {140, 5700, 574},
616 	  {144, 5720, DFS_TX_LEAKAGE_MIN},
617 	  } },
618 
619 	{120, 5600,
620 	 {{36, 5180, 643}, {40, 5200, 649},
621 	  {44, 5220, 654}, {48, 5240, 629},
622 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, 621},
623 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
624 	  {100, 5500, 565}, {104, 5520, 545},
625 	  {108, 5540, 525}, {112, 5560, 505},
626 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
627 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, 505},
628 	  {132, 5660, 525}, {136, 5680, 545},
629 	  {140, 5700, 565},
630 	  {144, 5720, DFS_TX_LEAKAGE_MIN},
631 	  } },
632 
633 	{124, 5620,
634 	 {{36, 5180, 638}, {40, 5200, 657},
635 	  {44, 5220, 663}, {48, 5240, 649},
636 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
637 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
638 	  {100, 5500, 581}, {104, 5520, 561},
639 	  {108, 5540, 541}, {112, 5560, 521},
640 	  {116, 5580, 499}, {120, 5600, DFS_TX_LEAKAGE_MIN},
641 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
642 	  {132, 5660, 499}, {136, 5680, 519},
643 	  {140, 5700, 539},
644 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
645 	  } },
646 
647 	{128, 5640,
648 	 {{36, 5180, 651}, {40, 5200, 651},
649 	  {44, 5220, 674}, {48, 5240, 640},
650 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
651 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
652 	  {100, 5500, 603}, {104, 5520, 560},
653 	  {108, 5540, 540}, {112, 5560, 520},
654 	  {116, 5580, 499}, {120, 5600, 479},
655 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
656 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, 479},
657 	  {140, 5700, 499},
658 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
659 	  } },
660 
661 	{132, 5660,
662 	 {{36, 5180, 643}, {40, 5200, 668},
663 	  {44, 5220, 651}, {48, 5240, 657},
664 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
665 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
666 	  {100, 5500, DFS_TX_LEAKAGE_MAX}, {104, 5520, 602},
667 	  {108, 5540, 578}, {112,5560, 570},
668 	  {116, 5580, 550}, {120, 5600, 530},
669 	  {124, 5620, 510}, {128, 5640, DFS_TX_LEAKAGE_MIN},
670 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
671 	  {140, 5700, 490},
672 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
673 	  } },
674 
675 	{136,5680,
676 	 {{36, 5180, 654}, {40, 5200, 667},
677 	  {44, 5220, 666}, {48, 5240, 642},
678 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
679 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
680 	  {100, 5500, DFS_TX_LEAKAGE_MAX}, {104, 5520, DFS_TX_LEAKAGE_MAX},
681 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, 596},
682 	  {116, 5580, 555}, {120, 5600, 535},
683 	  {124, 5620, 515}, {128, 5640, 495},
684 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
685 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
686 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
687 	  } },
688 
689 	{140,5700,
690 	 {{36, 5180, 679}, {40, 5200, 673},
691 	  {44, 5220, 667}, {48, 5240, 656},
692 	  {52, 5260, 634}, {56, 5280, 663},
693 	  {60, 5300, 662}, {64, 5320, 660},
694 	  {100, 5500, DFS_TX_LEAKAGE_MAX}, {104, 5520, DFS_TX_LEAKAGE_MAX},
695 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, 590},
696 	  {116, 5580, 573}, {120, 5600, 553},
697 	  {124, 5620, 533}, {128, 5640, 513},
698 	  {132, 5660, 490}, {136, 5680, DFS_TX_LEAKAGE_MIN},
699 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
700 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
701 	  } },
702 
703 	{144,5720,
704 	 {{36, 5180, 679}, {40, 5200, 673},
705 	  {44, 5220, 667}, {48, 5240, 656},
706 	  {52, 5260, 634}, {56, 5280, 663},
707 	  {60, 5300, 662}, {64, 5320, 660},
708 	  {100, 5500, DFS_TX_LEAKAGE_MAX}, {104, 5520, DFS_TX_LEAKAGE_MAX},
709 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, 590},
710 	  {116, 5580, 573}, {120, 5600, 553},
711 	  {124, 5620, 533}, {128, 5640, 513},
712 	  {132, 5660, 490}, {136, 5680, DFS_TX_LEAKAGE_MIN},
713 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
714 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
715 	  } },
716 };
717 
718 /*
719  * dfs_find_target_channel_in_channel_matrix() - finds the leakage matrix
720  * @ch_width: target channel width
721  * @NOL_channel: the NOL channel whose leakage matrix is required
722  * @pTarget_chnl_mtrx: pointer to target channel matrix returned.
723  *
724  * This function gives the leakage matrix for given NOL channel and ch_width
725  *
726  * Return: TRUE or FALSE
727  */
728 #ifdef CONFIG_CHAN_NUM_API
729 static bool
730 dfs_find_target_channel_in_channel_matrix(enum phy_ch_width ch_width,
731 				uint8_t NOL_channel,
732 				struct dfs_tx_leak_info **pTarget_chnl_mtrx)
733 {
734 	struct dfs_tx_leak_info *target_chan_matrix = NULL;
735 	struct dfs_matrix_tx_leak_info *pchan_matrix = NULL;
736 	uint32_t nchan_matrix;
737 	int i = 0;
738 
739 	switch (ch_width) {
740 	case CH_WIDTH_20MHZ:
741 		/* HT20 */
742 		pchan_matrix = ht20_chan;
743 		nchan_matrix = QDF_ARRAY_SIZE(ht20_chan);
744 		break;
745 	case CH_WIDTH_40MHZ:
746 		/* HT40 */
747 		pchan_matrix = ht40_chan;
748 		nchan_matrix = QDF_ARRAY_SIZE(ht40_chan);
749 		break;
750 	case CH_WIDTH_80MHZ:
751 		/* HT80 */
752 		pchan_matrix = ht80_chan;
753 		nchan_matrix = QDF_ARRAY_SIZE(ht80_chan);
754 		break;
755 	default:
756 		/* handle exception and fall back to HT20 table */
757 		pchan_matrix = ht20_chan;
758 		nchan_matrix = QDF_ARRAY_SIZE(ht20_chan);
759 		break;
760 	}
761 
762 	for (i = 0; i < nchan_matrix; i++) {
763 		/* find the SAP channel to map the leakage matrix */
764 		if (NOL_channel == pchan_matrix[i].channel) {
765 			target_chan_matrix = pchan_matrix[i].chan_matrix;
766 			break;
767 		}
768 	}
769 
770 	if (!target_chan_matrix) {
771 		return false;
772 	} else {
773 		*pTarget_chnl_mtrx = target_chan_matrix;
774 		return true;
775 	}
776 }
777 #endif
778 
779 /*
780  * dfs_find_target_channel_in_channel_matrix_for_freq() - finds the leakage
781  * matrix.
782  * @chan_width: target channel width
783  * @nol_channel: the NOL channel frequency whose leakage matrix is required
784  * @pTarget_chnl_mtrx: pointer to target channel matrix returned.
785  *
786  * This function gives the leakage matrix for given NOL channel and ch_width
787  *
788  * Return: TRUE or FALSE
789  */
790 #ifdef CONFIG_CHAN_FREQ_API
791 static bool
792 dfs_find_target_channel_in_channel_matrix_for_freq(enum phy_ch_width chan_width,
793 						   uint16_t nol_freq,
794 						   struct dfs_tx_leak_info
795 						   **pTarget_chnl_mtrx)
796 {
797 	struct dfs_tx_leak_info *target_chan_matrix = NULL;
798 	struct dfs_matrix_tx_leak_info *pchan_matrix = NULL;
799 	uint32_t nchan_matrix;
800 	int i = 0;
801 
802 	switch (chan_width) {
803 	case CH_WIDTH_20MHZ:
804 		/* HT20 */
805 		pchan_matrix = ht20_chan;
806 		nchan_matrix = QDF_ARRAY_SIZE(ht20_chan);
807 		break;
808 	case CH_WIDTH_40MHZ:
809 		/* HT40 */
810 		pchan_matrix = ht40_chan;
811 		nchan_matrix = QDF_ARRAY_SIZE(ht40_chan);
812 		break;
813 	case CH_WIDTH_80MHZ:
814 		/* HT80 */
815 		pchan_matrix = ht80_chan;
816 		nchan_matrix = QDF_ARRAY_SIZE(ht80_chan);
817 		break;
818 	default:
819 		/* handle exception and fall back to HT20 table */
820 		pchan_matrix = ht20_chan;
821 		nchan_matrix = QDF_ARRAY_SIZE(ht20_chan);
822 		break;
823 	}
824 
825 	for (i = 0; i < nchan_matrix; i++) {
826 		/* find the SAP channel to map the leakage matrix */
827 		if (nol_freq == pchan_matrix[i].channel_freq) {
828 			target_chan_matrix = pchan_matrix[i].chan_matrix;
829 			break;
830 		}
831 	}
832 
833 	if (!target_chan_matrix) {
834 		return false;
835 	} else {
836 		*pTarget_chnl_mtrx = target_chan_matrix;
837 		return true;
838 	}
839 }
840 #endif
841 
842 #ifdef CONFIG_CHAN_NUM_API
843 QDF_STATUS
844 dfs_mark_leaking_ch(struct wlan_dfs *dfs,
845 		enum phy_ch_width ch_width,
846 		uint8_t temp_ch_lst_sz,
847 		uint8_t *temp_ch_lst)
848 {
849 	struct dfs_tx_leak_info *target_chan_matrix = NULL;
850 	uint32_t         num_channel = (CHAN_ENUM_5720 - CHAN_ENUM_5180) + 1;
851 	uint32_t         j = 0;
852 	uint32_t         k = 0;
853 	uint8_t          dfs_nol_channel;
854 	struct dfs_nolelem *nol;
855 
856 	nol = dfs->dfs_nol;
857 	while (nol) {
858 		dfs_nol_channel = wlan_reg_freq_to_chan(dfs->dfs_pdev_obj,
859 							nol->nol_freq);
860 		if (false == dfs_find_target_channel_in_channel_matrix(
861 					ch_width, dfs_nol_channel,
862 					&target_chan_matrix)) {
863 			/*
864 			 * should never happen, we should always find a table
865 			 * here, if we don't, need a fix here!
