xref: /wlan-dirver/qca-wifi-host-cmn/umac/dfs/core/src/misc/dfs_random_chan_sel.c (revision 2f4b444fb7e689b83a4ab0e7b3b38f0bf4def8e0)
1 /*
2  * Copyright (c) 2012-2021 The Linux Foundation. All rights reserved.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for
5  * any purpose with or without fee is hereby granted, provided that the
6  * above copyright notice and this permission notice appear in all
7  * copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
13  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
14  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
15  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16  * PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "../dfs.h"
20 #include "../dfs_random_chan_sel.h"
21 #include <qdf_mc_timer.h>
22 #include <wlan_utility.h>
23 #include <wlan_reg_services_api.h>
24 #include "../dfs_process_radar_found_ind.h"
25 
26 #ifdef WLAN_ENABLE_CHNL_MATRIX_RESTRICTION
27 /*
28  * TODO: At present SAP Channel leakage matrix for ch 144
29  * is not available from system's team. So to play it safe
30  * and avoid crash if channel 144 is request, in following
31  * matix channel 144 is added such that it will cause code
32  * to avoid selecting channel 144.
33  *
34  * THESE ENTRIES SHOULD BE REPLACED WITH CORRECT VALUES AS
35  * PROVIDED BY SYSTEM'S TEAM.
36  */
37 
38 /* channel tx leakage table - ht80 */
39 struct dfs_matrix_tx_leak_info ht80_chan[] = {
40 	{52, 5260,
41 	 {{36, 5180, 148}, {40, 5200, 199},
42 	  {44, 5520, 193}, {48, 5240, 197},
43 	  {52, 5260, DFS_TX_LEAKAGE_MIN}, {56, 5280, 153},
44 	  {60, 5300, 137}, {64, 5320, 134},
45 	  {100, 5500, 358}, {104, 5520, 350},
46 	  {108, 5540, 404}, {112, 5560, 344},
47 	  {116, 5580, 424}, {120, 5600, 429},
48 	  {124, 5620, 437}, {128, 5640, 435},
49 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
50 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
51 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
52 	  } },
53 
54 
55 	{56, 5280,
56 	 {{36, 5180, 171}, {40, 5200, 178},
57 	  {44, 5220, 171}, {48, 5240, 178},
58 	  {52, 5260, DFS_TX_LEAKAGE_MIN}, {56, 5280, DFS_TX_LEAKAGE_MIN},
59 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, 280},
60 	  {100, 5500, 351}, {104, 5520, 376},
61 	  {108, 5540, 362}, {112, 5560, 362},
62 	  {116, 5580, 403}, {120, 5600, 397},
63 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
64 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
65 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
66 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
67 	  } },
68 
69 	{60,5300,
70 	 {{36, 5180, 156}, {40, 5200, 146},
71 	  {44, 5220, DFS_TX_LEAKAGE_MIN}, {48, 5240, DFS_TX_LEAKAGE_MIN},
72 	  {52, 5260, 180}, {56, 5280, DFS_TX_LEAKAGE_MIN},
73 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
74 	  {100, 5500, 376}, {104, 5520, 360},
75 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, DFS_TX_LEAKAGE_MAX},
76 	  {116, 5580, 395}, {120, 5600, 399},
77 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
78 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
79 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
80 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
81 	  } },
82 
83 	{64, 5320,
84 	 {{36, 5180,  217}, {40, 5200, 221},
85 	  {44, 5220, DFS_TX_LEAKAGE_MIN}, {48, 5240, DFS_TX_LEAKAGE_MIN},
86 	  {52, 5260, 176}, {56, 5280, 176},
87 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
88 	  {100, 5500, 384}, {104, 5520, 390},
89 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, DFS_TX_LEAKAGE_MAX},
90 	  {116, 5580, 375}, {120, 5600, 374},
91 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
92 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
93 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
94 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
95 	  } },
96 
97 	{100, 5500,
98 	 {{36, 5180, 357}, {40, 5200, 326},
99 	  {44, 5220, 321}, {48, 5240, 326},
100 	  {52, 5260, 378}, {56, 5280, 396},
101 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
102 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
103 	  {108, 5540, 196}, {112, 5560, 116},
104 	  {116, 5580, 166}, {120, 5600, DFS_TX_LEAKAGE_MIN},
105 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
106 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
107 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
108 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
109 	  } },
110 
111 	{104, 5520,
112 	 {{36, 5180,  325}, {40, 5200, 325},
113 	  {44, 5220, 305}, {48, 5240, 352},
114 	  {52, 5260, 411}, {56, 5280, 411},
115 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
116 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
117 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, 460},
118 	  {116, 5580, 198}, {120, 5600, DFS_TX_LEAKAGE_MIN},
119 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
120 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
121 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
122 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
123 	  } },
124 
125 	{108, 5540,
126 	 {{36,5180,  304}, {40, 5200, 332},
127 	  {44, 5220, 310}, {48, 5240, 335},
128 	  {52, 5260, 431}, {56, 5280, 391},
129 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
130 	  {100, 5500, 280}, {104, 5520, DFS_TX_LEAKAGE_MIN},
131 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
132 	  {116, 5580, 185}, {120, 5600, DFS_TX_LEAKAGE_MIN},
133 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
134 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
135 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
136 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
137 	  } },
138 
139 	{112,5560,
140 	 {{36, 5180, 327}, {40, 5200, 335},
141 	  {44, 5220, 331}, {48, 5240, 345},
142 	  {52, 5260, 367}, {56, 5280, 401},
143 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
144 	  {100, 5500, 131}, {104, 5520, 132},
145 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
146 	  {116, 5580, 189}, {120, 5600, DFS_TX_LEAKAGE_MIN},
147 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
148 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
149 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
150 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
151 	  } },
152 
153 	{116, 5580,
154 	 {{36, 5180, 384}, {40, 5200, 372},
155 	  {44, 5220, 389}, {48, 5240, 396},
156 	  {52, 5260, 348}, {56, 5280, 336},
157 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
158 	  {100, 5500, 172}, {104, 5520, 169},
159 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
160 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
161 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
162 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
163 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
164 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
165 	  } },
166 
167 	{120, 5600,
168 	 {{36, 5180, 395}, {40, 5200, 419},
169 	  {44, 5220, 439}, {48, 5240, 407},
170 	  {52, 5260, 321}, {56, 5280, 334},
171 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
172 	  {100, 5500, 134}, {104, 5520, 186},
173 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
174 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
175 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, 159},
176 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
177 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
178 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
179 	  } },
180 
181 	{124, 5620,
182 	 {{36, 5180, 469}, {40, 5200, 433},
183 	  {44, 5220, 434}, {48, 5240, 435},
184 	  {52, 5260, 332}, {56, 5280, 345},
185 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
186 	  {100, 5500, 146}, {104, 5520, 177},
187 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
188 	  {116, 5580, 350}, {120, 5600, DFS_TX_LEAKAGE_MIN},
189 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, 138},
190 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
191 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
192 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
193 	  } },
194 
195 	{128, 5640,
196 	 {{36, 5180, 408}, {40, 5200, 434},
197 	  {44, 5220, 449}, {48, 5240, 444},
198 	  {52, 5260, 341}, {56, 5280, 374},
199 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
200 	  {100, 5500, 205}, {104, 5520, 208},
201 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
202 	  {116, 5580, 142}, {120, 5600, DFS_TX_LEAKAGE_MIN},
203 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
204 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
