xref: /wlan-dirver/qca-wifi-host-cmn/qdf/linux/src/qdf_nbuf.c (revision 70a19e16789e308182f63b15c75decec7bf0b342)
1 /*
2  * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /**
21  * DOC: qdf_nbuf.c
22  * QCA driver framework(QDF) network buffer management APIs
23  */
24 #include <linux/hashtable.h>
25 #include <linux/kernel.h>
26 #include <linux/version.h>
27 #include <linux/skbuff.h>
28 #include <linux/module.h>
29 #include <linux/proc_fs.h>
30 #include <linux/inetdevice.h>
31 #include <qdf_atomic.h>
32 #include <qdf_debugfs.h>
33 #include <qdf_lock.h>
34 #include <qdf_mem.h>
35 #include <qdf_module.h>
36 #include <qdf_nbuf.h>
37 #include <qdf_status.h>
38 #include "qdf_str.h"
39 #include <qdf_trace.h>
40 #include "qdf_tracker.h"
41 #include <qdf_types.h>
42 #include <net/ieee80211_radiotap.h>
43 #include <pld_common.h>
44 #include <qdf_crypto.h>
45 #include <linux/igmp.h>
46 #include <net/mld.h>
47 
48 #if defined(FEATURE_TSO)
49 #include <net/ipv6.h>
50 #include <linux/ipv6.h>
51 #include <linux/tcp.h>
52 #include <linux/if_vlan.h>
53 #include <linux/ip.h>
54 #endif /* FEATURE_TSO */
55 
56 #ifdef IPA_OFFLOAD
57 #include <i_qdf_ipa_wdi3.h>
58 #endif /* IPA_OFFLOAD */
59 
60 #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0)
61 
62 #define qdf_nbuf_users_inc atomic_inc
63 #define qdf_nbuf_users_dec atomic_dec
64 #define qdf_nbuf_users_set atomic_set
65 #define qdf_nbuf_users_read atomic_read
66 #else
67 #define qdf_nbuf_users_inc refcount_inc
68 #define qdf_nbuf_users_dec refcount_dec
69 #define qdf_nbuf_users_set refcount_set
70 #define qdf_nbuf_users_read refcount_read
71 #endif /* KERNEL_VERSION(4, 13, 0) */
72 
73 #define IEEE80211_RADIOTAP_VHT_BW_20	0
74 #define IEEE80211_RADIOTAP_VHT_BW_40	1
75 #define IEEE80211_RADIOTAP_VHT_BW_80	2
76 #define IEEE80211_RADIOTAP_VHT_BW_160	3
77 
78 #define RADIOTAP_VHT_BW_20	0
79 #define RADIOTAP_VHT_BW_40	1
80 #define RADIOTAP_VHT_BW_80	4
81 #define RADIOTAP_VHT_BW_160	11
82 
83 /* tx status */
84 #define RADIOTAP_TX_STATUS_FAIL		1
85 #define RADIOTAP_TX_STATUS_NOACK	2
86 
87 /* channel number to freq conversion */
88 #define CHANNEL_NUM_14 14
89 #define CHANNEL_NUM_15 15
90 #define CHANNEL_NUM_27 27
91 #define CHANNEL_NUM_35 35
92 #define CHANNEL_NUM_182 182
93 #define CHANNEL_NUM_197 197
94 #define CHANNEL_FREQ_2484 2484
95 #define CHANNEL_FREQ_2407 2407
96 #define CHANNEL_FREQ_2512 2512
97 #define CHANNEL_FREQ_5000 5000
98 #define CHANNEL_FREQ_4000 4000
99 #define CHANNEL_FREQ_5150 5150
100 #define FREQ_MULTIPLIER_CONST_5MHZ 5
101 #define FREQ_MULTIPLIER_CONST_20MHZ 20
102 #define RADIOTAP_5G_SPECTRUM_CHANNEL 0x0100
103 #define RADIOTAP_2G_SPECTRUM_CHANNEL 0x0080
104 #define RADIOTAP_CCK_CHANNEL 0x0020
105 #define RADIOTAP_OFDM_CHANNEL 0x0040
106 
107 #ifdef FEATURE_NBUFF_REPLENISH_TIMER
108 #include <qdf_mc_timer.h>
109 
110 struct qdf_track_timer {
111 	qdf_mc_timer_t track_timer;
112 	qdf_atomic_t alloc_fail_cnt;
113 };
114 
115 static struct qdf_track_timer alloc_track_timer;
116 
117 #define QDF_NBUF_ALLOC_EXPIRE_TIMER_MS  5000
118 #define QDF_NBUF_ALLOC_EXPIRE_CNT_THRESHOLD  50
119 #endif
120 
121 #ifdef NBUF_MEMORY_DEBUG
122 /* SMMU crash indication*/
123 static qdf_atomic_t smmu_crashed;
124 /* Number of nbuf not added to history*/
125 unsigned long g_histroy_add_drop;
126 #endif
127 
128 /* Packet Counter */
129 static uint32_t nbuf_tx_mgmt[QDF_NBUF_TX_PKT_STATE_MAX];
130 static uint32_t nbuf_tx_data[QDF_NBUF_TX_PKT_STATE_MAX];
131 #ifdef QDF_NBUF_GLOBAL_COUNT
132 #define NBUF_DEBUGFS_NAME      "nbuf_counters"
133 static qdf_atomic_t nbuf_count;
134 #endif
135 
136 #if defined(NBUF_MEMORY_DEBUG) || defined(QDF_NBUF_GLOBAL_COUNT)
137 static bool is_initial_mem_debug_disabled;
138 #endif
139 
140 /**
141  *  __qdf_nbuf_get_ip_offset - Get IPV4/V6 header offset
142  * @data: Pointer to network data buffer
143  *
144  * Get the IP header offset in case of 8021Q and 8021AD
145  * tag is present in L2 header.
146  *
147  * Return: IP header offset
148  */
149 static inline uint8_t __qdf_nbuf_get_ip_offset(uint8_t *data)
150 {
151 	uint16_t ether_type;
152 
153 	ether_type = *(uint16_t *)(data +
154 				   QDF_NBUF_TRAC_ETH_TYPE_OFFSET);
155 
156 	if (unlikely(ether_type == QDF_SWAP_U16(QDF_ETH_TYPE_8021Q)))
157 		return QDF_NBUF_TRAC_VLAN_IP_OFFSET;
158 	else if (unlikely(ether_type == QDF_SWAP_U16(QDF_ETH_TYPE_8021AD)))
159 		return QDF_NBUF_TRAC_DOUBLE_VLAN_IP_OFFSET;
160 
161 	return QDF_NBUF_TRAC_IP_OFFSET;
162 }
163 
164 /**
165  *  __qdf_nbuf_get_ether_type - Get the ether type
166  * @data: Pointer to network data buffer
167  *
168  * Get the ether type in case of 8021Q and 8021AD tag
169  * is present in L2 header, e.g for the returned ether type
170  * value, if IPV4 data ether type 0x0800, return 0x0008.
171  *
172  * Return ether type.