866 			 */
867 			dfs_err(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
868 				"Couldn't find target channel matrix!");
869 			QDF_ASSERT(0);
870 			return QDF_STATUS_E_FAILURE;
871 		}
872 		/*
873 		 * following is based on assumption that both temp_ch_lst
874 		 * and target channel matrix are in increasing order of
875 		 * ch_id
876 		 */
877 		for (j = 0, k = 0; j < temp_ch_lst_sz && k < num_channel;) {
878 			if (temp_ch_lst[j] == 0) {
879 				j++;
880 				continue;
881 			}
882 			if (target_chan_matrix[k].leak_chan != temp_ch_lst[j]) {
883 				k++;
884 				continue;
885 			}
886 			/*
887 			 * check leakage from candidate channel
888 			 * to NOL channel
889 			 */
890 			if (target_chan_matrix[k].leak_lvl <=
891 				dfs->tx_leakage_threshold) {
892 				/*
893 				 * candidate channel will have
894 				 * bad leakage in NOL channel,
895 				 * remove from temp list
896 				 */
897 				dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
898 					"dfs: channel: %d will have bad leakage due to channel: %d\n",
899 					dfs_nol_channel, temp_ch_lst[j]);
900 				temp_ch_lst[j] = 0;
901 			}
902 			j++;
903 			k++;
904 		}
905 		nol = nol->nol_next;
906 	} /* end of loop that selects each NOL */
907 
908 	return QDF_STATUS_SUCCESS;
909 }
910 #endif
911 
912 #ifdef CONFIG_CHAN_FREQ_API
913 #define END_CHAN_INDEX CHAN_ENUM_5720
914 #define START_CHAN_INDEX CHAN_ENUM_5180
915 QDF_STATUS
916 dfs_mark_leaking_chan_for_freq(struct wlan_dfs *dfs,
917 			     enum phy_ch_width ch_width,
918 			     uint8_t temp_chan_lst_sz,
919 			     uint16_t *temp_freq_lst)
920 {
921 	struct dfs_tx_leak_info *target_chan_matrix = NULL;
922 	uint32_t         num_channel = (END_CHAN_INDEX - START_CHAN_INDEX) + 1;
923 	uint32_t         j = 0;
924 	uint32_t         k = 0;
925 	struct dfs_nolelem *nol;
926 
927 	nol = dfs->dfs_nol;
928 	while (nol) {
929 		if (false == dfs_find_target_channel_in_channel_matrix_for_freq(
930 					ch_width, nol->nol_freq,
931 					&target_chan_matrix)) {
932 			/*
933 			 * should never happen, we should always find a table
934 			 * here, if we don't, need a fix here!
935 			 */
936 			dfs_err(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
937 				"Couldn't find target channel matrix!");
938 			QDF_ASSERT(0);
939 			return QDF_STATUS_E_FAILURE;
940 		}
941 		/*
942 		 * following is based on assumption that both temp_freq_lst
943 		 * and target channel matrix are in increasing order of
944 		 * ch_id
945 		 */
946 		for (j = 0, k = 0; j < temp_chan_lst_sz && k < num_channel;) {
947 			if (temp_freq_lst[j] == 0) {
948 				j++;
949 				continue;
950 			}
951 			if (target_chan_matrix[k].leak_chan_freq !=
952 			    temp_freq_lst[j]) {
953 				k++;
954 				continue;
955 			}
956 			/*
957 			 * check leakage from candidate channel
958 			 * to NOL channel
959 			 */
960 			if (target_chan_matrix[k].leak_lvl <=
961 				dfs->tx_leakage_threshold) {
962 				/*
963 				 * candidate channel will have
964 				 * bad leakage in NOL channel,
965 				 * remove from temp list
966 				 */
967 				dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
968 					"dfs: channel: %d will have bad leakage due to channel: %d\n",
969 					nol->nol_freq, temp_freq_lst[j]);
970 				temp_freq_lst[j] = 0;
971 			}
972 			j++;
973 			k++;
974 		}
975 		nol = nol->nol_next;
976 	} /* end of loop that selects each NOL */
977 
978 	return QDF_STATUS_SUCCESS;
979 }
980 #endif
981 #else
982 #ifdef CONFIG_CHAN_NUM_API
983 QDF_STATUS
984 dfs_mark_leaking_ch(struct wlan_dfs *dfs,
985 		enum phy_ch_width ch_width,
986 		uint8_t temp_ch_lst_sz,
987 		uint8_t *temp_ch_lst)
988 {
989 	return QDF_STATUS_SUCCESS;
990 }
991 #endif
992 #ifdef CONFIG_CHAN_FREQ_API
993 QDF_STATUS
994 dfs_mark_leaking_chan_for_freq(struct wlan_dfs *dfs,
995 			     enum phy_ch_width ch_width,
996 			     uint8_t temp_chan_lst_sz,
997 			     uint16_t *temp_freq_lst)
998 {
999 	return QDF_STATUS_SUCCESS;
1000 }
1001 #endif
1002 #endif
1003 
1004 /**
1005  * dfs_populate_80mhz_available_channels()- Populate channels for 80MHz using
1006  *                                          bitmap
1007  * @dfs: Pointer to DFS structure.
1008  * @bitmap: bitmap
1009  * @avail_freq_list: prepared channel list
1010  *
1011  * Prepare 80MHz channels from the bitmap.
1012  *
1013  * Return: channel count
1014  */
1015 #ifdef CONFIG_CHAN_NUM_API
1016 static uint8_t dfs_populate_80mhz_available_channels(
1017 		struct wlan_dfs *dfs,
1018 		struct chan_bonding_bitmap *bitmap,
1019 		uint8_t *avail_chnl)
1020 {
1021 	uint8_t i = 0;
1022 	uint8_t chnl_count = 0;
1023 	uint8_t start_chan = 0;
1024 
1025 	for (i = 0; i < DFS_MAX_80MHZ_BANDS; i++) {
1026 		start_chan = bitmap->chan_bonding_set[i].start_chan;
1027 		if (bitmap->chan_bonding_set[i].chan_map ==
1028 			DFS_80MHZ_MASK) {
1029 			avail_chnl[chnl_count++] = start_chan +
1030 				(DFS_NEXT_5GHZ_CHANNEL * 0);
1031 			avail_chnl[chnl_count++] = start_chan +
1032 				(DFS_NEXT_5GHZ_CHANNEL * 1);
1033 			avail_chnl[chnl_count++] = start_chan +
1034 				(DFS_NEXT_5GHZ_CHANNEL * 2);
1035 			avail_chnl[chnl_count++] = start_chan +
1036 				(DFS_NEXT_5GHZ_CHANNEL * 3);
1037 		}
1038 	}
1039 
1040 	dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1041 			"channel count %d", chnl_count);
1042 
1043 	return chnl_count;
1044 }
1045 #endif
1046 
1047 /*
1048  * dfs_populate_80mhz_available_channel_for_freq() - Populate 80MHZ channels
1049  * available for selection.
1050  * @dfs: Pointer to wlan_dfs.
1051  * @bitmap: Pointer to bonding channel bitmap.
1052  * @avail_freq_list: Pointer to frequency list of available channels.
