xref: /wlan-dirver/qca-wifi-host-cmn/umac/dfs/core/src/filtering/dfs_partial_offload_radar.c (revision 11f5a63a6cbdda84849a730de22f0a71e635d58c)
1 /*
2  * Copyright (c) 2016-2019 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2011, Atheros Communications Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 /**
19  * DOC: This file has radar table and initialization function for Beeliner
20  * family of chipsets.
21  */
22 
23 #include "../dfs.h"
24 #include "wlan_dfs_mlme_api.h"
25 #include <wlan_objmgr_vdev_obj.h>
26 #include "wlan_dfs_utils_api.h"
27 #include "wlan_dfs_lmac_api.h"
28 #include "../dfs_internal.h"
29 #include "../dfs_partial_offload_radar.h"
30 #if defined(WLAN_DFS_PARTIAL_OFFLOAD) && defined(HOST_DFS_SPOOF_TEST)
31 #include "../dfs_process_radar_found_ind.h"
32 #endif
33 
34 /**
35  * struct dfs_pulse dfs_fcc_radars - FCC radar table for Offload chipsets.
36  */
37 static struct dfs_pulse dfs_fcc_radars[] = {
38 	/* FCC TYPE 1 */
39 	{18,  1,  700, 700, 0,  4,  5,  0,  1, 18,  0, 3,  1, 5, 0, 0},
40 	{18,  1,  350, 350, 0,  4,  5,  0,  1, 18,  0, 3,  0, 5, 0, 0},
41 
42 	/* FCC TYPE 6 */
43 	{9,   1, 3003, 3003, 1,  7,  5,  0,  1, 18,  0, 0,  1, 1000, 0, 1},
44 
45 	/* FCC TYPE 2 */
46 	{23, 5, 4347, 6666, 0,  4, 11,  0,  7, 22,  0, 3,  0, 5, 0, 2},
47 
48 	/* FCC TYPE 3 */
49 	{18, 10, 2000, 5000, 0,  4,  8,  6, 13, 22,  0, 3, 0, 5, 0, 5},
50 
51 	/* FCC TYPE 4 */
52 	{16, 15, 2000, 5000, 0,  4,  7, 11, 23, 22,  0, 3, 0, 5, 0, 11},
53 
54 	/* FCC NEW TYPE 1 */
55 	/* 518us to 938us pulses (min 56 pulses) */
56 	{57, 1, 1066, 1930, 0, 4,  20,  0,  1, 22,  0, 3,  0, 5, 0, 21},
57 
58 	/* 938us to 2000 pulses (min 26 pulses) */
59 	{27, 1,  500, 1066, 0, 4,  13,  0,  1, 22,  0, 3,  0, 5, 0, 22},
60 
61 	/* 2000 to 3067us pulses (min 17 pulses) */
62 	{18, 1,  325,  500, 0, 4,  9,   0,  1, 22,  0, 3,  0, 5, 0, 23},
63 };
64 
65 /**
66  * struct dfs_pulse dfs_mkk4_radars - MKK4 radar table for Offload chipsets.
67  */
68 static struct dfs_pulse dfs_mkk4_radars[] = {
69 
70 	/* following two filters are specific to Japan/MKK4 */
71 	/* 1389 +/- 6 us */
72 	{18,  1,  720,  720, 0,  4,  6,  0,  1, 18,  0, 3, 0, 5, 0, 17},
73 
74 	/* 4000 +/- 6 us */
75 	{18,  4,  250,  250, 0,  4,  5,  1,  6, 18,  0, 3, 0, 5, 0, 18},
76 
77 	/* 3846 +/- 7 us */
78 	{18,  5,  260,  260, 0,  4,  6,  1,  6, 18,  0, 3, 1, 5, 0, 19},
79 
80 	/* following filters are common to both FCC and JAPAN */
81 
82 	/* FCC TYPE 1 */
83 	{18,  1,  700, 700, 0,  4,  5,  0,  1, 18,  0, 3,  1, 5, 0, 0},
84 	{18,  1,  350, 350, 0,  4,  5,  0,  1, 18,  0, 3,  0, 5, 0, 0},
85 
86 	/* FCC TYPE 6 */
87 	{9,   1, 3003, 3003, 1,  7,  5,  0,  1, 18,  0, 0, 1,  1000, 0, 1},
88 
89 	/* FCC TYPE 2 */
90 	{23, 5, 4347, 6666, 0,  4, 11,  0,  7, 22,  0, 3,  0, 5, 0, 2},
91 
92 	/* FCC TYPE 3 */
93 	{18, 10, 2000, 5000, 0,  4,  8,  6, 13, 22,  0, 3, 0, 5, 0, 5},
94 
95 	/* FCC TYPE 4 */
96 	{16, 15, 2000, 5000, 0,  4,  7, 11, 23, 22,  0, 3, 0, 5, 0, 11},
97 };
98 
99 /**
100  * struct dfs_bin5pulse dfs_fcc_bin5pulses - FCC BIN5 pulses for Offload
101  *                                           chipsets.