173  */
174 static inline uint16_t __qdf_nbuf_get_ether_type(uint8_t *data)
175 {
176 	uint16_t ether_type;
177 
178 	ether_type = *(uint16_t *)(data +
179 				   QDF_NBUF_TRAC_ETH_TYPE_OFFSET);
180 
181 	if (unlikely(ether_type == QDF_SWAP_U16(QDF_ETH_TYPE_8021Q)))
182 		ether_type = *(uint16_t *)(data +
183 				QDF_NBUF_TRAC_VLAN_ETH_TYPE_OFFSET);
184 	else if (unlikely(ether_type == QDF_SWAP_U16(QDF_ETH_TYPE_8021AD)))
185 		ether_type = *(uint16_t *)(data +
186 				QDF_NBUF_TRAC_DOUBLE_VLAN_ETH_TYPE_OFFSET);
187 
188 	return ether_type;
189 }
190 
191 /**
192  * qdf_nbuf_tx_desc_count_display() - Displays the packet counter
193  *
194  * Return: none
195  */
196 void qdf_nbuf_tx_desc_count_display(void)
197 {
198 	qdf_debug("Current Snapshot of the Driver:");
199 	qdf_debug("Data Packets:");
200 	qdf_debug("HDD %d TXRX_Q %d TXRX %d HTT %d",
201 		  nbuf_tx_data[QDF_NBUF_TX_PKT_HDD] -
202 		  (nbuf_tx_data[QDF_NBUF_TX_PKT_TXRX] +
203 		  nbuf_tx_data[QDF_NBUF_TX_PKT_TXRX_ENQUEUE] -
204 		  nbuf_tx_data[QDF_NBUF_TX_PKT_TXRX_DEQUEUE]),
205 		  nbuf_tx_data[QDF_NBUF_TX_PKT_TXRX_ENQUEUE] -
206 		  nbuf_tx_data[QDF_NBUF_TX_PKT_TXRX_DEQUEUE],
207 		  nbuf_tx_data[QDF_NBUF_TX_PKT_TXRX] -
208 		  nbuf_tx_data[QDF_NBUF_TX_PKT_HTT],
209 		  nbuf_tx_data[QDF_NBUF_TX_PKT_HTT]  -
210 		  nbuf_tx_data[QDF_NBUF_TX_PKT_HTC]);
211 	qdf_debug(" HTC %d  HIF %d CE %d TX_COMP %d",
212 		  nbuf_tx_data[QDF_NBUF_TX_PKT_HTC] -
213 		  nbuf_tx_data[QDF_NBUF_TX_PKT_HIF],
214 		  nbuf_tx_data[QDF_NBUF_TX_PKT_HIF] -
215 		  nbuf_tx_data[QDF_NBUF_TX_PKT_CE],
216 		  nbuf_tx_data[QDF_NBUF_TX_PKT_CE] -
217 		  nbuf_tx_data[QDF_NBUF_TX_PKT_FREE],
218 		  nbuf_tx_data[QDF_NBUF_TX_PKT_FREE]);
219 	qdf_debug("Mgmt Packets:");
220 	qdf_debug("TXRX_Q %d TXRX %d HTT %d HTC %d HIF %d CE %d TX_COMP %d",
221 		  nbuf_tx_mgmt[QDF_NBUF_TX_PKT_TXRX_ENQUEUE] -
222 		  nbuf_tx_mgmt[QDF_NBUF_TX_PKT_TXRX_DEQUEUE],
223 		  nbuf_tx_mgmt[QDF_NBUF_TX_PKT_TXRX] -
224 		  nbuf_tx_mgmt[QDF_NBUF_TX_PKT_HTT],
225 		  nbuf_tx_mgmt[QDF_NBUF_TX_PKT_HTT] -
226 		  nbuf_tx_mgmt[QDF_NBUF_TX_PKT_HTC],
227 		  nbuf_tx_mgmt[QDF_NBUF_TX_PKT_HTC] -
228 		  nbuf_tx_mgmt[QDF_NBUF_TX_PKT_HIF],
229 		  nbuf_tx_mgmt[QDF_NBUF_TX_PKT_HIF] -
230 		  nbuf_tx_mgmt[QDF_NBUF_TX_PKT_CE],
231 		  nbuf_tx_mgmt[QDF_NBUF_TX_PKT_CE] -
232 		  nbuf_tx_mgmt[QDF_NBUF_TX_PKT_FREE],
233 		  nbuf_tx_mgmt[QDF_NBUF_TX_PKT_FREE]);
234 }
235 qdf_export_symbol(qdf_nbuf_tx_desc_count_display);
236 
237 /**
238  * qdf_nbuf_tx_desc_count_update() - Updates the layer packet counter
239  * @packet_type   : packet type either mgmt/data
240  * @current_state : layer at which the packet currently present
241  *
242  * Return: none
243  */
244 static inline void qdf_nbuf_tx_desc_count_update(uint8_t packet_type,
245 			uint8_t current_state)
246 {
247 	switch (packet_type) {
248 	case QDF_NBUF_TX_PKT_MGMT_TRACK:
249 		nbuf_tx_mgmt[current_state]++;
250 		break;
251 	case QDF_NBUF_TX_PKT_DATA_TRACK:
252 		nbuf_tx_data[current_state]++;
253 		break;
254 	default:
255 		break;
256 	}
257 }
258 
259 /**
260  * qdf_nbuf_tx_desc_count_clear() - Clears packet counter for both data, mgmt
261  *
262  * Return: none
263  */
264 void qdf_nbuf_tx_desc_count_clear(void)
265 {
266 	memset(nbuf_tx_mgmt, 0, sizeof(nbuf_tx_mgmt));
267 	memset(nbuf_tx_data, 0, sizeof(nbuf_tx_data));
268 }
269 qdf_export_symbol(qdf_nbuf_tx_desc_count_clear);
270 
271 /**
272  * qdf_nbuf_set_state() - Updates the packet state
273  * @nbuf:            network buffer
274  * @current_state :  layer at which the packet currently is
275  *
276  * This function updates the packet state to the layer at which the packet
277  * currently is
278  *
279  * Return: none
280  */
281 void qdf_nbuf_set_state(qdf_nbuf_t nbuf, uint8_t current_state)
282 {
283 	/*
284 	 * Only Mgmt, Data Packets are tracked. WMI messages
285 	 * such as scan commands are not tracked
286 	 */
287 	uint8_t packet_type;
288 
289 	packet_type = QDF_NBUF_CB_TX_PACKET_TRACK(nbuf);
290 
291 	if ((packet_type != QDF_NBUF_TX_PKT_DATA_TRACK) &&
292 		(packet_type != QDF_NBUF_TX_PKT_MGMT_TRACK)) {
293 		return;
294 	}
295 	QDF_NBUF_CB_TX_PACKET_STATE(nbuf) = current_state;
296 	qdf_nbuf_tx_desc_count_update(packet_type,
297 					current_state);
298 }
299 qdf_export_symbol(qdf_nbuf_set_state);
300 
301 #ifdef FEATURE_NBUFF_REPLENISH_TIMER
302 /**
303  * __qdf_nbuf_start_replenish_timer - Start alloc fail replenish timer
304  *
305  * This function starts the alloc fail replenish timer.
306  *
307  * Return: void
308  */
309 static inline void __qdf_nbuf_start_replenish_timer(void)
310 {
311 	qdf_atomic_inc(&alloc_track_timer.alloc_fail_cnt);
312 	if (qdf_mc_timer_get_current_state(&alloc_track_timer.track_timer) !=
313 	    QDF_TIMER_STATE_RUNNING)
314 		qdf_mc_timer_start(&alloc_track_timer.track_timer,
315 				   QDF_NBUF_ALLOC_EXPIRE_TIMER_MS);
316 }
317 
318 /**
319  * __qdf_nbuf_stop_replenish_timer - Stop alloc fail replenish timer
320  *
321  * This function stops the alloc fail replenish timer.
322  *
323  * Return: void
324  */
325 static inline void __qdf_nbuf_stop_replenish_timer(void)
326 {
327 	if (qdf_atomic_read(&alloc_track_timer.alloc_fail_cnt) == 0)
328 		return;
329 
330 	qdf_atomic_set(&alloc_track_timer.alloc_fail_cnt, 0);
331 	if (qdf_mc_timer_get_current_state(&alloc_track_timer.track_timer) ==
332 	    QDF_TIMER_STATE_RUNNING)
333 		qdf_mc_timer_stop(&alloc_track_timer.track_timer);
334 }
335 
336 /**
337  * qdf_replenish_expire_handler - Replenish expire handler
338  *
339  * This function triggers when the alloc fail replenish timer expires.
340  *
341  * Return: void
342  */
343 static void qdf_replenish_expire_handler(void *arg)
344 {
345 	if (qdf_atomic_read(&alloc_track_timer.alloc_fail_cnt) >
346 	    QDF_NBUF_ALLOC_EXPIRE_CNT_THRESHOLD) {
347 		qdf_print("ERROR: NBUF allocation timer expired Fail count %d",
348 			  qdf_atomic_read(&alloc_track_timer.alloc_fail_cnt));
349 
350 		/* Error handling here */
351 	}
352 }
353 
354 /**
355  * __qdf_nbuf_init_replenish_timer - Initialize the alloc replenish timer
356  *
357  * This function initializes the nbuf alloc fail replenish timer.
358  *
359  * Return: void
360  */
361 void __qdf_nbuf_init_replenish_timer(void)
362 {
363 	qdf_mc_timer_init(&alloc_track_timer.track_timer, QDF_TIMER_TYPE_SW,
364 			  qdf_replenish_expire_handler, NULL);
365 }
366 
367 /**
368  * __qdf_nbuf_deinit_replenish_timer - Deinitialize the alloc replenish timer
369  *
370  * This function deinitializes the nbuf alloc fail replenish timer.
371  *
372  * Return: void
373  */
374 void __qdf_nbuf_deinit_replenish_timer(void)
375 {
376 	__qdf_nbuf_stop_replenish_timer();
377 	qdf_mc_timer_destroy(&alloc_track_timer.track_timer);
378 }
379 
380 void qdf_nbuf_stop_replenish_timer(void)
381 {
382 	__qdf_nbuf_stop_replenish_timer();
383 }
384 #else
385 
386 static inline void __qdf_nbuf_start_replenish_timer(void) {}
387 static inline void __qdf_nbuf_stop_replenish_timer(void) {}
388 void qdf_nbuf_stop_replenish_timer(void)
389 {
390 }
