xref: /wlan-dirver/qca-wifi-host-cmn/target_if/spectral/target_if_spectral.h (revision 0e1360e3584ff5c3da2f934990e584d2a5472d45)
1 /*
2  * Copyright (c) 2011,2017-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #ifndef _TARGET_IF_SPECTRAL_H_
21 #define _TARGET_IF_SPECTRAL_H_
22 
23 #include <wlan_objmgr_cmn.h>
24 #include <wlan_objmgr_psoc_obj.h>
25 #include <wlan_objmgr_pdev_obj.h>
26 #include <wlan_objmgr_vdev_obj.h>
27 #include <wlan_reg_services_api.h>
28 #include <qdf_lock.h>
29 #include <wlan_spectral_public_structs.h>
30 #include <reg_services_public_struct.h>
31 #ifdef DIRECT_BUF_RX_ENABLE
32 #include <target_if_direct_buf_rx_api.h>
33 #endif
34 #ifdef WIN32
35 #pragma pack(push, target_if_spectral, 1)
36 #define __ATTRIB_PACK
37 #else
38 #ifndef __ATTRIB_PACK
39 #define __ATTRIB_PACK __attribute__ ((packed))
40 #endif
41 #endif
42 
43 #include <spectral_defs_i.h>
44 #include <wmi_unified_param.h>
45 
46 #define FREQ_OFFSET_10MHZ (10)
47 #define FREQ_OFFSET_40MHZ (40)
48 #define FREQ_OFFSET_80MHZ (80)
49 #define FREQ_OFFSET_85MHZ (85)
50 #ifndef SPECTRAL_USE_NL_BCAST
51 #define SPECTRAL_USE_NL_BCAST  (0)
52 #endif
53 
54 #define STATUS_PASS       1
55 #define STATUS_FAIL       0
56 #undef spectral_dbg_line
57 #define spectral_dbg_line() \
58 	spectral_debug("----------------------------------------------------")
59 
60 #undef spectral_ops_not_registered
61 #define spectral_ops_not_registered(str) \
62 	spectral_info("SPECTRAL : %s not registered\n", (str))
63 #undef not_yet_implemented
64 #define not_yet_implemented() \
65 	spectral_info("SPECTRAL : %s : %d Not yet implemented\n", \
66 		      __func__, __LINE__)
67 
68 #define SPECTRAL_HT20_NUM_BINS               56
69 #define SPECTRAL_HT20_FFT_LEN                56
70 #define SPECTRAL_HT20_DC_INDEX               (SPECTRAL_HT20_FFT_LEN / 2)
71 #define SPECTRAL_HT20_DATA_LEN               60
72 #define SPECTRAL_HT20_TOTAL_DATA_LEN         (SPECTRAL_HT20_DATA_LEN + 3)
73 #define SPECTRAL_HT40_TOTAL_NUM_BINS         128
74 #define SPECTRAL_HT40_DATA_LEN               135
75 #define SPECTRAL_HT40_TOTAL_DATA_LEN         (SPECTRAL_HT40_DATA_LEN + 3)
76 #define SPECTRAL_HT40_FFT_LEN                128
77 #define SPECTRAL_HT40_DC_INDEX               (SPECTRAL_HT40_FFT_LEN / 2)
78 
79 /*
80  * Used for the SWAR to obtain approximate combined rssi
81  * in secondary 80Mhz segment
82  */
83 #define OFFSET_CH_WIDTH_20	65
84 #define OFFSET_CH_WIDTH_40	62
85 #define OFFSET_CH_WIDTH_80	56
86 #define OFFSET_CH_WIDTH_160	50
87 
88 /* Min and max for relevant Spectral params */
89 #define SPECTRAL_PARAM_FFT_SIZE_MIN_GEN2          (1)
90 #define SPECTRAL_PARAM_FFT_SIZE_MAX_GEN2          (9)
91 #define SPECTRAL_PARAM_FFT_SIZE_MIN_GEN3          (5)
92 #define SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_DEFAULT  (9)
93 #define SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_QCN9000  (10)
94 #define SPECTRAL_PARAM_FFT_SIZE_MIN_GEN3_BE       (5)
95 #define SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_BE       (11)
96 #define SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_BE_20MHZ (9)
97 #define SPECTRAL_PARAM_FFT_SIZE_MAX_GEN3_BE_40MHZ (10)
98 #define INVALID_FFT_SIZE                          (0xFFFF)
99 #define SPECTRAL_PARAM_RPT_MODE_MIN               (0)
100 #define SPECTRAL_PARAM_RPT_MODE_MAX               (3)
101 #define SPECTRAL_DWORD_SIZE                       (4)
102 
103 #define MAX_FFTBIN_VALUE_LINEAR_MODE              (U8_MAX)
104 #define MAX_FFTBIN_VALUE_DBM_MODE                 (S8_MAX)
105 #define MIN_FFTBIN_VALUE_DBM_MODE                 (S8_MIN)
106 #define MAX_FFTBIN_VALUE                          (255)
107 
108 /* DBR ring debug size for Spectral */
109 #define SPECTRAL_DBR_RING_DEBUG_SIZE 512
110 
111 #ifdef BIG_ENDIAN_HOST
112 #define SPECTRAL_MESSAGE_COPY_CHAR_ARRAY(destp, srcp, len)  do { \
113 	int j; \
114 	uint32_t *src, *dest; \
115 	src = (uint32_t *)(srcp); \
116 	dest = (uint32_t *)(destp); \
117 	for (j = 0; j < roundup((len), sizeof(uint32_t)) / 4; j++) { \
118 	*(dest + j) = qdf_le32_to_cpu(*(src + j)); \
119 	} \
120 	} while (0)
121 #else
122 #define SPECTRAL_MESSAGE_COPY_CHAR_ARRAY(destp, srcp, len) \
123 	OS_MEMCPY((destp), (srcp), (len));
124 #endif
125 
126 #define DUMMY_NF_VALUE          (-123)
127 /* 5 categories x (lower + upper) bands */
128 #define MAX_INTERF                   10
129 #define HOST_MAX_ANTENNA         3
130 /* Mask for time stamp from descriptor */
131 #define SPECTRAL_TSMASK              0xFFFFFFFF
132 #define SPECTRAL_SIGNATURE           0xdeadbeef
133 /* Signature to write onto spectral buffer and then later validate */
134 #define MEM_POISON_SIGNATURE (htobe32(0xdeadbeef))
135 
136 /* START of spectral GEN II HW specific details */
137 #define SPECTRAL_PHYERR_SIGNATURE_GEN2           0xbb
138 #define TLV_TAG_SPECTRAL_SUMMARY_REPORT_GEN2     0xF9
139 #define TLV_TAG_ADC_REPORT_GEN2                  0xFA
140 #define TLV_TAG_SEARCH_FFT_REPORT_GEN2           0xFB
141 
142 /*
143  * The Maximum number of detector information to be filled in the SAMP msg
144  * is 3, only for 165MHz case. For all other cases this value will be 1.
145  */
146 #define MAX_NUM_DEST_DETECTOR_INFO    (3)
147 #define MAX_DETECTORS_PER_PDEV        (3)
148 #define FFT_BIN_SIZE_1BYTE            (1)
149 
150 #ifdef OPTIMIZED_SAMP_MESSAGE
151 /**
152  * enum spectral_160mhz_report_delivery_state - 160 MHz state machine states
153  * @SPECTRAL_REPORT_WAIT_PRIMARY80:   Wait for primary80 report
154  * @SPECTRAL_REPORT_WAIT_SECONDARY80: Wait for secondory 80 report
155  */
156 enum spectral_160mhz_report_delivery_state {
157 	SPECTRAL_REPORT_WAIT_PRIMARY80,
158 	SPECTRAL_REPORT_WAIT_SECONDARY80,
159 };
160 #else
161 /**
162  * enum spectral_160mhz_report_delivery_state - 160 MHz state machine states
163  * @SPECTRAL_REPORT_WAIT_PRIMARY80:   Wait for primary80 report
164  * @SPECTRAL_REPORT_RX_PRIMARY80:     Receive primary 80 report
165  * @SPECTRAL_REPORT_WAIT_SECONDARY80: Wait for secondory 80 report
166  * @SPECTRAL_REPORT_RX_SECONDARY80:   Receive secondary 80 report
167  */
168 enum spectral_160mhz_report_delivery_state {
169 	SPECTRAL_REPORT_WAIT_PRIMARY80,
170 	SPECTRAL_REPORT_RX_PRIMARY80,
171 	SPECTRAL_REPORT_WAIT_SECONDARY80,
172 	SPECTRAL_REPORT_RX_SECONDARY80,
173 };
174 #endif /* OPTIMIZED_SAMP_MESSAGE */
175 
176 /**
177  * enum spectral_freq_span_id - Spectral frequency span id
178  * @SPECTRAL_FREQ_SPAN_ID_0: Frequency span 0
179  * @SPECTRAL_FREQ_SPAN_ID_1: Frequency span 1
180  * @SPECTRAL_FREQ_SPAN_ID_2: Frequency span 2
181  */
182 enum spectral_freq_span_id {
183 	SPECTRAL_FREQ_SPAN_ID_0,
184 	SPECTRAL_FREQ_SPAN_ID_1,
185 	SPECTRAL_FREQ_SPAN_ID_2,
186 };
187 
188 /**
189  * enum spectral_detector_id - Spectral detector id
190  * @SPECTRAL_DETECTOR_ID_0: Spectral detector 0
191  * @SPECTRAL_DETECTOR_ID_1: Spectral detector 1
192  * @SPECTRAL_DETECTOR_ID_2: Spectral detector 2
193  * @SPECTRAL_DETECTOR_ID_MAX: Max Spectral detector ID
194  * @SPECTRAL_DETECTOR_ID_INVALID: Invalid Spectral detector ID
195  */
196 enum spectral_detector_id {
197 	SPECTRAL_DETECTOR_ID_0,
198 	SPECTRAL_DETECTOR_ID_1,
199 	SPECTRAL_DETECTOR_ID_2,
200 	SPECTRAL_DETECTOR_ID_MAX,
201 	SPECTRAL_DETECTOR_ID_INVALID = 0xff,
202 };
203 
204 /**
205  * struct spectral_search_fft_info_gen2 - spectral search fft report for gen2
206  * @relpwr_db:       Total bin power in db
207  * @num_str_bins_ib: Number of strong bins
208  * @base_pwr:        Base power
209  * @total_gain_info: Total gain
210  * @fft_chn_idx:     FFT chain on which report is originated
211  * @avgpwr_db:       Average power in db
212  * @peak_mag:        Peak power seen in the bins
213  * @peak_inx:        Index of bin holding peak power
214  */
215 struct spectral_search_fft_info_gen2 {
216 	uint32_t relpwr_db;
217 	uint32_t num_str_bins_ib;
218 	uint32_t base_pwr;
219 	uint32_t total_gain_info;
220 	uint32_t fft_chn_idx;
221 	uint32_t avgpwr_db;
222 	uint32_t peak_mag;
223 	int16_t  peak_inx;
224 };
225 
226 /*
227  * XXX Check if we should be handling the endinness difference in some
228  * other way opaque to the host
229  */
230 #ifdef BIG_ENDIAN_HOST
231 
232 /**
233  * struct spectral_phyerr_tlv_gen2 - phyerr tlv info for big endian host
234  * @signature: signature
235  * @tag:       tag
236  * @length:    length
237  */
238 struct spectral_phyerr_tlv_gen2 {
239 	uint8_t  signature;
240 	uint8_t  tag;
241 	uint16_t length;
242 } __ATTRIB_PACK;
243 
244 #else
245 
246 /**
247  * struct spectral_phyerr_tlv_gen2 - phyerr tlv info for little endian host
248  * @length:    length
249  * @tag:       tag
250  * @signature: signature
251  */
252 struct spectral_phyerr_tlv_gen2 {
253 	uint16_t length;
254 	uint8_t  tag;
255 	uint8_t  signature;
256 } __ATTRIB_PACK;
257 
258 #endif /* BIG_ENDIAN_HOST */
259 
260 /**
261  * struct spectral_phyerr_hdr_gen2 - phyerr header for gen2 HW
262  * @hdr_a: Header[0:31]
263  * @hdr_b: Header[32:63]
264  */
265 struct spectral_phyerr_hdr_gen2 {
266 	uint32_t hdr_a;
267 	uint32_t hdr_b;
268 };
269 
270 /*
271  * Segment ID information for 80+80.
272  *
273  * If the HW micro-architecture specification extends this DWORD for other
274  * purposes, then redefine+rename accordingly. For now, the specification
275  * mentions only segment ID (though this doesn't require an entire DWORD)
276  * without mention of any generic terminology for the DWORD, or any reservation.
277  * We use nomenclature accordingly.
278  */
279 typedef uint32_t SPECTRAL_SEGID_INFO;
280 
281 /**
282  * struct spectral_phyerr_fft_gen2 - fft info in phyerr event
283  * @buf: fft report
284  */
285 struct spectral_phyerr_fft_gen2 {
286 	uint8_t buf[0];
287 };
288 
289 /**
290  * struct spectral_process_phyerr_info_gen2 - Processed phyerr info structures
291  * needed to fill SAMP params for gen2
292  * @p_rfqual: Pointer to RF quality info
293  * @p_sfft: Pointer to Search fft report info
294  * @pfft: Pointer to FFT info in Phyerr event
295  * @acs_stats: Pointer to ACS stats struct
296  * @tsf64: 64 bit TSF value
297  * @seg_id: Segment ID
298  */
299 struct spectral_process_phyerr_info_gen2 {
300 	struct target_if_spectral_rfqual_info *p_rfqual;
301 	struct spectral_search_fft_info_gen2 *p_sfft;
302 	struct spectral_phyerr_fft_gen2 *pfft;
303 	struct target_if_spectral_acs_stats *acs_stats;
304 	uint64_t tsf64;
305 	uint8_t seg_id;
306 };
307 
308 /* END of spectral GEN II HW specific details */
309 
310 /* START of spectral GEN III HW specific details */
311 
312 #define get_bitfield(value, size, pos) \
313 	(((value) >> (pos)) & ((1 << (size)) - 1))
314 #define unsigned_to_signed(value, width) \
315 	(((value) >= (1 << ((width) - 1))) ? \
316 		(value - (1 << (width))) : (value))
317 
318 #define SSCAN_SUMMARY_REPORT_HDR_A_DETECTOR_ID_POS_GEN3         (29)
319 #define SSCAN_SUMMARY_REPORT_HDR_A_DETECTOR_ID_SIZE_GEN3        (2)
320 #define SSCAN_SUMMARY_REPORT_HDR_A_AGC_TOTAL_GAIN_POS_GEN3      (0)
321 #define SSCAN_SUMMARY_REPORT_HDR_A_AGC_TOTAL_GAIN_SIZE_GEN3     (8)
322 #define SSCAN_SUMMARY_REPORT_HDR_A_INBAND_PWR_DB_POS_GEN3       (18)
323 #define SSCAN_SUMMARY_REPORT_HDR_A_INBAND_PWR_DB_SIZE_GEN3      (10)
324 #define SSCAN_SUMMARY_REPORT_HDR_A_PRI80_POS_GEN3               (31)
325 #define SSCAN_SUMMARY_REPORT_HDR_A_PRI80_SIZE_GEN3              (1)
326 #define SSCAN_SUMMARY_REPORT_HDR_B_GAINCHANGE_POS_GEN3_V1       (30)
327 #define SSCAN_SUMMARY_REPORT_HDR_B_GAINCHANGE_SIZE_GEN3_V1      (1)
328 #define SSCAN_SUMMARY_REPORT_HDR_C_GAINCHANGE_POS_GEN3_V2       (16)
329 #define SSCAN_SUMMARY_REPORT_HDR_C_GAINCHANGE_SIZE_GEN3_V2      (1)
330 #define SSCAN_SUMMARY_REPORT_PAD_HDR_A_BLANKING_POS_GEN3_V2     (0)
331 #define SSCAN_SUMMARY_REPORT_PAD_HDR_A_BLANKING_SIZE_GEN3_V2    (32)
332 #define SSCAN_SUMMARY_REPORT_PAD_HDR_A_BLANKING_TAG_GEN3_V2     (0xc0debeaf)
333 #define SPECTRAL_REPORT_LTS_HDR_LENGTH_POS_GEN3                 (0)
334 #define SPECTRAL_REPORT_LTS_HDR_LENGTH_SIZE_GEN3                (16)
335 #define SPECTRAL_REPORT_LTS_TAG_POS_GEN3                        (16)
336 #define SPECTRAL_REPORT_LTS_TAG_SIZE_GEN3                       (8)
337 #define SPECTRAL_REPORT_LTS_SIGNATURE_POS_GEN3                  (24)
338 #define SPECTRAL_REPORT_LTS_SIGNATURE_SIZE_GEN3                 (8)
339 #define FFT_REPORT_HDR_A_DETECTOR_ID_POS_GEN3                   (0)
340 #define FFT_REPORT_HDR_A_DETECTOR_ID_SIZE_GEN3                  (2)
341 #define FFT_REPORT_HDR_A_FFT_NUM_POS_GEN3                       (2)
342 #define FFT_REPORT_HDR_A_FFT_NUM_SIZE_GEN3                      (3)
343 #define FFT_REPORT_HDR_A_RADAR_CHECK_POS_GEN3_V1                (5)
344 #define FFT_REPORT_HDR_A_RADAR_CHECK_SIZE_GEN3_V1               (12)
345 #define FFT_REPORT_HDR_A_RADAR_CHECK_POS_GEN3_V2                (5)
346 #define FFT_REPORT_HDR_A_RADAR_CHECK_SIZE_GEN3_V2               (14)
347 #define FFT_REPORT_HDR_A_PEAK_INDEX_POS_GEN3_V1                 (17)
348 #define FFT_REPORT_HDR_A_PEAK_INDEX_SIZE_GEN3_V1                (11)
349 #define FFT_REPORT_HDR_A_PEAK_INDEX_POS_GEN3_V2                 (19)
350 #define FFT_REPORT_HDR_A_PEAK_INDEX_SIZE_GEN3_V2                (11)
351 #define FFT_REPORT_HDR_A_CHAIN_INDEX_POS_GEN3_V1                (28)
352 #define FFT_REPORT_HDR_A_CHAIN_INDEX_SIZE_GEN3_V1               (3)
353 #define FFT_REPORT_HDR_B_CHAIN_INDEX_POS_GEN3_V2                (0)
354 #define FFT_REPORT_HDR_B_CHAIN_INDEX_SIZE_GEN3_V2               (3)
355 #define FFT_REPORT_HDR_B_BASE_PWR_POS_GEN3_V1                   (0)
356 #define FFT_REPORT_HDR_B_BASE_PWR_SIZE_GEN3_V1                  (9)
357 #define FFT_REPORT_HDR_B_BASE_PWR_POS_GEN3_V2                   (3)
358 #define FFT_REPORT_HDR_B_BASE_PWR_SIZE_GEN3_V2                  (9)
359 #define FFT_REPORT_HDR_B_TOTAL_GAIN_POS_GEN3_V1                 (9)
360 #define FFT_REPORT_HDR_B_TOTAL_GAIN_SIZE_GEN3_V1                (8)
361 #define FFT_REPORT_HDR_B_TOTAL_GAIN_POS_GEN3_V2                 (12)
362 #define FFT_REPORT_HDR_B_TOTAL_GAIN_SIZE_GEN3_V2                (8)
363 #define FFT_REPORT_HDR_C_NUM_STRONG_BINS_POS_GEN3               (0)
364 #define FFT_REPORT_HDR_C_NUM_STRONG_BINS_SIZE_GEN3              (8)
365 #define FFT_REPORT_HDR_C_PEAK_MAGNITUDE_POS_GEN3                (8)
366 #define FFT_REPORT_HDR_C_PEAK_MAGNITUDE_SIZE_GEN3               (10)
367 #define FFT_REPORT_HDR_C_AVG_PWR_POS_GEN3                       (18)
368 #define FFT_REPORT_HDR_C_AVG_PWR_SIZE_GEN3                      (7)
369 #define FFT_REPORT_HDR_C_RELATIVE_PWR_POS_GEN3                  (25)
370 #define FFT_REPORT_HDR_C_RELATIVE_PWR_SIZE_GEN3                 (7)
371 
372 #define SPECTRAL_PHYERR_SIGNATURE_GEN3                          (0xFA)
373 #define TLV_TAG_SPECTRAL_SUMMARY_REPORT_GEN3                    (0x02)
374 #define TLV_TAG_SEARCH_FFT_REPORT_GEN3                          (0x03)
375 #define SPECTRAL_PHYERR_TLVSIZE_GEN3                            (4)
376 
377 #define NUM_SPECTRAL_DETECTORS_GEN3_V1                     (3)
378 #define NUM_SPECTRAL_DETECTORS_GEN3_V2                     (2)
379 #define FFT_REPORT_HEADER_LENGTH_GEN3_V2                   (24)
380 #define FFT_REPORT_HEADER_LENGTH_GEN3_V1                   (16)
381 #define NUM_PADDING_BYTES_SSCAN_SUMARY_REPORT_GEN3_V1      (0)
382 #define NUM_PADDING_BYTES_SSCAN_SUMARY_REPORT_GEN3_V2      (16)
383 
384 #define SPECTRAL_PHYERR_HDR_LTS_POS \
385 	(offsetof(struct spectral_phyerr_fft_report_gen3, fft_hdr_lts))
386 #define SPECTRAL_FFT_BINS_POS \
387 	(offsetof(struct spectral_phyerr_fft_report_gen3, buf))
388 
389 /**
390  * struct phyerr_info - spectral search fft report for gen3
391  * @data:       handle to phyerror buffer
392  * @datalen:    length of phyerror buffer
393  * @p_rfqual:   rf quality matrices
394  * @p_chaninfo: pointer to chaninfo
395  * @tsf64:      64 bit TSF
396  * @acs_stats:  acs stats
397  */
398 struct phyerr_info {
399 	uint8_t *data;
400 	uint32_t datalen;
401 	struct target_if_spectral_rfqual_info *p_rfqual;
402 	struct target_if_spectral_chan_info *p_chaninfo;
403 	uint64_t tsf64;
404 	struct target_if_spectral_acs_stats *acs_stats;
405 };
406 
407 /**
408  * struct spectral_search_fft_info_gen3 - spectral search fft report for gen3
409  * @timestamp:           Timestamp at which fft report was generated
410  * @last_raw_timestamp:  Previous FFT report's raw timestamp
411  * @adjusted_timestamp:  Adjusted timestamp to account for target reset
412  * @fft_detector_id:     Which radio generated this report
413  * @fft_num:             The FFT count number. Set to 0 for short FFT.