1053  */
1054 #ifdef CONFIG_CHAN_FREQ_API
1055 static uint8_t dfs_populate_80mhz_available_channel_for_freq(
1056 		struct wlan_dfs *dfs,
1057 		struct chan_bonding_bitmap *bitmap,
1058 		uint16_t *avail_freq_list)
1059 {
1060 	uint8_t i = 0;
1061 	uint8_t chnl_count = 0;
1062 	uint16_t start_chan_freq = 0;
1063 
1064 	for (i = 0; i < DFS_MAX_80MHZ_BANDS; i++) {
1065 		start_chan_freq = bitmap->chan_bonding_set[i].start_chan_freq;
1066 		if (bitmap->chan_bonding_set[i].chan_map ==
1067 			DFS_80MHZ_MASK) {
1068 			avail_freq_list[chnl_count++] = start_chan_freq +
1069 				(DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET * 0);
1070 			avail_freq_list[chnl_count++] = start_chan_freq +
1071 				(DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET * 1);
1072 			avail_freq_list[chnl_count++] = start_chan_freq +
1073 				(DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET * 2);
1074 			avail_freq_list[chnl_count++] = start_chan_freq +
1075 				(DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET * 3);
1076 		}
1077 	}
1078 
1079 	dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1080 		 "channel count %d", chnl_count);
1081 
1082 	return chnl_count;
1083 }
1084 #endif
1085 
1086 /**
1087  * dfs_populate_40mhz_available_channels()- Populate channels for 40MHz using
1088  *                                          bitmap
1089  * @dfs: Pointer to DFS structure.
1090  * @bitmap: bitmap
1091  * @avail_chnl: prepared channel list
1092  *
1093  * Prepare 40MHz channels from the bitmap.
1094  *
1095  * Return: channel count
1096  */
1097 #ifdef CONFIG_CHAN_NUM_API
1098 static uint8_t dfs_populate_40mhz_available_channels(
1099 		struct wlan_dfs *dfs,
1100 		struct chan_bonding_bitmap *bitmap,
1101 		uint8_t *avail_chnl)
1102 {
1103 	uint8_t i = 0;
1104 	uint8_t chnl_count = 0;
1105 	uint8_t start_chan = 0;
1106 
1107 	for (i = 0; i < DFS_MAX_80MHZ_BANDS; i++) {
1108 		start_chan = bitmap->chan_bonding_set[i].start_chan;
1109 		if ((bitmap->chan_bonding_set[i].chan_map &
1110 			DFS_40MHZ_MASK_L) == DFS_40MHZ_MASK_L) {
1111 			avail_chnl[chnl_count++] = start_chan +
1112 				(DFS_NEXT_5GHZ_CHANNEL * 0);
1113 			avail_chnl[chnl_count++] = start_chan +
1114 				(DFS_NEXT_5GHZ_CHANNEL * 1);
1115 		}
1116 		if ((bitmap->chan_bonding_set[i].chan_map &
1117 			DFS_40MHZ_MASK_H) == DFS_40MHZ_MASK_H) {
1118 			avail_chnl[chnl_count++] = start_chan +
1119 				(DFS_NEXT_5GHZ_CHANNEL * 2);
1120 			avail_chnl[chnl_count++] = start_chan +
1121 				(DFS_NEXT_5GHZ_CHANNEL * 3);
1122 		}
1123 	}
1124 
1125 	dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1126 			"channel count %d", chnl_count);
1127 
1128 	return chnl_count;
1129 }
1130 #endif
1131 
1132 #ifdef CONFIG_CHAN_FREQ_API
1133 static uint8_t
1134 dfs_populate_40mhz_available_channel_for_freq(struct wlan_dfs *dfs,
1135 					      struct chan_bonding_bitmap *bmap,
1136 					      uint16_t *avail_freq_list)
1137 {
1138 	uint8_t i = 0;
1139 	uint8_t chnl_count = 0;
1140 	uint16_t start_chan_freq = 0;
1141 
1142 	for (i = 0; i < DFS_MAX_80MHZ_BANDS; i++) {
1143 		start_chan_freq = bmap->chan_bonding_set[i].start_chan_freq;
1144 		if ((bmap->chan_bonding_set[i].chan_map &
1145 			DFS_40MHZ_MASK_L) == DFS_40MHZ_MASK_L) {
1146 			avail_freq_list[chnl_count++] = start_chan_freq +
1147 				(DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET * 0);
1148 			avail_freq_list[chnl_count++] = start_chan_freq +
1149 				(DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET * 1);
1150 		}
1151 		if ((bmap->chan_bonding_set[i].chan_map &
1152 			DFS_40MHZ_MASK_H) == DFS_40MHZ_MASK_H) {
1153 			avail_freq_list[chnl_count++] = start_chan_freq +
1154 				(DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET * 2);
1155 			avail_freq_list[chnl_count++] = start_chan_freq +
1156 				(DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET * 3);
1157 		}
1158 	}
1159 
1160 	dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1161 		 "channel count %d", chnl_count);
1162 
1163 	return chnl_count;
1164 }
1165 #endif
1166 
1167 /**
1168  * dfs_populate_available_channels()- Populate channels based on width and
1169  *                                    bitmap
1170  * @dfs: Pointer to DFS structure.
1171  * @bitmap: bitmap
1172  * @ch_width: channel width
1173  * @avail_chnl: prepared channel list
1174  *
1175  * Prepare channel list based on width and channel bitmap.
1176  *
1177  * Return: channel count
1178  */
1179 #ifdef CONFIG_CHAN_NUM_API
1180 static uint8_t dfs_populate_available_channels(
1181 		struct wlan_dfs *dfs,
1182 		struct chan_bonding_bitmap *bitmap,
1183 		uint8_t ch_width,
1184 		uint8_t *avail_chnl)
1185 {
1186 	switch (ch_width) {
1187 	case DFS_CH_WIDTH_160MHZ:
1188 	case DFS_CH_WIDTH_80P80MHZ:
1189 	case DFS_CH_WIDTH_80MHZ:
1190 		return dfs_populate_80mhz_available_channels(
1191 			dfs, bitmap, avail_chnl);
1192 	case DFS_CH_WIDTH_40MHZ:
1193 		return dfs_populate_40mhz_available_channels(
1194 			dfs, bitmap, avail_chnl);
1195 	default:
1196 		dfs_err(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1197 				"Invalid ch_width %d", ch_width);
1198 		break;
1199 	}
1200 
1201 	return 0;
1202 }
1203 #endif
1204 
1205 /**
1206  * dfs_populate_available_channel_for_freq()- Populate channels based on width
1207  * and bitmap.
1208  * @dfs: Pointer to DFS structure.
1209  * @bitmap: bitmap
1210  * @chan_width: channel width
1211  * @avail_freq_list: prepared channel list
1212  *
1213  * Prepare channel list based on width and channel bitmap.
1214  *
1215  * Return: channel count
1216  */
1217 #ifdef CONFIG_CHAN_FREQ_API
1218 static uint8_t
1219 dfs_populate_available_channel_for_freq(struct wlan_dfs *dfs,
1220 					struct chan_bonding_bitmap *bitmap,
1221 					uint8_t chan_width,
1222 					uint16_t *freq_list)
1223 {
1224 	switch (chan_width) {
1225 	case DFS_CH_WIDTH_160MHZ:
1226 	case DFS_CH_WIDTH_80P80MHZ:
1227 	case DFS_CH_WIDTH_80MHZ:
1228 		return dfs_populate_80mhz_available_channel_for_freq(dfs,
1229 								     bitmap,
1230 								     freq_list);
1231 	case DFS_CH_WIDTH_40MHZ:
1232 		return dfs_populate_40mhz_available_channel_for_freq(dfs,
1233 								     bitmap,
1234 								     freq_list);
1235 	default:
1236 		dfs_err(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1237 			"Invalid chan_width %d", chan_width);
1238 		break;
1239 	}
1240 
1241 	return 0;
1242 }
1243 #endif
1244 
1245 /**
1246  * dfs_get_rand_from_lst()- Get random channel from a given channel list
1247  * @dfs: Pointer to DFS structure.
1248  * @ch_lst: channel list
1249  * @num_ch: number of channels
1250  *
1251  * Get random channel from given channel list.
1252  *
1253  * Return: channel number
1254  */
1255 #ifdef CONFIG_CHAN_NUM_API
1256 static uint8_t dfs_get_rand_from_lst(
1257 		struct wlan_dfs *dfs,
1258 		uint8_t *ch_lst,
1259 		uint8_t num_ch)
1260 {
1261 	uint8_t i;
1262 	uint32_t rand_byte = 0;
1263 
1264 	if (!num_ch || !ch_lst) {
1265 		dfs_err(NULL, WLAN_DEBUG_DFS_ALWAYS,
1266 				"invalid param ch_lst %pK, num_ch = %d",
1267 				ch_lst, num_ch);
1268 		return 0;
1269 	}
1270 
1271 	get_random_bytes((uint8_t *)&rand_byte, 1);
1272 	i = (rand_byte + qdf_mc_timer_get_system_ticks()) % num_ch;
1273 
1274 	dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1275 			"random channel %d", ch_lst[i]);
1276 
1277 	return ch_lst[i];
1278 }
1279 #endif
1280 
1281 /**
1282  * dfs_get_rand_from_lst_for_freq()- Get random channel from a given channel
1283  * list.