391 #endif
392 
393 /* globals do not need to be initialized to NULL/0 */
394 qdf_nbuf_trace_update_t qdf_trace_update_cb;
395 qdf_nbuf_free_t nbuf_free_cb;
396 
397 #ifdef QDF_NBUF_GLOBAL_COUNT
398 
399 /**
400  * __qdf_nbuf_count_get() - get nbuf global count
401  *
402  * Return: nbuf global count
403  */
404 int __qdf_nbuf_count_get(void)
405 {
406 	return qdf_atomic_read(&nbuf_count);
407 }
408 qdf_export_symbol(__qdf_nbuf_count_get);
409 
410 /**
411  * __qdf_nbuf_count_inc() - increment nbuf global count
412  *
413  * @buf: sk buff
414  *
415  * Return: void
416  */
417 void __qdf_nbuf_count_inc(qdf_nbuf_t nbuf)
418 {
419 	int num_nbuf = 1;
420 	qdf_nbuf_t ext_list;
421 
422 	if (qdf_likely(is_initial_mem_debug_disabled))
423 		return;
424 
425 	ext_list = qdf_nbuf_get_ext_list(nbuf);
426 
427 	/* Take care to account for frag_list */
428 	while (ext_list) {
429 		++num_nbuf;
430 		ext_list = qdf_nbuf_queue_next(ext_list);
431 	}
432 
433 	qdf_atomic_add(num_nbuf, &nbuf_count);
434 }
435 qdf_export_symbol(__qdf_nbuf_count_inc);
436 
437 /**
438  * __qdf_nbuf_count_dec() - decrement nbuf global count
439  *
440  * @buf: sk buff
441  *
442  * Return: void
443  */
444 void __qdf_nbuf_count_dec(__qdf_nbuf_t nbuf)
445 {
446 	qdf_nbuf_t ext_list;
447 	int num_nbuf;
448 
449 	if (qdf_likely(is_initial_mem_debug_disabled))
450 		return;
451 
452 	if (qdf_nbuf_get_users(nbuf) > 1)
453 		return;
454 
455 	num_nbuf = 1;
456 
457 	/* Take care to account for frag_list */
458 	ext_list = qdf_nbuf_get_ext_list(nbuf);
459 	while (ext_list) {
460 		if (qdf_nbuf_get_users(ext_list) == 1)
461 			++num_nbuf;
462 		ext_list = qdf_nbuf_queue_next(ext_list);
463 	}
464 
465 	qdf_atomic_sub(num_nbuf, &nbuf_count);
466 }
467 qdf_export_symbol(__qdf_nbuf_count_dec);
468 #endif
469 
470 #ifdef NBUF_FRAG_MEMORY_DEBUG
471 void qdf_nbuf_frag_count_inc(qdf_nbuf_t nbuf)
472 {
473 	qdf_nbuf_t ext_list;
474 	uint32_t num_nr_frags;
475 	uint32_t total_num_nr_frags;
476 
477 	if (qdf_likely(is_initial_mem_debug_disabled))
478 		return;
479 
480 	num_nr_frags = qdf_nbuf_get_nr_frags(nbuf);
481 	qdf_assert_always(num_nr_frags <= QDF_NBUF_MAX_FRAGS);
482 
483 	total_num_nr_frags = num_nr_frags;
484 
485 	/* Take into account the frags attached to frag_list */
486 	ext_list = qdf_nbuf_get_ext_list(nbuf);
487 	while (ext_list) {
488 		num_nr_frags = qdf_nbuf_get_nr_frags(ext_list);
489 		qdf_assert_always(num_nr_frags <= QDF_NBUF_MAX_FRAGS);
490 		total_num_nr_frags += num_nr_frags;
491 		ext_list = qdf_nbuf_queue_next(ext_list);
492 	}
493 
494 	qdf_frag_count_inc(total_num_nr_frags);
495 }
496 
497 qdf_export_symbol(qdf_nbuf_frag_count_inc);
498 
499 void  qdf_nbuf_frag_count_dec(qdf_nbuf_t nbuf)
500 {
501 	qdf_nbuf_t ext_list;
502 	uint32_t num_nr_frags;
503 	uint32_t total_num_nr_frags;
504 
505 	if (qdf_likely(is_initial_mem_debug_disabled))
506 		return;
507 
508 	if (qdf_nbuf_get_users(nbuf) > 1)
509 		return;
510 
511 	num_nr_frags = qdf_nbuf_get_nr_frags(nbuf);
512 	qdf_assert_always(num_nr_frags <= QDF_NBUF_MAX_FRAGS);
513 
514 	total_num_nr_frags = num_nr_frags;
515 
516 	/* Take into account the frags attached to frag_list */
517 	ext_list = qdf_nbuf_get_ext_list(nbuf);
518 	while (ext_list) {
519 		if (qdf_nbuf_get_users(ext_list) == 1) {
520 			num_nr_frags = qdf_nbuf_get_nr_frags(ext_list);
521 			qdf_assert_always(num_nr_frags <= QDF_NBUF_MAX_FRAGS);
522 			total_num_nr_frags += num_nr_frags;
523 		}
524 		ext_list = qdf_nbuf_queue_next(ext_list);
525 	}
526 
527 	qdf_frag_count_dec(total_num_nr_frags);
528 }
529 
530 qdf_export_symbol(qdf_nbuf_frag_count_dec);
531 
532 #endif
533 
534 #if defined(CONFIG_WIFI_EMULATION_WIFI_3_0) && defined(BUILD_X86) && \
535 	!defined(QCA_WIFI_QCN9000)
536 struct sk_buff *__qdf_nbuf_alloc(qdf_device_t osdev, size_t size, int reserve,
537 				 int align, int prio, const char *func,
538 				 uint32_t line)
539 {
540 	struct sk_buff *skb;
541 	unsigned long offset;
542 	uint32_t lowmem_alloc_tries = 0;
543 
544 	if (align)
545 		size += (align - 1);
546 
547 realloc:
548 	skb = dev_alloc_skb(size);
549 
550 	if (skb)
551 		goto skb_alloc;
552 
553 	skb = pld_nbuf_pre_alloc(size);
554 
555 	if (!skb) {
556 		qdf_rl_nofl_err("NBUF alloc failed %zuB @ %s:%d",
557 				size, func, line);
558 		return NULL;
559 	}
560 
561 skb_alloc:
562 	/* Hawkeye M2M emulation cannot handle memory addresses below 0x50000040
563 	 * Though we are trying to reserve low memory upfront to prevent this,
564 	 * we sometimes see SKBs allocated from low memory.
565 	 */
566 	if (virt_to_phys(qdf_nbuf_data(skb)) < 0x50000040) {
567 		lowmem_alloc_tries++;
568 		if (lowmem_alloc_tries > 100) {
569 			qdf_nofl_err("NBUF alloc failed %zuB @ %s:%d",
570 				     size, func, line);
571 			return NULL;
572 		} else {
573 			/* Not freeing to make sure it
574 			 * will not get allocated again
575 			 */
576 			goto realloc;
577 		}
578 	}
579 	memset(skb->cb, 0x0, sizeof(skb->cb));
580 
581 	/*
582 	 * The default is for netbuf fragments to be interpreted
583 	 * as wordstreams rather than bytestreams.
584 	 */
585 	QDF_NBUF_CB_TX_EXTRA_FRAG_WORDSTR_EFRAG(skb) = 1;
586 	QDF_NBUF_CB_TX_EXTRA_FRAG_WORDSTR_NBUF(skb) = 1;
587 
588 	/*
589 	 * XXX:how about we reserve first then align
590 	 * Align & make sure that the tail & data are adjusted properly
591 	 */
592 
593 	if (align) {
594 		offset = ((unsigned long)skb->data) % align;
595 		if (offset)
596 			skb_reserve(skb, align - offset);
597 	}
598 
599 	/*
600 	 * NOTE:alloc doesn't take responsibility if reserve unaligns the data
601 	 * pointer
602 	 */
603 	skb_reserve(skb, reserve);
604 	qdf_nbuf_count_inc(skb);
605 
606 	return skb;
607 }
608 #else
609 
610 struct sk_buff *__qdf_nbuf_alloc(qdf_device_t osdev, size_t size, int reserve,
611 				 int align, int prio, const char *func,
612 				 uint32_t line)
613 {
614 	struct sk_buff *skb;
615 	unsigned long offset;
616 	int flags = GFP_KERNEL;
617 
618 	if (align)
619 		size += (align - 1);
620 
621 	if (in_interrupt() || irqs_disabled() || in_atomic()) {
622 		flags = GFP_ATOMIC;
623 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0)
624 		/*
625 		 * Observed that kcompactd burns out CPU to make order-3 page.
626 		 *__netdev_alloc_skb has 4k page fallback option just in case of
627 		 * failing high order page allocation so we don't need to be
628 		 * hard. Make kcompactd rest in piece.
629 		 */
630 		flags = flags & ~__GFP_KSWAPD_RECLAIM;
631 #endif
632 	}
633 
634 	skb = __netdev_alloc_skb(NULL, size, flags);
635 
636 	if (skb)
637 		goto skb_alloc;
638 
639 	skb = pld_nbuf_pre_alloc(size);
640 
641 	if (!skb) {
642 		qdf_rl_nofl_err("NBUF alloc failed %zuB @ %s:%d",
643 				size, func, line);
644 		__qdf_nbuf_start_replenish_timer();
645 		return NULL;
646 	} else {
647 		__qdf_nbuf_stop_replenish_timer();
648 	}
649 
650 skb_alloc:
651 	memset(skb->cb, 0x0, sizeof(skb->cb));
652 
653 	/*
654 	 * The default is for netbuf fragments to be interpreted
655 	 * as wordstreams rather than bytestreams.