414  * @fft_radar_check:     NA for spectral
415  * @fft_peak_sidx:       Index of bin with maximum power
416  * @fft_chn_idx:         Rx chain index
417  * @fft_base_pwr_db:     Base power in dB
418  * @fft_total_gain_db:   Total gain in dB
419  * @fft_num_str_bins_ib: Number of strong bins in the report
420  * @fft_peak_mag:        Peak magnitude
421  * @fft_avgpwr_db:       Average power in dB
422  * @fft_relpwr_db:       Relative power in dB
423  * @fft_bin_count:       Number of FFT bins in the FFT report
424  * @fft_bin_size:        Size of one FFT bin in bytes
425  * @bin_pwr_data:        Contains FFT bins extracted from the report
426  */
427 struct spectral_search_fft_info_gen3 {
428 	uint32_t timestamp;
429 	uint32_t last_raw_timestamp;
430 	uint32_t adjusted_timestamp;
431 	uint32_t fft_detector_id;
432 	uint32_t fft_num;
433 	uint32_t fft_radar_check;
434 	int32_t  fft_peak_sidx;
435 	uint32_t fft_chn_idx;
436 	uint32_t fft_base_pwr_db;
437 	uint32_t fft_total_gain_db;
438 	uint32_t fft_num_str_bins_ib;
439 	int32_t  fft_peak_mag;
440 	uint32_t fft_avgpwr_db;
441 	uint32_t fft_relpwr_db;
442 	uint32_t fft_bin_count;
443 	uint8_t  fft_bin_size;
444 	uint8_t  *bin_pwr_data;
445 };
446 
447 /**
448  * struct spectral_phyerr_fft_report_gen3 - fft info in phyerr event
449  * @fft_timestamp:  Timestamp at which fft report was generated
450  * @fft_hdr_lts:    length, tag, signature fields
451  * @hdr_a:          Header[0:31]
452  * @hdr_b:          Header[32:63]
453  * @hdr_c:          Header[64:95]
454  * @resv:           Header[96:127]
455  * @buf:            fft bins
456  */
457 struct spectral_phyerr_fft_report_gen3 {
458 	uint32_t fft_timestamp;
459 	uint32_t fft_hdr_lts;
460 	uint32_t hdr_a;
461 	uint32_t hdr_b;
462 	uint32_t hdr_c;
463 	uint32_t resv;
464 	uint8_t buf[0];
465 } __ATTRIB_PACK;
466 
467 /**
468  * struct sscan_report_fields_gen3 - Fields of spectral report
469  * @sscan_agc_total_gain:  The AGC total gain in DB.
470  * @inband_pwr_db: The in-band power of the signal in 1/2 DB steps
471  * @sscan_gainchange: This bit is set to 1 if a gainchange occurred during
472  *                 the spectral scan FFT.  Software may choose to
473  *                 disregard the results.
474  * @sscan_pri80: This is set to 1 to indicate that the Spectral scan was
475  *                 performed on the pri80 segment. Software may choose to
476  *                 disregard the FFT sample if this is set to 1 but detector ID
477  *                 does not correspond to the ID for the pri80 segment.
478  * @sscan_detector_id: Detector ID in Spectral scan report
479  * @blanking_status: Indicates whether scan blanking was enabled during this
480  * spectral report capture. This field is applicable only when scan blanking
481  * feature is enabled. When scan blanking feature is disabled, this field
482  * will be set to zero.
483  */
484 struct sscan_report_fields_gen3 {
485 	uint8_t sscan_agc_total_gain;
486 	int16_t inband_pwr_db;
487 	uint8_t sscan_gainchange;
488 	uint8_t sscan_pri80;
489 	uint8_t sscan_detector_id;
490 	uint8_t blanking_status;
491 };
492 
493 /**
494  * struct spectral_sscan_summary_report_gen3 - Spectral summary report
495  * event
496  * @sscan_timestamp:  Timestamp at which fft report was generated
497  * @sscan_hdr_lts:    length, tag, signature fields
498  * @hdr_a:          Header[0:31]
499  * @res1:           Header[32:63]
500  * @hdr_b:          Header[64:95]
501  * @hdr_c:          Header[96:127]
502  */
503 struct spectral_sscan_summary_report_gen3 {
504 	u_int32_t sscan_timestamp;
505 	u_int32_t sscan_hdr_lts;
506 	u_int32_t hdr_a;
507 	u_int32_t res1;
508 	u_int32_t hdr_b;
509 	u_int32_t hdr_c;
510 } __ATTRIB_PACK;
511 
512 /**
513  * struct spectral_sscan_summary_report_padding_gen3_v2 - Spectral summary
514  * report padding region
515  * @hdr_a: Header[0:31]
516  * @hdr_b: Header[32:63]
517  * @hdr_c: Header[64:95]
518  * @hdr_d: Header[96:127]
519  */
520 struct spectral_sscan_summary_report_padding_gen3_v2 {
521 	u_int32_t hdr_a;
522 	u_int32_t hdr_b;
523 	u_int32_t hdr_c;
524 	u_int32_t hdr_d;
525 } __ATTRIB_PACK;
526 
527 #ifdef DIRECT_BUF_RX_ENABLE
528 /**
529  * struct spectral_report - spectral report
530  * @data: Report buffer
531  * @noisefloor: Noise floor values
532  * @reset_delay: Time taken for warm reset in us
533  * @cfreq1: center frequency 1
534  * @cfreq2: center frequency 2
535  * @ch_width: channel width
536  */
537 struct spectral_report {
538 	uint8_t *data;
539 	int32_t noisefloor[DBR_MAX_CHAINS];
540 	uint32_t reset_delay;
541 	uint32_t cfreq1;
542 	uint32_t cfreq2;
543 	uint32_t ch_width;
544 };
545 #endif
546 /* END of spectral GEN III HW specific details */
547 
548 typedef signed char pwr_dbm;
549 
550 /**
551  * enum spectral_gen - spectral hw generation
552  * @SPECTRAL_GEN1 : spectral hw gen 1
553  * @SPECTRAL_GEN2 : spectral hw gen 2
554  * @SPECTRAL_GEN3 : spectral hw gen 3
555  */
556 enum spectral_gen {
557 	SPECTRAL_GEN1,
558 	SPECTRAL_GEN2,
559 	SPECTRAL_GEN3,
560 };
561 
562 /**
563  * enum spectral_fftbin_size_war - spectral fft bin size war
564  * @SPECTRAL_FFTBIN_SIZE_NO_WAR: No WAR applicable for Spectral FFT bin size
565  * @SPECTRAL_FFTBIN_SIZE_WAR_2BYTE_TO_1BYTE: Spectral FFT bin size: Retain only
566  *                                           least significant byte from 2 byte
567  *                                           FFT bin transferred by HW
568  * @SPECTRAL_FFTBIN_SIZE_WAR_4BYTE_TO_1BYTE: Spectral FFT bin size: Retain only
569  *                                           least significant byte from 4 byte
570  *                                           FFT bin transferred by HW
571  */
572 enum spectral_fftbin_size_war {
573 	SPECTRAL_FFTBIN_SIZE_NO_WAR = 0,
574 	SPECTRAL_FFTBIN_SIZE_WAR_2BYTE_TO_1BYTE = 1,
575 	SPECTRAL_FFTBIN_SIZE_WAR_4BYTE_TO_1BYTE = 2,
576 };
577 
578 /**
579  * enum spectral_report_format_version - This represents the report format
580  * version number within each Spectral generation.
581  * @SPECTRAL_REPORT_FORMAT_VERSION_1 : version 1
582  * @SPECTRAL_REPORT_FORMAT_VERSION_2 : version 2
583  */
584 enum spectral_report_format_version {
585 	SPECTRAL_REPORT_FORMAT_VERSION_1,
586 	SPECTRAL_REPORT_FORMAT_VERSION_2,
587 };
588 
589 /**
590  * struct spectral_fft_bin_len_adj_swar - Encapsulate information required for
591  * Spectral FFT bin length adjusting software WARS.
592  * @inband_fftbin_size_adj: Whether to carry out FFT bin size adjustment for
593  * in-band report format. This would be required on some chipsets under the
594  * following circumstances: In report mode 2 only the in-band bins are DMA'ed.
595  * Scatter/gather is used. However, the HW generates all bins, not just in-band,
596  * and reports the number of bins accordingly. The subsystem arranging for the
597  * DMA cannot change this value. On such chipsets the adjustment required at the
598  * host driver is to check if report format is 2, and if so halve the number of
599  * bins reported to get the number actually DMA'ed.
600  * @null_fftbin_adj: Whether to remove NULL FFT bins for report mode (1) in
601  * which only summary of metrics for each completed FFT + spectral scan summary
602  * report are to be provided. This would be required on some chipsets under the
603  * following circumstances: In report mode 1, HW reports a length corresponding
604  * to all bins, and provides bins with value 0. This is because the subsystem
605  * arranging for the FFT information does not arrange for DMA of FFT bin values
606  * (as expected), but cannot arrange for a smaller length to be reported by HW.
607  * In these circumstances, the driver would have to disregard the NULL bins and
608  * report a bin count of 0 to higher layers.
609  * @packmode_fftbin_size_adj: Pack mode in HW refers to packing of each Spectral
610  * FFT bin into 2 bytes. But due to a bug HW reports 2 times the expected length
611  * when packmode is enabled. This SWAR compensates this bug by dividing the
612  * length with 2.
613  * @fftbin_size_war: Type of FFT bin size SWAR
614  */
615 struct spectral_fft_bin_len_adj_swar {
616 	u_int8_t inband_fftbin_size_adj;
617 	u_int8_t null_fftbin_adj;
618 	uint8_t packmode_fftbin_size_adj;
619 	enum spectral_fftbin_size_war fftbin_size_war;
620 };
621 
622 /**
623  * struct spectral_report_params - Parameters related to format of Spectral
624  * report.
625  * @version: This represents the report format version number within each
626  * Spectral generation.
627  * @ssummary_padding_bytes: Number of bytes of padding after Spectral summary
628  * report
629  * @fft_report_hdr_len: Number of bytes in the header of the FFT report. This
630  * has to be subtracted from the length field of FFT report to find the length
631  * of FFT bins.
632  * @fragmentation_160: This indicates whether Spectral reports in 160/80p80 is
633  * fragmented.
634  * @detid_mode_table: Detector ID to Spectral scan mode table
635  * @num_spectral_detectors: Total number of Spectral detectors
636  * @marker: Describes the boundaries of pri80, 5 MHz and sec80 bins
637  * @hw_fft_bin_width: FFT bin width reported by the HW
638  */
639 struct spectral_report_params {
640 	enum spectral_report_format_version version;
641 	uint8_t ssummary_padding_bytes;
642 	uint8_t fft_report_hdr_len;
643 	bool fragmentation_160[SPECTRAL_SCAN_MODE_MAX];
644 	enum spectral_scan_mode detid_mode_table[SPECTRAL_DETECTOR_ID_MAX];
645 	uint8_t num_spectral_detectors;
646 	struct spectral_fft_bin_markers_160_165mhz
647 				marker[SPECTRAL_SCAN_MODE_MAX];
648 	uint8_t hw_fft_bin_width;
649 };
650 
651 /**
652  * struct spectral_param_min_max - Spectral parameter minimum and maximum values
653  * @fft_size_min: Minimum value of fft_size
654  * @fft_size_max: Maximum value of fft_size for each BW
655  */
656 struct spectral_param_min_max {
657 	uint16_t fft_size_min;
658 	uint16_t fft_size_max[CH_WIDTH_MAX];
659 };
660 
661 /**
662  * struct spectral_timestamp_war - Spectral time stamp WAR related parameters
663  * @timestamp_war_offset: Offset to be added to correct timestamp
664  * @target_reset_count: Number of times target exercised the reset routine
665  * @last_fft_timestamp: last fft report timestamp
666  */
667 struct spectral_timestamp_war {
668 	uint32_t timestamp_war_offset[SPECTRAL_SCAN_MODE_MAX];
669 	uint64_t target_reset_count;
670 	uint32_t last_fft_timestamp[SPECTRAL_SCAN_MODE_MAX];
671 };
672 
673 #if ATH_PERF_PWR_OFFLOAD
674 /**
675  * enum target_if_spectral_info - Enumerations for specifying which spectral
676  *                              information (among parameters and states)
677  *                              is desired.