1284  * @dfs: Pointer to DFS structure.
1285  * @freq_lst: Frequency list
1286  * @num_chan: number of channels
1287  *
1288  * Get random channel from given channel list.
1289  *
1290  * Return: channel frequency.
1291  */
1292 
1293 #ifdef CONFIG_CHAN_FREQ_API
1294 static uint16_t dfs_get_rand_from_lst_for_freq(struct wlan_dfs *dfs,
1295 					       uint16_t *freq_lst,
1296 					       uint8_t num_chan)
1297 {
1298 	uint8_t i;
1299 	uint32_t rand_byte = 0;
1300 
1301 	if (!num_chan || !freq_lst) {
1302 		dfs_err(NULL, WLAN_DEBUG_DFS_ALWAYS,
1303 			"invalid param freq_lst %pK, num_chan = %d",
1304 			freq_lst, num_chan);
1305 		return 0;
1306 	}
1307 
1308 	get_random_bytes((uint8_t *)&rand_byte, 1);
1309 	i = (rand_byte + qdf_mc_timer_get_system_ticks()) % num_chan;
1310 
1311 	dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1312 		 "random channel %d", freq_lst[i]);
1313 
1314 	return freq_lst[i];
1315 }
1316 #endif
1317 
1318 /**
1319  * dfs_random_channel_sel_set_bitmap()- Set channel bit in bitmap based
1320  * on given channel number
1321  * @dfs: Pointer to DFS structure.
1322  * @bitmap: bitmap
1323  * @channel: channel number
1324  *
1325  * Set channel bit in bitmap based on given channel number.
1326  *
1327  * Return: None
1328  */
1329 #ifdef CONFIG_CHAN_NUM_API
1330 static void dfs_random_channel_sel_set_bitmap(
1331 		struct wlan_dfs *dfs,
1332 		struct chan_bonding_bitmap *bitmap,
1333 		uint8_t channel)
1334 {
1335 	int i = 0;
1336 	int start_chan = 0;
1337 
1338 	for (i = 0; i < DFS_MAX_80MHZ_BANDS; i++) {
1339 		start_chan = bitmap->chan_bonding_set[i].start_chan;
1340 		if (channel >= start_chan && channel <= start_chan + 12) {
1341 			bitmap->chan_bonding_set[i].chan_map |=
1342 			(1 << ((channel - start_chan) /
1343 			DFS_80_NUM_SUB_CHANNEL));
1344 			return;
1345 		}
1346 	}
1347 
1348 	dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1349 			"Channel=%d is not in the bitmap", channel);
1350 }
1351 #endif
1352 
1353 /**
1354  * dfs_random_channel_sel_set_bitmap()- Set channel bit in bitmap based
1355  * on given channel number
1356  * @dfs: Pointer to DFS structure.
1357  * @bitmap: bitmap
1358  * @chan_freq: channel frequency
1359  *
1360  * Set channel bit in bitmap based on given channel frequency.
1361  *
1362  * Return: None
1363  */
1364 #ifdef CONFIG_CHAN_FREQ_API
1365 #define FREQUENCY_BAND_LIMIT 60
1366 static void
1367 dfs_random_channel_sel_set_bitmap_for_freq(struct wlan_dfs *dfs,
1368 					   struct chan_bonding_bitmap *bitmap,
1369 					   uint16_t chan_freq)
1370 {
1371 	int i = 0;
1372 	int start_chan_freq = 0;
1373 
1374 	for (i = 0; i < DFS_MAX_80MHZ_BANDS; i++) {
1375 		start_chan_freq = bitmap->chan_bonding_set[i].start_chan_freq;
1376 		if (chan_freq >= start_chan_freq &&
1377 		    chan_freq <= start_chan_freq +
1378 		    FREQUENCY_BAND_LIMIT) {
1379 			bitmap->chan_bonding_set[i].chan_map |=
1380 				(1 << ((chan_freq - start_chan_freq) /
1381 				       DFS_80_NUM_SUB_CHANNEL_FREQ));
1382 			return;
1383 		}
1384 	}
1385 
1386 	dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1387 		  "Frequency=%d is not in the bitmap", chan_freq);
1388 }
1389 #endif
1390 
1391 /**
1392  * dfs_find_ch_with_fallback()- find random channel
1393  * @dfs: Pointer to DFS structure.
1394  * @ch_wd: channel width
1395  * @center_freq_seg1: center frequency of secondary segment.
1396  * @ch_lst: list of available channels.
1397  * @num_ch: number of channels in the list.
1398  *
1399  * Find random channel based on given channel width and channel list,
1400  * fallback to lower width if requested channel width not available.
1401  *
1402  * Return: channel number
1403  */
1404 #ifdef CONFIG_CHAN_NUM_API
1405 static uint8_t dfs_find_ch_with_fallback(
1406 		struct wlan_dfs *dfs,
1407 		uint8_t *ch_wd,
1408 		uint8_t *center_freq_seg1,
1409 		uint8_t *ch_lst,
1410 		uint32_t num_ch)
1411 {
1412 	bool flag = false;
1413 	uint32_t rand_byte = 0;
1414 	struct  chan_bonding_bitmap ch_map = { { {0} } };
1415 	uint8_t count = 0, i, index = 0, final_cnt = 0, target_channel = 0;
1416 	uint8_t primary_seg_start_ch = 0, sec_seg_ch = 0, new_160_start_ch = 0;
1417 	uint8_t final_lst[NUM_CHANNELS] = {0};
1418 
1419 	/* initialize ch_map for all 80 MHz bands: we have 6 80MHz bands */
1420 	ch_map.chan_bonding_set[0].start_chan = 36;
1421 	ch_map.chan_bonding_set[1].start_chan = 52;
1422 	ch_map.chan_bonding_set[2].start_chan = 100;
1423 	ch_map.chan_bonding_set[3].start_chan = 116;
1424 	ch_map.chan_bonding_set[4].start_chan = 132;
1425 	ch_map.chan_bonding_set[5].start_chan = 149;
1426 
1427 	for (i = 0; i < num_ch; i++) {
1428 		dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1429 				"channel = %d added to bitmap", ch_lst[i]);
1430 		dfs_random_channel_sel_set_bitmap(dfs, &ch_map, ch_lst[i]);
1431 	}
1432 
1433 	/* populate available channel list from bitmap */
1434 	final_cnt = dfs_populate_available_channels(dfs, &ch_map,
1435 			*ch_wd, final_lst);
1436 
1437 	/* If no valid ch bonding found, fallback */
1438 	if (final_cnt == 0) {
1439 		if ((*ch_wd == DFS_CH_WIDTH_160MHZ) ||
1440 		    (*ch_wd == DFS_CH_WIDTH_80P80MHZ) ||
1441 		    (*ch_wd == DFS_CH_WIDTH_80MHZ)) {
1442 			dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1443 					"from [%d] to 40Mhz", *ch_wd);
1444 			*ch_wd = DFS_CH_WIDTH_40MHZ;
1445 		} else if (*ch_wd == DFS_CH_WIDTH_40MHZ) {
1446 			dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1447 					"from 40Mhz to 20MHz");
1448 			*ch_wd = DFS_CH_WIDTH_20MHZ;
1449 		}
1450 		return 0;
1451 	}
1452 
1453 	/* ch count should be > 8 to switch new channel in 160Mhz band */
1454 	if (((*ch_wd == DFS_CH_WIDTH_160MHZ) ||
1455 	     (*ch_wd == DFS_CH_WIDTH_80P80MHZ)) &&
1456 	     (final_cnt < DFS_MAX_20M_SUB_CH)) {
1457 		dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1458 				"from [%d] to 80Mhz", *ch_wd);
1459 		*ch_wd = DFS_CH_WIDTH_80MHZ;
1460 		return 0;
1461 	}
1462 
1463 	if (*ch_wd == DFS_CH_WIDTH_160MHZ) {
1464 		/*
1465 		 * Only 2 blocks for 160Mhz bandwidth i.e 36-64 & 100-128
1466 		 * and all the channels in these blocks are continuous
1467 		 * and separated by 4Mhz.