656 	 */
657 	QDF_NBUF_CB_TX_EXTRA_FRAG_WORDSTR_EFRAG(skb) = 1;
658 	QDF_NBUF_CB_TX_EXTRA_FRAG_WORDSTR_NBUF(skb) = 1;
659 
660 	/*
661 	 * XXX:how about we reserve first then align
662 	 * Align & make sure that the tail & data are adjusted properly
663 	 */
664 
665 	if (align) {
666 		offset = ((unsigned long)skb->data) % align;
667 		if (offset)
668 			skb_reserve(skb, align - offset);
669 	}
670 
671 	/*
672 	 * NOTE:alloc doesn't take responsibility if reserve unaligns the data
673 	 * pointer
674 	 */
675 	skb_reserve(skb, reserve);
676 	qdf_nbuf_count_inc(skb);
677 
678 	return skb;
679 }
680 #endif
681 qdf_export_symbol(__qdf_nbuf_alloc);
682 
683 __qdf_nbuf_t __qdf_nbuf_alloc_no_recycler(size_t size, int reserve, int align,
684 					  const char *func, uint32_t line)
685 {
686 	qdf_nbuf_t nbuf;
687 	unsigned long offset;
688 
689 	if (align)
690 		size += (align - 1);
691 
692 	nbuf = alloc_skb(size, GFP_ATOMIC);
693 	if (!nbuf)
694 		goto ret_nbuf;
695 
696 	memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
697 
698 	skb_reserve(nbuf, reserve);
699 
700 	if (align) {
701 		offset = ((unsigned long)nbuf->data) % align;
702 		if (offset)
703 			skb_reserve(nbuf, align - offset);
704 	}
705 
706 	qdf_nbuf_count_inc(nbuf);
707 
708 ret_nbuf:
709 	return nbuf;
710 }
711 
712 qdf_export_symbol(__qdf_nbuf_alloc_no_recycler);
713 
714 /**
715  * __qdf_nbuf_free() - free the nbuf its interrupt safe
716  * @skb: Pointer to network buffer
717  *
718  * Return: none
719  */
720 
721 void __qdf_nbuf_free(struct sk_buff *skb)
722 {
723 	if (pld_nbuf_pre_alloc_free(skb))
724 		return;
725 
726 	qdf_nbuf_frag_count_dec(skb);
727 
728 	qdf_nbuf_count_dec(skb);
729 	if (nbuf_free_cb)
730 		nbuf_free_cb(skb);
731 	else
732 		dev_kfree_skb_any(skb);
733 }
734 
735 qdf_export_symbol(__qdf_nbuf_free);
736 
737 __qdf_nbuf_t __qdf_nbuf_clone(__qdf_nbuf_t skb)
738 {
739 	qdf_nbuf_t skb_new = NULL;
740 
741 	skb_new = skb_clone(skb, GFP_ATOMIC);
742 	if (skb_new) {
743 		qdf_nbuf_frag_count_inc(skb_new);
744 		qdf_nbuf_count_inc(skb_new);
745 	}
746 	return skb_new;
747 }
748 
749 qdf_export_symbol(__qdf_nbuf_clone);
750 
751 #ifdef QCA_DP_TX_NBUF_LIST_FREE
752 void
753 __qdf_nbuf_dev_kfree_list(__qdf_nbuf_queue_head_t *nbuf_queue_head)
754 {
755 	dev_kfree_skb_list_fast(nbuf_queue_head);
756 }
757 #else
758 void
759 __qdf_nbuf_dev_kfree_list(__qdf_nbuf_queue_head_t *nbuf_queue_head)
760 {
761 }
762 #endif
763 
764 qdf_export_symbol(__qdf_nbuf_dev_kfree_list);
765 
766 #ifdef NBUF_MEMORY_DEBUG
767 struct qdf_nbuf_event {
768 	qdf_nbuf_t nbuf;
769 	char func[QDF_MEM_FUNC_NAME_SIZE];
770 	uint32_t line;
771 	enum qdf_nbuf_event_type type;
772 	uint64_t timestamp;
773 	qdf_dma_addr_t iova;
774 };
775 
776 #ifndef QDF_NBUF_HISTORY_SIZE
777 #define QDF_NBUF_HISTORY_SIZE 4096
778 #endif
779 static qdf_atomic_t qdf_nbuf_history_index;
780 static struct qdf_nbuf_event qdf_nbuf_history[QDF_NBUF_HISTORY_SIZE];
781 
782 static int32_t qdf_nbuf_circular_index_next(qdf_atomic_t *index, int size)
783 {
784 	int32_t next = qdf_atomic_inc_return(index);
785 
786 	if (next == size)
787 		qdf_atomic_sub(size, index);
788 
789 	return next % size;
790 }
791 
792 void
793 qdf_nbuf_history_add(qdf_nbuf_t nbuf, const char *func, uint32_t line,
794 		     enum qdf_nbuf_event_type type)
795 {
796 	int32_t idx = qdf_nbuf_circular_index_next(&qdf_nbuf_history_index,
797 						   QDF_NBUF_HISTORY_SIZE);
798 	struct qdf_nbuf_event *event = &qdf_nbuf_history[idx];
799 
800 	if (qdf_atomic_read(&smmu_crashed)) {
801 		g_histroy_add_drop++;
802 		return;
803 	}
804 
805 	event->nbuf = nbuf;
806 	qdf_str_lcopy(event->func, func, QDF_MEM_FUNC_NAME_SIZE);
807 	event->line = line;
808 	event->type = type;
809 	event->timestamp = qdf_get_log_timestamp();
810 	if (type == QDF_NBUF_MAP || type == QDF_NBUF_UNMAP ||
811 	    type == QDF_NBUF_SMMU_MAP || type == QDF_NBUF_SMMU_UNMAP)
812 		event->iova = QDF_NBUF_CB_PADDR(nbuf);
813 	else
814 		event->iova = 0;
815 }
816 
817 void qdf_set_smmu_fault_state(bool smmu_fault_state)
818 {
819 	qdf_atomic_set(&smmu_crashed, smmu_fault_state);
820 	if (!smmu_fault_state)
821 		g_histroy_add_drop = 0;
822 }
823 qdf_export_symbol(qdf_set_smmu_fault_state);
824 #endif /* NBUF_MEMORY_DEBUG */
825 
826 #ifdef NBUF_SMMU_MAP_UNMAP_DEBUG
827 #define qdf_nbuf_smmu_map_tracker_bits 11 /* 2048 buckets */
828 qdf_tracker_declare(qdf_nbuf_smmu_map_tracker, qdf_nbuf_smmu_map_tracker_bits,
829 		    "nbuf map-no-unmap events", "nbuf map", "nbuf unmap");
830 
831 static void qdf_nbuf_smmu_map_tracking_init(void)
832 {
833 	qdf_tracker_init(&qdf_nbuf_smmu_map_tracker);
834 }
835 
836 static void qdf_nbuf_smmu_map_tracking_deinit(void)
837 {
838 	qdf_tracker_deinit(&qdf_nbuf_smmu_map_tracker);
839 }
840 
841 static QDF_STATUS
842 qdf_nbuf_track_smmu_map(qdf_nbuf_t nbuf, const char *func, uint32_t line)
843 {
844 	if (is_initial_mem_debug_disabled)
845 		return QDF_STATUS_SUCCESS;
846 
847 	return qdf_tracker_track(&qdf_nbuf_smmu_map_tracker, nbuf, func, line);
848 }
849 
850 static void
851 qdf_nbuf_untrack_smmu_map(qdf_nbuf_t nbuf, const char *func, uint32_t line)
852 {
853 	if (is_initial_mem_debug_disabled)
854 		return;
855 
856 	qdf_nbuf_history_add(nbuf, func, line, QDF_NBUF_SMMU_UNMAP);
857 	qdf_tracker_untrack(&qdf_nbuf_smmu_map_tracker, nbuf, func, line);
858 }
859 
860 void qdf_nbuf_map_check_for_smmu_leaks(void)
861 {
862 	qdf_tracker_check_for_leaks(&qdf_nbuf_smmu_map_tracker);
863 }
864 
865 #ifdef IPA_OFFLOAD
866 QDF_STATUS qdf_nbuf_smmu_map_debug(qdf_nbuf_t nbuf,
867 				   uint8_t hdl,
868 				   uint8_t num_buffers,
869 				   qdf_mem_info_t *info,
870 				   const char *func,
871 				   uint32_t line)
872 {
873 	QDF_STATUS status;
874 
875 	status = qdf_nbuf_track_smmu_map(nbuf, func, line);
876 	if (QDF_IS_STATUS_ERROR(status))
877 		return status;
878 
879 	status = __qdf_ipa_wdi_create_smmu_mapping(hdl, num_buffers, info);
880 
881 	if (QDF_IS_STATUS_ERROR(status)) {
882 		qdf_nbuf_untrack_smmu_map(nbuf, func, line);
883 	} else {
884 		if (!is_initial_mem_debug_disabled)
885 			qdf_nbuf_history_add(nbuf, func, line, QDF_NBUF_MAP);
886 		qdf_net_buf_debug_update_smmu_map_node(nbuf, info->iova,
887 						       info->pa, func, line);
888 	}
889 
890 	return status;
891 }
892 
893 qdf_export_symbol(qdf_nbuf_smmu_map_debug);
894 
895 QDF_STATUS qdf_nbuf_smmu_unmap_debug(qdf_nbuf_t nbuf,
896 				     uint8_t hdl,
897 				     uint8_t num_buffers,
898 				     qdf_mem_info_t *info,
899 				     const char *func,
900 				     uint32_t line)
901 {
902 	QDF_STATUS status;
903 
904 	qdf_nbuf_untrack_smmu_map(nbuf, func, line);
905 	status = __qdf_ipa_wdi_release_smmu_mapping(hdl, num_buffers, info);
906 	qdf_net_buf_debug_update_smmu_unmap_node(nbuf, info->iova,
907 						 info->pa, func, line);
908 	return status;
909 }
910 
911 qdf_export_symbol(qdf_nbuf_smmu_unmap_debug);
912 #endif /* IPA_OFFLOAD */
913 
914 static void qdf_nbuf_panic_on_free_if_smmu_mapped(qdf_nbuf_t nbuf,
915 						  const char *func,
916 						  uint32_t line)
917 {
918 	char map_func[QDF_TRACKER_FUNC_SIZE];
919 	uint32_t map_line;
920 
921 	if (!qdf_tracker_lookup(&qdf_nbuf_smmu_map_tracker, nbuf,
922 				&map_func, &map_line))
923 		return;
924 
925 	QDF_MEMDEBUG_PANIC("Nbuf freed @ %s:%u while mapped from %s:%u",
926 			   func, line, map_func, map_line);
927 }
928 
929 static inline void qdf_net_buf_update_smmu_params(QDF_NBUF_TRACK *p_node)
930 {
931 	p_node->smmu_unmap_line_num = 0;
932 	p_node->is_nbuf_smmu_mapped = false;
933 	p_node->smmu_map_line_num = 0;
934 	p_node->smmu_map_func_name[0] = '\0';
935 	p_node->smmu_unmap_func_name[0] = '\0';
936 	p_node->smmu_unmap_iova_addr = 0;
937 	p_node->smmu_unmap_pa_addr = 0;
938 	p_node->smmu_map_iova_addr = 0;
939 	p_node->smmu_map_pa_addr = 0;
940 }
941 #else /* !NBUF_SMMU_MAP_UNMAP_DEBUG */
942 #ifdef NBUF_MEMORY_DEBUG
943 static void qdf_nbuf_smmu_map_tracking_init(void)
944 {
945 }
946 
947 static void qdf_nbuf_smmu_map_tracking_deinit(void)
948 {
949 }
950 
951 static void qdf_nbuf_panic_on_free_if_smmu_mapped(qdf_nbuf_t nbuf,
952 						  const char *func,
953 						  uint32_t line)
954 {
955 }
956 
957 static inline void qdf_net_buf_update_smmu_params(QDF_NBUF_TRACK *p_node)
958 {
959 }
960 #endif /* NBUF_MEMORY_DEBUG */
961 
962 #ifdef IPA_OFFLOAD
963 QDF_STATUS qdf_nbuf_smmu_map_debug(qdf_nbuf_t nbuf,
964 				   uint8_t hdl,
965 				   uint8_t num_buffers,
966 				   qdf_mem_info_t *info,