678  * @TARGET_IF_SPECTRAL_INFO_ACTIVE:  Indicated whether spectral is active
679  * @TARGET_IF_SPECTRAL_INFO_ENABLED: Indicated whether spectral is enabled
680  * @TARGET_IF_SPECTRAL_INFO_PARAMS:  Config params
681  */
682 enum target_if_spectral_info {
683 	TARGET_IF_SPECTRAL_INFO_ACTIVE,
684 	TARGET_IF_SPECTRAL_INFO_ENABLED,
685 	TARGET_IF_SPECTRAL_INFO_PARAMS,
686 };
687 #endif /* ATH_PERF_PWR_OFFLOAD */
688 
689 /* forward declaration */
690 struct target_if_spectral;
691 
692 /**
693  * struct target_if_spectral_chan_info - Channel information
694  * @center_freq1: center frequency 1 in MHz
695  * @center_freq2: center frequency 2 in MHz -valid only for
696  *		 11ACVHT 80PLUS80 mode
697  * @chan_width:   channel width in MHz
698  */
699 struct target_if_spectral_chan_info {
700 	uint16_t    center_freq1;
701 	uint16_t    center_freq2;
702 	uint8_t     chan_width;
703 };
704 
705 /**
706  * struct target_if_spectral_acs_stats - EACS stats from spectral samples
707  * @nfc_ctl_rssi: Control chan rssi
708  * @nfc_ext_rssi: Extension chan rssi
709  * @ctrl_nf:      Control chan Noise Floor
710  * @ext_nf:       Extension chan Noise Floor
711  */
712 struct target_if_spectral_acs_stats {
713 	int8_t nfc_ctl_rssi;
714 	int8_t nfc_ext_rssi;
715 	int8_t ctrl_nf;
716 	int8_t ext_nf;
717 };
718 
719 /**
720  * struct target_if_spectral_perchain_rssi_info - per chain rssi info
721  * @rssi_pri20: Rssi of primary 20 Mhz
722  * @rssi_sec20: Rssi of secondary 20 Mhz
723  * @rssi_sec40: Rssi of secondary 40 Mhz
724  * @rssi_sec80: Rssi of secondary 80 Mhz
725  */
726 struct target_if_spectral_perchain_rssi_info {
727 	int8_t    rssi_pri20;
728 	int8_t    rssi_sec20;
729 	int8_t    rssi_sec40;
730 	int8_t    rssi_sec80;
731 };
732 
733 /**
734  * struct target_if_spectral_rfqual_info - RF measurement information
735  * @rssi_comb:    RSSI Information
736  * @pc_rssi_info: XXX : For now, we know we are getting information
737  *                for only 4 chains at max. For future extensions
738  *                use a define
739  * @noise_floor:  Noise floor information
740  */
741 struct target_if_spectral_rfqual_info {
742 	int8_t    rssi_comb;
743 	struct    target_if_spectral_perchain_rssi_info pc_rssi_info[4];
744 	int16_t   noise_floor[4];
745 };
746 
747 #define GET_TARGET_IF_SPECTRAL_OPS(spectral) \
748 	((struct target_if_spectral_ops *)(&((spectral)->spectral_ops)))
749 
750 /**
751  * struct target_if_spectral_ops - spectral low level ops table
752  * @get_tsf64:               Get 64 bit TSF value
753  * @get_capability:          Get capability info
754  * @set_rxfilter:            Set rx filter
755  * @get_rxfilter:            Get rx filter
756  * @is_spectral_active:      Check whether icm is active
757  * @is_spectral_enabled:     Check whether spectral is enabled
758  * @start_spectral_scan:     Start spectral scan
759  * @stop_spectral_scan:      Stop spectral scan
760  * @get_extension_channel:   Get extension channel
761  * @get_ctl_noisefloor:      Get control noise floor
762  * @get_ext_noisefloor:      Get extension noise floor
763  * @configure_spectral:      Set spectral configurations
764  * @get_spectral_config:     Get spectral configurations
765  * @get_ent_spectral_mask:   Get spectral mask
766  * @get_mac_address:         Get mac address
767  * @get_current_channel:     Get current channel
768  * @reset_hw:                Reset HW
769  * @get_chain_noise_floor:   Get Channel noise floor
770  * @spectral_process_phyerr: Process phyerr event
771  * @process_spectral_report: Process spectral report
772  * @byte_swap_headers:       Apply byte-swap on report headers
773  * @byte_swap_fft_bins:      Apply byte-swap on FFT bins
774  */
775 struct target_if_spectral_ops {
776 	uint64_t (*get_tsf64)(void *arg);
777 	uint32_t (*get_capability)(
778 		void *arg, enum spectral_capability_type type);
779 	uint32_t (*set_rxfilter)(void *arg, int rxfilter);
780 	uint32_t (*get_rxfilter)(void *arg);
781 	uint32_t (*is_spectral_active)(void *arg,
782 				       enum spectral_scan_mode smode);
783 	uint32_t (*is_spectral_enabled)(void *arg,
784 					enum spectral_scan_mode smode);
785 	uint32_t (*start_spectral_scan)(void *arg,
786 					enum spectral_scan_mode smode,
787 					enum spectral_cp_error_code *err);
788 	uint32_t (*stop_spectral_scan)(void *arg,
789 				       enum spectral_scan_mode smode);
790 	uint32_t (*get_extension_channel)(void *arg,
791 					  enum spectral_scan_mode smode);
792 	int8_t    (*get_ctl_noisefloor)(void *arg);
793 	int8_t    (*get_ext_noisefloor)(void *arg);
794 	uint32_t (*configure_spectral)(
795 			void *arg,
796 			struct spectral_config *params,
797 			enum spectral_scan_mode smode);
798 	uint32_t (*get_spectral_config)(
799 			void *arg,
800 			struct spectral_config *params,
801 			enum spectral_scan_mode smode);
802 	uint32_t (*get_ent_spectral_mask)(void *arg);
803 	uint32_t (*get_mac_address)(void *arg, char *addr);
804 	uint32_t (*get_current_channel)(void *arg,
805 					enum spectral_scan_mode smode);
806 	uint32_t (*reset_hw)(void *arg);
807 	uint32_t (*get_chain_noise_floor)(void *arg, int16_t *nf_buf);
808 	int (*spectral_process_phyerr)(struct target_if_spectral *spectral,
809 				       uint8_t *data, uint32_t datalen,
810 			struct target_if_spectral_rfqual_info *p_rfqual,
811 			struct target_if_spectral_chan_info *p_chaninfo,
812 			uint64_t tsf64,
813 			struct target_if_spectral_acs_stats *acs_stats);
814 	int (*process_spectral_report)(struct wlan_objmgr_pdev *pdev,
815 				       void *payload);
816 	QDF_STATUS (*byte_swap_headers)(
817 		struct target_if_spectral *spectral,
818 		void *data);
819 	QDF_STATUS (*byte_swap_fft_bins)(
820 		const struct spectral_report_params *rparams,
821 		void *bin_pwr_data, size_t num_fftbins);
822 };
823 
824 /**
825  * struct target_if_spectral_stats - spectral stats info
826  * @num_spectral_detects: Total num. of spectral detects
827  * @total_phy_errors:     Total number of phyerrors
828  * @owl_phy_errors:       Indicated phyerrors in old gen1 chipsets
829  * @pri_phy_errors:       Phyerrors in primary channel
830  * @ext_phy_errors:       Phyerrors in secondary channel
831  * @dc_phy_errors:        Phyerrors due to dc
832  * @early_ext_phy_errors: Early secondary channel phyerrors
833  * @bwinfo_errors:        Bandwidth info errors
834  * @datalen_discards:     Invalid data length errors, seen in gen1 chipsets
835  * @rssi_discards:        Indicates reports dropped due to RSSI threshold
836  * @last_reset_tstamp:    Last reset time stamp
837  */
838 struct target_if_spectral_stats {
839 	uint32_t    num_spectral_detects;
840 	uint32_t    total_phy_errors;
841 	uint32_t    owl_phy_errors;
842 	uint32_t    pri_phy_errors;
843 	uint32_t    ext_phy_errors;
844 	uint32_t    dc_phy_errors;
845 	uint32_t    early_ext_phy_errors;
846 	uint32_t    bwinfo_errors;
847 	uint32_t    datalen_discards;
848 	uint32_t    rssi_discards;
849 	uint64_t    last_reset_tstamp;
850 };
851 
852 /**
853  * struct target_if_spectral_event - spectral event structure
854  * @se_ts:        Original 15 bit recv timestamp
855  * @se_full_ts:   64-bit full timestamp from interrupt time
856  * @se_rssi:      Rssi of spectral event
857  * @se_bwinfo:    Rssi of spectral event
858  * @se_dur:       Duration of spectral pulse
859  * @se_chanindex: Channel of event
860  * @se_list:      List of spectral events
861  */
862 struct target_if_spectral_event {
863 	uint32_t                       se_ts;
864 	uint64_t                       se_full_ts;
865 	uint8_t                        se_rssi;
866 	uint8_t                        se_bwinfo;
867 	uint8_t                        se_dur;
868 	uint8_t                        se_chanindex;
869 
870 	STAILQ_ENTRY(spectral_event)    se_list;
871 };
872 
873 /**
874  * struct target_if_chain_noise_pwr_info - Noise power info for each channel
875  * @rptcount:        Count of reports in pwr array
876  * @un_cal_nf:       Uncalibrated noise floor
877  * @factory_cal_nf:  Noise floor as calibrated at the factory for module
878  * @median_pwr:      Median power (median of pwr array)
879  * @pwr:             Power reports
880  */
881 struct target_if_chain_noise_pwr_info {
882 	int        rptcount;
883 	pwr_dbm    un_cal_nf;
884 	pwr_dbm    factory_cal_nf;
885 	pwr_dbm    median_pwr;
886 	pwr_dbm    pwr[];
887 } __ATTRIB_PACK;
888 
889 /**
890  * struct target_if_spectral_chan_stats - Channel information
891  * @cycle_count:         Cycle count
892  * @channel_load:        Channel load
893  * @per:                 Period
894  * @noisefloor:          Noise floor
895  * @comp_usablity:       Computed usability
896  * @maxregpower:         Maximum allowed regulatary power
897  * @comp_usablity_sec80: Computed usability of secondary 80 Mhz
898  * @maxregpower_sec80:   Max regulatory power in secondary 80 Mhz
899  */
900 struct target_if_spectral_chan_stats {
901 	int          cycle_count;
902 	int          channel_load;
903 	int          per;
904 	int          noisefloor;
905 	uint16_t    comp_usablity;
906 	int8_t       maxregpower;
907 	uint16_t    comp_usablity_sec80;
908 	int8_t       maxregpower_sec80;
909 };
910 
911 #if ATH_PERF_PWR_OFFLOAD
912 
913 /**
914  * struct target_if_spectral_cache - Cache used to minimize WMI operations
915  *                             in offload architecture
916  * @osc_spectral_enabled: Whether Spectral is enabled
917  * @osc_spectral_active:  Whether spectral is active
918  *                        XXX: Ideally, we should NOT cache this
919  *                        since the hardware can self clear the bit,
920  *                        the firmware can possibly stop spectral due to
921  *                        intermittent off-channel activity, etc
922  *                        A WMI read command should be introduced to handle
923  *                        this This will be discussed.
924  * @osc_params:           Spectral parameters
925  * @osc_is_valid:         Whether the cache is valid
926  */
927 struct target_if_spectral_cache {
928 	uint8_t                  osc_spectral_enabled;
929 	uint8_t                  osc_spectral_active;
930 	struct spectral_config    osc_params;
931 	uint8_t                  osc_is_valid;
932 };
933 
934 /**
935  * struct target_if_spectral_param_state_info - Structure used to represent and
936  *                                        manage spectral information
937  *                                        (parameters and states)
938  * @osps_lock:  Lock to synchronize accesses to information
939  * @osps_cache: Cacheable' information
940  */
941 struct target_if_spectral_param_state_info {
942 	qdf_spinlock_t               osps_lock;
943 	struct target_if_spectral_cache    osps_cache;
944 	/* XXX - Non-cacheable information goes here, in the future */
945 };
946 #endif /* ATH_PERF_PWR_OFFLOAD */
947 
948 struct vdev_spectral_configure_params;
949 struct vdev_spectral_enable_params;
950 
951 /**
952  * struct spectral_wmi_ops - structure used holding the operations
953  * related to Spectral WMI
954  * @wmi_spectral_configure_cmd_send: Configure Spectral parameters
955  * @wmi_spectral_enable_cmd_send: Enable/Disable Spectral
956  * @wmi_spectral_crash_inject: Inject FW crash
957  * @wmi_extract_pdev_sscan_fw_cmd_fixed_param: Extract Fixed params from
958  * start scan response event
959  * @wmi_extract_pdev_sscan_fft_bin_index: Extract TLV which describes FFT
960  * bin indices from start scan response event
961  * @wmi_unified_register_event_handler: Register WMI event handler
962  * @wmi_unified_unregister_event_handler: Unregister WMI event handler
963  * @wmi_service_enabled: API to check whether a given WMI service is enabled
964  * @extract_pdev_spectral_session_chan_info: Extract Spectral scan session
965  * channel information
966  * @extract_pdev_spectral_session_detector_info: Extract Spectral scan session
967  * detector information
968  * @extract_spectral_caps_fixed_param: Extract fixed parameters from Spectral
969  * capabilities event
970  * @extract_spectral_scan_bw_caps: Extract bandwidth capabilities from Spectral
971  * capabilities event
972  * @extract_spectral_fft_size_caps: Extract fft size capabilities from Spectral
973  * capabilities event
974  */
975 struct spectral_wmi_ops {
976 	QDF_STATUS (*wmi_spectral_configure_cmd_send)(
977 		    wmi_unified_t wmi_hdl,
978 		    struct vdev_spectral_configure_params *param);
979 	QDF_STATUS (*wmi_spectral_enable_cmd_send)(
980 		    wmi_unified_t wmi_hdl,
981 		    struct vdev_spectral_enable_params *param);
982 	QDF_STATUS (*wmi_spectral_crash_inject)(
983 		wmi_unified_t wmi_handle, struct crash_inject *param);
984 	QDF_STATUS (*wmi_extract_pdev_sscan_fw_cmd_fixed_param)(
985 				wmi_unified_t wmi_handle, uint8_t *evt_buf,
986 				struct spectral_startscan_resp_params *param);
987 	QDF_STATUS (*wmi_extract_pdev_sscan_fft_bin_index)(
988 			wmi_unified_t wmi_handle, uint8_t *evt_buf,
989 			struct spectral_fft_bin_markers_160_165mhz *param);
990 	QDF_STATUS (*wmi_unified_register_event_handler)(
991 				wmi_unified_t wmi_handle,
992 				wmi_conv_event_id event_id,
993 				wmi_unified_event_handler handler_func,
994 				uint8_t rx_ctx);
995 	QDF_STATUS (*wmi_unified_unregister_event_handler)(
996 				wmi_unified_t wmi_handle,
997 				wmi_conv_event_id event_id);
998 	bool (*wmi_service_enabled)(wmi_unified_t wmi_handle,
999 				    uint32_t service_id);
1000 	QDF_STATUS (*extract_pdev_spectral_session_chan_info)(
1001 			wmi_unified_t wmi_handle, void *event,
1002 			struct spectral_session_chan_info *chan_info);
1003 	QDF_STATUS (*extract_pdev_spectral_session_detector_info)(
1004 		wmi_unified_t wmi_handle, void *event,
1005 		struct spectral_session_det_info *det_info,
1006 		uint8_t det_info_idx);
1007 	QDF_STATUS (*extract_spectral_caps_fixed_param)(
1008 		wmi_unified_t wmi_handle, void *event,
1009 		struct spectral_capabilities_event_params *param);
1010 	QDF_STATUS (*extract_spectral_scan_bw_caps)(
1011 		wmi_unified_t wmi_handle, void *event,
1012 		struct spectral_scan_bw_capabilities *bw_caps);
1013 	QDF_STATUS (*extract_spectral_fft_size_caps)(
1014 		wmi_unified_t wmi_handle, void *event,
1015 		struct spectral_fft_size_capabilities *fft_size_caps);
1016 };
1017 
1018 /**
1019  * struct spectral_tgt_ops - structure used holding the operations
1020  * related to target operations
1021  * @tgt_get_psoc_from_scn_hdl: Function to get psoc from scn
1022  */
1023 struct spectral_tgt_ops {
1024 	struct wlan_objmgr_psoc *(*tgt_get_psoc_from_scn_hdl)(void *scn_handle);
1025 };
1026 
1027 /**
1028  * struct spectral_param_properties - structure holding Spectral
1029  *                                    parameter properties
1030  * @supported: Parameter is supported or not
1031  * @common_all_modes: Parameter should be common for all modes or not
1032  */
1033 struct spectral_param_properties {
1034 	bool supported;
1035 	bool common_all_modes;
1036 };
1037 
1038 /**
1039  * struct target_if_finite_spectral_scan_params - Parameters related to finite
1040  * Spectral scan
1041  * @finite_spectral_scan: Indicates the Spectrl scan is finite/infinite
1042  * @num_reports_expected: Number of Spectral reports expected from target for a
1043  * finite Spectral scan
1044  */
1045 struct target_if_finite_spectral_scan_params {
1046 	bool finite_spectral_scan;
1047 	uint32_t num_reports_expected;
1048 };
1049 
1050 /**
1051  * struct per_session_dest_det_info - Per-session Detector information to be
1052  * filled to samp_detector_info
1053  * @freq_span_id: Contiguous frequency span ID within the SAMP message
1054  * @is_sec80: Indicates pri80/sec80 segment for 160/80p80 BW
1055  * @det_id: Detector ID within samp_freq_span_info corresponding to
1056  * freq_span_id
1057  * @dest_start_bin_idx: Start index of FFT bins within SAMP msg's bin_pwr array
1058  * @dest_end_bin_idx: End index of FFT bins within SAMP msg's bin_pwr array
1059  * @lb_extrabins_start_idx: Left band edge extra bins start index
1060  * @lb_extrabins_num: Number of left band edge extra bins
1061  * @rb_extrabins_start_idx: Right band edge extra bins start index
1062  * @rb_extrabins_num: Number of right band edge extra bins
1063  * @start_freq: Indicates start frequency per-detector (in MHz)
1064  * @end_freq: Indicates last frequency per-detector (in MHz)
1065  * @src_start_bin_idx: Start index within the Spectral report's bin_pwr array,
1066  * where the FFT bins corresponding to this dest_det_id start
1067  */
1068 struct per_session_dest_det_info {
1069 	uint8_t freq_span_id;
1070 	bool is_sec80;
1071 	uint8_t det_id;
1072 	uint16_t dest_start_bin_idx;
1073 	uint16_t dest_end_bin_idx;
1074 	uint16_t lb_extrabins_start_idx;
1075 	uint16_t lb_extrabins_num;
1076 	uint16_t rb_extrabins_start_idx;
1077 	uint16_t rb_extrabins_num;
1078 	uint32_t start_freq;
1079 	uint32_t end_freq;
1080 	uint16_t src_start_bin_idx;
1081 };
1082 
1083 /**
1084  * struct per_session_det_map - A map of per-session detector information,
1085  * keyed by the detector id obtained from the Spectral FFT report, mapping to
1086  * destination detector info in SAMP message.