102  */
103 static struct dfs_bin5pulse dfs_fcc_bin5pulses[] = {
104 	{6, 28, 105, 12, 18, 5},
105 };
106 
107 /**
108  * struct dfs_bin5pulse dfs_jpn_bin5pulses - JAPAN BIN5 pulses for Offload
109  *                                           chipsets.
110  */
111 static struct dfs_bin5pulse dfs_jpn_bin5pulses[] = {
112 	{5, 28, 105, 12, 22, 5},
113 };
114 
115 /**
116  * dfs_bin5pulse dfs_fcc_bin5pulses_ar900b - FCC BIN5 pulses for AR9300
117  *                                           chipsets.
118  *
119  * WAR : IR 42631
120  * Beeliner 2 is tested at -65dbm as opposed to -62 dbm.
121  * For FCC/JPN chirping pulses, HW reports RSSI value that is lower by 2dbm
122  * when we enable noise floor claibration. This is specially true for
123  * frequencies that are greater than center frequency and in VHT80 mode.
124  */
125 
126 static struct dfs_bin5pulse dfs_fcc_bin5pulses_ar900b[] = {
127 	{5, 28, 105, 12, 20, 5},
128 };
129 
130 /**
131  * dfs_bin5pulse dfs_jpn_bin5pulses_ar900b - JAPAN BIN5 pulses for AR9300
132  *                                           chipsets.
133  */
134 static struct dfs_bin5pulse dfs_jpn_bin5pulses_ar900b[] = {
135 	{5, 28, 105, 12, 20, 5},
136 };
137 
138 /**
139  * dfs_bin5pulse dfs_fcc_bin5pulses_qca9984 - FCC BIN5 pulses for QCA9984
140  *                                            chipsets.
141  * WAR : IR-83400
142  * Cascade is tested at -65dbm as opposed to -62 dbm.
143  * For FCC/JPN chirping pulses, HW reports RSSI value that is significantly
144  * lower at left edge especially in HT80_80 mode. Also, duration may be
145  * significantly low. This can result in false detection and we may have to
146  * raise the threshold.
147  */
148 static struct dfs_bin5pulse dfs_fcc_bin5pulses_qca9984[] = {
149 	{5, 20, 105, 12, 20, 0},
150 };
151 
152 /**
153  * dfs_bin5pulse dfs_jpn_bin5pulses_qca9984 - JAPAN BIN5 pulses for QCA9984
154  *                                            chipsets.
155  */
156 static struct dfs_bin5pulse dfs_jpn_bin5pulses_qca9984[] = {
157 	{5, 20, 105, 12, 20, 0},
158 };
159 
160 /**
161  * dfs_pulse dfs_etsi_radars - ETSI radar table.