1468 		 */
1469 		for (i = 1; ((i < final_cnt)); i++) {
1470 			if ((final_lst[i] - final_lst[i-1]) ==
1471 			     DFS_NEXT_5GHZ_CHANNEL)
1472 				count++;
1473 			else
1474 				count = 0;
1475 			if (count == DFS_MAX_20M_SUB_CH - 1) {
1476 				flag = true;
1477 				new_160_start_ch = final_lst[i - count];
1478 				break;
1479 			}
1480 		}
1481 	} else if (*ch_wd == DFS_CH_WIDTH_80P80MHZ) {
1482 		flag = true;
1483 	}
1484 
1485 	if ((flag == false) && (*ch_wd > DFS_CH_WIDTH_80MHZ)) {
1486 		dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1487 				"from [%d] to 80Mhz", *ch_wd);
1488 		*ch_wd = DFS_CH_WIDTH_80MHZ;
1489 		return 0;
1490 	}
1491 
1492 	if (*ch_wd == DFS_CH_WIDTH_160MHZ) {
1493 		get_random_bytes((uint8_t *)&rand_byte, 1);
1494 		rand_byte = (rand_byte + qdf_mc_timer_get_system_ticks())
1495 			% DFS_MAX_20M_SUB_CH;
1496 		target_channel = new_160_start_ch + (rand_byte *
1497 				DFS_80_NUM_SUB_CHANNEL);
1498 	} else if (*ch_wd == DFS_CH_WIDTH_80P80MHZ) {
1499 		get_random_bytes((uint8_t *)&rand_byte, 1);
1500 		index = (rand_byte + qdf_mc_timer_get_system_ticks()) %
1501 			final_cnt;
1502 		target_channel = final_lst[index];
1503 		index -= (index % DFS_80_NUM_SUB_CHANNEL);
1504 		primary_seg_start_ch = final_lst[index];
1505 
1506 		/* reset channels associate with primary 80Mhz */
1507 		for (i = 0; i < DFS_80_NUM_SUB_CHANNEL; i++)
1508 			final_lst[i + index] = 0;
1509 		/* select and calculate center freq for secondary segment */
1510 		for (i = 0; i < final_cnt / DFS_80_NUM_SUB_CHANNEL; i++) {
1511 			if (final_lst[i * DFS_80_NUM_SUB_CHANNEL] &&
1512 			    (abs(primary_seg_start_ch -
1513 			     final_lst[i * DFS_80_NUM_SUB_CHANNEL]) >
1514 			     (DFS_MAX_20M_SUB_CH * 2))) {
1515 				sec_seg_ch =
1516 					final_lst[i * DFS_80_NUM_SUB_CHANNEL] +
1517 					DFS_80MHZ_START_CENTER_CH_DIFF;
1518 				break;
1519 			}
1520 		}
1521 
1522 		if (!sec_seg_ch && (final_cnt == DFS_MAX_20M_SUB_CH))
1523 			*ch_wd = DFS_CH_WIDTH_160MHZ;
1524 		else if (!sec_seg_ch)
1525 			*ch_wd = DFS_CH_WIDTH_80MHZ;
1526 
1527 		*center_freq_seg1 = sec_seg_ch;
1528 		dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1529 				"Center frequency seg1 = %d", sec_seg_ch);
1530 	} else {
1531 		target_channel = dfs_get_rand_from_lst(dfs,
1532 				final_lst, final_cnt);
1533 	}
1534 	dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1535 			"target channel = %d", target_channel);
1536 
1537 	return target_channel;
1538 }
1539 #endif
1540 
1541 /**
1542  * dfs_find_ch_with_fallback_for_freq()- find random channel
1543  * @dfs: Pointer to DFS structure.
1544  * @chan_wd: channel width
1545  * @center_freq_seg1: center frequency of secondary segment.
1546  * @freq_lst: list of available frequency.
1547  * @num_chan: number of channels in the list.
1548  *
1549  * Find random channel based on given channel width and channel list,
1550  * fallback to lower width if requested channel width not available.
1551  *
1552  * Return: channel frequency.
1553  */
1554 #ifdef CONFIG_CHAN_FREQ_API
1555 static uint16_t dfs_find_ch_with_fallback_for_freq(struct wlan_dfs *dfs,
1556 						   uint8_t *chan_wd,
1557 						   qdf_freq_t *center_freq_seg1,
1558 						   uint16_t *freq_lst,
1559 						   uint32_t num_chan)
1560 {
1561 	bool flag = false;
1562 	uint32_t rand_byte = 0;
1563 	struct  chan_bonding_bitmap ch_map = { { {0} } };
1564 	uint8_t count = 0, i, index = 0, final_cnt = 0;
1565 	uint16_t target_channel = 0;
1566 	uint16_t primary_seg_start_ch = 0, sec_seg_ch = 0, new_160_start_ch = 0;
1567 	uint16_t final_lst[NUM_CHANNELS] = {0};
1568 
1569 	/* initialize ch_map for all 80 MHz bands: we have 6 80MHz bands */
1570 	ch_map.chan_bonding_set[0].start_chan_freq = 5180;
1571 	ch_map.chan_bonding_set[1].start_chan_freq = 5260;
1572 	ch_map.chan_bonding_set[2].start_chan_freq = 5500;
1573 	ch_map.chan_bonding_set[3].start_chan_freq = 5580;
1574 	ch_map.chan_bonding_set[4].start_chan_freq = 5660;
1575 	ch_map.chan_bonding_set[5].start_chan_freq = 5745;
1576 
1577 	for (i = 0; i < num_chan; i++) {
1578 		dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1579 			  "channel = %d added to bitmap", freq_lst[i]);
1580 		dfs_random_channel_sel_set_bitmap_for_freq(dfs, &ch_map,
1581 							   freq_lst[i]);
1582 	}
1583 
1584 	/* populate available channel list from bitmap */
1585 	final_cnt = dfs_populate_available_channel_for_freq(dfs, &ch_map,
1586 							    *chan_wd, final_lst);
1587 
1588 	/* If no valid ch bonding found, fallback */
1589 	if (final_cnt == 0) {
1590 		if ((*chan_wd == DFS_CH_WIDTH_160MHZ) ||
1591 		    (*chan_wd == DFS_CH_WIDTH_80P80MHZ) ||
1592 		    (*chan_wd == DFS_CH_WIDTH_80MHZ)) {
1593 			dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1594 				 "from [%d] to 40Mhz", *chan_wd);
1595 			*chan_wd = DFS_CH_WIDTH_40MHZ;
1596 		} else if (*chan_wd == DFS_CH_WIDTH_40MHZ) {
1597 			dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1598 				 "from 40Mhz to 20MHz");
1599 			*chan_wd = DFS_CH_WIDTH_20MHZ;
1600 		}
1601 		return 0;
1602 	}
1603 
1604 	/* ch count should be > 8 to switch new channel in 160Mhz band */
1605 	if (((*chan_wd == DFS_CH_WIDTH_160MHZ) ||
1606 	     (*chan_wd == DFS_CH_WIDTH_80P80MHZ)) &&
1607 	     (final_cnt < DFS_MAX_20M_SUB_CH)) {
1608 		dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1609 			 "from [%d] to 80Mhz", *chan_wd);
1610 		*chan_wd = DFS_CH_WIDTH_80MHZ;
1611 		return 0;
1612 	}
1613 
1614 	if (*chan_wd == DFS_CH_WIDTH_160MHZ) {
1615 		/*
1616 		 * Only 2 blocks for 160Mhz bandwidth i.e 36-64 & 100-128
1617 		 * and all the channels in these blocks are continuous
1618 		 * and separated by 4Mhz.