205 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
206 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
207 	  } },
208 
209 	{132, 5660,
210 	 {{36, 5180, DFS_TX_LEAKAGE_MAX}, {40, 5200, DFS_TX_LEAKAGE_MAX},
211 	  {44, 5220, DFS_TX_LEAKAGE_MAX}, {48, 5240, DFS_TX_LEAKAGE_MAX},
212 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
213 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
214 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
215 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
216 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
217 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
218 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
219 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
220 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
221 	  } },
222 
223 	{136, 5680,
224 	 {{36, 5180, DFS_TX_LEAKAGE_MAX}, {40, 5200, DFS_TX_LEAKAGE_MAX},
225 	  {44, 5220, DFS_TX_LEAKAGE_MAX}, {48, 5240, DFS_TX_LEAKAGE_MAX},
226 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
227 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
228 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
229 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
230 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
231 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
232 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
233 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
234 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
235 	  } },
236 
237 	{140, 5700,
238 	 {{36, 5180,  DFS_TX_LEAKAGE_MAX}, {40, 5200, DFS_TX_LEAKAGE_MAX},
239 	  {44, 5220, DFS_TX_LEAKAGE_MAX}, {48, 5240, DFS_TX_LEAKAGE_MAX},
240 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
241 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
242 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
243 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
244 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
245 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
246 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
247 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
248 	  } },
249 
250 	{144, 5720,
251 	 {{36, 5180, DFS_TX_LEAKAGE_MAX}, {40, 5200, DFS_TX_LEAKAGE_MAX},
252 	  {44, 5220, DFS_TX_LEAKAGE_MAX}, {48, 5240, DFS_TX_LEAKAGE_MAX},
253 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
254 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
255 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
256 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
257 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
258 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
259 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
260 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
261 	  } },
262 };
263 
264 /* channel tx leakage table - ht40 */
265 struct dfs_matrix_tx_leak_info ht40_chan[] = {
266 	{52, 5260,
267 	 {{36, 5180, DFS_TX_LEAKAGE_AUTO_MIN}, {40, 5200, DFS_TX_LEAKAGE_AUTO_MIN},
268 	  {44, 5220, 230}, {48, 5240, 230},
269 	  {52, 5260, DFS_TX_LEAKAGE_MIN}, {56, 5280, DFS_TX_LEAKAGE_MIN},
270 	  {60, 5300, DFS_TX_LEAKAGE_AUTO_MIN}, {64, 5320, DFS_TX_LEAKAGE_AUTO_MIN},
271 	  {100, 5500, 625}, {104, 5520, 323},
272 	  {108, 5540, 646}, {112, 5560, 646},
273 	  {116, 5580, DFS_TX_LEAKAGE_MAX}, {120, 5600, DFS_TX_LEAKAGE_MAX},
274 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
275 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
276 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
277 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
278 	  } },
279 
280 	{56, 5280,
281 	 {{36, 5180, DFS_TX_LEAKAGE_AUTO_MIN}, {40, 5200, DFS_TX_LEAKAGE_AUTO_MIN},
282 	  {44, 5220, DFS_TX_LEAKAGE_AUTO_MIN}, {48, 5240, DFS_TX_LEAKAGE_AUTO_MIN},
283 	  {52, 5260, DFS_TX_LEAKAGE_MIN}, {56, 5280, DFS_TX_LEAKAGE_MIN},
284 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
285 	  {100, 5500, 611}, {104, 5520, 611},
286 	  {108, 5540, 617}, {112, 5560, 617},
287 	  {116, 5580, DFS_TX_LEAKAGE_MAX}, {120, 5600, DFS_TX_LEAKAGE_MAX},
288 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
289 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
290 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
291 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
292 	  } },
293 
294 	{60, 5300,
295 	 {{36, 5180, DFS_TX_LEAKAGE_AUTO_MIN}, {40, 5200, DFS_TX_LEAKAGE_AUTO_MIN},
296 	  {44, 5220, DFS_TX_LEAKAGE_AUTO_MIN}, {48, 5240, DFS_TX_LEAKAGE_AUTO_MIN},
297 	  {52, 5260, 190}, {56, 5280, 190},
298 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
299 	  {100, 5500, 608}, {104, 5520, 608},
300 	  {108, 5540, 623}, {112, 5560, 623},
301 	  {116, 5580, DFS_TX_LEAKAGE_MAX}, {120, 5600, DFS_TX_LEAKAGE_MAX},
302 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
303 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
304 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
305 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
306 	  } },
307 
308 	{64, 5320,
309 	 {{36, 5180, DFS_TX_LEAKAGE_AUTO_MIN}, {40, 5200, DFS_TX_LEAKAGE_AUTO_MIN},
310 	  {44, 5220, DFS_TX_LEAKAGE_AUTO_MIN}, {48, 5240, DFS_TX_LEAKAGE_AUTO_MIN},
311 	  {52, 5260, 295}, {56, 5280, 295},
312 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
313 	  {100, 5500, 594}, {104, 5520, 594},
314 	  {108, 5540, 625}, {112, 5560, 625},
315 	  {116, 5580, DFS_TX_LEAKAGE_MAX}, {120, 5600, DFS_TX_LEAKAGE_MAX},
316 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
317 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
318 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
319 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
320 	  } },
321 
322 	{100, 5500,
323 	 {{36, 5180, 618}, {40, 5200, 618},
324 	  {44, 5220, 604}, {48, 5240, 604},
325 	  {52, 5260, 596}, {56, 5280, 596},
326 	  {60, 5300, 584}, {64, 5320, 584},
327 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
328 	  {108, 5540, 299}, {112, 5560, 299},
329 	  {116, 5580, DFS_TX_LEAKAGE_AUTO_MIN}, {120, 5600, DFS_TX_LEAKAGE_AUTO_MIN},
330 	  {124, 5620, DFS_TX_LEAKAGE_AUTO_MIN}, {128, 5640, DFS_TX_LEAKAGE_AUTO_MIN},
331 	  {132, 5660, 538}, {136,5680, 538},
332 	  {140, 5700, 598},
333 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
334 	  } },
335 
336 	{104, 5520,
337 	 {{36, 5180, 636}, {40, 5200, 636},
338 	  {44, 5220, 601}, {48, 5240, 601},
339 	  {52, 5260, 616}, {56, 5280, 616},
340 	  {60, 5300, 584}, {64, 5320, 584},
341 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
342 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
343 	  {116, 5580, DFS_TX_LEAKAGE_AUTO_MIN}, {120, 5600, DFS_TX_LEAKAGE_AUTO_MIN},
344 	  {124, 5620, DFS_TX_LEAKAGE_AUTO_MIN}, {128, 5640, DFS_TX_LEAKAGE_AUTO_MIN},
345 	  {132, 5660, 553}, {136, 5680, 553},
346 	  {140, 5700, 568},
347 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
348 	  } },
349 
350 	{108, 5540,
351 	 {{36, 5180, 600}, {40, 5200, 600},
352 	  {44, 5220, 627}, {48, 5240, 627},
353 	  {52, 5260, 611}, {56, 5280, 611},
354 	  {60, 5300, 611}, {64, 5320, 611},
355 	  {100, 5500, 214}, {104, 5520, 214},
356 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
357 	  {116, 5580, DFS_TX_LEAKAGE_AUTO_MIN}, {120, 5600, DFS_TX_LEAKAGE_AUTO_MIN},
358 	  {124, 5620, DFS_TX_LEAKAGE_AUTO_MIN}, {128, 5640, DFS_TX_LEAKAGE_AUTO_MIN},
359 	  {132, 5660, DFS_TX_LEAKAGE_AUTO_MIN}, {136, 5680, DFS_TX_LEAKAGE_AUTO_MIN},
360 	  {140, 5700, 534},
361 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
362 	  } },
363 
364 	{112, 5560,
365 	 {{36, 5180, 645}, {40, 5200, 645},
366 	  {44, 5220, 641}, {48, 5240, 641},
367 	  {52, 5260, 618}, {56, 5280, 618},
368 	  {60, 5300, 612}, {64, 5320, 612},
369 	  {100, 5500, 293}, {104, 5520, 293},
370 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
371 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
372 	  {124, 5620, DFS_TX_LEAKAGE_AUTO_MIN}, {128, 5640, DFS_TX_LEAKAGE_AUTO_MIN},
373 	  {132, 5660, DFS_TX_LEAKAGE_AUTO_MIN}, {136, 5680, DFS_TX_LEAKAGE_AUTO_MIN},
374 	  {140, 5700, 521},
375 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
376 	  } },
377 
378 	{116, 5580,
379 	 {{36, 5180, 661}, {40, 5200, 661},
380 	  {44, 5220, 624}, {48, 5240, 624},
381 	  {52, 5260, 634}, {56, 5280, 634},
382 	  {60, 5300, 611}, {64, 5320, 611},
383 	  {100, 5500, DFS_TX_LEAKAGE_AUTO_MIN}, {104, 5520, DFS_TX_LEAKAGE_AUTO_MIN},
384 	  {108, 5540, 217}, {112, 5560, 217},
385 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
386 	  {124, 5620, DFS_TX_LEAKAGE_AUTO_MIN}, {128, 5640, DFS_TX_LEAKAGE_AUTO_MIN},