162  */
163 static struct dfs_pulse dfs_etsi_radars[] = {
164 
165 	/* EN 302 502 frequency hopping pulse */
166 	/* PRF 3000, 1us duration, 9 pulses per burst */
167 	{9,   1, 3000, 3000, 1,  4,  5,  0,  1, 18,  0, 0, 1,  1000, 0, 40},
168 	/* PRF 4500, 20us duration, 9 pulses per burst */
169 	{9,  20, 4500, 4500, 1,  4,  5, 19, 21, 18,  0, 0, 1,  1000, 0, 41},
170 
171 	/* Type 3 */
172 	/* 10 15us, 200-1000 PRF, 15 pulses */
173 	{15, 15, 200, 1000, 0, 4, 5, 8, 18, 22, 0, 0, 0, 5, 0, 42},
174 
175 	/* Type 4 */
176 	/* 1-15us, 1200-1600 PRF, 15 pulses */
177 	{15, 15, 1200, 1600, 0, 4, 5, 0, 18, 22, 0, 0, 0, 5, 0, 43},
178 
179 	/* TYPE staggered pulse */
180 	/* Type 5*/
181 	/* 0.8-2us, 2-3 bursts,300-400 PRF, 10 pulses each */
182 	{30,  2,  300,  400, 2, 30,  3,  0,  5, 15, 0,   0, 1, 5, 0, 31},
183 	/* Type 6 */
184 	/* 0.8-2us, 2-3 bursts, 400-1200 PRF, 15 pulses each */
185 	{30,  2,  400, 1200, 2, 30,  7,  0,  5, 15, 0,   0, 0, 5, 0, 32},
186 
187 	/* constant PRF based */
188 	/* Type 1 */
189 	/* 0.8-5us, 200  300 PRF, 10 pulses */
190 	{10, 5,   200,  400, 0,  4,  5,  0,  8, 15, 0,   0, 2, 5, 0, 33},
191 	{10, 5,   400,  600, 0,  4,  5,  0,  8, 15, 0,   0, 2, 5, 0, 37},
192 	{10, 5,   600,  800, 0,  4,  5,  0,  8, 15, 0,   0, 2, 5, 0, 38},
193 	{10, 5,   800, 1000, 0,  4,  5,  0,  8, 15, 0,   0, 2, 5, 0, 39},
194 	/* {10, 5,   200, 1000, 0,  6,  5,  0,  8, 15, 0,   0, 2, 5, 33}, */
195 
196 	/* Type 2 */
197 	/* 0.8-15us, 200-1600 PRF, 15 pulses */
198 	{15, 15,  200, 1600, 0,  4, 8,  0, 18, 24, 0,   0, 0, 5, 0, 34},
199 
200 	/* Type 3 */
201 	/* 0.8-15us, 2300-4000 PRF, 25 pulses*/
202 	{25, 15, 2300, 4000, 0,  4, 10, 0, 18, 24, 0,   0, 0, 5, 0, 35},
203 
204 	/* Type 4 */
205 	/* 20-30us, 2000-4000 PRF, 20 pulses*/
206 	{20, 30, 2000, 4000, 0,  4, 6, 19, 33, 24, 0,   0, 0, 24,  1, 36},
207 };
208 
209 /**
210  * dfs_pulse dfs_china_radars - CHINA radar table.
211  */
212 static struct dfs_pulse dfs_china_radars[] = {
213 
214 	/* TYPE staggered pulse */
215 	/* Type 5*/
216 	/* 0.8-2us, 2-3 bursts,300-400 PRF, 12 pulses each */
217 	{36,  2,  300,  400, 2, 30,  3,  0,  5, 15, 0,   0, 1, 0, 0, 51},
218 	/* Type 6 */
219 	/* 0.8-2us, 2-3 bursts, 400-1200 PRF, 16 pulses each */
220 	{48,  2,  400, 1200, 2, 30,  7,  0,  5, 15, 0,   0, 0, 0, 0, 52},
221 
222 	/* constant PRF based */
223 	/* Type 1 */
224 	/* 0.5-5us, 200  1000 PRF, 12 pulses */
225 	{12, 5,   200,  400, 0, 24,  5,  0,  8, 15, 0,   0, 2, 0, 0, 53},
226 	{12, 5,   400,  600, 0, 24,  5,  0,  8, 15, 0,   0, 2, 0, 0, 57},
227 	{12, 5,   600,  800, 0, 24,  5,  0,  8, 15, 0,   0, 2, 0, 0, 58},
228 	{12, 5,   800, 1000, 0, 24,  5,  0,  8, 15, 0,   0, 2, 0, 0, 59},
229 
230 	/* Type 2 */
231 	/* 0.5-15us, 200-1600 PRF, 16 pulses */
232 	{16, 15,  200, 1600, 0, 24, 8,  0, 18, 24, 0,   0, 0, 0, 0, 54},
233 
234 	/* Type 3 */
235 	/* 0.5-30us, 2300-4000 PRF, 24 pulses*/
236 	{24, 15, 2300, 4000,  0, 24, 10, 0, 33, 24, 0,   0, 0, 0, 0, 55},
237 
238 	/* Type 4 */
239 	/* 20-30us, 2000-4000 PRF, 20 pulses*/
240 	{20, 30, 2000, 4000, 0, 24, 6, 19, 33, 24, 0,   0, 0, 0, 0, 56},
241 
242 	/* 1us, 1000 PRF, 20 pulses */
243 	/* 1000 us PRI */
244 	{20,  1, 1000, 1000, 0,  6,  6,  0,  1, 18,  0, 3, 0, 0, 0, 50},
245 };
246 
247 /**
248  * dfs_pulse dfs_korea_radars - KOREA radar table.