1619 		 */
1620 		for (i = 1; ((i < final_cnt)); i++) {
1621 			if ((final_lst[i] - final_lst[i - 1]) ==
1622 			     DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET)
1623 				count++;
1624 			else
1625 				count = 0;
1626 			if (count == DFS_MAX_20M_SUB_CH - 1) {
1627 				flag = true;
1628 				new_160_start_ch = final_lst[i - count];
1629 				break;
1630 			}
1631 		}
1632 	} else if (*chan_wd == DFS_CH_WIDTH_80P80MHZ) {
1633 		flag = true;
1634 	}
1635 
1636 	if ((flag == false) && (*chan_wd > DFS_CH_WIDTH_80MHZ)) {
1637 		dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1638 			 "from [%d] to 80Mhz", *chan_wd);
1639 		*chan_wd = DFS_CH_WIDTH_80MHZ;
1640 		return 0;
1641 	}
1642 
1643 	if (*chan_wd == DFS_CH_WIDTH_160MHZ) {
1644 		get_random_bytes((uint8_t *)&rand_byte, 1);
1645 		rand_byte = (rand_byte + qdf_mc_timer_get_system_ticks())
1646 			% DFS_MAX_20M_SUB_CH;
1647 		target_channel = new_160_start_ch + (rand_byte *
1648 				DFS_80_NUM_SUB_CHANNEL_FREQ);
1649 	} else if (*chan_wd == DFS_CH_WIDTH_80P80MHZ) {
1650 		get_random_bytes((uint8_t *)&rand_byte, 1);
1651 		index = (rand_byte + qdf_mc_timer_get_system_ticks()) %
1652 			final_cnt;
1653 		target_channel = final_lst[index];
1654 		index -= (index % DFS_80_NUM_SUB_CHANNEL);
1655 		primary_seg_start_ch = final_lst[index];
1656 
1657 		/* reset channels associate with primary 80Mhz */
1658 		for (i = 0; i < DFS_80_NUM_SUB_CHANNEL; i++)
1659 			final_lst[i + index] = 0;
1660 		/* select and calculate center freq for secondary segment */
1661 		for (i = 0; i < final_cnt / DFS_80_NUM_SUB_CHANNEL; i++) {
1662 			if (final_lst[i * DFS_80_NUM_SUB_CHANNEL] &&
1663 			    (abs(primary_seg_start_ch -
1664 				 final_lst[i * DFS_80_NUM_SUB_CHANNEL]) >
1665 			     (DFS_80P80M_FREQ_DIFF * 2))) {
1666 				sec_seg_ch = final_lst[i *
1667 					DFS_80_NUM_SUB_CHANNEL] +
1668 					DFS_80MHZ_START_CENTER_CH_FREQ_DIFF;
1669 				break;
1670 			}
1671 		}
1672 
1673 		if (!sec_seg_ch && (final_cnt == DFS_MAX_20M_SUB_CH))
1674 			*chan_wd = DFS_CH_WIDTH_160MHZ;
1675 		else if (!sec_seg_ch)
1676 			*chan_wd = DFS_CH_WIDTH_80MHZ;
1677 
1678 		*center_freq_seg1 = sec_seg_ch;
1679 		dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1680 			 "Center frequency seg1 = %d", sec_seg_ch);
1681 	} else {
1682 		target_channel = dfs_get_rand_from_lst_for_freq(dfs,
1683 								final_lst,
1684 								final_cnt);
1685 	}
1686 	dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1687 		 "target channel = %d", target_channel);
1688 
1689 	return target_channel;
1690 }
1691 #endif
1692 
1693 bool dfs_is_freq_in_nol(struct wlan_dfs *dfs, uint32_t freq)
1694 {
1695 	struct dfs_nolelem *nol;
1696 
1697 	if (!dfs) {
1698 		dfs_err(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,  "null dfs");
1699 		return false;
1700 	}
1701 
1702 	nol = dfs->dfs_nol;
1703 	while (nol) {
1704 		if (freq == nol->nol_freq) {
1705 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1706 					"%d is in nol", freq);
1707 			return true;
1708 		}
1709 		nol = nol->nol_next;
1710 	}
1711 
1712 	return false;
1713 }
1714 
1715 /**
1716  * dfs_apply_rules()- prepare channel list based on flags
1717  * @dfs: dfs handler
1718  * @flags: channel flags
1719  * @random_chan_list: output channel list
1720  * @random_chan_cnt: output channel count
1721  * @ch_list: input channel list
1722  * @ch_cnt: input channel count
1723  * @dfs_region: dfs region
1724  * @acs_info: acs channel range information
1725  *
1726  * prepare channel list based on flags
1727  *
1728  * return: none
1729  */
1730 #ifdef CONFIG_CHAN_NUM_API
1731 static void dfs_apply_rules(struct wlan_dfs *dfs,
1732 	uint32_t flags,
1733 	uint8_t *random_chan_list,
1734 	uint32_t *random_chan_cnt,
1735 	struct dfs_channel *ch_list,
1736 	uint32_t ch_cnt,
1737 	uint8_t dfs_region,
1738 	struct dfs_acs_info *acs_info)
1739 {
1740 	struct dfs_channel *chan;
1741 	bool flag_no_weather = 0;
1742 	bool flag_no_lower_5g = 0;
1743 	bool flag_no_upper_5g = 0;
1744 	bool flag_no_dfs_chan = 0;
1745 	bool flag_no_2g_chan  = 0;
1746 	bool flag_no_5g_chan  = 0;
1747 	bool flag_no_japan_w53 = 0;
1748 	int i;
1749 	bool found = false;
1750 	uint16_t j;
1751 
1752 	dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN, "flags %d", flags);
1753 	flag_no_weather = (dfs_region == DFS_ETSI_REGION_VAL) ?
1754 		flags & DFS_RANDOM_CH_FLAG_NO_WEATHER_CH : 0;
1755 
1756 	if (dfs_region == DFS_MKK_REGION_VAL) {
1757 		flag_no_lower_5g = flags & DFS_RANDOM_CH_FLAG_NO_LOWER_5G_CH;
1758 		flag_no_upper_5g = flags & DFS_RANDOM_CH_FLAG_NO_UPEER_5G_CH;
1759 		flag_no_japan_w53 = flags & DFS_RANDOM_CH_FLAG_NO_JAPAN_W53_CH;
1760 	}
1761 
1762 	flag_no_dfs_chan = flags & DFS_RANDOM_CH_FLAG_NO_DFS_CH;
1763 	flag_no_2g_chan  = flags & DFS_RANDOM_CH_FLAG_NO_2GHZ_CH;
1764 	flag_no_5g_chan  = flags & DFS_RANDOM_CH_FLAG_NO_5GHZ_CH;
1765 
1766 	for (i = 0; i < ch_cnt; i++) {
1767 		chan = &ch_list[i];
1768 
1769 		if ((chan->dfs_ch_ieee == 0) ||
1770 				(chan->dfs_ch_ieee > MAX_CHANNEL_NUM)) {
1771 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1772 				  "invalid channel %d", chan->dfs_ch_ieee);
1773 			continue;
1774 		}
1775 
1776 		if (flags & DFS_RANDOM_CH_FLAG_NO_CURR_OPE_CH) {
1777 			/* TODO : Skip all HT20 channels in the given mode */
1778 			if (chan->dfs_ch_ieee ==
1779 					dfs->dfs_curchan->dfs_ch_ieee) {
1780 				dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1781 					  "skip %d current operating channel",
1782 					  chan->dfs_ch_ieee);
1783 				continue;
1784 			}
1785 		}
1786 
1787 		if (acs_info && acs_info->acs_mode) {
1788 			for (j = 0; j < acs_info->num_of_channel; j++) {
1789 				if (acs_info->chan_freq_list[j] ==
1790 							     chan->dfs_ch_freq){
1791 					found = true;
1792 					break;
1793 				}
1794 			}
1795 
1796 			if (!found) {
1797 				dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1798 					  "skip ch %d not in acs range",
1799 					  chan->dfs_ch_ieee);
1800 				continue;
1801 			}
1802 			found = false;
1803 		}
1804 
1805 		if (flag_no_2g_chan &&
1806 				chan->dfs_ch_ieee <= DFS_MAX_24GHZ_CHANNEL) {
1807 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1808 				  "skip 2.4 GHz channel=%d", chan->dfs_ch_ieee);
1809 			continue;
1810 		}
1811 
1812 		if (flag_no_5g_chan &&
1813 				chan->dfs_ch_ieee > DFS_MAX_24GHZ_CHANNEL) {
1814 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1815 				  "skip 5 GHz channel=%d", chan->dfs_ch_ieee);
1816 			continue;
1817 		}
1818 
1819 		if (flag_no_weather) {
1820 			if (DFS_IS_CHANNEL_WEATHER_RADAR(chan->dfs_ch_freq)) {
1821 				dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1822 					  "skip weather channel=%d",
1823 					  chan->dfs_ch_ieee);
1824 				continue;
1825 			}
1826 		}
1827 
1828 		if (flag_no_lower_5g &&
1829 		    DFS_IS_CHAN_JAPAN_INDOOR(chan->dfs_ch_ieee)) {
1830 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1831 				  "skip indoor channel=%d", chan->dfs_ch_ieee);
1832 			continue;
1833 		}
1834 
1835 		if (flag_no_upper_5g &&
1836 		    DFS_IS_CHAN_JAPAN_OUTDOOR(chan->dfs_ch_ieee)) {
1837 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1838 				  "skip outdoor channel=%d", chan->dfs_ch_ieee);
1839 			continue;
1840 		}
1841 
1842 		if (flag_no_dfs_chan &&
1843 		    (chan->dfs_ch_flagext & WLAN_CHAN_DFS)) {
1844 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1845 				  "skip dfs channel=%d", chan->dfs_ch_ieee);
1846 			continue;
1847 		}
1848 
1849 		if (flag_no_japan_w53 &&
1850 		    DFS_IS_CHAN_JAPAN_W53(chan->dfs_ch_ieee)) {
1851 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1852 				  "skip japan W53 channel=%d",
1853 				  chan->dfs_ch_ieee);
1854 			continue;
1855 		}
1856 
1857 		if (dfs_is_freq_in_nol(dfs, chan->dfs_ch_freq)) {
1858 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1859 				  "skip nol channel=%d", chan->dfs_ch_ieee);
1860 			continue;
1861 		}
1862 
1863 		random_chan_list[*random_chan_cnt] = chan->dfs_ch_ieee;
1864 		*random_chan_cnt += 1;
1865 	}
1866 }
1867 #endif
1868 
1869 /**
1870  * dfs_apply_rules_for_freq()- prepare channel list based on flags
1871  * @dfs: dfs handler
1872  * @flags: channel flags
1873  * @random_chan_freq_list: output channel list
1874  * @random_chan_cnt: output channel count
1875  * @chan_list: input channel list
1876  * @chan_cnt: input channel count
1877  * @dfs_region: dfs region
1878  * @acs_info: acs channel range information
1879  *
1880  * prepare channel list based on flags
1881  *
1882  * return: none
1883  */
1884 #ifdef CONFIG_CHAN_FREQ_API
1885 static void dfs_apply_rules_for_freq(struct wlan_dfs *dfs,
1886 				     uint32_t flags,
1887 				     uint16_t *random_chan_freq_list,
1888 				     uint32_t *random_chan_cnt,
1889 				     struct dfs_channel *chan_list,
1890 				     uint32_t chan_cnt,
1891 				     uint8_t dfs_region,
1892 				     struct dfs_acs_info *acs_info)
1893 {
1894 	struct dfs_channel *chan;
1895 	bool flag_no_weather = 0;
1896 	bool flag_no_lower_5g = 0;
1897 	bool flag_no_upper_5g = 0;
1898 	bool flag_no_dfs_chan = 0;
1899 	bool flag_no_2g_chan  = 0;
1900 	bool flag_no_5g_chan  = 0;
1901 	bool flag_no_japan_w53 = 0;
1902 	int i;
1903 	bool found = false;
1904 	uint16_t j;
1905 	uint16_t freq_list[NUM_CHANNELS_160MHZ];
1906 	uint8_t num_channels = 0;
1907 
1908 	dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN, "flags %d", flags);
1909 	flag_no_weather = (dfs_region == DFS_ETSI_REGION_VAL) ?