967 				   const char *func,
968 				   uint32_t line)
969 {
970 	return  __qdf_ipa_wdi_create_smmu_mapping(hdl, num_buffers, info);
971 }
972 
973 qdf_export_symbol(qdf_nbuf_smmu_map_debug);
974 
975 QDF_STATUS qdf_nbuf_smmu_unmap_debug(qdf_nbuf_t nbuf,
976 				     uint8_t hdl,
977 				     uint8_t num_buffers,
978 				     qdf_mem_info_t *info,
979 				     const char *func,
980 				     uint32_t line)
981 {
982 	return __qdf_ipa_wdi_release_smmu_mapping(hdl, num_buffers, info);
983 }
984 
985 qdf_export_symbol(qdf_nbuf_smmu_unmap_debug);
986 #endif /* IPA_OFFLOAD */
987 #endif /* NBUF_SMMU_MAP_UNMAP_DEBUG */
988 
989 #ifdef NBUF_MAP_UNMAP_DEBUG
990 #define qdf_nbuf_map_tracker_bits 11 /* 2048 buckets */
991 qdf_tracker_declare(qdf_nbuf_map_tracker, qdf_nbuf_map_tracker_bits,
992 		    "nbuf map-no-unmap events", "nbuf map", "nbuf unmap");
993 
994 static void qdf_nbuf_map_tracking_init(void)
995 {
996 	qdf_tracker_init(&qdf_nbuf_map_tracker);
997 }
998 
999 static void qdf_nbuf_map_tracking_deinit(void)
1000 {
1001 	qdf_tracker_deinit(&qdf_nbuf_map_tracker);
1002 }
1003 
1004 static QDF_STATUS
1005 qdf_nbuf_track_map(qdf_nbuf_t nbuf, const char *func, uint32_t line)
1006 {
1007 	if (is_initial_mem_debug_disabled)
1008 		return QDF_STATUS_SUCCESS;
1009 
1010 	return qdf_tracker_track(&qdf_nbuf_map_tracker, nbuf, func, line);
1011 }
1012 
1013 static void
1014 qdf_nbuf_untrack_map(qdf_nbuf_t nbuf, const char *func, uint32_t line)
1015 {
1016 	if (is_initial_mem_debug_disabled)
1017 		return;
1018 
1019 	qdf_nbuf_history_add(nbuf, func, line, QDF_NBUF_UNMAP);
1020 	qdf_tracker_untrack(&qdf_nbuf_map_tracker, nbuf, func, line);
1021 }
1022 
1023 void qdf_nbuf_map_check_for_leaks(void)
1024 {
1025 	qdf_tracker_check_for_leaks(&qdf_nbuf_map_tracker);
1026 }
1027 
1028 QDF_STATUS qdf_nbuf_map_debug(qdf_device_t osdev,
1029 			      qdf_nbuf_t buf,
1030 			      qdf_dma_dir_t dir,
1031 			      const char *func,
1032 			      uint32_t line)
1033 {
1034 	QDF_STATUS status;
1035 
1036 	status = qdf_nbuf_track_map(buf, func, line);
1037 	if (QDF_IS_STATUS_ERROR(status))
1038 		return status;
1039 
1040 	status = __qdf_nbuf_map(osdev, buf, dir);
1041 	if (QDF_IS_STATUS_ERROR(status)) {
1042 		qdf_nbuf_untrack_map(buf, func, line);
1043 	} else {
1044 		if (!is_initial_mem_debug_disabled)
1045 			qdf_nbuf_history_add(buf, func, line, QDF_NBUF_MAP);
1046 		qdf_net_buf_debug_update_map_node(buf, func, line);
1047 	}
1048 
1049 	return status;
1050 }
1051 
1052 qdf_export_symbol(qdf_nbuf_map_debug);
1053 
1054 void qdf_nbuf_unmap_debug(qdf_device_t osdev,
1055 			  qdf_nbuf_t buf,
1056 			  qdf_dma_dir_t dir,
1057 			  const char *func,
1058 			  uint32_t line)
1059 {
1060 	qdf_nbuf_untrack_map(buf, func, line);
1061 	__qdf_nbuf_unmap_single(osdev, buf, dir);
1062 	qdf_net_buf_debug_update_unmap_node(buf, func, line);
1063 }
1064 
1065 qdf_export_symbol(qdf_nbuf_unmap_debug);
1066 
1067 QDF_STATUS qdf_nbuf_map_single_debug(qdf_device_t osdev,
1068 				     qdf_nbuf_t buf,
1069 				     qdf_dma_dir_t dir,
1070 				     const char *func,
1071 				     uint32_t line)
1072 {
1073 	QDF_STATUS status;
1074 
1075 	status = qdf_nbuf_track_map(buf, func, line);
1076 	if (QDF_IS_STATUS_ERROR(status))
1077 		return status;
1078 
1079 	status = __qdf_nbuf_map_single(osdev, buf, dir);
1080 	if (QDF_IS_STATUS_ERROR(status)) {
1081 		qdf_nbuf_untrack_map(buf, func, line);
1082 	} else {
1083 		if (!is_initial_mem_debug_disabled)
1084 			qdf_nbuf_history_add(buf, func, line, QDF_NBUF_MAP);
1085 		qdf_net_buf_debug_update_map_node(buf, func, line);
1086 	}
1087 
1088 	return status;
1089 }
1090 
1091 qdf_export_symbol(qdf_nbuf_map_single_debug);
1092 
1093 void qdf_nbuf_unmap_single_debug(qdf_device_t osdev,
1094 				 qdf_nbuf_t buf,
1095 				 qdf_dma_dir_t dir,
1096 				 const char *func,
1097 				 uint32_t line)
1098 {
1099 	qdf_nbuf_untrack_map(buf, func, line);
1100 	__qdf_nbuf_unmap_single(osdev, buf, dir);
1101 	qdf_net_buf_debug_update_unmap_node(buf, func, line);
1102 }
1103 
1104 qdf_export_symbol(qdf_nbuf_unmap_single_debug);
1105 
1106 QDF_STATUS qdf_nbuf_map_nbytes_debug(qdf_device_t osdev,
1107 				     qdf_nbuf_t buf,
1108 				     qdf_dma_dir_t dir,
1109 				     int nbytes,
1110 				     const char *func,
1111 				     uint32_t line)
1112 {
1113 	QDF_STATUS status;
1114 
1115 	status = qdf_nbuf_track_map(buf, func, line);
1116 	if (QDF_IS_STATUS_ERROR(status))
1117 		return status;
1118 
1119 	status = __qdf_nbuf_map_nbytes(osdev, buf, dir, nbytes);
1120 	if (QDF_IS_STATUS_ERROR(status)) {
1121 		qdf_nbuf_untrack_map(buf, func, line);
1122 	} else {
1123 		if (!is_initial_mem_debug_disabled)
1124 			qdf_nbuf_history_add(buf, func, line, QDF_NBUF_MAP);
1125 		qdf_net_buf_debug_update_map_node(buf, func, line);
1126 	}
1127 
1128 	return status;
1129 }
1130 
1131 qdf_export_symbol(qdf_nbuf_map_nbytes_debug);
1132 
1133 void qdf_nbuf_unmap_nbytes_debug(qdf_device_t osdev,
1134 				 qdf_nbuf_t buf,
1135 				 qdf_dma_dir_t dir,
1136 				 int nbytes,
1137 				 const char *func,
1138 				 uint32_t line)
1139 {
1140 	qdf_nbuf_untrack_map(buf, func, line);
1141 	__qdf_nbuf_unmap_nbytes(osdev, buf, dir, nbytes);
1142 	qdf_net_buf_debug_update_unmap_node(buf, func, line);
1143 }
1144 
1145 qdf_export_symbol(qdf_nbuf_unmap_nbytes_debug);
1146 
1147 QDF_STATUS qdf_nbuf_map_nbytes_single_debug(qdf_device_t osdev,
1148 					    qdf_nbuf_t buf,
1149 					    qdf_dma_dir_t dir,
1150 					    int nbytes,
1151 					    const char *func,
1152 					    uint32_t line)
1153 {
1154 	QDF_STATUS status;
1155 
1156 	status = qdf_nbuf_track_map(buf, func, line);
1157 	if (QDF_IS_STATUS_ERROR(status))
1158 		return status;
1159 
1160 	status = __qdf_nbuf_map_nbytes_single(osdev, buf, dir, nbytes);
1161 	if (QDF_IS_STATUS_ERROR(status)) {
1162 		qdf_nbuf_untrack_map(buf, func, line);
1163 	} else {
1164 		if (!is_initial_mem_debug_disabled)
1165 			qdf_nbuf_history_add(buf, func, line, QDF_NBUF_MAP);
1166 		qdf_net_buf_debug_update_map_node(buf, func, line);
1167 	}
1168 
1169 	return status;
1170 }
1171 
1172 qdf_export_symbol(qdf_nbuf_map_nbytes_single_debug);
1173 
1174 void qdf_nbuf_unmap_nbytes_single_debug(qdf_device_t osdev,
1175 					qdf_nbuf_t buf,
1176 					qdf_dma_dir_t dir,
1177 					int nbytes,
1178 					const char *func,
1179 					uint32_t line)
1180 {
1181 	qdf_nbuf_untrack_map(buf, func, line);
1182 	__qdf_nbuf_unmap_nbytes_single(osdev, buf, dir, nbytes);
1183 	qdf_net_buf_debug_update_unmap_node(buf, func, line);
1184 }
1185 
1186 qdf_export_symbol(qdf_nbuf_unmap_nbytes_single_debug);
1187 
1188 void qdf_nbuf_unmap_nbytes_single_paddr_debug(qdf_device_t osdev,
1189 					      qdf_nbuf_t buf,
1190 					      qdf_dma_addr_t phy_addr,
1191 					      qdf_dma_dir_t dir, int nbytes,
1192 					      const char *func, uint32_t line)
1193 {
1194 	qdf_nbuf_untrack_map(buf, func, line);
1195 	__qdf_mem_unmap_nbytes_single(osdev, phy_addr, dir, nbytes);
1196 	qdf_net_buf_debug_update_unmap_node(buf, func, line);
1197 }
1198 
1199 qdf_export_symbol(qdf_nbuf_unmap_nbytes_single_paddr_debug);
1200 
1201 static void qdf_nbuf_panic_on_free_if_mapped(qdf_nbuf_t nbuf,
1202 					     const char *func,
1203 					     uint32_t line)
1204 {
1205 	char map_func[QDF_TRACKER_FUNC_SIZE];
1206 	uint32_t map_line;
1207 
1208 	if (!qdf_tracker_lookup(&qdf_nbuf_map_tracker, nbuf,
1209 				&map_func, &map_line))
1210 		return;
1211 
1212 	QDF_MEMDEBUG_PANIC("Nbuf freed @ %s:%u while mapped from %s:%u",
1213 			   func, line, map_func, map_line);
1214 }
1215 #else
1216 static inline void qdf_nbuf_map_tracking_init(void)
1217 {
1218 }
1219 
1220 static inline void qdf_nbuf_map_tracking_deinit(void)
1221 {
1222 }
1223 
1224 static inline void qdf_nbuf_panic_on_free_if_mapped(qdf_nbuf_t nbuf,
1225 						    const char *func,
1226 						    uint32_t line)
1227 {
1228 }
1229 #endif /* NBUF_MAP_UNMAP_DEBUG */
1230 
1231 /**
1232  * __qdf_nbuf_map() - map a buffer to local bus address space
1233  * @osdev: OS device
1234  * @bmap: Bitmap
1235  * @skb: Pointer to network buffer
1236  * @dir: Direction
1237  *
1238  * Return: QDF_STATUS
1239  */
1240 #ifdef QDF_OS_DEBUG
1241 QDF_STATUS
1242 __qdf_nbuf_map(qdf_device_t osdev, struct sk_buff *skb, qdf_dma_dir_t dir)
1243 {
1244 	struct skb_shared_info *sh = skb_shinfo(skb);
1245 
1246 	qdf_assert((dir == QDF_DMA_TO_DEVICE)
1247 			|| (dir == QDF_DMA_FROM_DEVICE));
1248 
1249 	/*
1250 	 * Assume there's only a single fragment.