1087  * @dest_det_info: Struct containing per-session detector information
1088  * @num_dest_det_info: Number of destination detectors to which information
1089  * of this detector is to be filled
1090  * @buf_type: Spectral message buffer type
1091  * @send_to_upper_layers: Indicates whether to send SAMP msg to upper layers
1092  * @det_map_valid: Indicates whether detector map is valid or not
1093  */
1094 struct per_session_det_map {
1095 	struct per_session_dest_det_info
1096 			dest_det_info[MAX_NUM_DEST_DETECTOR_INFO];
1097 	uint8_t num_dest_det_info;
1098 	enum spectral_msg_buf_type buf_type;
1099 	bool send_to_upper_layers;
1100 	bool det_map_valid[SPECTRAL_SCAN_MODE_MAX];
1101 };
1102 
1103 /**
1104  * struct per_session_report_info - Consists of per-session Spectral report
1105  * information to be filled at report level in SAMP message.
1106  * @pri20_freq: Primary 20MHz operating frequency in MHz
1107  * @cfreq1: Centre frequency of the frequency span for 20/40/80 MHz BW.
1108  * Segment 1 centre frequency in MHz for 80p80/160 BW.
1109  * @cfreq2: For 80p80, indicates segment 2 centre frequency in MHz. For 160MHz,
1110  * indicates the center frequency of 160MHz span.
1111  * @operating_bw: Device's operating bandwidth.Valid values = enum phy_ch_width
1112  * @sscan_cfreq1: Normal/Agile scan Centre frequency of the frequency span for
1113  * 20/40/80 MHz BW. Center frequency of Primary Segment in MHz for 80p80/160 BW
1114  * Based on Spectral scan mode.
1115  * @sscan_cfreq2: For 80p80, Normal/Agile scan Center frequency for Sec80
1116  * segment. For 160MHz, indicates the center frequency of 160MHz span. Based on
1117  * spectral scan mode
1118  * @sscan_bw: Normal/Agile Scan BW based on Spectral scan mode.
1119  * Valid values = enum phy_ch_width
1120  * @num_spans: Number of frequency spans
1121  * @valid: Indicated whether report info is valid
1122  */
1123 struct per_session_report_info {
1124 	uint32_t pri20_freq;
1125 	uint32_t cfreq1;
1126 	uint32_t cfreq2;
1127 	enum phy_ch_width operating_bw;
1128 	uint32_t sscan_cfreq1;
1129 	uint32_t sscan_cfreq2;
1130 	enum phy_ch_width sscan_bw;
1131 	uint8_t num_spans;
1132 	bool valid;
1133 };
1134 
1135 /**
1136  * struct sscan_detector_list - Spectral scan Detector list, for given Spectral
1137  * scan mode and operating BW
1138  * @detectors: List of detectors
1139  * @num_detectors: Number of detectors for given spectral scan mode, BW
1140  *                 and target type
1141  */
1142 struct sscan_detector_list {
1143 	uint8_t detectors[SPECTRAL_DETECTOR_ID_MAX];
1144 	uint8_t num_detectors;
1145 };
1146 
1147 /**
1148  * struct spectral_supported_bws - Supported sscan bandwidths
1149  * @supports_sscan_bw_5: 5 MHz bandwidth supported
1150  * @supports_sscan_bw_10: 10 MHz bandwidth supported
1151  * @supports_sscan_bw_20: 20 MHz bandwidth supported
1152  * @supports_sscan_bw_40: 40 MHz bandwidth supported
1153  * @supports_sscan_bw_80: 80 MHz bandwidth supported
1154  * @supports_sscan_bw_160: 160 MHz bandwidth supported
1155  * @supports_sscan_bw_80_80: 80+80 MHz bandwidth supported
1156  * @supports_sscan_bw_320: 320 MHz bandwidth supported
1157  * @reserved: reserved for future use
1158  * @bandwidths: bitmap of supported sscan bandwidths. Make sure to maintain this
1159  * bitmap in the increasing order of bandwidths.
1160  */
1161 struct spectral_supported_bws {
1162 	union {
1163 		struct {
1164 			uint32_t supports_sscan_bw_5:1,
1165 				 supports_sscan_bw_10:1,
1166 				 supports_sscan_bw_20:1,
1167 				 supports_sscan_bw_40:1,
1168 				 supports_sscan_bw_80:1,
1169 				 supports_sscan_bw_160:1,
1170 				 supports_sscan_bw_80_80:1,
1171 				 supports_sscan_bw_320:1,
1172 				 reserved:24;
1173 		};
1174 		uint32_t bandwidths;
1175 	};
1176 };
1177 
1178 /**
1179  * get_supported_sscan_bw_pos() - Get the position of a given sscan_bw inside
1180  * the supported sscan bandwidths bitmap
1181  * @sscan_bw: Spectral scan bandwidth
1182  *
1183  * Return: bit position for a valid sscan bandwidth, else -1
1184  */
1185 int get_supported_sscan_bw_pos(enum phy_ch_width sscan_bw);
1186 
1187 /**
1188  * struct target_if_spectral - main spectral structure
1189  * @pdev_obj: Pointer to pdev
1190  * @spectral_ops: Target if internal Spectral low level operations table
1191  * @capability: Spectral capabilities structure
1192  * @properties: Spectral parameter properties per mode
1193  * @spectral_lock: Lock used for internal Spectral operations
1194  * @vdev_id: VDEV id for all spectral modes
1195  * @spectral_curchan_radindex: Current channel spectral index
1196  * @spectral_extchan_radindex: Extension channel spectral index
1197  * @spectraldomain: Current Spectral domain
1198  * @spectral_proc_phyerr:  Flags to process for PHY errors
1199  * @spectral_defaultparams: Default PHY params per Spectral stat
1200  * @spectral_stats:  Spectral related stats
1201  * @events:   Events structure
1202  * @sc_spectral_ext_chan_ok:  Can spectral be detected on the extension channel?
1203  * @sc_spectral_combined_rssi_ok:  Can use combined spectral RSSI?
1204  * @sc_spectral_20_40_mode:  Is AP in 20-40 mode?
1205  * @sc_spectral_noise_pwr_cal:  Noise power cal required?
1206  * @sc_spectral_non_edma:  Is the spectral capable device Non-EDMA?
1207  * @upper_is_control: Upper segment is primary
1208  * @upper_is_extension: Upper segment is secondary
1209  * @lower_is_control: Lower segment is primary
1210  * @lower_is_extension: Lower segment is secondary
1211  * @sc_spectraltest_ieeechan:  IEEE channel number to return to after a spectral
1212  * mute test
1213  * @spectral_numbins: Number of bins
1214  * @spectral_fft_len: FFT length
1215  * @spectral_data_len: Total phyerror report length
1216  * @lb_edge_extrabins: Number of extra bins on left band edge
1217  * @rb_edge_extrabins: Number of extra bins on right band edge
1218  * @spectral_max_index_offset: Max FFT index offset (20 MHz mode)
1219  * @spectral_upper_max_index_offset: Upper max FFT index offset (20/40 MHz mode)
1220  * @spectral_lower_max_index_offset: Lower max FFT index offset (20/40 MHz mode)
1221  * @spectral_dc_index: At which index DC is present
1222  * @send_single_packet: Deprecated
1223  * @spectral_sent_msg: Indicates whether we send report to upper layers
1224  * @classify_scan:
1225  * @classify_timer:
1226  * @params: Spectral parameters
1227  * @params_valid:
1228  * @classifier_params:
1229  * @last_capture_time: Indicates timestamp of previous report
1230  * @num_spectral_data: Number of Spectral samples received in current session
1231  * @total_spectral_data: Total number of Spectral samples received
1232  * @max_rssi: Maximum RSSI
1233  * @detects_control_channel: NA
1234  * @detects_extension_channel: NA
1235  * @detects_below_dc: NA
1236  * @detects_above_dc: NA
1237  * @sc_scanning: Indicates active wifi scan
1238  * @sc_spectral_scan: Indicates active specral scan
1239  * @sc_spectral_full_scan: Deprecated
1240  * @scan_start_tstamp: Deprecated
1241  * @last_tstamp: Deprecated
1242  * @first_tstamp: Deprecated
1243  * @spectral_samp_count: Deprecated
1244  * @sc_spectral_samp_count: Deprecated
1245  * @noise_pwr_reports_reqd: Number of noise power reports required
1246  * @noise_pwr_reports_recv: Number of noise power reports received
1247  * @noise_pwr_reports_lock: Lock used for Noise power report processing
1248  * @noise_pwr_chain_ctl: Noise power report - control channel
1249  * @noise_pwr_chain_ext: Noise power report - extension channel
1250  * @tsf64: Latest TSF Value
1251  * @param_info: Offload architecture Spectral parameter cache information
1252  * @ch_width: Indicates Channel Width 20/40/80/160 MHz for each Spectral mode
1253  * @sscan_width_configured: Whether user has configured sscan bandwidth
1254  * @diag_stats: Diagnostic statistics
1255  * @is_160_format:  Indicates whether information provided by HW is in altered
1256  * format for 802.11ac 160/80+80 MHz support (QCA9984 onwards)
1257  * @is_lb_edge_extrabins_format:  Indicates whether information provided by
1258  * HW has 4 extra bins, at left band edge, for report mode 2
1259  * @is_rb_edge_extrabins_format:   Indicates whether information provided
1260  * by HW has 4 extra bins, at right band edge, for report mode 2
1261  * @is_sec80_rssi_war_required: Indicates whether the software workaround is
1262  * required to obtain approximate combined RSSI for secondary 80Mhz segment
1263  * @simctx: Spectral Simulation context
1264  * @spectral_gen: Spectral hardware generation
1265  * @hdr_sig_exp: Expected signature in PHYERR TLV header, for the given hardware
1266  * generation
1267  * @tag_sscan_summary_exp: Expected Spectral Scan Summary tag in PHYERR TLV
1268  * header, for the given hardware generation
1269  * @tag_sscan_fft_exp: Expected Spectral Scan FFT report tag in PHYERR TLV
1270  * header, for the given hardware generation
1271  * @tlvhdr_size: Expected PHYERR TLV header size, for the given hardware
1272  * generation
1273  * @nl_cb: Netlink callbacks
1274  * @use_nl_bcast: Whether to use Netlink broadcast/unicast
1275  * @send_phy_data: Send data to the application layer for a particular msg type
1276  * @len_adj_swar: Spectral fft bin length adjustment SWAR related info
1277  * @timestamp_war: Spectral time stamp WAR related info
1278  * @state_160mhz_delivery: Delivery state for each spectral scan mode
1279  * @dbr_ring_debug: Whether Spectral DBR ring debug is enabled
1280  * @dbr_buff_debug: Whether Spectral DBR buffer debug is enabled
1281  * @direct_dma_support: Whether Direct-DMA is supported on the current radio
1282  * @prev_tstamp: Timestamp of the previously received sample, which has to be
1283  * compared with the current tstamp to check descrepancy
1284  * @rparams: Parameters related to Spectral report structure
1285  * @param_min_max: Spectral parameter's minimum and maximum values
1286  * @finite_scan: Parameters for finite Spectral scan
1287  * @detector_list: Detector list for a given Spectral scan mode and channel
1288  * width, based on the target type.
1289  * @detector_list_lock: Lock to synchronize accesses to detector list
1290  * @det_map: Map of per-session detector information keyed by the Spectral HW
1291  * detector id.
1292  * @session_det_map_lock: Lock to synchronize accesses to session detector map
1293  * @report_info: Per session info to be filled at report level in SAMP message
1294  * @session_report_info_lock: Lock to synchronize access to session report info
1295  * @supported_bws: Supported sscan bandwidths for all sscan modes and
1296  * operating widths
1297  * @supported_sscan_bw_list: List of supported sscan widths for all sscan modes
1298  * @data_stats: stats in Spectral data path
1299  */
1300 struct target_if_spectral {
1301 	struct wlan_objmgr_pdev *pdev_obj;
1302 	struct target_if_spectral_ops                 spectral_ops;
1303 	struct spectral_caps                    capability;
1304 	struct spectral_param_properties
1305 			properties[SPECTRAL_SCAN_MODE_MAX][SPECTRAL_PARAM_MAX];
1306 	qdf_spinlock_t                          spectral_lock;
1307 	uint8_t                                 vdev_id[SPECTRAL_SCAN_MODE_MAX];
1308 	int16_t                                 spectral_curchan_radindex;
1309 	int16_t                                 spectral_extchan_radindex;
1310 	uint32_t                               spectraldomain;
1311 	uint32_t                               spectral_proc_phyerr;
1312 	struct spectral_config                  spectral_defaultparams;
1313 	struct target_if_spectral_stats         spectral_stats;
1314 	struct target_if_spectral_event *events;
1315 	unsigned int                            sc_spectral_ext_chan_ok:1,
1316 						sc_spectral_combined_rssi_ok:1,
1317 						sc_spectral_20_40_mode:1,
1318 						sc_spectral_noise_pwr_cal:1,
1319 						sc_spectral_non_edma:1;
1320 	int                                     upper_is_control;
1321 	int                                     upper_is_extension;
1322 	int                                     lower_is_control;
1323 	int                                     lower_is_extension;
1324 	uint8_t                                sc_spectraltest_ieeechan;
1325 	int                                     spectral_numbins;
1326 	int                                     spectral_fft_len;
1327 	int                                     spectral_data_len;
1328 
1329 	/*
1330 	 * For 11ac chipsets prior to AR900B version 2.0, a max of 512 bins are
1331 	 * delivered.  However, there can be additional bins reported for
1332 	 * AR900B version 2.0 and QCA9984 as described next:
1333 	 *
1334 	 * AR900B version 2.0: An additional tone is processed on the right
1335 	 * hand side in order to facilitate detection of radar pulses out to
1336 	 * the extreme band-edge of the channel frequency. Since the HW design
1337 	 * processes four tones at a time, this requires one additional Dword
1338 	 * to be added to the search FFT report.
1339 	 *
1340 	 * QCA9984: When spectral_scan_rpt_mode = 2, i.e 2-dword summary +
1341 	 * 1x-oversampled bins (in-band) per FFT, then 8 more bins
1342 	 * (4 more on left side and 4 more on right side)are added.