387 	  {132, 5660, DFS_TX_LEAKAGE_AUTO_MIN}, {136, 5680, DFS_TX_LEAKAGE_AUTO_MIN},
388 	  {140, 5700, DFS_TX_LEAKAGE_AUTO_MIN},
389 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
390 	  } },
391 
392 	{120, 5600,
393 	 {{36, 5180, 667}, {40, 5200, 667},
394 	  {44, 5220, 645}, {48, 5240, 645},
395 	  {52, 5260, 633}, {56, 5280, 633},
396 	  {60, 5300, 619}, {64, 5320, 619},
397 	  {100, 5500, DFS_TX_LEAKAGE_AUTO_MIN}, {104, 5520, DFS_TX_LEAKAGE_AUTO_MIN},
398 	  {108, 5540, 291}, {112, 5560, 291},
399 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
400 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
401 	  {132, 5660, DFS_TX_LEAKAGE_AUTO_MIN}, {136, 5680, DFS_TX_LEAKAGE_AUTO_MIN},
402 	  {140, 5700, DFS_TX_LEAKAGE_AUTO_MIN},
403 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
404 	  } },
405 
406 	{124, 5620,
407 	 {{36, 5180,  676}, {40, 5200, 676},
408 	  {44, 5220, 668}, {48, 5240, 668},
409 	  {52, 5260, 595}, {56, 5280, 595},
410 	  {60, 5300, 622}, {64, 5320, 622},
411 	  {100, 5500, DFS_TX_LEAKAGE_AUTO_MIN}, {104, 5520, DFS_TX_LEAKAGE_AUTO_MIN},
412 	  {108, 5540, DFS_TX_LEAKAGE_AUTO_MIN}, {112, 5560, DFS_TX_LEAKAGE_AUTO_MIN},
413 	  {116, 5580, 225}, {120, 5600, 225},
414 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
415 	  {132, 5660, DFS_TX_LEAKAGE_AUTO_MIN}, {136, 5680, DFS_TX_LEAKAGE_AUTO_MIN},
416 	  {140, 5700, DFS_TX_LEAKAGE_AUTO_MIN},
417 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
418 	  } },
419 
420 	{128, 5640,
421 	 {{36, 5180, 678}, {40, 5200, 678},
422 	  {44, 5220, 664}, {48, 5240, 664},
423 	  {52, 5260, 651}, {56, 5280, 651},
424 	  {60, 5300, 643}, {64, 5320, 643},
425 	  {100, 5500, DFS_TX_LEAKAGE_AUTO_MIN}, {104, 5520, DFS_TX_LEAKAGE_AUTO_MIN},
426 	  {108, 5540, DFS_TX_LEAKAGE_AUTO_MIN}, {112, 5560, DFS_TX_LEAKAGE_AUTO_MIN},
427 	  {116, 5580, 293}, {120, 5600, 293},
428 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
429 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
430 	  {140, 5700, DFS_TX_LEAKAGE_AUTO_MIN},
431 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
432 	  } },
433 
434 	{132, 5660,
435 	 {{36, 5180, 689}, {40, 5200, 689},
436 	  {44, 5220, 669}, {48, 5240, 669},
437 	  {52, 5260, 662}, {56, 5280, 662},
438 	  {60, 5300, 609}, {64, 5320, 609},
439 	  {100, 5500, 538}, {104, 5520, 538},
440 	  {108, 5540, DFS_TX_LEAKAGE_AUTO_MIN}, {112, 5560, DFS_TX_LEAKAGE_AUTO_MIN},
441 	  {116, 5580, DFS_TX_LEAKAGE_AUTO_MIN}, {120, 5600, DFS_TX_LEAKAGE_AUTO_MIN},
442 	  {124, 5620, 247}, {128, 5640, 247},
443 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
444 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
445 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
446 	  } },
447 
448 	{136, 5680,
449 	 {{36, 5180, 703}, {40, 5200, 703},
450 	  {44, 5220, 688}, {48, 5240, DFS_TX_LEAKAGE_MIN},
451 	  {52, 5260, 671}, {56, 5280, 671},
452 	  {60, 5300, 658}, {64, 5320, 658},
453 	  {100, 5500, 504}, {104, 5520, 504},
454 	  {108, 5540, DFS_TX_LEAKAGE_AUTO_MIN}, {112, 5560, DFS_TX_LEAKAGE_AUTO_MIN},
455 	  {116, 5580, DFS_TX_LEAKAGE_AUTO_MIN}, {120, 5600, DFS_TX_LEAKAGE_AUTO_MIN},
456 	  {124, 5620, 289}, {128, 5640, 289},
457 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
458 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
459 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
460 	  } },
461 
462 	{140, 5700,
463 	 {{36, 5180, 695}, {40, 5200, 695},
464 	  {44, 5220, 684}, {48, 5240, 684},
465 	  {52, 5260, 664}, {56, 5280, 664},
466 	  {60, 5300, 658}, {64, 5320, 658},
467 	  {100, 5500, 601}, {104, 5520, 601},
468 	  {108, 5540, 545}, {112, 5560, 545},
469 	  {116, 5580, DFS_TX_LEAKAGE_AUTO_MIN}, {120, 5600, DFS_TX_LEAKAGE_AUTO_MIN},
470 	  {124, 5620, DFS_TX_LEAKAGE_AUTO_MIN}, {128, 5640, DFS_TX_LEAKAGE_AUTO_MIN},
471 	  {132, 5660, 262}, {136, 5680, 262},
472 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
473 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
474 	  } },
475 
476 	{144, 5720,
477 	 {{36, 5180, 695}, {40, 5200, 695},
478 	  {44, 5220, 684}, {48, 5240, 684},
479 	  {52, 5260, 664}, {56, 5280, 664},
480 	  {60, 5300, 658}, {64, 5320, 658},
481 	  {100, 5500, 601}, {104, 5520, 601},
482 	  {108, 5540, 545}, {112, 5560, 545},
483 	  {116, 5580, DFS_TX_LEAKAGE_AUTO_MIN}, {120, 5600, DFS_TX_LEAKAGE_AUTO_MIN},
484 	  {124, 5620, DFS_TX_LEAKAGE_AUTO_MIN}, {128, 5640, DFS_TX_LEAKAGE_AUTO_MIN},
485 	  {132, 5660, 262}, {136, 5680, 262},
486 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
487 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
488 	  } },
489 };
490 
491 /* channel tx leakage table - ht20 */
492 struct dfs_matrix_tx_leak_info ht20_chan[] = {
493 	{52, 5260,
494 	 {{36, 5180,DFS_TX_LEAKAGE_AUTO_MIN}, {40, 5200, 286},
495 	  {44, 5220, 225}, {48,5240, 121},
496 	  {52, 5260, DFS_TX_LEAKAGE_MIN}, {56, 5280, DFS_TX_LEAKAGE_MIN},
497 	  {60, 5300, 300}, {64, 5320, DFS_TX_LEAKAGE_AUTO_MIN},
498 	  {100, 5500, 637}, {104, 5520, DFS_TX_LEAKAGE_MAX},
499 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, DFS_TX_LEAKAGE_MAX},
500 	  {116, 5580, DFS_TX_LEAKAGE_MAX}, {120, 5600, DFS_TX_LEAKAGE_MAX},
501 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
502 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
503 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
504 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
505 	  } },
506 
507 	{56, 5280,
508 	 {{36, 5180, 468}, {40, 5200, DFS_TX_LEAKAGE_AUTO_MIN},
509 	  {44, 5220, DFS_TX_LEAKAGE_AUTO_MIN}, {48, 5240, 206},
510 	  {52, 5260, DFS_TX_LEAKAGE_MIN}, {56, 5280, DFS_TX_LEAKAGE_MIN},
511 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
512 	  {100, 5500, DFS_TX_LEAKAGE_MAX}, {104, 5520, DFS_TX_LEAKAGE_MAX},
513 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, DFS_TX_LEAKAGE_MAX},
514 	  {116, 5580, DFS_TX_LEAKAGE_MAX}, {120, 5600, DFS_TX_LEAKAGE_MAX},
515 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
516 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
517 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
518 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
519 	  } },
520 
521 	{60, 5300,
522 	 {{36, 5180, 507}, {40, 5200, 440},
523 	  {44, 5220, DFS_TX_LEAKAGE_AUTO_MIN}, {48,5240, 313},
524 	  {52, 5260, DFS_TX_LEAKAGE_MIN}, {56, 5280, DFS_TX_LEAKAGE_MIN},
525 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
526 	  {100, 5500, DFS_TX_LEAKAGE_MAX}, {104, 5520, DFS_TX_LEAKAGE_MAX},
527 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, DFS_TX_LEAKAGE_MAX},
528 	  {116, 5580, DFS_TX_LEAKAGE_MAX}, {120, 5600, DFS_TX_LEAKAGE_MAX},
529 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
530 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
531 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
532 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
533 	  } },
534 
535 	{64, 5320 ,
536 	 {{36, 5180, 516}, {40, 5200, 520},
537 	  {44, 5220, 506}, {48, 5240,DFS_TX_LEAKAGE_AUTO_MIN},
538 	  {52, 5260, 301}, {56, 5280, 258},
539 	  {60, 5300, DFS_TX_LEAKAGE_MIN}, {64, 5320, DFS_TX_LEAKAGE_MIN},
540 	  {100, 5500, 620}, {104, 5520, 617},
541 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, DFS_TX_LEAKAGE_MAX},
542 	  {116, 5580, DFS_TX_LEAKAGE_MAX}, {120, 5600, DFS_TX_LEAKAGE_MAX},
543 	  {124, 5620, DFS_TX_LEAKAGE_MAX}, {128, 5640, DFS_TX_LEAKAGE_MAX},
544 	  {132, 5660, DFS_TX_LEAKAGE_MAX}, {136, 5680, DFS_TX_LEAKAGE_MAX},
545 	  {140, 5700, DFS_TX_LEAKAGE_MAX},
546 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
547 	  } },
548 
549 	{100, 5500,
550 	 {{36, 5180, 616}, {40, 5200, 601},
551 	  {44, 5220, 604}, {48, 5240, 589},
552 	  {52, 5260, 612}, {56, 5280, 592},
553 	  {60, 5300, 590}, {64, 5320, 582},
554 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, 131},
555 	  {108, 5540, DFS_TX_LEAKAGE_AUTO_MIN}, {112, 5560, DFS_TX_LEAKAGE_AUTO_MIN},
556 	  {116, 5580, DFS_TX_LEAKAGE_AUTO_MIN}, {120, 5600, 522},
557 	  {124, 5620, 571}, {128, 5640, 589},
558 	  {132, 5660, 593}, {136, 5680, 598},
559 	  {140, 5700, 594},
560 	  {144, 5720, DFS_TX_LEAKAGE_MIN},
561 	  } },
562 
563 	{104, 5520,
564 	 {{36, 5180, 622}, {40, 5200, 624},
565 	  {44, 5220, 618}, {48, 5240, 610},
566 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
567 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
568 	  {100, 5500, DFS_TX_LEAKAGE_MIN}, {104, 5520, DFS_TX_LEAKAGE_MIN},
569 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, 463},
570 	  {116, 5580, 483}, {120, 5600, 503},
571 	  {124, 5620, 523}, {128, 5640, 565},
572 	  {132, 5660, 570}, {136, 5680, 588},
573 	  {140, 5700, 585},