249  */
250 static struct dfs_pulse dfs_korea_radars[] = {
251 	/* Korea Type 1 */
252 	{18,  1,  700, 700,  0, 4,  5,  0,  1, 18,  0, 3,  1, 5, 0, 40},
253 
254 	/* Korea Type 2 */
255 	{10,  1, 1800, 1800, 0, 4,  4,  0,  1, 18,  0, 3,  1, 5, 0, 41},
256 
257 	/* Korea Type 3 */
258 	{70,  1,  330, 330,  0, 4, 20,  0,  3, 18,  0, 3,  1, 5, 0, 42},
259 
260 	/* Korea Type 4 */
261 	{3,   1, 3003, 3003, 1, 7,  2,  0,  1, 18,  0, 0, 1,  1000, 0, 43},
262 };
263 
264 #define RSSI_THERSH_AR900B    15
265 #define RSSI_THERSH_ADRASTEA  18
266 
267 /**
268  * dfs_assign_fcc_pulse_table() - Assign FCC pulse table
269  * @rinfo: Pointer to wlan_dfs_radar_tab_info structure.
270  * @target_type: Target type.
271  * @tx_ops: target tx ops.
272  */
273 static inline void dfs_assign_fcc_pulse_table(
274 		struct wlan_dfs_radar_tab_info *rinfo,
275 		uint32_t target_type,
276 		struct wlan_lmac_if_target_tx_ops *tx_ops)
277 {
278 	rinfo->dfs_radars = dfs_fcc_radars;
279 	rinfo->numradars = QDF_ARRAY_SIZE(dfs_fcc_radars);
280 
281 	if (tx_ops->tgt_is_tgt_type_ar900b(target_type) ||
282 			tx_ops->tgt_is_tgt_type_ipq4019(target_type)) {
283 		rinfo->b5pulses = dfs_fcc_bin5pulses_ar900b;
284 		rinfo->numb5radars = QDF_ARRAY_SIZE(dfs_fcc_bin5pulses_ar900b);
285 	} else if (tx_ops->tgt_is_tgt_type_qca9984(target_type) ||
286 			tx_ops->tgt_is_tgt_type_qca9888(target_type)) {
287 		rinfo->b5pulses = dfs_fcc_bin5pulses_qca9984;
288 		rinfo->numb5radars =
289 			QDF_ARRAY_SIZE(dfs_fcc_bin5pulses_qca9984);
290 	} else {
291 		rinfo->b5pulses = dfs_fcc_bin5pulses;
292 		rinfo->numb5radars = QDF_ARRAY_SIZE(dfs_fcc_bin5pulses);
293 	}
294 }
295 
296 #ifdef DFS_OVERRIDE_RF_THRESHOLD
297 static void dfs_set_adrastea_rf_thrshold(
298 		struct wlan_objmgr_psoc *psoc,
299 		int dfsdomain,
300 		uint32_t target_type,
301 		struct wlan_dfs_radar_tab_info *rinfo)
302 {
303 	int i;
304 	struct wlan_lmac_if_target_tx_ops *tx_ops;
305 
306 	tx_ops = &psoc->soc_cb.tx_ops.target_tx_ops;
307 
308 	if (tx_ops->tgt_is_tgt_type_adrastea(target_type) &&
309 	    dfsdomain == DFS_ETSI_DOMAIN) {
310 		for (i = 0; i < rinfo->numradars; i++) {
311 			rinfo->dfs_radars[i].rp_rssithresh =
312 				DFS_MIN(rinfo->dfs_radars[i].rp_rssithresh,
313 					RSSI_THERSH_ADRASTEA);
314 		}
315 	}
316 }
317 #else
318 static inline void dfs_set_adrastea_rf_thrshold(
319 		struct wlan_objmgr_psoc *psoc,
320 		int dfsdomain,
321 		uint32_t target_type,
322 		struct wlan_dfs_radar_tab_info *rinfo)
323 {
324 }
325 #endif
326 
327 void dfs_get_po_radars(struct wlan_dfs *dfs)
328 {
329 	struct wlan_dfs_radar_tab_info rinfo;
330 	struct wlan_objmgr_psoc *psoc;
331 	struct wlan_lmac_if_target_tx_ops *tx_ops;
332 	int i;
333 	uint32_t target_type;
334 	int dfsdomain = DFS_FCC_DOMAIN;
335 
336 	/* Fetch current radar patterns from the lmac */
337 	qdf_mem_zero(&rinfo, sizeof(rinfo));
338 
339 	/*
340 	 * Look up the current DFS regulatory domain and decide
341 	 * which radar pulses to use.