1343 	 */
1344 
1345 	int                                     lb_edge_extrabins;
1346 	int                                     rb_edge_extrabins;
1347 	int                                     spectral_max_index_offset;
1348 	int                                     spectral_upper_max_index_offset;
1349 	int                                     spectral_lower_max_index_offset;
1350 	int                                     spectral_dc_index;
1351 	int                                     send_single_packet;
1352 	int                                     spectral_sent_msg;
1353 	int                                     classify_scan;
1354 	qdf_timer_t                             classify_timer;
1355 	struct spectral_config params[SPECTRAL_SCAN_MODE_MAX];
1356 	bool params_valid[SPECTRAL_SCAN_MODE_MAX];
1357 	struct spectral_classifier_params       classifier_params;
1358 	int                                     last_capture_time;
1359 	int                                     num_spectral_data;
1360 	int                                     total_spectral_data;
1361 	int                                     max_rssi;
1362 	int                                     detects_control_channel;
1363 	int                                     detects_extension_channel;
1364 	int                                     detects_below_dc;
1365 	int                                     detects_above_dc;
1366 	int                                     sc_scanning;
1367 	int                                     sc_spectral_scan;
1368 	int                                     sc_spectral_full_scan;
1369 	uint64_t                               scan_start_tstamp;
1370 	uint32_t                               last_tstamp;
1371 	uint32_t                               first_tstamp;
1372 	uint32_t                               spectral_samp_count;
1373 	uint32_t                               sc_spectral_samp_count;
1374 	int                                     noise_pwr_reports_reqd;
1375 	int                                     noise_pwr_reports_recv;
1376 	qdf_spinlock_t                          noise_pwr_reports_lock;
1377 	struct target_if_chain_noise_pwr_info
1378 		*noise_pwr_chain_ctl[HOST_MAX_ANTENNA];
1379 	struct target_if_chain_noise_pwr_info
1380 		*noise_pwr_chain_ext[HOST_MAX_ANTENNA];
1381 	uint64_t                               tsf64;
1382 #if ATH_PERF_PWR_OFFLOAD
1383 	struct target_if_spectral_param_state_info
1384 					param_info[SPECTRAL_SCAN_MODE_MAX];
1385 #endif
1386 	enum phy_ch_width ch_width[SPECTRAL_SCAN_MODE_MAX];
1387 	bool sscan_width_configured[SPECTRAL_SCAN_MODE_MAX];
1388 	struct spectral_diag_stats              diag_stats;
1389 	bool                                    is_160_format;
1390 	bool                                    is_lb_edge_extrabins_format;
1391 	bool                                    is_rb_edge_extrabins_format;
1392 	bool                                    is_sec80_rssi_war_required;
1393 #ifdef QCA_SUPPORT_SPECTRAL_SIMULATION
1394 	void                                    *simctx;
1395 #endif
1396 	enum spectral_gen                       spectral_gen;
1397 	uint8_t                                hdr_sig_exp;
1398 	uint8_t                                tag_sscan_summary_exp;
1399 	uint8_t                                tag_sscan_fft_exp;
1400 	uint8_t                                tlvhdr_size;
1401 	struct spectral_nl_cb nl_cb;
1402 	bool use_nl_bcast;
1403 	int (*send_phy_data)(struct wlan_objmgr_pdev *pdev,
1404 			     enum spectral_msg_type smsg_type);
1405 	struct spectral_fft_bin_len_adj_swar len_adj_swar;
1406 	struct spectral_timestamp_war timestamp_war;
1407 	enum spectral_160mhz_report_delivery_state
1408 			state_160mhz_delivery[SPECTRAL_SCAN_MODE_MAX];
1409 	bool dbr_ring_debug;
1410 	bool dbr_buff_debug;
1411 	bool direct_dma_support;
1412 #ifdef OPTIMIZED_SAMP_MESSAGE
1413 	uint32_t prev_tstamp[MAX_DETECTORS_PER_PDEV];
1414 #else
1415 	uint32_t prev_tstamp;
1416 #endif
1417 	struct spectral_report_params rparams;
1418 	struct spectral_param_min_max param_min_max;
1419 	struct target_if_finite_spectral_scan_params
1420 					finite_scan[SPECTRAL_SCAN_MODE_MAX];
1421 	struct sscan_detector_list
1422 			detector_list[SPECTRAL_SCAN_MODE_MAX][CH_WIDTH_MAX];
1423 	qdf_spinlock_t detector_list_lock;
1424 	struct per_session_det_map det_map[MAX_DETECTORS_PER_PDEV];
1425 	qdf_spinlock_t session_det_map_lock;
1426 	struct per_session_report_info report_info[SPECTRAL_SCAN_MODE_MAX];
1427 	qdf_spinlock_t session_report_info_lock;
1428 	struct spectral_supported_bws
1429 		supported_bws[SPECTRAL_SCAN_MODE_MAX][CH_WIDTH_MAX];
1430 	/* Whether a given sscan BW is supported on a given smode */
1431 	bool supported_sscan_bw_list[SPECTRAL_SCAN_MODE_MAX][CH_WIDTH_MAX];
1432 	struct spectral_data_stats data_stats;
1433 };
1434 
1435 /**
1436  * struct target_if_psoc_spectral - Target if psoc Spectral object
1437  * @psoc_obj:  psoc object
1438  * @wmi_ops:  Spectral WMI operations
1439  */
1440 struct target_if_psoc_spectral {
1441 	struct wlan_objmgr_psoc *psoc_obj;
1442 	struct spectral_wmi_ops wmi_ops;
1443 };
1444 
1445 #ifdef OPTIMIZED_SAMP_MESSAGE
1446 /**
1447  * struct target_if_samp_msg_params - Spectral Analysis Messaging Protocol
1448  * data format
1449  * @hw_detector_id: Spectral HW detector ID
1450  * @rssi: Spectral RSSI
1451  * @lower_rssi: RSSI of lower band
1452  * @upper_rssi: RSSI of upper band
1453  * @chain_ctl_rssi: RSSI for control channel, for all antennas
1454  * @chain_ext_rssi: RSSI for extension channel, for all antennas
1455  * @last_raw_timestamp: Previous FFT report's raw timestamp.
1456  * @raw_timestamp: FFT timestamp reported by HW on primary segment.
1457  * @timestamp: timestamp
1458  * @reset_delay: Time gap between the last spectral report before reset and the
1459  *               end of reset.
1460  * @max_mag: maximum magnitude
1461  * @max_index: index of max magnitude
1462  * @noise_floor: current noise floor
1463  * @agc_total_gain: AGC total gain on primary channel
1464  * @gainchange: Indicates a gainchange occurred during the spectral scan
1465  * @pri80ind: Indication from hardware that the sample was received on the
1466  *            primary 80 MHz segment. If this is set when smode =
1467  *            SPECTRAL_SCAN_MODE_AGILE, it indicates that Spectral was carried
1468  *            out on pri80 instead of the Agile frequency due to a channel
1469  *            switch - Software may choose to ignore the sample in this case.
1470  * @blanking_status: Indicates whether scan blanking was enabled during this
1471  * spectral report capture.
1472  * @bin_pwr_data: Contains FFT magnitudes
1473  */
1474 struct target_if_samp_msg_params {
1475 	uint8_t hw_detector_id;
1476 	int8_t rssi;
1477 	int8_t lower_rssi;
1478 	int8_t upper_rssi;
1479 	int8_t chain_ctl_rssi[HOST_MAX_ANTENNA];
1480 	int8_t chain_ext_rssi[HOST_MAX_ANTENNA];
1481 	uint32_t last_raw_timestamp;
1482 	uint32_t raw_timestamp;
1483 	uint32_t timestamp;
1484 	uint32_t reset_delay;
1485 	uint16_t max_mag;
1486 	uint16_t max_index;
1487 	int16_t noise_floor;
1488 	uint8_t agc_total_gain;
1489 	uint8_t gainchange;
1490 	uint8_t pri80ind;
1491 	uint8_t blanking_status;
1492 	uint8_t *bin_pwr_data;
1493 };
1494 
1495 #else
1496 /**
1497  * struct target_if_samp_msg_params - Spectral Analysis Messaging Protocol
1498  * data format
1499  * @rssi:  RSSI (except for secondary 80 segment)
1500  * @rssi_sec80:  RSSI for secondary 80 segment
1501  * @lower_rssi:  RSSI of lower band
1502  * @upper_rssi:  RSSI of upper band
1503  * @chain_ctl_rssi: RSSI for control channel, for all antennas
1504  * @chain_ext_rssi: RSSI for extension channel, for all antennas
1505  * @bwinfo:  bandwidth info
1506  * @datalen:  length of FFT data (except for secondary 80 segment)
1507  * @datalen_sec80:  length of FFT data for secondary 80 segment
1508  * @tstamp:  timestamp
1509  * @last_tstamp:  last time stamp
1510  * @max_mag:  maximum magnitude (except for secondary 80 segment)
1511  * @max_mag_sec80:  maximum magnitude for secondary 80 segment
1512  * @max_index:  index of max magnitude (except for secondary 80 segment)
1513  * @max_index_sec80:  index of max magnitude for secondary 80 segment
1514  * @max_exp:  max exp
1515  * @peak: peak frequency (obsolete)
1516  * @pwr_count:  number of FFT bins (except for secondary 80 segment)
1517  * @pwr_count_5mhz:  number of FFT bins in extra 5 MHz in
1518  *                   165 MHz/restricted 80p80 mode
1519  * @pwr_count_sec80:  number of FFT bins in secondary 80 segment
1520  * @nb_lower: This is deprecated
1521  * @nb_upper: This is deprecated
1522  * @max_upper_index:  index of max mag in upper band
1523  * @max_lower_index:  index of max mag in lower band
1524  * @bin_pwr_data: Contains FFT magnitudes (except for secondary 80 segment)
1525  * @bin_pwr_data_5mhz: Contains FFT magnitudes for the extra 5 MHz
1526  *                     in 165 MHz/restricted 80p80 mode
1527  * @bin_pwr_data_sec80: Contains FFT magnitudes for the secondary 80 segment
1528  * @freq: Center frequency of primary 20MHz channel in MHz
1529  * @vhtop_ch_freq_seg1: VHT operation first segment center frequency in MHz
1530  * @vhtop_ch_freq_seg2: VHT operation second segment center frequency in MHz
1531  * @agile_freq1:        Center frequency in MHz of the entire span(for 80+80 MHz
1532  *                      agile Scan it is primary 80 MHz span) across which
1533  *                      Agile Spectral is carried out. Applicable only for Agile
1534  *                      Spectral samples.
1535  * @agile_freq2:        Center frequency in MHz of the secondary 80 MHz span
1536  *                      across which Agile Spectral is carried out. Applicable
1537  *                      only for Agile Spectral samples in 80+80 MHz mode.
1538  * @freq_loading: spectral control duty cycles
1539  * @noise_floor:  current noise floor (except for secondary 80 segment)
1540  * @noise_floor_sec80:  current noise floor for secondary 80 segment
1541  * @interf_list: List of interference sources
1542  * @classifier_params:  classifier parameters
1543  * @sc:  classifier parameters
1544  * @agc_total_gain: AGC total gain on primary channel
1545  * @agc_total_gain_sec80: AGC total gain on secondary channel
1546  * @gainchange: Indicates a gainchange occurred during the spectral scan
1547  * @gainchange_sec80: Indicates a gainchange occurred in the secondary
1548  * channel during the spectral scan
1549  * @smode: spectral scan mode
1550  * @pri80ind: Indication from hardware that the sample was received on the
1551  * primary 80 MHz segment. If this is set when smode =
1552  * SPECTRAL_SCAN_MODE_AGILE, it indicates that Spectral was carried out on
1553  * pri80 instead of the Agile frequency due to a channel switch - Software may
1554  * choose to ignore the sample in this case.
1555  * @pri80ind_sec80: Indication from hardware that the sample was received on the
1556  * primary 80 MHz segment instead of the secondary 80 MHz segment due to a
1557  * channel switch - Software may choose to ignore the sample if this is set.
1558  * Applicable only if smode = SPECTRAL_SCAN_MODE_NORMAL and for 160/80+80 MHz
1559  * Spectral operation and if the chipset supports fragmented 160/80+80 MHz
1560  * operation.
1561  * @last_raw_timestamp: Previous FFT report's raw timestamp. In case of 160MHz
1562  * it will be primary 80 segment's timestamp as both primary & secondary
1563  * segment's timestamps are expected to be almost equal
1564  * @timestamp_war_offset: Offset calculated based on reset_delay and
1565  * last_raw_stamp. It will be added to raw_timestamp to get tstamp.
1566  * @raw_timestamp: FFT timestamp reported by HW on primary segment.
1567  * @raw_timestamp_sec80: FFT timestamp reported by HW on secondary 80 segment.
1568  * @reset_delay: Time gap between the last spectral report before reset and the
1569  * end of reset.
1570  * @target_reset_count: Indicates the the number of times the target went
1571  * through reset routine after spectral was enabled.
1572  */
1573 struct target_if_samp_msg_params {
1574 	int8_t      rssi;
1575 	int8_t      rssi_sec80;
1576 	int8_t      lower_rssi;
1577 	int8_t      upper_rssi;
1578 	int8_t      chain_ctl_rssi[HOST_MAX_ANTENNA];
1579 	int8_t      chain_ext_rssi[HOST_MAX_ANTENNA];
1580 	uint16_t    bwinfo;
1581 	uint16_t    datalen;
1582 	uint16_t    datalen_sec80;
1583 	uint32_t    tstamp;
1584 	uint32_t    last_tstamp;
1585 	uint16_t    max_mag;
1586 	uint16_t    max_mag_sec80;
1587 	uint16_t    max_index;
1588 	uint16_t    max_index_sec80;
1589 	uint8_t     max_exp;
1590 	int         peak;
1591 	int         pwr_count;
1592 	int         pwr_count_5mhz;
1593 	int         pwr_count_sec80;
1594 	int8_t      nb_lower;
1595 	int8_t      nb_upper;
1596 	uint16_t    max_lower_index;
1597 	uint16_t    max_upper_index;
1598 	uint8_t    *bin_pwr_data;
1599 	uint8_t    *bin_pwr_data_5mhz;
1600 	uint8_t    *bin_pwr_data_sec80;
1601 	uint16_t   freq;
1602 	uint16_t   vhtop_ch_freq_seg1;
1603 	uint16_t   vhtop_ch_freq_seg2;
1604 	uint16_t   agile_freq1;
1605 	uint16_t   agile_freq2;
1606 	uint16_t   freq_loading;
1607 	int16_t     noise_floor;
1608 	int16_t     noise_floor_sec80;
1609 	struct interf_src_rsp interf_list;
1610 	struct spectral_classifier_params classifier_params;
1611 	struct ath_softc *sc;
1612 	uint8_t agc_total_gain;
1613 	uint8_t agc_total_gain_sec80;
1614 	uint8_t gainchange;
1615 	uint8_t gainchange_sec80;
1616 	enum spectral_scan_mode smode;
1617 	uint8_t pri80ind;
1618 	uint8_t pri80ind_sec80;
1619 	uint32_t last_raw_timestamp;
1620 	uint32_t timestamp_war_offset;
1621 	uint32_t raw_timestamp;
1622 	uint32_t raw_timestamp_sec80;
1623 	uint32_t reset_delay;
1624 	uint32_t target_reset_count;
1625 };
1626 #endif
1627 
1628 /**
1629  * struct target_if_spectral_agile_mode_cap - Structure to hold agile
1630  * Spetcral scan capability
1631  * @agile_spectral_cap: agile Spectral scan capability for 20/40/80 MHz
1632  * @agile_spectral_cap_160: agile Spectral scan capability for 160 MHz
1633  * @agile_spectral_cap_80p80: agile Spectral scan capability for 80+80 MHz
1634  * @agile_spectral_cap_320: agile Spectral scan capability for 320 MHz
1635  */
1636 struct target_if_spectral_agile_mode_cap {
1637 	bool agile_spectral_cap;
1638 	bool agile_spectral_cap_160;
1639 	bool agile_spectral_cap_80p80;
1640 	bool agile_spectral_cap_320;
1641 };
1642 
1643 #ifdef WLAN_CONV_SPECTRAL_ENABLE
1644 /**
1645  * target_if_spectral_dump_fft() - Dump Spectral FFT
1646  * @pfft: Pointer to Spectral Phyerr FFT
1647  * @fftlen: FFT length
1648  *
1649  * Return: Success or failure
1650  */
1651 int target_if_spectral_dump_fft(uint8_t *pfft, int fftlen);
1652 
1653 /**
1654  * target_if_dbg_print_samp_param() - Print contents of SAMP struct
1655  * @p: Pointer to SAMP message
1656  *
1657  * Return: Void
1658  */
1659 void target_if_dbg_print_samp_param(struct target_if_samp_msg_params *p);
1660 
1661 /**
1662  * target_if_get_offset_swar_sec80() - Get offset for SWAR according to
1663  *                                     the channel width
1664  * @channel_width: Channel width
1665  *
1666  * Return: Offset for SWAR
1667  */
1668 uint32_t target_if_get_offset_swar_sec80(uint32_t channel_width);
1669 
1670 /**
1671  * target_if_sptrl_register_tx_ops() - Register Spectral target_if Tx Ops
1672  * @tx_ops: Tx Ops
1673  *
1674  * Return: void
1675  */
1676 void target_if_sptrl_register_tx_ops(struct wlan_lmac_if_tx_ops *tx_ops);
1677 
1678 #ifndef OPTIMIZED_SAMP_MESSAGE
1679 /**
1680  * target_if_spectral_create_samp_msg() - Create the spectral samp message
1681  * @spectral : Pointer to spectral internal structure
1682  * @params : spectral samp message parameters
1683  *
1684  * API to create the spectral samp message
1685  *
1686  * Return: void
1687  */
1688 void target_if_spectral_create_samp_msg(
1689 	struct target_if_spectral *spectral,
1690 	struct target_if_samp_msg_params *params);
1691 #endif
1692 
1693 #ifdef OPTIMIZED_SAMP_MESSAGE
1694 /**
1695  * target_if_spectral_fill_samp_msg() - Fill the Spectral SAMP message
1696  * @spectral : Pointer to spectral internal structure
1697  * @params: Spectral SAMP message fields
1698  *
1699  * Fill the spectral SAMP message fields using params and detector map.
1700  *
1701  * Return: Success/Failure
1702  */
1703 QDF_STATUS target_if_spectral_fill_samp_msg(
1704 			struct target_if_spectral *spectral,
1705 			struct target_if_samp_msg_params *params);
1706 #endif
1707 
1708 /**
1709  * target_if_spectral_process_report_gen3() - Process spectral report for gen3
1710  * @pdev:    Pointer to pdev object
1711  * @buf: Pointer to spectral report
1712  *
1713  * Process phyerror event for gen3
1714  *
1715  * Return: Success/Failure
1716  */
1717 int target_if_spectral_process_report_gen3(struct wlan_objmgr_pdev *pdev,
1718 					   void *buf);
1719 
1720 /**
1721  * target_if_process_phyerr_gen2() - Process PHY Error for gen2
1722  * @spectral: Pointer to Spectral object
1723  * @data: Pointer to phyerror event buffer
1724  * @datalen: Data length
1725  * @p_rfqual: RF quality info
1726  * @p_chaninfo: Channel info
1727  * @tsf64: 64 bit tsf timestamp
1728  * @acs_stats: ACS stats
1729  *
1730  * Process PHY Error for gen2
1731  *
1732  * Return: Success/Failure
1733  */
1734 int target_if_process_phyerr_gen2(
1735 	struct target_if_spectral *spectral,
1736 	uint8_t *data,
1737 	uint32_t datalen, struct target_if_spectral_rfqual_info *p_rfqual,
1738 	struct target_if_spectral_chan_info *p_chaninfo,
1739 	uint64_t tsf64,
1740 	struct target_if_spectral_acs_stats *acs_stats);
1741 
1742 /**
1743  * target_if_spectral_send_intf_found_msg() - Indicate to application layer that
1744  * interference has been found
1745  * @pdev: Pointer to pdev
1746  * @cw_int: 1 if CW interference is found, 0 if WLAN interference is found
1747  * @dcs_enabled: 1 if DCS is enabled, 0 if DCS is disabled
1748  *
1749  * Send message to application layer
1750  * indicating that interference has been found
1751  *
1752  * Return: None
1753  */
1754 void target_if_spectral_send_intf_found_msg(
1755 	struct wlan_objmgr_pdev *pdev,
1756 	uint16_t cw_int, uint32_t dcs_enabled);
1757 
1758 /**
1759  * target_if_stop_spectral_scan() - Stop spectral scan
1760  * @pdev: Pointer to pdev object
1761  * @smode: Spectral scan mode
1762  * @err: Pointer to error code
1763  *
1764  * API to stop the current on-going spectral scan
1765  *
1766  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
1767  */
1768 QDF_STATUS target_if_stop_spectral_scan(struct wlan_objmgr_pdev *pdev,
1769 					const enum spectral_scan_mode smode,
1770 					enum spectral_cp_error_code *err);
1771 
1772 /**
1773  * target_if_spectral_get_vdev() - Get pointer to vdev to be used for Spectral
1774  * operations
1775  * @spectral: Pointer to Spectral target_if internal private data
1776  * @smode: spectral scan mode
1777  *
1778  * Spectral operates on pdev. However, in order to retrieve some WLAN
1779  * properties, a vdev is required. To facilitate this, the function returns the
1780  * first vdev in our pdev. The caller should release the reference to the vdev
1781  * once it is done using it.