1251 	 * To support multiple fragments, it would be necessary to change
1252 	 * qdf_nbuf_t to be a separate object that stores meta-info
1253 	 * (including the bus address for each fragment) and a pointer
1254 	 * to the underlying sk_buff.
1255 	 */
1256 	qdf_assert(sh->nr_frags == 0);
1257 
1258 	return __qdf_nbuf_map_single(osdev, skb, dir);
1259 }
1260 qdf_export_symbol(__qdf_nbuf_map);
1261 
1262 #else
1263 QDF_STATUS
1264 __qdf_nbuf_map(qdf_device_t osdev, struct sk_buff *skb, qdf_dma_dir_t dir)
1265 {
1266 	return __qdf_nbuf_map_single(osdev, skb, dir);
1267 }
1268 qdf_export_symbol(__qdf_nbuf_map);
1269 #endif
1270 /**
1271  * __qdf_nbuf_unmap() - to unmap a previously mapped buf
1272  * @osdev: OS device
1273  * @skb: Pointer to network buffer
1274  * @dir: dma direction
1275  *
1276  * Return: none
1277  */
1278 void
1279 __qdf_nbuf_unmap(qdf_device_t osdev, struct sk_buff *skb,
1280 			qdf_dma_dir_t dir)
1281 {
1282 	qdf_assert((dir == QDF_DMA_TO_DEVICE)
1283 		   || (dir == QDF_DMA_FROM_DEVICE));
1284 
1285 	/*
1286 	 * Assume there's a single fragment.
1287 	 * If this is not true, the assertion in __qdf_nbuf_map will catch it.
1288 	 */
1289 	__qdf_nbuf_unmap_single(osdev, skb, dir);
1290 }
1291 qdf_export_symbol(__qdf_nbuf_unmap);
1292 
1293 /**
1294  * __qdf_nbuf_map_single() - map a single buffer to local bus address space
1295  * @osdev: OS device
1296  * @skb: Pointer to network buffer
1297  * @dir: Direction
1298  *
1299  * Return: QDF_STATUS
1300  */
1301 #if defined(A_SIMOS_DEVHOST) || defined(HIF_USB) || defined(HIF_SDIO)
1302 QDF_STATUS
1303 __qdf_nbuf_map_single(qdf_device_t osdev, qdf_nbuf_t buf, qdf_dma_dir_t dir)
1304 {
1305 	qdf_dma_addr_t paddr;
1306 
1307 	QDF_NBUF_CB_PADDR(buf) = paddr = (uintptr_t)buf->data;
1308 	BUILD_BUG_ON(sizeof(paddr) < sizeof(buf->data));
1309 	BUILD_BUG_ON(sizeof(QDF_NBUF_CB_PADDR(buf)) < sizeof(buf->data));
1310 	return QDF_STATUS_SUCCESS;
1311 }
1312 qdf_export_symbol(__qdf_nbuf_map_single);
1313 #else
1314 QDF_STATUS
1315 __qdf_nbuf_map_single(qdf_device_t osdev, qdf_nbuf_t buf, qdf_dma_dir_t dir)
1316 {
1317 	qdf_dma_addr_t paddr;
1318 
1319 	/* assume that the OS only provides a single fragment */
1320 	QDF_NBUF_CB_PADDR(buf) = paddr =
1321 		dma_map_single(osdev->dev, buf->data,
1322 				skb_end_pointer(buf) - buf->data,
1323 				__qdf_dma_dir_to_os(dir));
1324 	__qdf_record_nbuf_nbytes(
1325 		__qdf_nbuf_get_end_offset(buf), dir, true);
1326 	return dma_mapping_error(osdev->dev, paddr)
1327 		? QDF_STATUS_E_FAILURE
1328 		: QDF_STATUS_SUCCESS;
1329 }
1330 qdf_export_symbol(__qdf_nbuf_map_single);
1331 #endif
1332 /**
1333  * __qdf_nbuf_unmap_single() -  unmap a previously mapped buf
1334  * @osdev: OS device
1335  * @skb: Pointer to network buffer
1336  * @dir: Direction
1337  *
1338  * Return: none
1339  */
1340 #if defined(A_SIMOS_DEVHOST) || defined(HIF_USB) || defined(HIF_SDIO)
1341 void __qdf_nbuf_unmap_single(qdf_device_t osdev, qdf_nbuf_t buf,
1342 				qdf_dma_dir_t dir)
1343 {
1344 }
1345 #else
1346 void __qdf_nbuf_unmap_single(qdf_device_t osdev, qdf_nbuf_t buf,
1347 					qdf_dma_dir_t dir)
1348 {
1349 	if (QDF_NBUF_CB_PADDR(buf)) {
1350 		__qdf_record_nbuf_nbytes(
1351 			__qdf_nbuf_get_end_offset(buf), dir, false);
1352 		dma_unmap_single(osdev->dev, QDF_NBUF_CB_PADDR(buf),
1353 			skb_end_pointer(buf) - buf->data,
1354 			__qdf_dma_dir_to_os(dir));
1355 	}
1356 }
1357 #endif
1358 qdf_export_symbol(__qdf_nbuf_unmap_single);
1359 
1360 /**
1361  * __qdf_nbuf_set_rx_cksum() - set rx checksum
1362  * @skb: Pointer to network buffer
1363  * @cksum: Pointer to checksum value
1364  *
1365  * Return: QDF_STATUS
1366  */
1367 QDF_STATUS
1368 __qdf_nbuf_set_rx_cksum(struct sk_buff *skb, qdf_nbuf_rx_cksum_t *cksum)
1369 {
1370 	switch (cksum->l4_result) {
1371 	case QDF_NBUF_RX_CKSUM_NONE:
1372 		skb->ip_summed = CHECKSUM_NONE;
1373 		break;
1374 	case QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY:
1375 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1376 		break;
1377 	case QDF_NBUF_RX_CKSUM_TCP_UDP_HW:
1378 		skb->ip_summed = CHECKSUM_PARTIAL;
1379 		skb->csum = cksum->val;
1380 		break;
1381 	default:
1382 		pr_err("Unknown checksum type\n");
1383 		qdf_assert(0);
1384 		return QDF_STATUS_E_NOSUPPORT;
1385 	}
1386 	return QDF_STATUS_SUCCESS;
1387 }
1388 qdf_export_symbol(__qdf_nbuf_set_rx_cksum);
1389 
1390 /**
1391  * __qdf_nbuf_get_tx_cksum() - get tx checksum
1392  * @skb: Pointer to network buffer
1393  *
1394  * Return: TX checksum value
1395  */
1396 qdf_nbuf_tx_cksum_t __qdf_nbuf_get_tx_cksum(struct sk_buff *skb)
1397 {
1398 	switch (skb->ip_summed) {
1399 	case CHECKSUM_NONE:
1400 		return QDF_NBUF_TX_CKSUM_NONE;
1401 	case CHECKSUM_PARTIAL:
1402 		return QDF_NBUF_TX_CKSUM_TCP_UDP;
1403 	case CHECKSUM_COMPLETE:
1404 		return QDF_NBUF_TX_CKSUM_TCP_UDP_IP;
1405 	default:
1406 		return QDF_NBUF_TX_CKSUM_NONE;
1407 	}
1408 }
1409 qdf_export_symbol(__qdf_nbuf_get_tx_cksum);
1410 
1411 /**
1412  * __qdf_nbuf_get_tid() - get tid
1413  * @skb: Pointer to network buffer
1414  *
1415  * Return: tid
1416  */
1417 uint8_t __qdf_nbuf_get_tid(struct sk_buff *skb)
1418 {
1419 	return skb->priority;
1420 }
1421 qdf_export_symbol(__qdf_nbuf_get_tid);
1422 
1423 /**
1424  * __qdf_nbuf_set_tid() - set tid
1425  * @skb: Pointer to network buffer
1426  *
1427  * Return: none
1428  */
1429 void __qdf_nbuf_set_tid(struct sk_buff *skb, uint8_t tid)
1430 {
1431 	skb->priority = tid;
1432 }
1433 qdf_export_symbol(__qdf_nbuf_set_tid);
1434 
1435 /**
1436  * __qdf_nbuf_set_tid() - set tid
1437  * @skb: Pointer to network buffer
1438  *
1439  * Return: none
1440  */
1441 uint8_t __qdf_nbuf_get_exemption_type(struct sk_buff *skb)
1442 {
1443 	return QDF_NBUF_EXEMPT_NO_EXEMPTION;
1444 }
1445 qdf_export_symbol(__qdf_nbuf_get_exemption_type);
1446 
1447 /**
1448  * __qdf_nbuf_reg_trace_cb() - register trace callback
1449  * @cb_func_ptr: Pointer to trace callback function
1450  *
1451  * Return: none
1452  */
1453 void __qdf_nbuf_reg_trace_cb(qdf_nbuf_trace_update_t cb_func_ptr)
1454 {
1455 	qdf_trace_update_cb = cb_func_ptr;
1456 }
1457 qdf_export_symbol(__qdf_nbuf_reg_trace_cb);
1458 
1459 /**
1460  * __qdf_nbuf_data_get_dhcp_subtype() - get the subtype
1461  *              of DHCP packet.