342 	 */
343 	dfsdomain = utils_get_dfsdomain(dfs->dfs_pdev_obj);
344 	target_type = lmac_get_target_type(dfs->dfs_pdev_obj);
345 
346 	psoc = wlan_pdev_get_psoc(dfs->dfs_pdev_obj);
347 	if (!psoc) {
348 		dfs_err(dfs, WLAN_DEBUG_DFS_ALWAYS,  "psoc is NULL");
349 		return;
350 	}
351 
352 	tx_ops = &(psoc->soc_cb.tx_ops.target_tx_ops);
353 	switch (dfsdomain) {
354 	case DFS_FCC_DOMAIN:
355 		dfs_debug(dfs, WLAN_DEBUG_DFS_ALWAYS, "FCC domain");
356 		rinfo.dfsdomain = DFS_FCC_DOMAIN;
357 		dfs_assign_fcc_pulse_table(&rinfo, target_type, tx_ops);
358 		break;
359 	case DFS_CN_DOMAIN:
360 		dfs_info(dfs, WLAN_DEBUG_DFS_ALWAYS,
361 				"FCC domain -- Country China(156) override FCC radar pattern"
362 				);
363 		rinfo.dfsdomain = DFS_FCC_DOMAIN;
364 		/*
365 		 * China uses a radar pattern that is similar to ETSI but it
366 		 * follows FCC in all other respect like transmit power, CCA
367 		 * threshold etc.
368 		 */
369 		rinfo.dfs_radars = dfs_china_radars;
370 		rinfo.numradars = QDF_ARRAY_SIZE(dfs_china_radars);
371 		rinfo.b5pulses = NULL;
372 		rinfo.numb5radars = 0;
373 		break;
374 	case DFS_ETSI_DOMAIN:
375 		dfs_info(dfs, WLAN_DEBUG_DFS_ALWAYS, "ETSI domain");
376 		rinfo.dfsdomain = DFS_ETSI_DOMAIN;
377 
378 		if (dfs_is_en302_502_applicable(dfs)) {
379 			rinfo.dfs_radars = dfs_etsi_radars;
380 			rinfo.numradars = QDF_ARRAY_SIZE(dfs_etsi_radars);
381 		} else {
382 			uint8_t offset = ETSI_LEGACY_PULSE_ARR_OFFSET;
383 
384 			rinfo.dfs_radars = &dfs_etsi_radars[offset];
385 			rinfo.numradars =
386 				QDF_ARRAY_SIZE(dfs_etsi_radars) - offset;
387 		}
388 		rinfo.b5pulses = NULL;
389 		rinfo.numb5radars = 0;
390 		break;
391 	case DFS_KR_DOMAIN:
392 		dfs_info(dfs, WLAN_DEBUG_DFS_ALWAYS,
393 				"ETSI domain -- Korea(412)");
394 		rinfo.dfsdomain = DFS_ETSI_DOMAIN;
395 
396 		/*
397 		 * So far we have treated Korea as part of ETSI and did not
398 		 * support any radar patters specific to Korea other than
399 		 * standard ETSI radar patterns. Ideally we would want to
400 		 * treat Korea as a different domain. This is something that
401 		 * we will address in the future. However, for now override
402 		 * ETSI tables for Korea.