574 	  {144, 5720, DFS_TX_LEAKAGE_MIN},
575 	  } },
576 
577 	{108, 5540,
578 	 {{36, 5180, 620}, {40, 5200, 638},
579 	  {44, 5220, 611}, {48, 5240, 614},
580 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
581 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
582 	  {100, 5500, 477}, {104, 5520, DFS_TX_LEAKAGE_MIN},
583 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
584 	  {116, 5580, 477}, {120, 5600, 497},
585 	  {124, 5620, 517}, {128, 5640, 537},
586 	  {132, 5660, 557}, {136, 5680, 577},
587 	  {140, 5700, 603},
588 	  {144, 5720, DFS_TX_LEAKAGE_MIN},
589 	  } },
590 
591 	{112, 5560,
592 	 {{36, 5180, 636}, {40, 5200, 623},
593 	  {44, 5220, 638}, {48, 5240, 628},
594 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
595 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, 606},
596 	  {100, 5500, 501}, {104, 5520, 481},
597 	  {108, 5540, DFS_TX_LEAKAGE_MIN}, {112, 5560, DFS_TX_LEAKAGE_MIN},
598 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, 481},
599 	  {124, 5620, 501}, {128, 5640, 421},
600 	  {132, 5660, 541}, {136, 5680, 561},
601 	  {140, 5700, 583},
602 	  {144, 5720, DFS_TX_LEAKAGE_MIN},
603 	  } },
604 
605 	{116, 5580,
606 	 {{36, 5180, 646}, {40, 5200, 648},
607 	  {44, 5220, 633}, {48, 5240, 634},
608 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
609 	  {60, 5300, 615}, {64, 5320, 594},
610 	  {100, 5500, 575}, {104, 5520, 554},
611 	  {108, 5540, 534}, {112, 5560, DFS_TX_LEAKAGE_MIN},
612 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
613 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
614 	  {132, 5660, 534}, {136, 5680, 554},
615 	  {140, 5700, 574},
616 	  {144, 5720, DFS_TX_LEAKAGE_MIN},
617 	  } },
618 
619 	{120, 5600,
620 	 {{36, 5180, 643}, {40, 5200, 649},
621 	  {44, 5220, 654}, {48, 5240, 629},
622 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, 621},
623 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
624 	  {100, 5500, 565}, {104, 5520, 545},
625 	  {108, 5540, 525}, {112, 5560, 505},
626 	  {116, 5580, DFS_TX_LEAKAGE_MIN}, {120, 5600, DFS_TX_LEAKAGE_MIN},
627 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, 505},
628 	  {132, 5660, 525}, {136, 5680, 545},
629 	  {140, 5700, 565},
630 	  {144, 5720, DFS_TX_LEAKAGE_MIN},
631 	  } },
632 
633 	{124, 5620,
634 	 {{36, 5180, 638}, {40, 5200, 657},
635 	  {44, 5220, 663}, {48, 5240, 649},
636 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
637 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
638 	  {100, 5500, 581}, {104, 5520, 561},
639 	  {108, 5540, 541}, {112, 5560, 521},
640 	  {116, 5580, 499}, {120, 5600, DFS_TX_LEAKAGE_MIN},
641 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
642 	  {132, 5660, 499}, {136, 5680, 519},
643 	  {140, 5700, 539},
644 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
645 	  } },
646 
647 	{128, 5640,
648 	 {{36, 5180, 651}, {40, 5200, 651},
649 	  {44, 5220, 674}, {48, 5240, 640},
650 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
651 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
652 	  {100, 5500, 603}, {104, 5520, 560},
653 	  {108, 5540, 540}, {112, 5560, 520},
654 	  {116, 5580, 499}, {120, 5600, 479},
655 	  {124, 5620, DFS_TX_LEAKAGE_MIN}, {128, 5640, DFS_TX_LEAKAGE_MIN},
656 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, 479},
657 	  {140, 5700, 499},
658 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
659 	  } },
660 
661 	{132, 5660,
662 	 {{36, 5180, 643}, {40, 5200, 668},
663 	  {44, 5220, 651}, {48, 5240, 657},
664 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
665 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
666 	  {100, 5500, DFS_TX_LEAKAGE_MAX}, {104, 5520, 602},
667 	  {108, 5540, 578}, {112,5560, 570},
668 	  {116, 5580, 550}, {120, 5600, 530},
669 	  {124, 5620, 510}, {128, 5640, DFS_TX_LEAKAGE_MIN},
670 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
671 	  {140, 5700, 490},
672 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
673 	  } },
674 
675 	{136,5680,
676 	 {{36, 5180, 654}, {40, 5200, 667},
677 	  {44, 5220, 666}, {48, 5240, 642},
678 	  {52, 5260, DFS_TX_LEAKAGE_MAX}, {56, 5280, DFS_TX_LEAKAGE_MAX},
679 	  {60, 5300, DFS_TX_LEAKAGE_MAX}, {64, 5320, DFS_TX_LEAKAGE_MAX},
680 	  {100, 5500, DFS_TX_LEAKAGE_MAX}, {104, 5520, DFS_TX_LEAKAGE_MAX},
681 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, 596},
682 	  {116, 5580, 555}, {120, 5600, 535},
683 	  {124, 5620, 515}, {128, 5640, 495},
684 	  {132, 5660, DFS_TX_LEAKAGE_MIN}, {136, 5680, DFS_TX_LEAKAGE_MIN},
685 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
686 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
687 	  } },
688 
689 	{140,5700,
690 	 {{36, 5180, 679}, {40, 5200, 673},
691 	  {44, 5220, 667}, {48, 5240, 656},
692 	  {52, 5260, 634}, {56, 5280, 663},
693 	  {60, 5300, 662}, {64, 5320, 660},
694 	  {100, 5500, DFS_TX_LEAKAGE_MAX}, {104, 5520, DFS_TX_LEAKAGE_MAX},
695 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, 590},
696 	  {116, 5580, 573}, {120, 5600, 553},
697 	  {124, 5620, 533}, {128, 5640, 513},
698 	  {132, 5660, 490}, {136, 5680, DFS_TX_LEAKAGE_MIN},
699 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
700 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
701 	  } },
702 
703 	{144,5720,
704 	 {{36, 5180, 679}, {40, 5200, 673},
705 	  {44, 5220, 667}, {48, 5240, 656},
706 	  {52, 5260, 634}, {56, 5280, 663},
707 	  {60, 5300, 662}, {64, 5320, 660},
708 	  {100, 5500, DFS_TX_LEAKAGE_MAX}, {104, 5520, DFS_TX_LEAKAGE_MAX},
709 	  {108, 5540, DFS_TX_LEAKAGE_MAX}, {112, 5560, 590},
710 	  {116, 5580, 573}, {120, 5600, 553},
711 	  {124, 5620, 533}, {128, 5640, 513},
712 	  {132, 5660, 490}, {136, 5680, DFS_TX_LEAKAGE_MIN},
713 	  {140, 5700, DFS_TX_LEAKAGE_MIN},
714 	  {144, 5720, DFS_TX_LEAKAGE_MIN}
715 	  } },
716 };
717 
718 /*
719  * dfs_find_target_channel_in_channel_matrix_for_freq() - finds the leakage
720  * matrix.
721  * @chan_width: target channel width
722  * @nol_channel: the NOL channel frequency whose leakage matrix is required
723  * @pTarget_chnl_mtrx: pointer to target channel matrix returned.
724  *
725  * This function gives the leakage matrix for given NOL channel and ch_width
726  *
727  * Return: TRUE or FALSE
728  */
729 #ifdef CONFIG_CHAN_FREQ_API
730 static bool
731 dfs_find_target_channel_in_channel_matrix_for_freq(enum phy_ch_width chan_width,
732 						   uint16_t nol_freq,
733 						   struct dfs_tx_leak_info
734 						   **pTarget_chnl_mtrx)
735 {
736 	struct dfs_tx_leak_info *target_chan_matrix = NULL;
737 	struct dfs_matrix_tx_leak_info *pchan_matrix = NULL;
738 	uint32_t nchan_matrix;
739 	int i = 0;
740 
741 	switch (chan_width) {
742 	case CH_WIDTH_20MHZ:
743 		/* HT20 */
744 		pchan_matrix = ht20_chan;
745 		nchan_matrix = QDF_ARRAY_SIZE(ht20_chan);
746 		break;
747 	case CH_WIDTH_40MHZ:
748 		/* HT40 */
749 		pchan_matrix = ht40_chan;
750 		nchan_matrix = QDF_ARRAY_SIZE(ht40_chan);
751 		break;
752 	case CH_WIDTH_80MHZ:
753 		/* HT80 */
754 		pchan_matrix = ht80_chan;
755 		nchan_matrix = QDF_ARRAY_SIZE(ht80_chan);
756 		break;
757 	default:
758 		/* handle exception and fall back to HT20 table */
759 		pchan_matrix = ht20_chan;
760 		nchan_matrix = QDF_ARRAY_SIZE(ht20_chan);
761 		break;
762 	}
763 
764 	for (i = 0; i < nchan_matrix; i++) {
765 		/* find the SAP channel to map the leakage matrix */
766 		if (nol_freq == pchan_matrix[i].channel_freq) {
767 			target_chan_matrix = pchan_matrix[i].chan_matrix;
768 			break;
769 		}
770 	}
771 
772 	if (!target_chan_matrix) {
773 		return false;
774 	} else {
775 		*pTarget_chnl_mtrx = target_chan_matrix;
776 		return true;
777 	}
778 }
779 #endif
780 
781 #ifdef CONFIG_CHAN_FREQ_API
782 
783 #ifdef CONFIG_BAND_6GHZ
784 #define END_CHAN_INDEX CHAN_ENUM_7115
785 #else
786 #define END_CHAN_INDEX CHAN_ENUM_5720
787 #endif
788 
789 #define START_CHAN_INDEX CHAN_ENUM_5180
790 QDF_STATUS
791 dfs_mark_leaking_chan_for_freq(struct wlan_dfs *dfs,
792 			     enum phy_ch_width ch_width,
793 			     uint8_t temp_chan_lst_sz,
794 			     uint16_t *temp_freq_lst)
795 {
796 	struct dfs_tx_leak_info *target_chan_matrix = NULL;
797 	uint32_t         num_channel = (END_CHAN_INDEX - START_CHAN_INDEX) + 1;
798 	uint32_t         j = 0;
799 	uint32_t         k = 0;
800 	struct dfs_nolelem *nol;
801 
802 	nol = dfs->dfs_nol;
803 	while (nol) {
804 		if (false == dfs_find_target_channel_in_channel_matrix_for_freq(
805 					ch_width, nol->nol_freq,
806 					&target_chan_matrix)) {
807 			/*
808 			 * should never happen, we should always find a table
809 			 * here, if we don't, need a fix here!