1462  * @data: Pointer to DHCP packet data buffer
1463  *
1464  * This func. returns the subtype of DHCP packet.
1465  *
1466  * Return: subtype of the DHCP packet.
1467  */
1468 enum qdf_proto_subtype
1469 __qdf_nbuf_data_get_dhcp_subtype(uint8_t *data)
1470 {
1471 	enum qdf_proto_subtype subtype = QDF_PROTO_INVALID;
1472 
1473 	if ((data[QDF_DHCP_OPTION53_OFFSET] == QDF_DHCP_OPTION53) &&
1474 		(data[QDF_DHCP_OPTION53_LENGTH_OFFSET] ==
1475 					QDF_DHCP_OPTION53_LENGTH)) {
1476 
1477 		switch (data[QDF_DHCP_OPTION53_STATUS_OFFSET]) {
1478 		case QDF_DHCP_DISCOVER:
1479 			subtype = QDF_PROTO_DHCP_DISCOVER;
1480 			break;
1481 		case QDF_DHCP_REQUEST:
1482 			subtype = QDF_PROTO_DHCP_REQUEST;
1483 			break;
1484 		case QDF_DHCP_OFFER:
1485 			subtype = QDF_PROTO_DHCP_OFFER;
1486 			break;
1487 		case QDF_DHCP_ACK:
1488 			subtype = QDF_PROTO_DHCP_ACK;
1489 			break;
1490 		case QDF_DHCP_NAK:
1491 			subtype = QDF_PROTO_DHCP_NACK;
1492 			break;
1493 		case QDF_DHCP_RELEASE:
1494 			subtype = QDF_PROTO_DHCP_RELEASE;
1495 			break;
1496 		case QDF_DHCP_INFORM:
1497 			subtype = QDF_PROTO_DHCP_INFORM;
1498 			break;
1499 		case QDF_DHCP_DECLINE:
1500 			subtype = QDF_PROTO_DHCP_DECLINE;
1501 			break;
1502 		default:
1503 			break;
1504 		}
1505 	}
1506 
1507 	return subtype;
1508 }
1509 
1510 #define EAPOL_WPA_KEY_INFO_ACK BIT(7)
1511 #define EAPOL_WPA_KEY_INFO_MIC BIT(8)
1512 #define EAPOL_WPA_KEY_INFO_ENCR_KEY_DATA BIT(12) /* IEEE 802.11i/RSN only */
1513 
1514 /**
1515  * __qdf_nbuf_data_get_eapol_key() - Get EAPOL key
1516  * @data: Pointer to EAPOL packet data buffer
1517  *
1518  * We can distinguish M1/M3 from M2/M4 by the ack bit in the keyinfo field
1519  * The ralationship between the ack bit and EAPOL type is as follows:
1520  *
1521  *  EAPOL type  |   M1    M2   M3  M4
1522  * --------------------------------------
1523  *     Ack      |   1     0    1   0
1524  * --------------------------------------
1525  *
1526  * Then, we can differentiate M1 from M3, M2 from M4 by below methods:
1527  * M2/M4: by keyDataLength or Nonce value being 0 for M4.
1528  * M1/M3: by the mic/encrKeyData bit in the keyinfo field.
1529  *
1530  * Return: subtype of the EAPOL packet.
1531  */
1532 static inline enum qdf_proto_subtype
1533 __qdf_nbuf_data_get_eapol_key(uint8_t *data)
1534 {
1535 	uint16_t key_info, key_data_length;
1536 	enum qdf_proto_subtype subtype;
1537 	uint64_t *key_nonce;
1538 
1539 	key_info = qdf_ntohs((uint16_t)(*(uint16_t *)
1540 			(data + EAPOL_KEY_INFO_OFFSET)));
1541 
1542 	key_data_length = qdf_ntohs((uint16_t)(*(uint16_t *)
1543 				(data + EAPOL_KEY_DATA_LENGTH_OFFSET)));
1544 	key_nonce = (uint64_t *)(data + EAPOL_WPA_KEY_NONCE_OFFSET);
1545 
1546 	if (key_info & EAPOL_WPA_KEY_INFO_ACK)
1547 		if (key_info &
1548 		    (EAPOL_WPA_KEY_INFO_MIC | EAPOL_WPA_KEY_INFO_ENCR_KEY_DATA))
1549 			subtype = QDF_PROTO_EAPOL_M3;
1550 		else
1551 			subtype = QDF_PROTO_EAPOL_M1;
1552 	else
1553 		if (key_data_length == 0 ||
1554 		    !((*key_nonce) || (*(key_nonce + 1)) ||
1555 		      (*(key_nonce + 2)) || (*(key_nonce + 3))))
1556 			subtype = QDF_PROTO_EAPOL_M4;
1557 		else
1558 			subtype = QDF_PROTO_EAPOL_M2;
1559 
1560 	return subtype;
1561 }
1562 
1563 /**
1564  * __qdf_nbuf_data_get_eap_code() - Get EAPOL code
1565  * @data: Pointer to EAPOL packet data buffer
1566  *
1567  * Return: subtype of the EAPOL packet.
1568  */
1569 static inline enum qdf_proto_subtype
1570 __qdf_nbuf_data_get_eap_code(uint8_t *data)
1571 {
1572 	uint8_t code = *(data + EAP_CODE_OFFSET);
1573 
1574 	switch (code) {
1575 	case QDF_EAP_REQUEST:
1576 		return QDF_PROTO_EAP_REQUEST;
1577 	case QDF_EAP_RESPONSE:
1578 		return QDF_PROTO_EAP_RESPONSE;
1579 	case QDF_EAP_SUCCESS:
1580 		return QDF_PROTO_EAP_SUCCESS;
1581 	case QDF_EAP_FAILURE:
1582 		return QDF_PROTO_EAP_FAILURE;
1583 	case QDF_EAP_INITIATE:
1584 		return QDF_PROTO_EAP_INITIATE;
1585 	case QDF_EAP_FINISH:
1586 		return QDF_PROTO_EAP_FINISH;
1587 	default:
1588 		return QDF_PROTO_INVALID;
1589 	}
1590 }
1591 
1592 /**
1593  * __qdf_nbuf_data_get_eapol_subtype() - get the subtype of EAPOL packet.
1594  * @data: Pointer to EAPOL packet data buffer
1595  *
1596  * This func. returns the subtype of EAPOL packet.
1597  *
1598  * Return: subtype of the EAPOL packet.
1599  */
1600 enum qdf_proto_subtype
1601 __qdf_nbuf_data_get_eapol_subtype(uint8_t *data)
1602 {
1603 	uint8_t pkt_type = *(data + EAPOL_PACKET_TYPE_OFFSET);
1604 
1605 	switch (pkt_type) {
1606 	case EAPOL_PACKET_TYPE_EAP:
1607 		return __qdf_nbuf_data_get_eap_code(data);
1608 	case EAPOL_PACKET_TYPE_START:
1609 		return QDF_PROTO_EAPOL_START;
1610 	case EAPOL_PACKET_TYPE_LOGOFF:
1611 		return QDF_PROTO_EAPOL_LOGOFF;
1612 	case EAPOL_PACKET_TYPE_KEY:
1613 		return __qdf_nbuf_data_get_eapol_key(data);
1614 	case EAPOL_PACKET_TYPE_ASF:
1615 		return QDF_PROTO_EAPOL_ASF;
1616 	default:
1617 		return QDF_PROTO_INVALID;
1618 	}
1619 }
1620 
1621 qdf_export_symbol(__qdf_nbuf_data_get_eapol_subtype);
1622 
1623 /**
1624  * __qdf_nbuf_data_get_arp_subtype() - get the subtype
1625  *            of ARP packet.
1626  * @data: Pointer to ARP packet data buffer
1627  *
1628  * This func. returns the subtype of ARP packet.
1629  *
1630  * Return: subtype of the ARP packet.
1631  */
1632 enum qdf_proto_subtype
1633 __qdf_nbuf_data_get_arp_subtype(uint8_t *data)
1634 {
1635 	uint16_t subtype;
1636 	enum qdf_proto_subtype proto_subtype = QDF_PROTO_INVALID;
1637 
1638 	subtype = (uint16_t)(*(uint16_t *)
1639 			(data + ARP_SUB_TYPE_OFFSET));
1640 
1641 	switch (QDF_SWAP_U16(subtype)) {
1642 	case ARP_REQUEST:
1643 		proto_subtype = QDF_PROTO_ARP_REQ;
1644 		break;
1645 	case ARP_RESPONSE:
1646 		proto_subtype = QDF_PROTO_ARP_RES;
1647 		break;
1648 	default:
1649 		break;
1650 	}
1651 
1652 	return proto_subtype;
1653 }
1654 
1655 /**
1656  * __qdf_nbuf_data_get_icmp_subtype() - get the subtype
1657  *            of IPV4 ICMP packet.