1910 		flags & DFS_RANDOM_CH_FLAG_NO_WEATHER_CH : 0;
1911 
1912 	if (dfs_region == DFS_MKK_REGION_VAL) {
1913 		flag_no_lower_5g = flags & DFS_RANDOM_CH_FLAG_NO_LOWER_5G_CH;
1914 		flag_no_upper_5g = flags & DFS_RANDOM_CH_FLAG_NO_UPEER_5G_CH;
1915 		flag_no_japan_w53 = flags & DFS_RANDOM_CH_FLAG_NO_JAPAN_W53_CH;
1916 	}
1917 
1918 	flag_no_dfs_chan = flags & DFS_RANDOM_CH_FLAG_NO_DFS_CH;
1919 	flag_no_2g_chan  = flags & DFS_RANDOM_CH_FLAG_NO_2GHZ_CH;
1920 	flag_no_5g_chan  = flags & DFS_RANDOM_CH_FLAG_NO_5GHZ_CH;
1921 
1922 	if (flags & DFS_RANDOM_CH_FLAG_NO_CURR_OPE_CH) {
1923 		num_channels =
1924 			dfs_get_bonding_channel_without_seg_info_for_freq
1925 			(dfs->dfs_curchan, freq_list);
1926 	}
1927 
1928 	for (i = 0; i < chan_cnt; i++) {
1929 		chan = &chan_list[i];
1930 		found = false;
1931 
1932 		if ((chan->dfs_ch_ieee == 0) ||
1933 		    (chan->dfs_ch_ieee > MAX_CHANNEL_NUM)) {
1934 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1935 				  "invalid channel %d", chan->dfs_ch_ieee);
1936 			continue;
1937 		}
1938 
1939 		if (flags & DFS_RANDOM_CH_FLAG_NO_CURR_OPE_CH) {
1940 			for (j = 0; j < num_channels; j++) {
1941 				if (chan->dfs_ch_freq == freq_list[j]) {
1942 					dfs_debug(dfs,
1943 						  WLAN_DEBUG_DFS_RANDOM_CHAN,
1944 						  "skip %d current operating channel",
1945 						  chan->dfs_ch_freq);
1946 					found = true;
1947 					break;
1948 				}
1949 			}
1950 
1951 			if (found)
1952 				continue;
1953 		}
1954 
1955 		if (acs_info && acs_info->acs_mode) {
1956 			for (j = 0; j < acs_info->num_of_channel; j++) {
1957 				if (acs_info->chan_freq_list[j] ==
1958 				    chan->dfs_ch_freq) {
1959 					found = true;
1960 					break;
1961 				}
1962 			}
1963 
1964 			if (!found) {
1965 				dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1966 					  "skip ch freq %d not in acs range",
1967 					  chan->dfs_ch_freq);
1968 				continue;
1969 			}
1970 			found = false;
1971 		}
1972 
1973 		if (flag_no_2g_chan &&
1974 		    chan->dfs_ch_freq <= DFS_MAX_24GHZ_CHANNEL_FREQ) {
1975 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1976 				  "skip 2.4 GHz channel=%d", chan->dfs_ch_ieee);
1977 			continue;
1978 		}
1979 
1980 		if (flag_no_5g_chan && chan->dfs_ch_freq >
1981 		    DFS_MAX_24GHZ_CHANNEL_FREQ)
1982 		{
1983 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1984 				  "skip 5 GHz channel=%d", chan->dfs_ch_ieee);
1985 			continue;
1986 		}
1987 
1988 		if (flag_no_weather) {
1989 			if (DFS_IS_CHANNEL_WEATHER_RADAR(chan->dfs_ch_freq)) {
1990 				dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1991 					  "skip weather channel=%d",
1992 					  chan->dfs_ch_ieee);
1993 				continue;
1994 			}
1995 		}
1996 
1997 		if (flag_no_lower_5g &&
1998 		    DFS_IS_CHAN_JAPAN_INDOOR_FREQ(chan->dfs_ch_freq)) {
1999 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
2000 				  "skip indoor channel=%d", chan->dfs_ch_ieee);
2001 			continue;
2002 		}
2003 
2004 		if (flag_no_upper_5g &&
2005 		    DFS_IS_CHAN_JAPAN_OUTDOOR_FREQ(chan->dfs_ch_freq)) {
2006 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
2007 				  "skip outdoor channel=%d", chan->dfs_ch_ieee);
2008 			continue;
2009 		}
2010 
2011 		if (flag_no_dfs_chan &&
2012 		    (chan->dfs_ch_flagext & WLAN_CHAN_DFS)) {
2013 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
2014 				  "skip dfs channel=%d", chan->dfs_ch_ieee);
2015 			continue;
2016 		}
2017 
2018 		if (flag_no_japan_w53 &&
2019 		    DFS_IS_CHAN_JAPAN_W53_FREQ(chan->dfs_ch_freq)) {
2020 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
2021 				  "skip japan W53 channel=%d",
2022 				  chan->dfs_ch_ieee);
2023 			continue;
2024 		}
2025 
2026 		if (dfs_is_freq_in_nol(dfs, chan->dfs_ch_freq)) {
2027 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
2028 				  "skip nol channel=%d", chan->dfs_ch_ieee);
2029 			continue;
2030 		}
2031 
2032 		random_chan_freq_list[*random_chan_cnt] = chan->dfs_ch_freq;
2033 		*random_chan_cnt += 1;
2034 	}
2035 }
2036 #endif
2037 
2038 #ifdef CONFIG_CHAN_NUM_API
2039 uint8_t dfs_prepare_random_channel(struct wlan_dfs *dfs,
2040 	struct dfs_channel *ch_list,
2041 	uint32_t ch_cnt,
2042 	uint32_t flags,
2043 	uint8_t *ch_wd,
2044 	struct dfs_channel *cur_chan,
2045 	uint8_t dfs_region,
2046 	struct dfs_acs_info *acs_info)
2047 {
2048 	int i = 0;
2049 	uint8_t final_cnt = 0;
2050 	uint8_t target_ch = 0;
2051 	uint8_t *random_chan_list = NULL;
2052 	uint32_t random_chan_cnt = 0;
2053 	uint16_t flag_no_weather = 0;
2054 	uint8_t *leakage_adjusted_lst;
2055 	uint8_t final_lst[NUM_CHANNELS] = {0};
2056 
2057 	if (!ch_list || !ch_cnt) {
2058 		dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
2059 				"Invalid params %pK, ch_cnt=%d",
2060 				ch_list, ch_cnt);
2061 		return 0;
2062 	}
2063 
2064 	if (*ch_wd < DFS_CH_WIDTH_20MHZ || *ch_wd > DFS_CH_WIDTH_80P80MHZ) {
2065 		dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
2066 				"Invalid ch_wd %d", *ch_wd);
2067 		return 0;
2068 	}
2069 
2070 	random_chan_list = qdf_mem_malloc(ch_cnt * sizeof(*random_chan_list));
2071 	if (!random_chan_list)
2072 		return 0;
2073 
2074 	dfs_apply_rules(dfs, flags, random_chan_list, &random_chan_cnt,
2075 		    ch_list, ch_cnt, dfs_region, acs_info);
2076 
2077 	flag_no_weather = (dfs_region == DFS_ETSI_REGION_VAL) ?