810 			 */
811 			dfs_err(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
812 				"Couldn't find target channel matrix!");
813 			QDF_ASSERT(0);
814 			return QDF_STATUS_E_FAILURE;
815 		}
816 		/*
817 		 * following is based on assumption that both temp_freq_lst
818 		 * and target channel matrix are in increasing order of
819 		 * ch_id
820 		 */
821 		for (j = 0, k = 0; j < temp_chan_lst_sz && k < num_channel;) {
822 			if (temp_freq_lst[j] == 0) {
823 				j++;
824 				continue;
825 			}
826 			if (target_chan_matrix[k].leak_chan_freq !=
827 			    temp_freq_lst[j]) {
828 				k++;
829 				continue;
830 			}
831 			/*
832 			 * check leakage from candidate channel
833 			 * to NOL channel
834 			 */
835 			if (target_chan_matrix[k].leak_lvl <=
836 				dfs->tx_leakage_threshold) {
837 				/*
838 				 * candidate channel will have
839 				 * bad leakage in NOL channel,
840 				 * remove from temp list
841 				 */
842 				dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
843 					"dfs: channel: %d will have bad leakage due to channel: %d\n",
844 					nol->nol_freq, temp_freq_lst[j]);
845 				temp_freq_lst[j] = 0;
846 			}
847 			j++;
848 			k++;
849 		}
850 		nol = nol->nol_next;
851 	} /* end of loop that selects each NOL */
852 
853 	return QDF_STATUS_SUCCESS;
854 }
855 #endif
856 #else
857 #ifdef CONFIG_CHAN_FREQ_API
858 QDF_STATUS
859 dfs_mark_leaking_chan_for_freq(struct wlan_dfs *dfs,
860 			     enum phy_ch_width ch_width,
861 			     uint8_t temp_chan_lst_sz,
862 			     uint16_t *temp_freq_lst)
863 {
864 	return QDF_STATUS_SUCCESS;
865 }
866 #endif
867 #endif
868 
869 /*
870  * dfs_populate_80mhz_available_channel_for_freq() - Populate 80MHZ channels
871  * available for selection.
872  * @dfs: Pointer to wlan_dfs.
873  * @bitmap: Pointer to bonding channel bitmap.
874  * @avail_freq_list: Pointer to frequency list of available channels.
875  */
876 #ifdef CONFIG_CHAN_FREQ_API
877 static uint8_t dfs_populate_80mhz_available_channel_for_freq(
878 		struct wlan_dfs *dfs,
879 		struct chan_bonding_bitmap *bitmap,
880 		uint16_t *avail_freq_list)
881 {
882 	uint8_t i = 0;
883 	uint8_t chnl_count = 0;
884 	uint16_t start_chan_freq = 0;
885 
886 	for (i = 0; i < DFS_MAX_80MHZ_BANDS; i++) {
887 		start_chan_freq = bitmap->chan_bonding_set[i].start_chan_freq;
888 		if (bitmap->chan_bonding_set[i].chan_map ==
889 			DFS_80MHZ_MASK) {
890 			avail_freq_list[chnl_count++] = start_chan_freq +
891 				(DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET * 0);
892 			avail_freq_list[chnl_count++] = start_chan_freq +
893 				(DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET * 1);
894 			avail_freq_list[chnl_count++] = start_chan_freq +
895 				(DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET * 2);
896 			avail_freq_list[chnl_count++] = start_chan_freq +
897 				(DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET * 3);
898 		}
899 	}
900 
901 	dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
902 		 "channel count %d", chnl_count);
903 
904 	return chnl_count;
905 }
906 #endif
907 
908 #ifdef CONFIG_CHAN_FREQ_API
909 static uint8_t
910 dfs_populate_40mhz_available_channel_for_freq(struct wlan_dfs *dfs,
911 					      struct chan_bonding_bitmap *bmap,
912 					      uint16_t *avail_freq_list)
913 {
914 	uint8_t i = 0;
915 	uint8_t chnl_count = 0;
916 	uint16_t start_chan_freq = 0;
917 
918 	for (i = 0; i < DFS_MAX_80MHZ_BANDS; i++) {
919 		start_chan_freq = bmap->chan_bonding_set[i].start_chan_freq;
920 		if ((bmap->chan_bonding_set[i].chan_map &
921 			DFS_40MHZ_MASK_L) == DFS_40MHZ_MASK_L) {
922 			avail_freq_list[chnl_count++] = start_chan_freq +
923 				(DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET * 0);
924 			avail_freq_list[chnl_count++] = start_chan_freq +
925 				(DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET * 1);
926 		}
927 		if ((bmap->chan_bonding_set[i].chan_map &
928 			DFS_40MHZ_MASK_H) == DFS_40MHZ_MASK_H) {
929 			avail_freq_list[chnl_count++] = start_chan_freq +
930 				(DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET * 2);
931 			avail_freq_list[chnl_count++] = start_chan_freq +
932 				(DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET * 3);
933 		}
934 	}
935 
936 	dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
937 		 "channel count %d", chnl_count);
938 
939 	return chnl_count;
940 }
941 #endif
942 
943 /**
944  * dfs_populate_available_channel_for_freq()- Populate channels based on width
945  * and bitmap.
946  * @dfs: Pointer to DFS structure.
947  * @bitmap: bitmap
948  * @chan_width: channel width
949  * @avail_freq_list: prepared channel list
950  *
951  * Prepare channel list based on width and channel bitmap.
952  *
953  * Return: channel count
954  */
955 #ifdef CONFIG_CHAN_FREQ_API
956 static uint8_t
957 dfs_populate_available_channel_for_freq(struct wlan_dfs *dfs,
958 					struct chan_bonding_bitmap *bitmap,
959 					uint8_t chan_width,
960 					uint16_t *freq_list)
961 {
962 	switch (chan_width) {
963 	case DFS_CH_WIDTH_160MHZ:
964 	case DFS_CH_WIDTH_80P80MHZ:
965 	case DFS_CH_WIDTH_80MHZ:
966 		return dfs_populate_80mhz_available_channel_for_freq(dfs,
967 								     bitmap,
968 								     freq_list);
969 	case DFS_CH_WIDTH_40MHZ:
970 		return dfs_populate_40mhz_available_channel_for_freq(dfs,
971 								     bitmap,
972 								     freq_list);
973 	default:
974 		dfs_err(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
975 			"Invalid chan_width %d", chan_width);
976 		break;
977 	}
978 
979 	return 0;
980 }
981 #endif
982 
983 /**
984  * dfs_get_rand_from_lst_for_freq()- Get random channel from a given channel
985  * list.
986  * @dfs: Pointer to DFS structure.
987  * @freq_lst: Frequency list
988  * @num_chan: number of channels
989  *
990  * Get random channel from given channel list.
991  *
992  * Return: channel frequency.
993  */
994 
995 #ifdef CONFIG_CHAN_FREQ_API
996 static uint16_t dfs_get_rand_from_lst_for_freq(struct wlan_dfs *dfs,
997 					       uint16_t *freq_lst,
998 					       uint8_t num_chan)
999 {
1000 	uint8_t i;
1001 	uint32_t rand_byte = 0;
1002 
1003 	if (!num_chan || !freq_lst) {
1004 		dfs_err(NULL, WLAN_DEBUG_DFS_ALWAYS,
1005 			"invalid param freq_lst %pK, num_chan = %d",
1006 			freq_lst, num_chan);
1007 		return 0;
1008 	}
1009 
1010 	get_random_bytes((uint8_t *)&rand_byte, 1);
1011 	i = (rand_byte + qdf_mc_timer_get_system_ticks()) % num_chan;
1012 
1013 	dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1014 		 "random chan freq %d", freq_lst[i]);
1015 
1016 	return freq_lst[i];
1017 }
1018 #endif
1019 
1020 /**
1021  * dfs_random_channel_sel_set_bitmap_for_freq()- Set channel bit in bitmap based
1022  * on given channel number
1023  * @dfs: Pointer to DFS structure.
1024  * @bitmap: bitmap
1025  * @chan_freq: channel frequency
1026  *
1027  * Set channel bit in bitmap based on given channel frequency.