1782  * TODO: If the framework later provides an API to obtain the first active
1783  * vdev, then it would be preferable to use this API.
1784  *
1785  * Return: Pointer to vdev on success, NULL on failure
1786  */
1787 struct wlan_objmgr_vdev *target_if_spectral_get_vdev(
1788 	struct target_if_spectral *spectral,
1789 	enum spectral_scan_mode smode);
1790 
1791 /**
1792  * target_if_spectral_dump_hdr_gen2() - Dump Spectral header for gen2
1793  * @phdr: Pointer to Spectral Phyerr Header
1794  *
1795  * Dump Spectral header
1796  *
1797  * Return: Success/Failure
1798  */
1799 int target_if_spectral_dump_hdr_gen2(struct spectral_phyerr_hdr_gen2 *phdr);
1800 
1801 /**
1802  * target_if_get_combrssi_sec80_seg_gen2() - Get approximate combined RSSI
1803  *                                           for Secondary 80 segment
1804  * @spectral: Pointer to spectral object
1805  * @p_sfft_sec80: Pointer to search fft info of secondary 80 segment
1806  *
1807  * Get approximate combined RSSI for Secondary 80 segment
1808  *
1809  * Return: Combined RSSI for secondary 80Mhz segment
1810  */
1811 int8_t target_if_get_combrssi_sec80_seg_gen2(
1812 	struct target_if_spectral *spectral,
1813 	struct spectral_search_fft_info_gen2 *p_sfft_sec80);
1814 
1815 /**
1816  * target_if_spectral_dump_tlv_gen2() - Dump Spectral TLV for gen2
1817  * @ptlv: Pointer to Spectral Phyerr TLV
1818  * @is_160_format: Indicates 160 format
1819  *
1820  * Dump Spectral TLV for gen2
1821  *
1822  * Return: Success/Failure
1823  */
1824 int target_if_spectral_dump_tlv_gen2(
1825 	struct spectral_phyerr_tlv_gen2 *ptlv, bool is_160_format);
1826 
1827 /**
1828  * target_if_spectral_dump_phyerr_data_gen2() - Dump Spectral
1829  * related PHY Error for gen2
1830  * @data: Pointer to phyerror buffer
1831  * @datalen: Data length
1832  * @is_160_format: Indicates 160 format
1833  *
1834  * Dump Spectral related PHY Error for gen2
1835  *
1836  * Return: Success/Failure
1837  */
1838 int target_if_spectral_dump_phyerr_data_gen2(
1839 	uint8_t *data,
1840 	uint32_t datalen,
1841 	bool is_160_format);
1842 
1843 /**
1844  * target_if_dbg_print_samp_msg() - Print contents of SAMP Message
1845  * @pmsg: Pointer to SAMP message
1846  *
1847  * Print contents of SAMP Message
1848  *
1849  * Return: Void
1850  */
1851 void target_if_dbg_print_samp_msg(struct spectral_samp_msg *pmsg);
1852 
1853 /**
1854  * get_target_if_spectral_handle_from_pdev() - Get handle to target_if internal
1855  * Spectral data
1856  * @pdev: Pointer to pdev
1857  *
1858  * Return: Handle to target_if internal Spectral data on success, NULL on
1859  * failure
1860  */
1861 struct target_if_spectral *get_target_if_spectral_handle_from_pdev(
1862 	struct wlan_objmgr_pdev *pdev);
1863 
1864 /**
1865  * get_target_if_spectral_handle_from_psoc() - Get handle to psoc target_if
1866  * internal Spectral data
1867  * @psoc: Pointer to psoc
1868  *
1869  * Return: Handle to target_if psoc internal Spectral data on success, NULL on
1870  * failure
1871  */
1872 static inline
1873 struct target_if_psoc_spectral *get_target_if_spectral_handle_from_psoc(
1874 	struct wlan_objmgr_psoc *psoc)
1875 {
1876 	struct wlan_lmac_if_rx_ops *rx_ops;
1877 	struct target_if_psoc_spectral *psoc_spectral;
1878 
1879 	if (!psoc) {
1880 		spectral_err("psoc is null");
1881 		return NULL;
1882 	}
1883 
1884 	rx_ops = wlan_psoc_get_lmac_if_rxops(psoc);
1885 	if (!rx_ops) {
1886 		spectral_err("rx_ops is null");
1887 		return NULL;
1888 	}
1889 
1890 	psoc_spectral = (struct target_if_psoc_spectral *)
1891 		rx_ops->sptrl_rx_ops.sptrlro_get_psoc_target_handle(psoc);
1892 
1893 	return psoc_spectral;
1894 }
1895 
1896 /**
1897  * target_if_vdev_get_chan_freq() - Get vdev operating channel frequency
1898  * @vdev: Pointer to vdev
1899  *
1900  * Get the operating channel frequency of a given vdev
1901  *
1902  * Return: Operating channel frequency of a vdev in MHz
1903  */
1904 static inline
1905 int16_t target_if_vdev_get_chan_freq(struct wlan_objmgr_vdev *vdev)
1906 {
1907 	struct wlan_objmgr_psoc *psoc = NULL;
1908 	struct wlan_lmac_if_rx_ops *rx_ops;
1909 
1910 	psoc = wlan_vdev_get_psoc(vdev);
1911 	if (!psoc) {
1912 		spectral_err("psoc is NULL");
1913 		return -EINVAL;
1914 	}
1915 	rx_ops = wlan_psoc_get_lmac_if_rxops(psoc);
1916 	if (!rx_ops) {
1917 		spectral_err("rx_ops is null");
1918 		return -EINVAL;
1919 	}
1920 
1921 	return rx_ops->sptrl_rx_ops.sptrlro_vdev_get_chan_freq(
1922 		vdev);
1923 }
1924 
1925 /**
1926  * target_if_vdev_get_chan_freq_seg2() - Get center frequency of secondary 80 of
1927  * given vdev
1928  * @vdev: Pointer to vdev
1929  *
1930  * Get the center frequency of secondary 80 of given vdev
1931  *
1932  * Return: center frequency of secondary 80
1933  */
1934 static inline
1935 int16_t target_if_vdev_get_chan_freq_seg2(struct wlan_objmgr_vdev *vdev)
1936 {
1937 	struct wlan_objmgr_psoc *psoc = NULL;
1938 	struct wlan_lmac_if_rx_ops *rx_ops;
1939 
1940 	psoc = wlan_vdev_get_psoc(vdev);
1941 	if (!psoc) {
1942 		spectral_err("psoc is NULL");
1943 		return -EINVAL;
1944 	}
1945 
1946 	rx_ops = wlan_psoc_get_lmac_if_rxops(psoc);
1947 	if (!rx_ops) {
1948 		spectral_err("rx_ops is null");
1949 		return -EINVAL;
1950 	}
1951 
1952 	return rx_ops->sptrl_rx_ops.sptrlro_vdev_get_chan_freq_seg2(vdev);
1953 }
1954 
1955 /**
1956  * target_if_vdev_get_ch_width() - Get vdev operating channel bandwidth
1957  * @vdev: Pointer to vdev
1958  *
1959  * Get the operating channel bandwidth of a given vdev
1960  *
1961  * Return: channel bandwidth enumeration corresponding to the vdev
1962  */
1963 static inline
1964 enum phy_ch_width target_if_vdev_get_ch_width(struct wlan_objmgr_vdev *vdev)
1965 {
1966 	struct wlan_objmgr_psoc *psoc = NULL;
1967 	enum phy_ch_width ch_width;
1968 	struct wlan_lmac_if_rx_ops *rx_ops;
1969 
1970 	psoc = wlan_vdev_get_psoc(vdev);
1971 	if (!psoc) {
1972 		spectral_err("psoc is NULL");
1973 		return CH_WIDTH_INVALID;
1974 	}
1975 
1976 	rx_ops = wlan_psoc_get_lmac_if_rxops(psoc);
1977 	if (!rx_ops) {
1978 		spectral_err("rx_ops is null");
1979 		return CH_WIDTH_INVALID;
1980 	}
1981 
1982 	ch_width = rx_ops->sptrl_rx_ops.sptrlro_vdev_get_ch_width(vdev);
1983 
1984 	if (ch_width == CH_WIDTH_160MHZ) {
1985 		int16_t cfreq2;
1986 
1987 		cfreq2 = target_if_vdev_get_chan_freq_seg2(vdev);
1988 		if (cfreq2 < 0) {
1989 			spectral_err("Invalid value for cfreq2 %d", cfreq2);
1990 			return CH_WIDTH_INVALID;
1991 		}
1992 
1993 		/* Use non zero cfreq2 to identify 80p80 */
1994 		if (cfreq2)
1995 			ch_width = CH_WIDTH_80P80MHZ;
1996 	}
1997 
1998 	return ch_width;
1999 }
2000 
2001 /**
2002  * target_if_vdev_get_sec20chan_freq_mhz() - Get the frequency of secondary
2003  * 20 MHz channel for a given vdev
2004  * @vdev: Pointer to vdev
2005  * @sec20chan_freq: Location to return secondary 20 MHz channel
2006  *
2007  * Get the frequency of secondary 20 MHz channel for a given vdev
2008  *
2009  * Return: 0 if 20 MHz channel was returned, negative errno otherwise
2010  */
2011 static inline
2012 int target_if_vdev_get_sec20chan_freq_mhz(
2013 	struct wlan_objmgr_vdev *vdev,
2014 	uint16_t *sec20chan_freq)
2015 {
2016 	struct wlan_objmgr_psoc *psoc = NULL;
2017 	struct wlan_lmac_if_rx_ops *rx_ops;
2018 
2019 	psoc = wlan_vdev_get_psoc(vdev);
2020 	if (!psoc) {
2021 		spectral_err("psoc is NULL");
2022 		return -EINVAL;
2023 	}
2024 
2025 	rx_ops = wlan_psoc_get_lmac_if_rxops(psoc);
2026 	if (!rx_ops) {
2027 		spectral_err("rx_ops is null");
2028 		return -EINVAL;
2029 	}
2030 
2031 	return rx_ops->sptrl_rx_ops.
2032 		sptrlro_vdev_get_sec20chan_freq_mhz(vdev, sec20chan_freq);
2033 }
2034 
2035 /**
2036  * target_if_spectral_is_feature_disabled_psoc() - Check if Spectral feature is
2037  * disabled for a given psoc
2038  * @psoc: Pointer to psoc
2039  *
2040  * Return: true or false
2041  */
2042 static inline
2043 bool target_if_spectral_is_feature_disabled_psoc(struct wlan_objmgr_psoc *psoc)
2044 {
2045 	struct wlan_lmac_if_rx_ops *rx_ops;
2046 
2047 	if (!psoc) {
2048 		spectral_err("psoc is NULL");
2049 		return true;
2050 	}
2051 
2052 	rx_ops = wlan_psoc_get_lmac_if_rxops(psoc);
2053 	if (!rx_ops) {
2054 		spectral_err("rx_ops is null");
2055 		return true;
2056 	}
2057 
2058 	if (rx_ops->sptrl_rx_ops.
2059 	    sptrlro_spectral_is_feature_disabled_psoc)
2060 		return rx_ops->sptrl_rx_ops.
2061 		       sptrlro_spectral_is_feature_disabled_psoc(psoc);
2062 
2063 	return true;
2064 }
2065 
2066 /**
2067  * target_if_spectral_is_feature_disabled_pdev() - Check if Spectral feature is
2068  * disabled for a given pdev
2069  * @pdev: Pointer to pdev
2070  *
2071  * Return: true or false
2072  */
2073 static inline
2074 bool target_if_spectral_is_feature_disabled_pdev(struct wlan_objmgr_pdev *pdev)
2075 {
2076 	struct wlan_lmac_if_rx_ops *rx_ops;
2077 	struct wlan_objmgr_psoc *psoc;
2078 
2079 	if (!pdev) {
2080 		spectral_err("pdev is NULL");
2081 		return true;
2082 	}
2083 
2084 	psoc = wlan_pdev_get_psoc(pdev);
2085 	if (!psoc) {
2086 		spectral_err("psoc is NULL");
2087 		return true;
2088 	}
2089 
2090 	rx_ops = wlan_psoc_get_lmac_if_rxops(psoc);
2091 	if (!rx_ops) {
2092 		spectral_err("rx_ops is null");
2093 		return true;
2094 	}
2095 
2096 	if (rx_ops->sptrl_rx_ops.
2097 	    sptrlro_spectral_is_feature_disabled_pdev)
2098 		return rx_ops->sptrl_rx_ops.
2099 		       sptrlro_spectral_is_feature_disabled_pdev(pdev);
2100 
2101 	return true;
2102 }
2103 
2104 /**
2105  * target_if_spectral_set_rxchainmask() - Set Spectral Rx chainmask
2106  * @pdev: Pointer to pdev
2107  * @spectral_rx_chainmask: Spectral Rx chainmask
2108  *
2109  * Return: None
2110  */
2111 static inline
2112 void target_if_spectral_set_rxchainmask(struct wlan_objmgr_pdev *pdev,
2113 					uint8_t spectral_rx_chainmask)
2114 {
2115 	struct wlan_objmgr_psoc *psoc = NULL;
2116 	struct target_if_spectral *spectral = NULL;
2117 	enum spectral_scan_mode smode = SPECTRAL_SCAN_MODE_NORMAL;
2118 	struct wlan_lmac_if_rx_ops *rx_ops;
2119 
2120 	psoc = wlan_pdev_get_psoc(pdev);
2121 	if (!psoc) {
2122 		spectral_err("psoc is NULL");
2123 		return;
2124 	}
2125 
2126 	rx_ops = wlan_psoc_get_lmac_if_rxops(psoc);
2127 	if (!rx_ops) {
2128 		spectral_err("rx_ops is null");
2129 		return;
2130 	}
2131 
2132 	if (smode >= SPECTRAL_SCAN_MODE_MAX) {
2133 		spectral_err("Invalid Spectral mode %u", smode);
2134 		return;
2135 	}
2136 
2137 	if (rx_ops->sptrl_rx_ops.
2138 	    sptrlro_spectral_is_feature_disabled_pdev(pdev)) {
2139 		spectral_info("Spectral feature is disabled");
2140 		return;
2141 	}
2142 
2143 	spectral = get_target_if_spectral_handle_from_pdev(pdev);
2144 	if (!spectral) {
2145 		spectral_err("Spectral target if object is null");
2146 		return;
2147 	}
2148 
2149 	/* set chainmask for all the modes */
2150 	for (; smode < SPECTRAL_SCAN_MODE_MAX; smode++)
2151 		spectral->params[smode].ss_chn_mask = spectral_rx_chainmask;
2152 }
2153 
2154 /**
2155  * target_if_spectral_process_phyerr() - Process Spectral PHY error
2156  * @pdev: Pointer to pdev
2157  * @data: PHY error data received from FW
2158  * @datalen: Length of data
2159  * @p_rfqual: Pointer to RF Quality information
2160  * @p_chaninfo: Pointer to channel information
2161  * @tsf64: TSF time instance at which the Spectral sample was received
2162  * @acs_stats: ACS stats
2163  *
2164  * Process Spectral PHY error by extracting necessary information from the data
2165  * sent by FW, and send the extracted information to application layer.