403 		 */
404 		rinfo.dfs_radars = dfs_korea_radars;
405 		rinfo.numradars = QDF_ARRAY_SIZE(dfs_korea_radars);
406 		rinfo.b5pulses = NULL;
407 		rinfo.numb5radars = 0;
408 		break;
409 	case DFS_MKK4_DOMAIN:
410 		dfs_info(dfs, WLAN_DEBUG_DFS_ALWAYS, "MKK4 domain");
411 		rinfo.dfsdomain = DFS_MKK4_DOMAIN;
412 		rinfo.dfs_radars = dfs_mkk4_radars;
413 		rinfo.numradars = QDF_ARRAY_SIZE(dfs_mkk4_radars);
414 
415 		if (tx_ops->tgt_is_tgt_type_ar900b(target_type) ||
416 				tx_ops->tgt_is_tgt_type_ipq4019(target_type)) {
417 			rinfo.b5pulses = dfs_jpn_bin5pulses_ar900b;
418 			rinfo.numb5radars = QDF_ARRAY_SIZE(
419 					dfs_jpn_bin5pulses_ar900b);
420 		} else if (tx_ops->tgt_is_tgt_type_qca9984(target_type) ||
421 				tx_ops->tgt_is_tgt_type_qca9888(target_type)) {
422 			rinfo.b5pulses = dfs_jpn_bin5pulses_qca9984;
423 			rinfo.numb5radars = QDF_ARRAY_SIZE
424 				(dfs_jpn_bin5pulses_qca9984);
425 		} else {
426 			rinfo.b5pulses = dfs_jpn_bin5pulses;
427 			rinfo.numb5radars = QDF_ARRAY_SIZE(
428 					dfs_jpn_bin5pulses);
429 		}
430 		break;
431 	default:
432 		dfs_info(dfs, WLAN_DEBUG_DFS_ALWAYS, "UNINIT domain");
433 		rinfo.dfsdomain = DFS_UNINIT_DOMAIN;
434 		rinfo.dfs_radars = NULL;
435 		rinfo.numradars = 0;
436 		rinfo.b5pulses = NULL;
437 		rinfo.numb5radars = 0;
438 		break;
439 	}
440 
441 	if (tx_ops->tgt_is_tgt_type_ar900b(target_type) ||
442 			tx_ops->tgt_is_tgt_type_ipq4019(target_type) ||
443 			tx_ops->tgt_is_tgt_type_qca9984(target_type) ||
444 			tx_ops->tgt_is_tgt_type_qca9888(target_type)) {
445 		/* Beeliner WAR: lower RSSI threshold to improve detection of
446 		 * certian radar types
447 		 */
448 		/* Cascade WAR:
449 		 * Cascade can report lower RSSI near the channel boundary then
450 		 * expected. It can also report significantly low RSSI at center
451 		 * (as low as 16) at center. So we are lowering threshold for
452 		 * all types of radar for * Cascade.
453 		 * This may increase the possibility of false radar detection.
454 		 * IR -- 083703, 083398, 083387
455 		 */
456 
457 		for (i = 0; i < rinfo.numradars; i++)
458 			rinfo.dfs_radars[i].rp_rssithresh = RSSI_THERSH_AR900B;
459 	}
460 
461 	dfs_set_adrastea_rf_thrshold(psoc, dfsdomain, target_type, &rinfo);
462 
463 	WLAN_DFS_DATA_STRUCT_LOCK(dfs);
464 	dfs_init_radar_filters(dfs, &rinfo);
465 	WLAN_DFS_DATA_STRUCT_UNLOCK(dfs);
466 }
467 
468 #if defined(WLAN_DFS_PARTIAL_OFFLOAD) && defined(HOST_DFS_SPOOF_TEST)
469 void dfs_send_avg_params_to_fw(struct wlan_dfs *dfs,
470 			       struct dfs_radar_found_params *params)
471 {
472 	tgt_dfs_send_avg_params_to_fw(dfs->dfs_pdev_obj, params);
473 }
474 
475 /**
476  * dfs_no_res_from_fw_task() - The timer function that is called if there is no
477  * response from fw after sending the average radar pulse parameters.