1028  *
1029  * Return: None
1030  */
1031 #ifdef CONFIG_CHAN_FREQ_API
1032 #define FREQUENCY_BAND_LIMIT 60
1033 static void
1034 dfs_random_channel_sel_set_bitmap_for_freq(struct wlan_dfs *dfs,
1035 					   struct chan_bonding_bitmap *bitmap,
1036 					   uint16_t chan_freq)
1037 {
1038 	int i = 0;
1039 	int start_chan_freq = 0;
1040 
1041 	for (i = 0; i < DFS_MAX_80MHZ_BANDS; i++) {
1042 		start_chan_freq = bitmap->chan_bonding_set[i].start_chan_freq;
1043 		if (chan_freq >= start_chan_freq &&
1044 		    chan_freq <= start_chan_freq +
1045 		    FREQUENCY_BAND_LIMIT) {
1046 			bitmap->chan_bonding_set[i].chan_map |=
1047 				(1 << ((chan_freq - start_chan_freq) /
1048 				       DFS_80_NUM_SUB_CHANNEL_FREQ));
1049 			return;
1050 		}
1051 	}
1052 
1053 	dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1054 		  "Frequency=%d is not in the bitmap", chan_freq);
1055 }
1056 #endif
1057 
1058 #ifdef CONFIG_BAND_6GHZ
1059 /**
1060  * dfs_assign_6g_channels()- Assign the center frequency of the first 20 MHZ
1061  * channel in every 80MHz channel, present in the 6G band.
1062  * @ch_map: Pointer to ch_map.
1063  *
1064  * Return: Void
1065  */
1066 static void dfs_assign_6g_channels(struct  chan_bonding_bitmap *ch_map)
1067 {
1068 	ch_map->chan_bonding_set[7].start_chan_freq = 5955;
1069 	ch_map->chan_bonding_set[8].start_chan_freq = 6035;
1070 	ch_map->chan_bonding_set[9].start_chan_freq = 6115;
1071 	ch_map->chan_bonding_set[10].start_chan_freq = 6195;
1072 	ch_map->chan_bonding_set[11].start_chan_freq = 6275;
1073 	ch_map->chan_bonding_set[12].start_chan_freq = 6355;
1074 	ch_map->chan_bonding_set[13].start_chan_freq = 6435;
1075 	ch_map->chan_bonding_set[14].start_chan_freq = 6515;
1076 	ch_map->chan_bonding_set[15].start_chan_freq = 6595;
1077 	ch_map->chan_bonding_set[16].start_chan_freq = 6675;
1078 	ch_map->chan_bonding_set[17].start_chan_freq = 6755;
1079 	ch_map->chan_bonding_set[18].start_chan_freq = 6835;
1080 	ch_map->chan_bonding_set[19].start_chan_freq = 6915;
1081 	ch_map->chan_bonding_set[20].start_chan_freq = 6995;
1082 }
1083 #else
1084 static inline void dfs_assign_6g_channels(struct  chan_bonding_bitmap *ch_map)
1085 {
1086 }
1087 #endif
1088 
1089 /**
1090  * dfs_find_ch_with_fallback_for_freq()- find random channel
1091  * @dfs: Pointer to DFS structure.
1092  * @chan_wd: channel width
1093  * @center_freq_seg1: center frequency of secondary segment.
1094  * @freq_lst: list of available frequency.
1095  * @num_chan: number of channels in the list.
1096  *
1097  * Find random channel based on given channel width and channel list,
1098  * fallback to lower width if requested channel width not available.
1099  *
1100  * Return: channel frequency.
1101  */
1102 #ifdef CONFIG_CHAN_FREQ_API
1103 static uint16_t dfs_find_ch_with_fallback_for_freq(struct wlan_dfs *dfs,
1104 						   uint8_t *chan_wd,
1105 						   qdf_freq_t *center_freq_seg1,
1106 						   uint16_t *freq_lst,
1107 						   uint32_t num_chan)
1108 {
1109 	bool flag = false;
1110 	uint32_t rand_byte = 0;
1111 	struct  chan_bonding_bitmap ch_map = { { {0} } };
1112 	uint8_t count = 0, i, index = 0, final_cnt = 0;
1113 	uint16_t target_channel = 0;
1114 	uint16_t primary_seg_start_ch = 0, sec_seg_ch = 0, new_160_start_ch = 0;
1115 	uint16_t final_lst[NUM_CHANNELS] = {0};
1116 
1117 	/* initialize ch_map for all 80 MHz bands: we have 6 80MHz bands */
1118 	ch_map.chan_bonding_set[0].start_chan_freq = 5180;
1119 	ch_map.chan_bonding_set[1].start_chan_freq = 5260;
1120 	ch_map.chan_bonding_set[2].start_chan_freq = 5500;
1121 	ch_map.chan_bonding_set[3].start_chan_freq = 5580;
1122 	ch_map.chan_bonding_set[4].start_chan_freq = 5660;
1123 	ch_map.chan_bonding_set[5].start_chan_freq = 5745;
1124 	ch_map.chan_bonding_set[6].start_chan_freq = 5825;
1125 
1126 	dfs_assign_6g_channels(&ch_map);
1127 	for (i = 0; i < num_chan; i++) {
1128 		dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1129 			  "channel = %d added to bitmap", freq_lst[i]);
1130 		dfs_random_channel_sel_set_bitmap_for_freq(dfs, &ch_map,
1131 							   freq_lst[i]);
1132 	}
1133 
1134 	/* populate available channel list from bitmap */
1135 	final_cnt = dfs_populate_available_channel_for_freq(dfs, &ch_map,
1136 							    *chan_wd, final_lst);
1137 
1138 	/* If no valid ch bonding found, fallback */
1139 	if (final_cnt == 0) {
1140 		if ((*chan_wd == DFS_CH_WIDTH_160MHZ) ||
1141 		    (*chan_wd == DFS_CH_WIDTH_80P80MHZ) ||
1142 		    (*chan_wd == DFS_CH_WIDTH_80MHZ)) {
1143 			dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1144 				 "from [%d] to 40Mhz", *chan_wd);
1145 			*chan_wd = DFS_CH_WIDTH_40MHZ;
1146 		} else if (*chan_wd == DFS_CH_WIDTH_40MHZ) {
1147 			dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1148 				 "from 40Mhz to 20MHz");
1149 			*chan_wd = DFS_CH_WIDTH_20MHZ;
1150 		}
1151 		return 0;
1152 	}
1153 
1154 	/* ch count should be > 8 to switch new channel in 160Mhz band */
1155 	if (((*chan_wd == DFS_CH_WIDTH_160MHZ) ||
1156 	     (*chan_wd == DFS_CH_WIDTH_80P80MHZ)) &&
1157 	     (final_cnt < DFS_MAX_20M_SUB_CH)) {
1158 		dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1159 			 "from [%d] to 80Mhz", *chan_wd);
1160 		*chan_wd = DFS_CH_WIDTH_80MHZ;
1161 		return 0;
1162 	}
1163 
1164 	if (*chan_wd == DFS_CH_WIDTH_160MHZ) {
1165 		/*
1166 		 * Only 2 blocks for 160Mhz bandwidth i.e 36-64 & 100-128
1167 		 * and all the channels in these blocks are continuous
1168 		 * and separated by 4Mhz.