2166  *
2167  * Return: None
2168  */
2169 static inline
2170 void target_if_spectral_process_phyerr(
2171 	struct wlan_objmgr_pdev *pdev,
2172 	uint8_t *data, uint32_t datalen,
2173 	struct target_if_spectral_rfqual_info *p_rfqual,
2174 	struct target_if_spectral_chan_info *p_chaninfo,
2175 	uint64_t tsf64,
2176 	struct target_if_spectral_acs_stats *acs_stats)
2177 {
2178 	struct target_if_spectral *spectral = NULL;
2179 	struct target_if_spectral_ops *p_sops = NULL;
2180 
2181 	spectral = get_target_if_spectral_handle_from_pdev(pdev);
2182 	if (!spectral) {
2183 		spectral_err("Spectral target if object is null");
2184 		return;
2185 	}
2186 
2187 	p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
2188 	if (!p_sops->spectral_process_phyerr) {
2189 		spectral_err("null spectral_process_phyerr");
2190 		return;
2191 	}
2192 	p_sops->spectral_process_phyerr(spectral, data, datalen,
2193 					p_rfqual, p_chaninfo,
2194 					tsf64, acs_stats);
2195 }
2196 
2197 static QDF_STATUS
2198 target_if_get_spectral_msg_type(enum spectral_scan_mode smode,
2199 				enum spectral_msg_type *msg_type) {
2200 
2201 	switch (smode) {
2202 	case SPECTRAL_SCAN_MODE_NORMAL:
2203 		*msg_type = SPECTRAL_MSG_NORMAL_MODE;
2204 		break;
2205 
2206 	case SPECTRAL_SCAN_MODE_AGILE:
2207 		*msg_type = SPECTRAL_MSG_AGILE_MODE;
2208 		break;
2209 
2210 	default:
2211 		spectral_err("Invalid spectral mode");
2212 		return QDF_STATUS_E_FAILURE;
2213 	}
2214 
2215 	return QDF_STATUS_SUCCESS;
2216 }
2217 
2218 static inline bool
2219 is_ch_width_160_or_80p80(enum phy_ch_width ch_width)
2220 {
2221 	return (ch_width == CH_WIDTH_160MHZ || ch_width == CH_WIDTH_80P80MHZ);
2222 }
2223 
2224 /**
2225  * free_samp_msg_skb() - Free SAMP message skb
2226  * @spectral: Pointer to Spectral
2227  * @smode: Spectral Scan mode
2228  *
2229  * Free SAMP message skb, if error in report processing
2230  *
2231  * Return: void
2232  */
2233 static inline void
2234 free_samp_msg_skb(struct target_if_spectral *spectral,
2235 		  enum spectral_scan_mode smode)
2236 {
2237 	enum spectral_msg_type smsg_type;
2238 	QDF_STATUS ret;
2239 
2240 	if (smode >= SPECTRAL_SCAN_MODE_MAX) {
2241 		spectral_err_rl("Invalid Spectral mode %d", smode);
2242 		return;
2243 	}
2244 
2245 	if (is_ch_width_160_or_80p80(spectral->ch_width[smode])) {
2246 		ret = target_if_get_spectral_msg_type(smode, &smsg_type);
2247 		if (QDF_IS_STATUS_ERROR(ret)) {
2248 			spectral_err("Failed to get spectral message type");
2249 			return;
2250 		}
2251 		spectral->nl_cb.free_sbuff(spectral->pdev_obj,
2252 					   smsg_type);
2253 	}
2254 }
2255 
2256 /**
2257  * init_160mhz_delivery_state_machine() - Initialize 160MHz Spectral
2258  *                                        state machine
2259  * @spectral: Pointer to Spectral
2260  *
2261  * Initialize 160MHz Spectral state machine
2262  *
2263  * Return: void
2264  */
2265 static inline void
2266 init_160mhz_delivery_state_machine(struct target_if_spectral *spectral)
2267 {
2268 	uint8_t smode;
2269 
2270 	smode = 0;
2271 	for (; smode < SPECTRAL_SCAN_MODE_MAX; smode++)
2272 		spectral->state_160mhz_delivery[smode] =
2273 				SPECTRAL_REPORT_WAIT_PRIMARY80;
2274 }
2275 
2276 /**
2277  * reset_160mhz_delivery_state_machine() - Reset 160MHz Spectral state machine
2278  * @spectral: Pointer to Spectral
2279  * @smode: Spectral scan mode
2280  *
2281  * Reset 160MHz Spectral state machine
2282  *
2283  * Return: void
2284  */
2285 static inline void
2286 reset_160mhz_delivery_state_machine(struct target_if_spectral *spectral,
2287 				    enum spectral_scan_mode smode)
2288 {
2289 	if (smode >= SPECTRAL_SCAN_MODE_MAX) {
2290 		spectral_err_rl("Invalid Spectral mode %d", smode);
2291 		return;
2292 	}
2293 
2294 	free_samp_msg_skb(spectral, smode);
2295 
2296 	if (is_ch_width_160_or_80p80(spectral->ch_width[smode])) {
2297 		spectral->state_160mhz_delivery[smode] =
2298 			SPECTRAL_REPORT_WAIT_PRIMARY80;
2299 	}
2300 }
2301 
2302 /**
2303  * is_secondaryseg_expected() - Is waiting for secondary 80 report
2304  * @spectral: Pointer to Spectral
2305  * @smode: Spectral scan mode
2306  *
2307  * Return true if secondary 80 report expected and mode is 160 MHz
2308  *
2309  * Return: true or false
2310  */
2311 static inline
2312 bool is_secondaryseg_expected(struct target_if_spectral *spectral,
2313 			      enum spectral_scan_mode smode)
2314 {
2315 	return
2316 	(is_ch_width_160_or_80p80(spectral->ch_width[smode]) &&
2317 	 spectral->rparams.fragmentation_160[smode] &&
2318 	 (spectral->state_160mhz_delivery[smode] ==
2319 	  SPECTRAL_REPORT_WAIT_SECONDARY80));
2320 }
2321 
2322 /**
2323  * is_primaryseg_expected() - Is waiting for primary 80 report
2324  * @spectral: Pointer to Spectral
2325  * @smode: Spectral scan mode
2326  *
2327  * Return true if mode is 160 Mhz and primary 80 report expected or
2328  * mode is not 160 Mhz
2329  *
2330  * Return: true or false
2331  */
2332 static inline
2333 bool is_primaryseg_expected(struct target_if_spectral *spectral,
2334 			    enum spectral_scan_mode smode)
2335 {
2336 	return
2337 	(!is_ch_width_160_or_80p80(spectral->ch_width[smode]) ||
2338 	 !spectral->rparams.fragmentation_160[smode] ||
2339 	 (spectral->state_160mhz_delivery[smode] ==
2340 	  SPECTRAL_REPORT_WAIT_PRIMARY80));
2341 }
2342 
2343 #ifndef OPTIMIZED_SAMP_MESSAGE
2344 /**
2345  * is_primaryseg_rx_inprog() - Is primary 80 report processing is in progress
2346  * @spectral: Pointer to Spectral
2347  * @smode: Spectral scan mode
2348  *
2349  * Is primary 80 report processing is in progress
2350  *
2351  * Return: true or false
2352  */
2353 static inline
2354 bool is_primaryseg_rx_inprog(struct target_if_spectral *spectral,
2355 			     enum spectral_scan_mode smode)
2356 {
2357 	return
2358 	(!is_ch_width_160_or_80p80(spectral->ch_width[smode]) ||
2359 	 spectral->spectral_gen == SPECTRAL_GEN2 ||
2360 	 (spectral->spectral_gen == SPECTRAL_GEN3 &&
2361 	  (!spectral->rparams.fragmentation_160[smode] ||
2362 	   spectral->state_160mhz_delivery[smode] ==
2363 	   SPECTRAL_REPORT_RX_PRIMARY80)));
2364 }
2365 
2366 /**
2367  * is_secondaryseg_rx_inprog() - Is secondary80 report processing is in progress
2368  * @spectral: Pointer to Spectral
2369  * @smode: Spectral scan mode
2370  *
2371  * Is secondary 80 report processing is in progress
2372  *
2373  * Return: true or false
2374  */
2375 static inline
2376 bool is_secondaryseg_rx_inprog(struct target_if_spectral *spectral,
2377 			       enum spectral_scan_mode smode)
2378 {
2379 	return
2380 	(is_ch_width_160_or_80p80(spectral->ch_width[smode]) &&
2381 	 (spectral->spectral_gen == SPECTRAL_GEN2 ||
2382 	  ((spectral->spectral_gen == SPECTRAL_GEN3) &&
2383 	   (!spectral->rparams.fragmentation_160[smode] ||
2384 	    spectral->state_160mhz_delivery[smode] ==
2385 	    SPECTRAL_REPORT_RX_SECONDARY80))));
2386 }
2387 #endif
2388 
2389 /**
2390  * clamp_fft_bin_value() - Clamp the FFT bin value between min and max
2391  * @fft_bin_value: FFT bin value as reported by HW
2392  * @pwr_format: FFT bin format (linear or dBm format)
2393  *
2394  * Each FFT bin value is represented as an 8 bit integer in SAMP message. But
2395  * depending on the configuration, the FFT bin value reported by HW might
2396  * exceed 8 bits. Clamp the FFT bin value between the min and max value
2397  * which can be represented by 8 bits. For linear mode, min and max FFT bin
2398  * value which can be represented by 8 bit is 0 and U8_MAX respectively. For
2399  * dBm mode,  min and max FFT bin value which can be represented by 8 bit is
2400  * S8_MIN and S8_MAX respectively.
2401  *
2402  * Return: Clamped FFT bin value
2403  */
2404 static inline uint8_t
2405 clamp_fft_bin_value(uint16_t fft_bin_value, uint16_t pwr_format)
2406 {
2407 	uint8_t clamped_fft_bin_value = 0;
2408 
2409 	switch (pwr_format) {
2410 	case SPECTRAL_PWR_FORMAT_LINEAR:
2411 		if (qdf_unlikely(fft_bin_value > MAX_FFTBIN_VALUE_LINEAR_MODE))
2412 			clamped_fft_bin_value = MAX_FFTBIN_VALUE_LINEAR_MODE;
2413 		else
2414 			clamped_fft_bin_value = fft_bin_value;
2415 		break;
2416 
2417 	case SPECTRAL_PWR_FORMAT_DBM:
2418 		if (qdf_unlikely((int16_t)fft_bin_value >
2419 		    MAX_FFTBIN_VALUE_DBM_MODE))
2420 			clamped_fft_bin_value = MAX_FFTBIN_VALUE_DBM_MODE;
2421 		else if (qdf_unlikely((int16_t)fft_bin_value <
2422 			 MIN_FFTBIN_VALUE_DBM_MODE))
2423 			clamped_fft_bin_value = MIN_FFTBIN_VALUE_DBM_MODE;
2424 		else
2425 			clamped_fft_bin_value = fft_bin_value;
2426 		break;
2427 
2428 	default:
2429 		qdf_assert_always(0);
2430 	}
2431 
2432 	return clamped_fft_bin_value;
2433 }
2434 
2435 /**
2436  * target_if_160mhz_delivery_state_change() - State transition for 160Mhz
2437  *                                            Spectral
2438  * @spectral: Pointer to spectral object
2439  * @smode: Spectral scan mode
2440  * @detector_id: Detector id
2441  *
2442  * Move the states of state machine for 160MHz spectral scan report receive
2443  *
2444  * Return: QDF_STATUS
2445  */
2446 QDF_STATUS
2447 target_if_160mhz_delivery_state_change(struct target_if_spectral *spectral,
2448 				       enum spectral_scan_mode smode,
2449 				       uint8_t detector_id);
2450 
2451 /**
2452  * target_if_sops_is_spectral_enabled() - Get whether Spectral is enabled
2453  * @arg: Pointer to handle for Spectral target_if internal private data
2454  * @smode: Spectral scan mode
2455  *
2456  * Function to check whether Spectral is enabled
2457  *
2458  * Return: True if Spectral is enabled, false if Spectral is not enabled
2459  */
2460 uint32_t target_if_sops_is_spectral_enabled(void *arg,
2461 					    enum spectral_scan_mode smode);
2462 
2463 /**
2464  * target_if_sops_is_spectral_active() - Get whether Spectral is active
2465  * @arg: Pointer to handle for Spectral target_if internal private data
2466  * @smode: Spectral scan mode
2467  *
2468  * Function to check whether Spectral is active
2469  *
2470  * Return: True if Spectral is active, false if Spectral is not active
2471  */
2472 uint32_t target_if_sops_is_spectral_active(void *arg,
2473 					   enum spectral_scan_mode smode);
2474 
2475 /**
2476  * target_if_sops_start_spectral_scan() - Start Spectral scan
2477  * @arg: Pointer to handle for Spectral target_if internal private data
2478  * @smode: Spectral scan mode
2479  * @err: Pointer to error code
2480  *
2481  * Function to start spectral scan
2482  *
2483  * Return: 0 on success else failure
2484  */
2485 uint32_t target_if_sops_start_spectral_scan(void *arg,
2486 					    enum spectral_scan_mode smode,
2487 					    enum spectral_cp_error_code *err);
2488 
2489 /**
2490  * target_if_sops_stop_spectral_scan() - Stop Spectral scan
2491  * @arg: Pointer to handle for Spectral target_if internal private data
2492  * @smode: Spectral scan mode
2493  *
2494  * Function to stop spectral scan
2495  *
2496  * Return: 0 in case of success, -1 on failure
2497  */
2498 uint32_t target_if_sops_stop_spectral_scan(void *arg,
2499 					   enum spectral_scan_mode smode);
2500 
2501 /**
2502  * target_if_spectral_get_extension_channel() - Get the current Extension
2503  *                                              channel (in MHz)
2504  * @arg: Pointer to handle for Spectral target_if internal private data
2505  * @smode: Spectral scan mode
2506  *
2507  * Return: Current Extension channel (in MHz) on success, 0 on failure or if
2508  * extension channel is not present.
2509  */
2510 uint32_t
2511 target_if_spectral_get_extension_channel(void *arg,
2512 					 enum spectral_scan_mode smode);
2513 
2514 /**
2515  * target_if_spectral_get_current_channel() - Get the current channel (in MHz)
2516  * @arg: Pointer to handle for Spectral target_if internal private data
2517  * @smode: Spectral scan mode
2518  *
2519  * Return: Current channel (in MHz) on success, 0 on failure
2520  */
2521 uint32_t
2522 target_if_spectral_get_current_channel(void *arg,
2523 				       enum spectral_scan_mode smode);
2524 
2525 
2526 /**
2527  * target_if_spectral_reset_hw() - Reset the hardware
2528  * @arg: Pointer to handle for Spectral target_if internal private data
2529  *
2530  * This is only a placeholder since it is not currently required in the offload
2531  * case.
2532  *
2533  * Return: 0
2534  */
2535 uint32_t target_if_spectral_reset_hw(void *arg);
2536 
2537 /**
2538  * target_if_spectral_get_chain_noise_floor() - Get the Chain noise floor from
2539  * Noisefloor history buffer
2540  * @arg: Pointer to handle for Spectral target_if internal private data
2541  * @nf_buf: Pointer to buffer into which chain Noise Floor data should be copied
2542  *
2543  * This is only a placeholder since it is not currently required in the offload
2544  * case.
2545  *
2546  * Return: 0
2547  */
2548 uint32_t target_if_spectral_get_chain_noise_floor(void *arg, int16_t *nf_buf);
2549 
2550 /**
2551  * target_if_spectral_get_ext_noisefloor() - Get the extension channel
2552  * noisefloor
2553  * @arg: Pointer to handle for Spectral target_if internal private data
2554  *
2555  * This is only a placeholder since it is not currently required in the offload
2556  * case.
2557  *
2558  * Return: 0
2559  */
2560 int8_t target_if_spectral_get_ext_noisefloor(void *arg);
2561 
2562 /**
2563  * target_if_spectral_get_ctl_noisefloor() - Get the control channel noisefloor
2564  * @arg: Pointer to handle for Spectral target_if internal private data
2565  *
2566  * This is only a placeholder since it is not currently required in the offload
2567  * case.
2568  *
2569  * Return: 0
2570  */
2571 int8_t target_if_spectral_get_ctl_noisefloor(void *arg);
2572 
2573 /**
2574  * target_if_spectral_get_capability() - Get whether a given Spectral hardware
2575  * capability is available
2576  * @arg: Pointer to handle for Spectral target_if internal private data
2577  * @type: Spectral hardware capability type
2578  *
2579  * Return: True if the capability is available, false if the capability is not
2580  * available
2581  */
2582 uint32_t target_if_spectral_get_capability(
2583 	void *arg, enum spectral_capability_type type);
2584 
2585 /**
2586  * target_if_spectral_set_rxfilter() - Set the RX Filter before Spectral start
2587  * @arg: Pointer to handle for Spectral target_if internal private data
2588  * @rxfilter: Rx filter to be used
2589  *
2590  * Note: This is only a placeholder function. It is not currently required since
2591  * FW should be taking care of setting the required filters.
2592  *
2593  * Return: 0
2594  */
2595 uint32_t target_if_spectral_set_rxfilter(void *arg, int rxfilter);
2596 
2597 /**
2598  * target_if_spectral_sops_configure_params() - Configure user supplied Spectral
2599  * parameters
2600  * @arg: Pointer to handle for Spectral target_if internal private data
2601  * @params: Spectral parameters
2602  * @smode: Spectral scan mode
2603  *
2604  * Return: 0 in case of success, -1 on failure
2605  */
2606 uint32_t target_if_spectral_sops_configure_params(
2607 				void *arg, struct spectral_config *params,
2608 				enum spectral_scan_mode smode);
2609 
2610 /**
2611  * target_if_spectral_get_rxfilter() - Get the current RX Filter settings
2612  * @arg: Pointer to handle for Spectral target_if internal private data
2613  *
2614  * Note: This is only a placeholder function. It is not currently required since
2615  * FW should be taking care of setting the required filters.
2616  *
2617  * Return: 0
2618  */
2619 uint32_t target_if_spectral_get_rxfilter(void *arg);
2620 
2621 /**
2622  * target_if_pdev_spectral_deinit() - De-initialize target_if Spectral
2623  * functionality for the given pdev
2624  * @pdev: Pointer to pdev object
2625  *
2626  * Return: None
2627  */
2628 void target_if_pdev_spectral_deinit(struct wlan_objmgr_pdev *pdev);
2629 
2630 /**
2631  * target_if_set_spectral_config() - Set spectral config
2632  * @pdev:       Pointer to pdev object
2633  * @param: Spectral parameter id and value
2634  * @smode: Spectral scan mode
2635  * @err: Pointer to Spectral error code
2636  *
2637  * API to set spectral configurations
2638  *
2639  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
2640  */
2641 QDF_STATUS target_if_set_spectral_config(struct wlan_objmgr_pdev *pdev,
2642 					 const struct spectral_cp_param *param,
2643 					 const enum spectral_scan_mode smode,
2644 					 enum spectral_cp_error_code *err);
2645 
2646 /**
2647  * target_if_pdev_spectral_init() - Initialize target_if Spectral
2648  * functionality for the given pdev
2649  * @pdev: Pointer to pdev object
2650  *
2651  * Return: On success, pointer to Spectral target_if internal private data, on
2652  * failure, NULL
2653  */
2654 void *target_if_pdev_spectral_init(struct wlan_objmgr_pdev *pdev);
2655 
2656 /**
2657  * target_if_spectral_sops_get_params() - Get user configured Spectral
2658  * parameters
2659  * @arg: Pointer to handle for Spectral target_if internal private data
2660  * @params: Pointer to buffer into which Spectral parameters should be copied
2661  * @smode: Spectral scan mode
2662  *
2663  * Return: 0 in case of success, -1 on failure
2664  */
2665 uint32_t target_if_spectral_sops_get_params(
2666 			void *arg, struct spectral_config *params,
2667 			enum spectral_scan_mode smode);
2668 
2669 /**
2670  * target_if_init_spectral_capability() - Initialize Spectral capability
2671  *
2672  * @spectral: Pointer to Spectral target_if internal private data
2673  * @target_type: target type
2674  *
2675  * This is a workaround.