478  */
479 static os_timer_func(dfs_no_res_from_fw_task)
480 {
481 	struct wlan_dfs *dfs = NULL;
482 
483 	OS_GET_TIMER_ARG(dfs, struct wlan_dfs *);
484 
485 	if (!dfs) {
486 		dfs_err(dfs, WLAN_DEBUG_DFS_ALWAYS,  "dfs is NULL");
487 		return;
488 	}
489 
490 	dfs_info(dfs, WLAN_DEBUG_DFS_ALWAYS, "Host wait timer expired");
491 
492 	dfs->dfs_is_host_wait_running = 0;
493 	dfs->dfs_no_res_from_fw = 1;
494 	dfs_radarfound_action_generic(dfs, dfs->dfs_seg_id);
495 	dfs->dfs_seg_id = 0;
496 }
497 
498 void dfs_host_wait_timer_init(struct wlan_dfs *dfs)
499 {
500 	qdf_timer_init(NULL,
501 		       &(dfs->dfs_host_wait_timer),
502 			dfs_no_res_from_fw_task,
503 			(void *)(dfs),
504 			QDF_TIMER_TYPE_WAKE_APPS);
505 	dfs->dfs_status_timeout_override = -1;
506 }
507 
508 QDF_STATUS dfs_set_override_status_timeout(struct wlan_dfs *dfs,
509 				       int status_timeout)
510 {
511 	if (!dfs) {
512 		dfs_err(dfs, WLAN_DEBUG_DFS_ALWAYS,  "dfs is NULL");
513 		return QDF_STATUS_E_FAILURE;
514 	}
515 
516 	dfs->dfs_status_timeout_override = status_timeout;
517 
518 	dfs_info(dfs, WLAN_DEBUG_DFS_ALWAYS,
519 		 "Host wait status timeout is now %s : %d",
520 		(status_timeout == -1) ? "default" : "overridden",
521 		status_timeout);
522 
523 	return QDF_STATUS_SUCCESS;
524 }
525 
526 QDF_STATUS dfs_get_override_status_timeout(struct wlan_dfs *dfs,
527 					   int *status_timeout)
528 {
529 	if (!dfs) {
530 		dfs_err(dfs, WLAN_DEBUG_DFS_ALWAYS,  "dfs is NULL");
531 		return QDF_STATUS_E_FAILURE;
532 	}
533 
534 	*status_timeout = dfs->dfs_status_timeout_override;
535 
536 	return QDF_STATUS_SUCCESS;
537 }
538 
539 /**
540  * dfs_extract_radar_found_params() - Copy the contents of average radar
541  * parameters to dfs_radar_found_params parameter structure.
542  *
543  * @dfs: Pointer to wlan_dfs structure which contains the average radar
544  * parameters.
545  * @params: Pointer to dfs_radar_found_params structure.
546  */
547 static
548 void dfs_extract_radar_found_params(struct wlan_dfs *dfs,
549 				    struct dfs_radar_found_params *params)
550 {
551 	qdf_mem_zero(params, sizeof(*params));
552 	params->pri_min = dfs->dfs_average_pri;
553 	params->pri_max = dfs->dfs_average_pri;
554 	params->duration_min = dfs->dfs_average_duration;
555 	params->duration_max = dfs->dfs_average_duration;
556 	params->sidx_min = dfs->dfs_average_sidx;
557 	params->sidx_max = dfs->dfs_average_sidx;
558 
559 	/* Bangradar will not populate any of these average
560 	 * parameters as pulse is not received. If these variables
561 	 * are not resetted here, these go as radar_found params
562 	 * for bangradar if bangradar is issued after real radar.