1169 		 */
1170 		for (i = 1; ((i < final_cnt)); i++) {
1171 			if ((final_lst[i] - final_lst[i - 1]) ==
1172 			     DFS_NEXT_5GHZ_CHANNEL_FREQ_OFFSET)
1173 				count++;
1174 			else
1175 				count = 0;
1176 			if (count == DFS_MAX_20M_SUB_CH - 1) {
1177 				flag = true;
1178 				new_160_start_ch = final_lst[i - count];
1179 				break;
1180 			}
1181 		}
1182 	} else if (*chan_wd == DFS_CH_WIDTH_80P80MHZ) {
1183 		flag = true;
1184 	}
1185 
1186 	if ((flag == false) && (*chan_wd > DFS_CH_WIDTH_80MHZ)) {
1187 		dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1188 			 "from [%d] to 80Mhz", *chan_wd);
1189 		*chan_wd = DFS_CH_WIDTH_80MHZ;
1190 		return 0;
1191 	}
1192 
1193 	if (*chan_wd == DFS_CH_WIDTH_160MHZ) {
1194 		get_random_bytes((uint8_t *)&rand_byte, 1);
1195 		rand_byte = (rand_byte + qdf_mc_timer_get_system_ticks())
1196 			% DFS_MAX_20M_SUB_CH;
1197 		target_channel = new_160_start_ch + (rand_byte *
1198 				DFS_80_NUM_SUB_CHANNEL_FREQ);
1199 	} else if (*chan_wd == DFS_CH_WIDTH_80P80MHZ) {
1200 		get_random_bytes((uint8_t *)&rand_byte, 1);
1201 		index = (rand_byte + qdf_mc_timer_get_system_ticks()) %
1202 			final_cnt;
1203 		target_channel = final_lst[index];
1204 		index -= (index % DFS_80_NUM_SUB_CHANNEL);
1205 		primary_seg_start_ch = final_lst[index];
1206 
1207 		/* reset channels associate with primary 80Mhz */
1208 		for (i = 0; i < DFS_80_NUM_SUB_CHANNEL; i++)
1209 			final_lst[i + index] = 0;
1210 		/* select and calculate center freq for secondary segment */
1211 		for (i = 0; i < final_cnt / DFS_80_NUM_SUB_CHANNEL; i++) {
1212 			if (final_lst[i * DFS_80_NUM_SUB_CHANNEL] &&
1213 			    (abs(primary_seg_start_ch -
1214 				 final_lst[i * DFS_80_NUM_SUB_CHANNEL]) >
1215 			     (DFS_80P80M_FREQ_DIFF * 2))) {
1216 				sec_seg_ch = final_lst[i *
1217 					DFS_80_NUM_SUB_CHANNEL] +
1218 					DFS_80MHZ_START_CENTER_CH_FREQ_DIFF;
1219 				break;
1220 			}
1221 		}
1222 
1223 		if (!sec_seg_ch && (final_cnt == DFS_MAX_20M_SUB_CH))
1224 			*chan_wd = DFS_CH_WIDTH_160MHZ;
1225 		else if (!sec_seg_ch)
1226 			*chan_wd = DFS_CH_WIDTH_80MHZ;
1227 
1228 		*center_freq_seg1 = sec_seg_ch;
1229 		dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1230 			 "Center frequency seg1 = %d", sec_seg_ch);
1231 	} else {
1232 		target_channel = dfs_get_rand_from_lst_for_freq(dfs,
1233 								final_lst,
1234 								final_cnt);
1235 	}
1236 	dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1237 		 "target channel = %d", target_channel);
1238 
1239 	return target_channel;
1240 }
1241 #endif
1242 
1243 bool dfs_is_freq_in_nol(struct wlan_dfs *dfs, uint32_t freq)
1244 {
1245 	struct dfs_nolelem *nol;
1246 
1247 	if (!dfs) {
1248 		dfs_err(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,  "null dfs");
1249 		return false;
1250 	}
1251 
1252 	nol = dfs->dfs_nol;
1253 	while (nol) {
1254 		if (freq == nol->nol_freq) {
1255 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1256 					"%d is in nol", freq);
1257 			return true;
1258 		}
1259 		nol = nol->nol_next;
1260 	}
1261 
1262 	return false;
1263 }
1264 
1265 /**
1266  * dfs_apply_rules_for_freq()- prepare channel list based on flags
1267  * @dfs: dfs handler
1268  * @flags: channel flags
1269  * @random_chan_freq_list: output channel list
1270  * @random_chan_cnt: output channel count
1271  * @chan_list: input channel list
1272  * @chan_cnt: input channel count
1273  * @dfs_region: dfs region
1274  * @acs_info: acs channel range information
1275  *
1276  * prepare channel list based on flags
1277  *
1278  * return: none
1279  */
1280 #ifdef CONFIG_CHAN_FREQ_API
1281 static void dfs_apply_rules_for_freq(struct wlan_dfs *dfs,
1282 				     uint32_t flags,
1283 				     uint16_t *random_chan_freq_list,
1284 				     uint32_t *random_chan_cnt,
1285 				     struct dfs_channel *chan_list,
1286 				     uint32_t chan_cnt,
1287 				     uint8_t dfs_region,
1288 				     struct dfs_acs_info *acs_info)
1289 {
1290 	struct dfs_channel *chan;
1291 	bool flag_no_weather = 0;
1292 	bool flag_no_lower_5g = 0;
1293 	bool flag_no_upper_5g = 0;
1294 	bool flag_no_dfs_chan = 0;
1295 	bool flag_no_2g_chan  = 0;
1296 	bool flag_no_5g_chan  = 0;
1297 	bool flag_no_japan_w53 = 0;
1298 	bool flag_no_6g_freq;
1299 	int i;
1300 	bool found = false;
1301 	uint16_t j;
1302 	uint16_t freq_list[NUM_CHANNELS_160MHZ];
1303 	uint8_t num_channels = 0;
1304 
1305 	dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN, "flags %d", flags);
1306 	flag_no_weather = (dfs_region == DFS_ETSI_REGION) ?
1307 		flags & DFS_RANDOM_CH_FLAG_NO_WEATHER_CH : 0;
1308 
1309 	if (dfs_region == DFS_MKK_REGION ||
1310 	    dfs_region == DFS_MKKN_REGION) {
1311 		flag_no_lower_5g = flags & DFS_RANDOM_CH_FLAG_NO_LOWER_5G_CH;
1312 		flag_no_upper_5g = flags & DFS_RANDOM_CH_FLAG_NO_UPEER_5G_CH;
1313 		flag_no_japan_w53 = flags & DFS_RANDOM_CH_FLAG_NO_JAPAN_W53_CH;
1314 	}
1315 
1316 	flag_no_dfs_chan = flags & DFS_RANDOM_CH_FLAG_NO_DFS_CH;
1317 	flag_no_2g_chan  = flags & DFS_RANDOM_CH_FLAG_NO_2GHZ_CH;
1318 	flag_no_5g_chan  = flags & DFS_RANDOM_CH_FLAG_NO_5GHZ_CH;
1319 	flag_no_6g_freq = flags & DFS_RANDOM_CH_FLAG_NO_6GHZ_CH;
1320 
1321 	if (flags & DFS_RANDOM_CH_FLAG_NO_CURR_OPE_CH) {
1322 		num_channels =
1323 			dfs_get_bonding_channel_without_seg_info_for_freq
1324 			(dfs->dfs_curchan, freq_list);
1325 	}
1326 
1327 	for (i = 0; i < chan_cnt; i++) {
1328 		chan = &chan_list[i];
1329 		found = false;
1330 
1331 		if ((chan->dfs_ch_ieee == 0) ||
1332 		    (chan->dfs_ch_ieee > MAX_CHANNEL_NUM)) {
1333 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1334 				  "invalid channel %d", chan->dfs_ch_ieee);
1335 			continue;
1336 		}
1337 
1338 		if (flags & DFS_RANDOM_CH_FLAG_NO_CURR_OPE_CH) {
1339 			for (j = 0; j < num_channels; j++) {
1340 				if (chan->dfs_ch_freq == freq_list[j]) {
1341 					dfs_debug(dfs,
1342 						  WLAN_DEBUG_DFS_RANDOM_CHAN,
1343 						  "skip %d current operating channel",
1344 						  chan->dfs_ch_freq);
1345 					found = true;
1346 					break;
1347 				}
1348 			}
1349 
1350 			if (found)
1351 				continue;
1352 		}
1353 
1354 		if (acs_info && acs_info->acs_mode) {
1355 			for (j = 0; j < acs_info->num_of_channel; j++) {
1356 				if (acs_info->chan_freq_list[j] ==
1357 				    chan->dfs_ch_freq) {
1358 					found = true;
1359 					break;
1360 				}
1361 			}
1362 
1363 			if (!found) {
1364 				dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1365 					  "skip ch freq %d not in acs range",
1366 					  chan->dfs_ch_freq);
1367 				continue;
1368 			}
1369 			found = false;
1370 		}
1371 
1372 		if (flag_no_2g_chan &&
1373 		    chan->dfs_ch_freq <= DFS_MAX_24GHZ_CHANNEL_FREQ) {
1374 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1375 				  "skip 2.4 GHz channel=%d", chan->dfs_ch_ieee);
1376 			continue;
1377 		}
1378 
1379 		if (flag_no_5g_chan &&
1380 		    WLAN_REG_IS_5GHZ_CH_FREQ(chan->dfs_ch_freq)) {
1381 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1382 				  "skip 5 GHz channel=%d", chan->dfs_ch_ieee);
1383 			continue;
1384 		}
1385 
1386 		if (flag_no_weather) {
1387 			if (DFS_IS_CHANNEL_WEATHER_RADAR(chan->dfs_ch_freq)) {
1388 				dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1389 					  "skip weather channel=%d",
1390 					  chan->dfs_ch_ieee);
1391 				continue;
1392 			}
1393 		}
1394 
1395 		if (flag_no_lower_5g &&
1396 		    DFS_IS_CHAN_JAPAN_INDOOR_FREQ(chan->dfs_ch_freq)) {
1397 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1398 				  "skip indoor channel=%d", chan->dfs_ch_ieee);
1399 			continue;
1400 		}
1401 
1402 		if (flag_no_upper_5g &&
1403 		    DFS_IS_CHAN_JAPAN_OUTDOOR_FREQ(chan->dfs_ch_freq)) {
1404 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1405 				  "skip outdoor channel=%d", chan->dfs_ch_ieee);
1406 			continue;
1407 		}
1408 
1409 		if (flag_no_6g_freq &&
1410 		    WLAN_REG_IS_6GHZ_CHAN_FREQ(chan->dfs_ch_freq)) {
1411 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1412 				  "skip 6 GHz channel=%d", chan->dfs_ch_ieee);
1413 			continue;
1414 		}
1415 
1416 		if (flag_no_dfs_chan &&
1417 		    (chan->dfs_ch_flagext & WLAN_CHAN_DFS)) {
1418 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1419 				  "skip dfs channel=%d", chan->dfs_ch_ieee);
1420 			continue;
1421 		}
1422 
1423 		if (flag_no_japan_w53 &&
1424 		    DFS_IS_CHAN_JAPAN_W53_FREQ(chan->dfs_ch_freq)) {
1425 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1426 				  "skip japan W53 channel=%d",
1427 				  chan->dfs_ch_ieee);
1428 			continue;
1429 		}
1430 
1431 		if (dfs_is_freq_in_nol(dfs, chan->dfs_ch_freq)) {
1432 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1433 				  "skip nol channel=%d", chan->dfs_ch_ieee);
1434 			continue;
1435 		}
1436 
1437 		random_chan_freq_list[*random_chan_cnt] = chan->dfs_ch_freq;
1438 		*random_chan_cnt += 1;
1439 	}
1440 }
1441 #endif
1442 
1443 /**
1444  * dfs_remove_spruce_spur_channels_for_bw_20_40() - API to remove the
1445  * spur channels in spruce if current bw is 20/40MHz.