2676  *
2677  * Return: QDF_STATUS
2678  */
2679 QDF_STATUS
2680 target_if_init_spectral_capability(struct target_if_spectral *spectral,
2681 				   uint32_t target_type);
2682 
2683 /**
2684  * target_if_start_spectral_scan() - Start spectral scan
2685  * @pdev: Pointer to pdev object
2686  * @vdev_id: VDEV id
2687  * @smode: Spectral scan mode
2688  * @err: Spectral error code
2689  *
2690  * API to start spectral scan
2691  *
2692  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
2693  */
2694 QDF_STATUS target_if_start_spectral_scan(struct wlan_objmgr_pdev *pdev,
2695 					 uint8_t vdev_id,
2696 					 enum spectral_scan_mode smode,
2697 					 enum spectral_cp_error_code *err);
2698 
2699 /**
2700  * target_if_get_spectral_config() - Get spectral configuration
2701  * @pdev: Pointer to pdev object
2702  * @param: Pointer to spectral_config structure in which the configuration
2703  * should be returned
2704  * @smode: Spectral scan mode
2705  *
2706  * API to get the current spectral configuration
2707  *
2708  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
2709  */
2710 QDF_STATUS target_if_get_spectral_config(struct wlan_objmgr_pdev *pdev,
2711 					 struct spectral_config *param,
2712 					 enum spectral_scan_mode smode);
2713 
2714 /**
2715  * target_if_spectral_scan_enable_params() - Enable use of desired Spectral
2716  *                                           parameters
2717  * @spectral: Pointer to Spectral target_if internal private data
2718  * @spectral_params: Pointer to Spectral parameters
2719  * @smode: Spectral scan mode
2720  * @err: Spectral error code
2721  *
2722  * Enable use of desired Spectral parameters by configuring them into HW, and
2723  * starting Spectral scan
2724  *
2725  * Return: 0 on success, 1 on failure
2726  */
2727 int target_if_spectral_scan_enable_params(
2728 		struct target_if_spectral *spectral,
2729 		struct spectral_config *spectral_params,
2730 		enum spectral_scan_mode smode,
2731 		enum spectral_cp_error_code *err);
2732 
2733 /**
2734  * target_if_is_spectral_active() - Get whether Spectral is active
2735  * @pdev: Pointer to pdev object
2736  * @smode: Spectral scan mode
2737  *
2738  * Return: True if Spectral is active, false if Spectral is not active
2739  */
2740 bool target_if_is_spectral_active(struct wlan_objmgr_pdev *pdev,
2741 				  enum spectral_scan_mode smode);
2742 
2743 /**
2744  * target_if_is_spectral_enabled() - Get whether Spectral is enabled
2745  * @pdev: Pointer to pdev object
2746  * @smode: Spectral scan mode
2747  *
2748  * Return: True if Spectral is enabled, false if Spectral is not enabled
2749  */
2750 bool target_if_is_spectral_enabled(struct wlan_objmgr_pdev *pdev,
2751 				   enum spectral_scan_mode smode);
2752 
2753 /**
2754  * target_if_set_debug_level() - Set debug level for Spectral
2755  * @pdev: Pointer to pdev object
2756  * @debug_level: Debug level
2757  *
2758  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
2759  *
2760  */
2761 QDF_STATUS target_if_set_debug_level(struct wlan_objmgr_pdev *pdev,
2762 				     uint32_t debug_level);
2763 
2764 /**
2765  * target_if_get_debug_level() - Get debug level for Spectral
2766  * @pdev: Pointer to pdev object
2767  *
2768  * Return: Current debug level
2769  */
2770 uint32_t target_if_get_debug_level(struct wlan_objmgr_pdev *pdev);
2771 
2772 
2773 /**
2774  * target_if_get_spectral_capinfo() - Get Spectral capability information
2775  * @pdev: Pointer to pdev object
2776  * @scaps: Buffer into which data should be copied
2777  *
2778  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
2779  */
2780 QDF_STATUS target_if_get_spectral_capinfo(struct wlan_objmgr_pdev *pdev,
2781 					  struct spectral_caps *scaps);
2782 
2783 
2784 /**
2785  * target_if_get_spectral_diagstats() - Get Spectral diagnostic statistics
2786  * @pdev:  Pointer to pdev object
2787  * @stats: Buffer into which data should be copied
2788  *
2789  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
2790  */
2791 QDF_STATUS target_if_get_spectral_diagstats(struct wlan_objmgr_pdev *pdev,
2792 					    struct spectral_diag_stats *stats);
2793 
2794 QDF_STATUS
2795 target_if_160mhz_delivery_state_change(struct target_if_spectral *spectral,
2796 				       enum spectral_scan_mode smode,
2797 				       uint8_t detector_id);
2798 
2799 #ifdef OPTIMIZED_SAMP_MESSAGE
2800 /**
2801  * target_if_spectral_get_num_fft_bins() - Get number of FFT bins from FFT size
2802  * according to the Spectral report mode.
2803  * @fft_size: FFT length
2804  * @report_mode: Spectral report mode
2805  *
2806  * Get number of FFT bins from FFT size according to the Spectral
2807  * report mode.
2808  *
2809  * Return: Number of FFT bins
2810  */
2811 static inline uint32_t
2812 target_if_spectral_get_num_fft_bins(uint32_t fft_size,
2813 				    enum spectral_report_mode report_mode)
2814 {
2815 	switch (report_mode) {
2816 	case SPECTRAL_REPORT_MODE_0:
2817 	case SPECTRAL_REPORT_MODE_1:
2818 		return 0;
2819 	case SPECTRAL_REPORT_MODE_2:
2820 		return (1 << (fft_size - 1));
2821 	case SPECTRAL_REPORT_MODE_3:
2822 		return (1 << fft_size);
2823 	default:
2824 		return -EINVAL;
2825 	}
2826 }
2827 #endif /* OPTIMIZED_SAMP_MESSAGE */
2828 
2829 #ifdef OPTIMIZED_SAMP_MESSAGE
2830 /**
2831  * target_if_get_detector_chwidth() - Get per-detector bandwidth
2832  * based on channel width and fragmentation.
2833  * @ch_width: Spectral scan channel width
2834  * @fragmentation_160: Target type has fragmentation or not
2835  *
2836  * Get per-detector BW.
2837  *
2838  * Return: detector BW
2839  */
2840 static inline
2841 enum phy_ch_width target_if_get_detector_chwidth(enum phy_ch_width ch_width,
2842 						 bool fragmentation_160)
2843 {
2844 	return ((ch_width == CH_WIDTH_160MHZ && fragmentation_160) ?
2845 		CH_WIDTH_80MHZ : ((ch_width == CH_WIDTH_80P80MHZ) ?
2846 		CH_WIDTH_80MHZ : ch_width));
2847 }
2848 
2849 /**
2850  * target_if_spectral_set_start_end_freq() - Set start and end frequencies for
2851  * a given center frequency
2852  * @cfreq: Center frequency for which start and end freq need to be set
2853  * @ch_width: Spectral scan Channel width
2854  * @fragmentation_160: Target type has fragmentation or not
2855  * @start_end_freq: Array containing start and end frequency of detector
2856  *
2857  * Set the start and end frequencies for given center frequency in destination
2858  * detector info struct
2859  *
2860  * Return: void
2861  */
2862 static inline
2863 void target_if_spectral_set_start_end_freq(uint32_t cfreq,
2864 					   enum phy_ch_width ch_width,
2865 					   bool fragmentation_160,
2866 					   uint32_t *start_end_freq)
2867 {
2868 	enum phy_ch_width det_ch_width;
2869 
2870 	det_ch_width = target_if_get_detector_chwidth(ch_width,
2871 						      fragmentation_160);
2872 
2873 	start_end_freq[0] = cfreq - (wlan_reg_get_bw_value(det_ch_width) >> 1);
2874 	start_end_freq[1] = cfreq + (wlan_reg_get_bw_value(det_ch_width) >> 1);
2875 }
2876 #endif /* OPTIMIZED_SAMP_MESSAGE */
2877 
2878 #ifdef DIRECT_BUF_RX_ENABLE
2879 /**
2880  * target_if_consume_spectral_report_gen3() -  Process fft report for gen3
2881  * @spectral: Pointer to spectral object
2882  * @report: Pointer to spectral report
2883  *
2884  * Process fft report for gen3
2885  *
2886  * Return: Success/Failure
2887  */
2888 int
2889 target_if_consume_spectral_report_gen3(
2890 	 struct target_if_spectral *spectral,
2891 	 struct spectral_report *report);
2892 #endif
2893 
2894 /**
2895  * target_if_spectral_fw_hang() - Crash the FW from Spectral module
2896  * @spectral: Pointer to Spectral LMAC object
2897  *
2898  * Return: QDF_STATUS of operation
2899  */
2900 QDF_STATUS target_if_spectral_fw_hang(struct target_if_spectral *spectral);
2901 
2902 /**
2903  * target_if_spectral_finite_scan_update() - Update scan count for finite scan
2904  * and stop Spectral scan when required
2905  * @spectral: Pointer to Spectral target_if internal private data
2906  * @smode: Spectral scan mode
2907  *
2908  * This API decrements the number of Spectral reports expected from target for
2909  * a finite Spectral scan. When expected number of reports are received from
2910  * target Spectral scan is stopped.
2911  *
2912  * Return: QDF_STATUS on success
2913  */
2914 QDF_STATUS
2915 target_if_spectral_finite_scan_update(struct target_if_spectral *spectral,
2916 				      enum spectral_scan_mode smode);
2917 
2918 /**
2919  * target_if_spectral_is_finite_scan() - Check Spectral scan is finite/infinite
2920  * @spectral: Pointer to Spectral target_if internal private data
2921  * @smode: Spectral scan mode
2922  * @finite_spectral_scan: location to store result
2923  *
2924  * API to check whether Spectral scan is finite/infinite for the give mode.
2925  * A non zero scan count indicates that scan is finite. Scan count of 0
2926  * indicates an infinite Spectral scan.
2927  *
2928  * Return: QDF_STATUS on success
2929  */
2930 QDF_STATUS
2931 target_if_spectral_is_finite_scan(struct target_if_spectral *spectral,
2932 				  enum spectral_scan_mode smode,
2933 				  bool *finite_spectral_scan);
2934 
2935 #ifdef BIG_ENDIAN_HOST
2936 /**
2937  * target_if_byte_swap_spectral_headers_gen3() - Apply byte-swap on headers
2938  * @spectral: Pointer to Spectral target_if internal private data
2939  * @data: Pointer to the start of Spectral Scan Summary report
2940  *
2941  * This API is only required for Big-endian Host platforms.
2942  * It applies 32-bit byte-swap on Spectral Scan Summary and Search FFT reports
2943  * and copies them back to the source location.
2944  * Padding bytes that lie between the reports won't be touched.
2945  *
2946  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
2947  */
2948 QDF_STATUS target_if_byte_swap_spectral_headers_gen3(
2949 	 struct target_if_spectral *spectral,
2950 	 void *data);
2951 
2952 /**
2953  * target_if_byte_swap_spectral_fft_bins_gen3() - Apply byte-swap on FFT bins
2954  * @rparams: Pointer to Spectral report parameters
2955  * @bin_pwr_data: Pointer to the start of FFT bins
2956  * @num_fftbins: Number of FFT bins
2957  *
2958  * This API is only required for Big-endian Host platforms.
2959  * It applies pack-mode-aware byte-swap on the FFT bins as below:
2960  *   1. pack-mode 0 (i.e., 1 FFT bin per DWORD):
2961  *        Reads the least significant 2 bytes of each DWORD, applies 16-bit
2962  *        byte-swap on that value, and copies it back to the source location.
2963  *   2. pack-mode 1 (i.e., 2 FFT bins per DWORD):
2964  *        Reads each FFT bin, applies 16-bit byte-swap on that value,
2965  *        and copies it back to the source location.
2966  *   3. pack-mode 2 (4 FFT bins per DWORD):
2967  *        Nothing
2968  *
2969  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
2970  */
2971 QDF_STATUS target_if_byte_swap_spectral_fft_bins_gen3(
2972 	const struct spectral_report_params *rparams,
2973 	void *bin_pwr_data, size_t num_fftbins);
2974 #endif /* BIG_ENDIAN_HOST */
2975 
2976 #ifdef OPTIMIZED_SAMP_MESSAGE
2977 /**
2978  * target_if_populate_fft_bins_info() - Populate the start and end bin
2979  * indices, on per-detector level.
2980  * @spectral: Pointer to target_if spectral internal structure
2981  * @smode: Spectral scan mode
2982  *
2983  * Populate the start and end bin indices, on per-detector level.
2984  *
2985  * Return: Success/Failure
2986  */
2987 QDF_STATUS
2988 target_if_populate_fft_bins_info(struct target_if_spectral *spectral,
2989 				 enum spectral_scan_mode smode);
2990 #else
2991 static inline QDF_STATUS
2992 target_if_populate_fft_bins_info(struct target_if_spectral *spectral,
2993 				 enum spectral_scan_mode smode)
2994 {
2995 	return QDF_STATUS_SUCCESS;
2996 }
2997 #endif
2998 
2999 /**
3000  * spectral_is_session_info_expected_from_target() - Check if spectral scan
3001  * session is expected from target
3002  * @pdev: pdev pointer
3003  * @is_session_info_expected: Pointer to caller variable
3004  *
3005  * Return: QDF_STATUS of operation
3006  */
3007 QDF_STATUS
3008 spectral_is_session_info_expected_from_target(struct wlan_objmgr_pdev *pdev,
3009 					      bool *is_session_info_expected);
3010 
3011 #ifdef WIN32
3012 #pragma pack(pop, target_if_spectral)
3013 #endif
3014 #ifdef __ATTRIB_PACK
3015 #undef __ATTRIB_PACK
3016 #endif
3017 
3018 /**
3019  * target_if_spectral_copy_fft_bins() - Copy FFT bins from source buffer to
3020  * destination buffer
3021  * @spectral: Pointer to Spectral LMAC object
3022  * @src_fft_buf: Pointer to source FFT buffer
3023  * @dest_fft_buf: Pointer to destination FFT buffer
3024  * @fft_bin_count: Number of FFT bins to copy
3025  * @bytes_copied: Number of bytes copied by this API
3026  * @pwr_format: Spectral FFT bin format (linear/dBm mode)
3027  *
3028  * Different targets supports different FFT bin widths. This API encapsulates
3029  * all those details and copies 8-bit FFT value into the destination buffer.
3030  * Also, this API takes care of handling big-endian mode.
3031  * In essence, it does the following.
3032  *   - Read DWORDs one by one
3033  *   - Extract individual FFT bins out of it
3034  *   - Copy the FFT bin to destination buffer
3035  *
3036  * Return: QDF_STATUS_SUCCESS in case of success, else QDF_STATUS_E_FAILURE
3037  */
3038 QDF_STATUS
3039 target_if_spectral_copy_fft_bins(struct target_if_spectral *spectral,
3040 				 const void *src_fft_buf,
3041 				 void *dest_fft_buf,
3042 				 uint32_t fft_bin_count,
3043 				 uint32_t *bytes_copied,
3044 				 uint16_t pwr_format);
3045 #endif /* WLAN_CONV_SPECTRAL_ENABLE */
3046 
3047 struct spectral_capabilities_event_params;
3048 /**
3049  * target_if_wmi_extract_spectral_caps_fixed_param() - Wrapper function to
3050  * extract fixed params from Spectral capabilities WMI event
3051  * @psoc: Pointer to psoc object
3052  * @evt_buf: Event buffer
3053  * @param: Spectral capabilities event parameters data structure to be filled
3054  * by this API
3055  *
3056  * Return: QDF_STATUS of operation
3057  */
3058 QDF_STATUS target_if_wmi_extract_spectral_caps_fixed_param(
3059 			struct wlan_objmgr_psoc *psoc,
3060 			uint8_t *evt_buf,
3061 			struct spectral_capabilities_event_params *param);
3062 
3063 struct spectral_scan_bw_capabilities;
3064 /**
3065  * target_if_wmi_extract_spectral_scan_bw_caps() - Wrapper function to
3066  * extract bandwidth capabilities from Spectral capabilities WMI event
3067  * @psoc: Pointer to psoc object
3068  * @evt_buf: Event buffer
3069  * @bw_caps: Data structure to be filled by this API after extraction
3070  *
3071  * Return: QDF_STATUS of operation
3072  */
3073 QDF_STATUS
3074 target_if_wmi_extract_spectral_scan_bw_caps(
3075 			struct wlan_objmgr_psoc *psoc,
3076 			uint8_t *evt_buf,
3077 			struct spectral_scan_bw_capabilities *bw_caps);
3078 
3079 struct spectral_fft_size_capabilities;
3080 /**
3081  * target_if_wmi_extract_spectral_fft_size_caps() - Wrapper function to
3082  * extract fft size capabilities from Spectral capabilities WMI event
3083  * @psoc: Pointer to psoc object
3084  * @evt_buf: Event buffer
3085  * @fft_size_caps: Data structure to be filled by this API after extraction
3086  *
3087  * Return: QDF_STATUS of operation
3088  */
3089 QDF_STATUS
3090 target_if_wmi_extract_spectral_fft_size_caps(
3091 			struct wlan_objmgr_psoc *psoc,
3092 			uint8_t *evt_buf,
3093 			struct spectral_fft_size_capabilities *fft_size_caps);
3094 #endif /* _TARGET_IF_SPECTRAL_H_ */
3095