563 	 */
564 	dfs->dfs_average_sidx = 0;
565 	dfs->dfs_average_duration = 0;
566 	dfs->dfs_average_pri = 0;
567 }
568 
569 void dfs_radarfound_action_fcc(struct wlan_dfs *dfs, uint8_t seg_id)
570 {
571 	struct dfs_radar_found_params params;
572 
573 	qdf_mem_copy(&dfs->dfs_radar_found_chan, dfs->dfs_curchan,
574 		     sizeof(dfs->dfs_radar_found_chan));
575 	dfs_extract_radar_found_params(dfs, &params);
576 	dfs_send_avg_params_to_fw(dfs, &params);
577 	dfs->dfs_is_host_wait_running = 1;
578 	dfs->dfs_seg_id = seg_id;
579 	qdf_timer_mod(&dfs->dfs_host_wait_timer,
580 		      (dfs->dfs_status_timeout_override ==
581 		       -1) ? HOST_DFS_STATUS_WAIT_TIMER_MS :
582 		      dfs->dfs_status_timeout_override);
583 }
584 
585 void dfs_host_wait_timer_reset(struct wlan_dfs *dfs)
586 {
587 	dfs->dfs_is_host_wait_running = 0;
588 	qdf_timer_sync_cancel(&dfs->dfs_host_wait_timer);
589 }
590 
591 /**
592  * dfs_action_on_spoof_success() - DFS action on spoof test pass
593  * @dfs: Pointer to DFS object
594  */
595 static void dfs_action_on_spoof_success(struct wlan_dfs *dfs)
596 {
597 	dfs->dfs_spoof_test_done = 1;
598 	if (dfs->dfs_radar_found_chan.dfs_ch_freq ==
599 			dfs->dfs_curchan->dfs_ch_freq) {
600 		dfs_info(dfs, WLAN_DEBUG_DFS_ALWAYS,
601 			 "cac timer started for channel %d",
602 			 dfs->dfs_curchan->dfs_ch_ieee);
603 		dfs_start_cac_timer(dfs);
604 	} else{
605 		dfs_remove_spoof_channel_from_nol(dfs);
606 	}
607 }
608 
609 void dfs_action_on_fw_radar_status_check(struct wlan_dfs *dfs,
610 					 uint32_t *status)
611 {
612 	struct wlan_objmgr_pdev *dfs_pdev;
613 	int no_chans_avail = 0;
614 	int error_flag = 0;
615 
616 	dfs_host_wait_timer_reset(dfs);
617 	dfs_info(dfs, WLAN_DEBUG_DFS_ALWAYS, "Host DFS status = %d",
618 		 *status);
619 
620 	dfs_pdev = dfs->dfs_pdev_obj;
621 	if (!dfs_pdev) {
622 		dfs_err(dfs, WLAN_DEBUG_DFS_ALWAYS, "dfs_pdev_obj is NULL");
623 		return;
624 	}
625 
626 	switch (*status) {
627 	case HOST_DFS_STATUS_CHECK_PASSED:
628 		if (dfs->dfs_average_params_sent)
629 			dfs_action_on_spoof_success(dfs);
630 		else
631 			error_flag = 1;
632 		break;
633 	case HOST_DFS_STATUS_CHECK_FAILED:
634 		dfs->dfs_spoof_check_failed = 1;
635 		no_chans_avail =
636 		    dfs_mlme_rebuild_chan_list_with_non_dfs_channels(dfs_pdev);
637 		dfs_mlme_restart_vaps_with_non_dfs_chan(dfs_pdev,
638 							no_chans_avail);
639 		break;
640 	case HOST_DFS_STATUS_CHECK_HW_RADAR:
641 		if (dfs->dfs_average_params_sent) {
642 			if (dfs->dfs_radar_found_chan.dfs_ch_freq ==
643 			    dfs->dfs_curchan->dfs_ch_freq) {
644 				dfs_radarfound_action_generic(
645 						dfs,
646 						dfs->dfs_seg_id);
647 			} else {
648 				/* Else of this case, no action is needed as
649 				 * dfs_action would have been done at timer
650 				 * expiry itself.
651 				 */
652 				dfs_info(dfs, WLAN_DEBUG_DFS_ALWAYS,
653 					 "DFS Action already taken");
654 			}
655 		} else {
656 			error_flag = 1;
657 		}
658 		break;
659 	default:
660 		dfs_info(dfs, WLAN_DEBUG_DFS_ALWAYS,
661 			 "Status event mismatch:%d, Ignoring it",
662 			 *status);
663 	}
664 
665 	dfs->dfs_average_params_sent = 0;
666 	qdf_mem_zero(&dfs->dfs_radar_found_chan, sizeof(struct dfs_channel));
667 
668 	if (error_flag == 1) {
669 		dfs_info(dfs, WLAN_DEBUG_DFS_ALWAYS,
670 			 "Received imroper response %d. Discarding it",
671 			 *status);
672 	}
673 }
674 
675 void dfs_reset_spoof_test(struct wlan_dfs *dfs)
676 {
677 	dfs->dfs_spoof_test_done = 0;
678 	dfs->dfs_spoof_check_failed = 0;
679 }
680 #endif
681