1446  * @freq_list: Input list from which spur channels are removed.
1447  * @freq_count: Input list count.
1448  *
1449  * return: void.
1450  */
1451 static void
1452 dfs_remove_spruce_spur_channels_for_bw_20_40(uint16_t *freq_list,
1453 					     uint8_t freq_count)
1454 {
1455 	uint8_t i;
1456 
1457 	for (i = 0; i < freq_count; i++) {
1458 		if (DFS_IS_CHAN_SPRUCE_SPUR_FREQ_20_40_MHZ(freq_list[i]))
1459 			freq_list[i] = 0;
1460 	}
1461 }
1462 
1463 #ifdef CONFIG_CHAN_FREQ_API
1464 uint16_t dfs_prepare_random_channel_for_freq(struct wlan_dfs *dfs,
1465 					     struct dfs_channel *chan_list,
1466 					     uint32_t chan_cnt,
1467 					     uint32_t flags,
1468 					     struct ch_params *chan_params,
1469 					     uint8_t dfs_region,
1470 					     struct dfs_acs_info *acs_info)
1471 {
1472 	int i = 0;
1473 	uint8_t final_cnt = 0;
1474 	uint16_t target_freq = 0;
1475 	uint16_t *random_chan_freq_list = NULL;
1476 	uint32_t random_chan_cnt = 0;
1477 	uint16_t flag_no_weather = 0;
1478 	uint16_t *leakage_adjusted_lst;
1479 	uint16_t final_lst[NUM_CHANNELS] = {0};
1480 	uint8_t *chan_wd = (uint8_t *)&chan_params->ch_width;
1481 	bool flag_no_spur_leakage_adj_chans = false;
1482 
1483 	if (!chan_list || !chan_cnt) {
1484 		dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1485 			 "Invalid params %pK, chan_cnt=%d",
1486 			 chan_list, chan_cnt);
1487 		return 0;
1488 	}
1489 
1490 	if (*chan_wd < DFS_CH_WIDTH_20MHZ || *chan_wd > DFS_CH_WIDTH_80P80MHZ) {
1491 		dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1492 			 "Invalid chan_wd %d", *chan_wd);
1493 		return 0;
1494 	}
1495 
1496 	random_chan_freq_list =
1497 	    qdf_mem_malloc(chan_cnt * sizeof(*random_chan_freq_list));
1498 	if (!random_chan_freq_list)
1499 		return 0;
1500 
1501 	dfs_apply_rules_for_freq(dfs, flags, random_chan_freq_list,
1502 				 &random_chan_cnt, chan_list, chan_cnt,
1503 				 dfs_region, acs_info);
1504 	flag_no_weather = (dfs_region == DFS_ETSI_REGION) ?
1505 		flags & DFS_RANDOM_CH_FLAG_NO_WEATHER_CH : 0;
1506 	flag_no_spur_leakage_adj_chans =
1507 	    flags & DFS_RANDOM_CH_FLAG_NO_SPRUCE_SPUR_ADJ_CH;
1508 
1509 	/* list adjusted after leakage has been marked */
1510 	leakage_adjusted_lst = qdf_mem_malloc(random_chan_cnt *
1511 					      sizeof(*leakage_adjusted_lst));
1512 	if (!leakage_adjusted_lst) {
1513 		qdf_mem_free(random_chan_freq_list);
1514 		return 0;
1515 	}
1516 
1517 	if (flag_no_spur_leakage_adj_chans &&
1518 	    (*chan_wd == DFS_CH_WIDTH_20MHZ ||
1519 	     *chan_wd == DFS_CH_WIDTH_40MHZ))
1520 		dfs_remove_spruce_spur_channels_for_bw_20_40(
1521 				random_chan_freq_list,
1522 				random_chan_cnt);
1523 	do {
1524 		int ret;
1525 
1526 		qdf_mem_copy(leakage_adjusted_lst, random_chan_freq_list,
1527 			     random_chan_cnt * sizeof(*leakage_adjusted_lst));
1528 		ret = dfs_mark_leaking_chan_for_freq(dfs, *chan_wd,
1529 						   random_chan_cnt,
1530 						   leakage_adjusted_lst);
1531 		if (QDF_IS_STATUS_ERROR(ret)) {
1532 			qdf_mem_free(random_chan_freq_list);
1533 			qdf_mem_free(leakage_adjusted_lst);
1534 			return 0;
1535 		}
1536 
1537 		if (*chan_wd == DFS_CH_WIDTH_20MHZ) {
1538 			/*
1539 			 * PASS: 3 - from leakage_adjusted_lst, prepare valid
1540 			 * ch list and use random number from that
1541 			 */
1542 			for (i = 0; i < random_chan_cnt; i++) {
1543 				if (leakage_adjusted_lst[i] == 0)
1544 					continue;
1545 				dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1546 					  "Chan freq =%d added to available list",
1547 					  leakage_adjusted_lst[i]);
1548 				final_lst[final_cnt] = leakage_adjusted_lst[i];
1549 				final_cnt++;
1550 			}
1551 			target_freq = dfs_get_rand_from_lst_for_freq(dfs,
1552 								     final_lst,
1553 								     final_cnt);
1554 			break;
1555 		}
1556 		target_freq = dfs_find_ch_with_fallback_for_freq(
1557 				dfs, chan_wd, &chan_params->mhz_freq_seg1,
1558 				leakage_adjusted_lst, random_chan_cnt);
1559 
1560 		/* Since notion of 80+80 is not present in the regulatory
1561 		 * channel the function may return invalid 80+80 channels for
1562 		 * some devices (e.g. Pine). Therefore, check if we need to
1563 		 * correct it by checking the following condition.
1564 		 */
1565 		if ((*chan_wd == DFS_CH_WIDTH_80P80MHZ) &&
1566 		    (flags & DFS_RANDOM_CH_FLAG_RESTRICTED_80P80_ENABLED) &&
1567 		    target_freq) {
1568 			wlan_reg_set_channel_params_for_freq(dfs->dfs_pdev_obj,
1569 							     target_freq,
1570 							     0, chan_params);
1571 			if (!(CHAN_WITHIN_RESTRICTED_80P80(
1572 						chan_params->mhz_freq_seg0,
1573 						chan_params->mhz_freq_seg1))) {
1574 				*chan_wd = DFS_CH_WIDTH_160MHZ;
1575 				target_freq =
1576 				    dfs_find_ch_with_fallback_for_freq(
1577 					    dfs, chan_wd,
1578 					    &chan_params->mhz_freq_seg1,
1579 					    leakage_adjusted_lst,
1580 					    random_chan_cnt);
1581 			}
1582 		}
1583 
1584 		/*
1585 		 * When flag_no_weather is set, avoid usage of Adjacent
1586 		 * weather radar channel in HT40 mode as extension channel
1587 		 * will be on 5600.
1588 		 */
1589 		if (flag_no_weather &&
1590 		    (target_freq ==
1591 		     DFS_ADJACENT_WEATHER_RADAR_CHANNEL_FREQ) &&
1592 		    (*chan_wd == DFS_CH_WIDTH_40MHZ)) {
1593 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1594 				  "skip weather adjacent ch freq =%d\n",
1595 				  target_freq);
1596 			continue;
1597 		}
1598 
1599 		/*
1600 		 * Spur or leakage transmissions is observed in Spruce HW in
1601 		 * frequencies from 5260MHz to 5320MHz when one of the following
1602 		 * conditions is true,
1603 		 * i) The AP is transmitting in 52/56/60/64 in 80MHz mode and
1604 		 * then the AP moves to the adjacent channel 36/44/48 in 80MHz
1605 		 * mode and starts transmitting.
1606 		 * ii) The AP is transmitting in 36/44/48/52/56/60/64 in 160MHz
1607 		 * mode and then the  AP moves to the adjacent channel 36/44/48
1608 		 * in 80MHz mode and starts transmitting.
1609 		 *
1610 		 * The random channel selection algorithm prevents the channel
1611 		 * movement mentioned above, thereby eliminating the leakage.
1612 		 */
1613 		if (flag_no_spur_leakage_adj_chans &&
1614 		    DFS_IS_SPRUCE_SPUR_AVOID_FREQS(target_freq) &&
1615 		    *chan_wd == DFS_CH_WIDTH_80MHZ) {
1616 			dfs_debug(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN,
1617 				  "skip spruce spur causing (adjacent) channel=%hu",
1618 				  target_freq);
1619 			continue;
1620 		}
1621 
1622 		if (target_freq)
1623 			break;
1624 	} while (true);
1625 
1626 	qdf_mem_free(random_chan_freq_list);
1627 	qdf_mem_free(leakage_adjusted_lst);
1628 	dfs_info(dfs, WLAN_DEBUG_DFS_RANDOM_CHAN, "target_freq = %d",
1629 		 target_freq);
1630 
1631 	return target_freq;
1632 }
1633 #endif
1634