2078 		flags & DFS_RANDOM_CH_FLAG_NO_WEATHER_CH : 0;
2079 
2080 	/* list adjusted after leakage has been marked */
2081 	leakage_adjusted_lst = qdf_mem_malloc(random_chan_cnt);
2082 	if (!leakage_adjusted_lst) {
2083 		qdf_mem_free(random_chan_list);
2084 		return 0;
2085 	}
2086 
2087 	do {
2088 		qdf_mem_copy(leakage_adjusted_lst, random_chan_list,
2089 			     random_chan_cnt);
2090 		if (QDF_IS_STATUS_ERROR(dfs_mark_leaking_ch(dfs, *ch_wd,
2091 				random_chan_cnt,
2092 				leakage_adjusted_lst))) {
2093 			qdf_mem_free(random_chan_list);
2094 			qdf_mem_free(leakage_adjusted_lst);
2095 			return 0;
2096 		}
2097 
2098 		if (*ch_wd == DFS_CH_WIDTH_20MHZ) {
2099 			/*
2100 			 * PASS: 3 - from leakage_adjusted_lst, prepare valid
2101 			 * ch list and use random number from that
2102 			 */
2103 			for (i = 0; i < random_chan_cnt; i++) {
2104 				if (leakage_adjusted_lst[i] == 0)
2105 					continue;
2106 				dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
2107 					  "dfs: Channel=%d added to available list",
2108 					  leakage_adjusted_lst[i]);
2109 				final_lst[final_cnt] = leakage_adjusted_lst[i];
2110 				final_cnt++;
2111 			}
2112 			target_ch = dfs_get_rand_from_lst(
2113 				dfs, final_lst, final_cnt);
2114 			break;
2115 		}
2116 
2117 		target_ch = dfs_find_ch_with_fallback(dfs, ch_wd,
2118 				&cur_chan->dfs_ch_vhtop_ch_freq_seg2,
2119 				leakage_adjusted_lst,
2120 				random_chan_cnt);
2121 
2122 		/*
2123 		 * When flag_no_weather is set, avoid usage of Adjacent
2124 		 * weather radar channel in HT40 mode as extension channel
2125 		 * will be on 5600.
2126 		 */
2127 		if (flag_no_weather &&
2128 				(target_ch ==
2129 				 DFS_ADJACENT_WEATHER_RADAR_CHANNEL_NUM) &&
2130 				(*ch_wd == DFS_CH_WIDTH_40MHZ)) {
2131 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
2132 					"skip weather adjacent ch=%d\n",
2133 					target_ch);
2134 			continue;
2135 		}
2136 
2137 		if (target_ch)
2138 			break;
2139 	} while (true);
2140 
2141 	qdf_mem_free(random_chan_list);
2142 	qdf_mem_free(leakage_adjusted_lst);
2143 	dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN, "target_ch = %d", target_ch);
2144 
2145 	return target_ch;
2146 }
2147 #endif
2148 
2149 #ifdef CONFIG_CHAN_FREQ_API
2150 uint16_t dfs_prepare_random_channel_for_freq(struct wlan_dfs *dfs,
2151 					     struct dfs_channel *chan_list,
2152 					     uint32_t chan_cnt,
2153 					     uint32_t flags,
2154 					     struct ch_params *chan_params,
2155 					     uint8_t dfs_region,
2156 					     struct dfs_acs_info *acs_info)
2157 {
2158 	int i = 0;
2159 	uint8_t final_cnt = 0;
2160 	uint16_t target_freq = 0;
2161 	uint16_t *random_chan_freq_list = NULL;
2162 	uint32_t random_chan_cnt = 0;
2163 	uint16_t flag_no_weather = 0;
2164 	uint16_t *leakage_adjusted_lst;
2165 	uint16_t final_lst[NUM_CHANNELS] = {0};
2166 	uint8_t *chan_wd = (uint8_t *)&chan_params->ch_width;
2167 
2168 	if (!chan_list || !chan_cnt) {
2169 		dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
2170 			 "Invalid params %pK, chan_cnt=%d",
2171 			 chan_list, chan_cnt);
2172 		return 0;
2173 	}
2174 
2175 	if (*chan_wd < DFS_CH_WIDTH_20MHZ || *chan_wd > DFS_CH_WIDTH_80P80MHZ) {
2176 		dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
2177 			 "Invalid chan_wd %d", *chan_wd);
2178 		return 0;
2179 	}
2180 
2181 	random_chan_freq_list =
2182 	    qdf_mem_malloc(chan_cnt * sizeof(*random_chan_freq_list));
2183 	if (!random_chan_freq_list)
2184 		return 0;
2185 
2186 	dfs_apply_rules_for_freq(dfs, flags, random_chan_freq_list,
2187 				 &random_chan_cnt, chan_list, chan_cnt,
2188 				 dfs_region, acs_info);
2189 	flag_no_weather = (dfs_region == DFS_ETSI_REGION_VAL) ?
2190 		flags & DFS_RANDOM_CH_FLAG_NO_WEATHER_CH : 0;
2191 
2192 	/* list adjusted after leakage has been marked */
2193 	leakage_adjusted_lst = qdf_mem_malloc(random_chan_cnt *
2194 					      sizeof(*leakage_adjusted_lst));
2195 	if (!leakage_adjusted_lst) {
2196 		qdf_mem_free(random_chan_freq_list);
2197 		return 0;
2198 	}
2199 
2200 	do {
2201 		int ret;
2202 
2203 		qdf_mem_copy(leakage_adjusted_lst, random_chan_freq_list,
2204 			     random_chan_cnt * sizeof(*leakage_adjusted_lst));
2205 		ret = dfs_mark_leaking_chan_for_freq(dfs, *chan_wd,
2206 						   random_chan_cnt,
2207 						   leakage_adjusted_lst);
2208 		if (QDF_IS_STATUS_ERROR(ret)) {
2209 			qdf_mem_free(random_chan_freq_list);
2210 			qdf_mem_free(leakage_adjusted_lst);
2211 			return 0;
2212 		}
2213 
2214 		if (*chan_wd == DFS_CH_WIDTH_20MHZ) {
2215 			/*
2216 			 * PASS: 3 - from leakage_adjusted_lst, prepare valid
2217 			 * ch list and use random number from that
2218 			 */
2219 			for (i = 0; i < random_chan_cnt; i++) {
2220 				if (leakage_adjusted_lst[i] == 0)
2221 					continue;
2222 				dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
2223 					  "Channel=%d added to available list",
2224 					  leakage_adjusted_lst[i]);
2225 				final_lst[final_cnt] = leakage_adjusted_lst[i];
2226 				final_cnt++;
2227 			}
2228 			target_freq = dfs_get_rand_from_lst_for_freq(dfs,
2229 								     final_lst,
2230 								     final_cnt);
2231 			break;
2232 		}
2233 		target_freq = dfs_find_ch_with_fallback_for_freq(
2234 				dfs, chan_wd, &chan_params->mhz_freq_seg1,
2235 				leakage_adjusted_lst, random_chan_cnt);
2236 
2237 		/* Since notion of 80+80 is not present in the regulatory
2238 		 * channel the function may return invalid 80+80 channels for
2239 		 * some devices (e.g. Pine). Therefore, check if we need to
2240 		 * correct it by checking the following condition.
2241 		 */
2242 		if ((*chan_wd == DFS_CH_WIDTH_80P80MHZ) &&
2243 		    (flags & DFS_RANDOM_CH_FLAG_RESTRICTED_80P80_ENABLED) &&
2244 		    target_freq) {
2245 			wlan_reg_set_channel_params_for_freq(dfs->dfs_pdev_obj,
2246 							     target_freq,
2247 							     0, chan_params);
2248 			if (!(CHAN_WITHIN_RESTRICTED_80P80(
2249 						chan_params->mhz_freq_seg0,
2250 						chan_params->mhz_freq_seg1))) {
2251 				*chan_wd = DFS_CH_WIDTH_160MHZ;
2252 				target_freq =
2253 				    dfs_find_ch_with_fallback_for_freq(
2254 					    dfs, chan_wd,
2255 					    &chan_params->mhz_freq_seg1,
2256 					    leakage_adjusted_lst,
2257 					    random_chan_cnt);
2258 			}
2259 		}
2260 
2261 		/*
2262 		 * When flag_no_weather is set, avoid usage of Adjacent
2263 		 * weather radar channel in HT40 mode as extension channel
2264 		 * will be on 5600.
2265 		 */
2266 		if (flag_no_weather &&
2267 		    (target_freq ==
2268 		     DFS_ADJACENT_WEATHER_RADAR_CHANNEL_FREQ) &&
2269 		    (*chan_wd == DFS_CH_WIDTH_40MHZ)) {
2270 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
2271 				  "skip weather adjacent ch=%d\n",
2272 				  target_freq);
2273 			continue;
2274 		}
2275 
2276 		if (target_freq)
2277 			break;
2278 	} while (true);
2279 
2280 	qdf_mem_free(random_chan_freq_list);
2281 	qdf_mem_free(leakage_adjusted_lst);
2282 	dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN, "target_freq = %d",
2283 		 target_freq);
2284 
2285 	return target_freq;
2286 }
2287 #endif
2288