1658  * @data: Pointer to IPV4 ICMP packet data buffer
1659  *
1660  * This func. returns the subtype of ICMP packet.
1661  *
1662  * Return: subtype of the ICMP packet.
1663  */
1664 enum qdf_proto_subtype
1665 __qdf_nbuf_data_get_icmp_subtype(uint8_t *data)
1666 {
1667 	uint8_t subtype;
1668 	enum qdf_proto_subtype proto_subtype = QDF_PROTO_INVALID;
1669 
1670 	subtype = (uint8_t)(*(uint8_t *)
1671 			(data + ICMP_SUBTYPE_OFFSET));
1672 
1673 	switch (subtype) {
1674 	case ICMP_REQUEST:
1675 		proto_subtype = QDF_PROTO_ICMP_REQ;
1676 		break;
1677 	case ICMP_RESPONSE:
1678 		proto_subtype = QDF_PROTO_ICMP_RES;
1679 		break;
1680 	default:
1681 		break;
1682 	}
1683 
1684 	return proto_subtype;
1685 }
1686 
1687 /**
1688  * __qdf_nbuf_data_get_icmpv6_subtype() - get the subtype
1689  *            of IPV6 ICMPV6 packet.
1690  * @data: Pointer to IPV6 ICMPV6 packet data buffer
1691  *
1692  * This func. returns the subtype of ICMPV6 packet.
1693  *
1694  * Return: subtype of the ICMPV6 packet.
1695  */
1696 enum qdf_proto_subtype
1697 __qdf_nbuf_data_get_icmpv6_subtype(uint8_t *data)
1698 {
1699 	uint8_t subtype;
1700 	enum qdf_proto_subtype proto_subtype = QDF_PROTO_INVALID;
1701 
1702 	subtype = (uint8_t)(*(uint8_t *)
1703 			(data + ICMPV6_SUBTYPE_OFFSET));
1704 
1705 	switch (subtype) {
1706 	case ICMPV6_REQUEST:
1707 		proto_subtype = QDF_PROTO_ICMPV6_REQ;
1708 		break;
1709 	case ICMPV6_RESPONSE:
1710 		proto_subtype = QDF_PROTO_ICMPV6_RES;
1711 		break;
1712 	case ICMPV6_RS:
1713 		proto_subtype = QDF_PROTO_ICMPV6_RS;
1714 		break;
1715 	case ICMPV6_RA:
1716 		proto_subtype = QDF_PROTO_ICMPV6_RA;
1717 		break;
1718 	case ICMPV6_NS:
1719 		proto_subtype = QDF_PROTO_ICMPV6_NS;
1720 		break;
1721 	case ICMPV6_NA:
1722 		proto_subtype = QDF_PROTO_ICMPV6_NA;
1723 		break;
1724 	default:
1725 		break;
1726 	}
1727 
1728 	return proto_subtype;
1729 }
1730 
1731 /**
1732  * __qdf_nbuf_is_ipv4_last_fragment() - Check if IPv4 packet is last fragment
1733  * @skb: Buffer
1734  *
1735  * This function checks IPv4 packet is last fragment or not.
1736  * Caller has to call this function for IPv4 packets only.
1737  *
1738  * Return: True if IPv4 packet is last fragment otherwise false
1739  */
1740 bool
1741 __qdf_nbuf_is_ipv4_last_fragment(struct sk_buff *skb)
1742 {
1743 	if (((ntohs(ip_hdr(skb)->frag_off) & ~IP_OFFSET) & IP_MF) == 0)
1744 		return true;
1745 
1746 	return false;
1747 }
1748 
1749 /**
1750  * __qdf_nbuf_data_set_ipv4_tos() - set the TOS for IPv4 packet
1751  * @data: pointer to skb payload
1752  * @tos: value of TOS to be set
1753  *
1754  * This func. set the TOS field of IPv4 packet.
1755  *
1756  * Return: None
1757  */
1758 void
1759 __qdf_nbuf_data_set_ipv4_tos(uint8_t *data, uint8_t tos)
1760 {
1761 	*(uint8_t *)(data + QDF_NBUF_TRAC_IPV4_TOS_OFFSET) = tos;
1762 }
1763 
1764 /**
1765  * __qdf_nbuf_data_get_ipv4_tos() - get the TOS type of IPv4 packet
1766  * @data: Pointer to skb payload
1767  *
1768  * This func. returns the TOS type of IPv4 packet.
1769  *
1770  * Return: TOS type of IPv4 packet.
1771  */
1772 uint8_t
1773 __qdf_nbuf_data_get_ipv4_tos(uint8_t *data)
1774 {
1775 	uint8_t tos;
1776 
1777 	tos = (uint8_t)(*(uint8_t *)(data +
1778 			QDF_NBUF_TRAC_IPV4_TOS_OFFSET));
1779 	return tos;
1780 }
1781 
1782 /**
1783  * __qdf_nbuf_data_get_ipv4_proto() - get the proto type
1784  *            of IPV4 packet.
1785  * @data: Pointer to IPV4 packet data buffer
1786  *
1787  * This func. returns the proto type of IPV4 packet.
1788  *
1789  * Return: proto type of IPV4 packet.
1790  */
1791 uint8_t
1792 __qdf_nbuf_data_get_ipv4_proto(uint8_t *data)
1793 {
1794 	uint8_t proto_type;
1795 
1796 	proto_type = (uint8_t)(*(uint8_t *)(data +
1797 				QDF_NBUF_TRAC_IPV4_PROTO_TYPE_OFFSET));
1798 	return proto_type;
1799 }
1800 
1801 /**
1802  * __qdf_nbuf_data_get_ipv6_tc() - get the TC field
1803  *                                 of IPv6 packet.
1804  * @data: Pointer to IPv6 packet data buffer
1805  *
1806  * This func. returns the TC field of IPv6 packet.
1807  *
1808  * Return: traffic classification of IPv6 packet.
1809  */
1810 uint8_t
1811 __qdf_nbuf_data_get_ipv6_tc(uint8_t *data)
1812 {
1813 	struct ipv6hdr *hdr;
1814 
1815 	hdr =  (struct ipv6hdr *)(data + QDF_NBUF_TRAC_IPV6_OFFSET);
1816 	return ip6_tclass(ip6_flowinfo(hdr));
1817 }
1818 
1819 /**
1820  * __qdf_nbuf_data_set_ipv6_tc() - set the TC field
1821  *                                 of IPv6 packet.
1822  * @data: Pointer to skb payload
1823  * @tc: value to set to IPv6 header TC field
1824  *
1825  * This func. set the TC field of IPv6 header.
1826  *
1827  * Return: None
1828  */
1829 void
1830 __qdf_nbuf_data_set_ipv6_tc(uint8_t *data, uint8_t tc)
1831 {
1832 	struct ipv6hdr *hdr;
1833 
1834 	hdr =  (struct ipv6hdr *)(data + QDF_NBUF_TRAC_IPV6_OFFSET);
1835 	ip6_flow_hdr(hdr, tc, ip6_flowlabel(hdr));
1836 }
1837 
1838 /**
1839  * __qdf_nbuf_data_get_ipv6_proto() - get the proto type
1840  *            of IPV6 packet.
1841  * @data: Pointer to IPV6 packet data buffer
1842  *
1843  * This func. returns the proto type of IPV6 packet.
1844  *
1845  * Return: proto type of IPV6 packet.
1846  */
1847 uint8_t
1848 __qdf_nbuf_data_get_ipv6_proto(uint8_t *data)
1849 {
1850 	uint8_t proto_type;
1851 
1852 	proto_type = (uint8_t)(*(uint8_t *)(data +
1853 				QDF_NBUF_TRAC_IPV6_PROTO_TYPE_OFFSET));
1854 	return proto_type;
1855 }
1856 
1857 /**
1858  * __qdf_nbuf_data_is_ipv4_pkt() - check if packet is a ipv4 packet
1859  * @data: Pointer to network data
1860  *
1861  * This api is for Tx packets.
1862  *
1863  * Return: true if packet is ipv4 packet
1864  *	   false otherwise
1865  */
1866 bool __qdf_nbuf_data_is_ipv4_pkt(uint8_t *data)
1867 {
1868 	uint16_t ether_type;
1869 
1870 	ether_type = (uint16_t)(*(uint16_t *)(data +
1871 				QDF_NBUF_TRAC_ETH_TYPE_OFFSET));
1872 
1873 	if (ether_type == QDF_SWAP_U16(QDF_NBUF_TRAC_IPV4_ETH_TYPE))
1874 		return true;
1875 	else
1876 		return false;
1877 }
1878 qdf_export_symbol(__qdf_nbuf_data_is_ipv4_pkt);
1879 
1880 /**
1881  * __qdf_nbuf_data_is_ipv4_dhcp_pkt() - check if skb data is a dhcp packet
1882  * @data: Pointer to network data buffer
1883  *
1884  * This api is for ipv4 packet.
1885  *
1886  * Return: true if packet is DHCP packet
1887  *	   false otherwise
1888  */
1889 bool __qdf_nbuf_data_is_ipv4_dhcp_pkt(uint8_t *data)
1890 {
1891 	uint16_t sport;
1892 	uint16_t dport;
1893 	uint8_t ipv4_offset;
1894 	uint8_t ipv4_hdr_len;
1895 	struct iphdr *iphdr;
1896 
1897 	if (__qdf_nbuf_get_ether_type(data) !=
1898 	    QDF_SWAP_U16(QDF_NBUF_TRAC_IPV4_ETH_TYPE))
1899 		return false;
1900 
1901 	ipv4_offset = __qdf_nbuf_get_ip_offset(data);
1902 	iphdr = (struct iphdr *)(data + ipv4_offset);
1903 	ipv4_hdr_len = iphdr->ihl * QDF_NBUF_IPV4_HDR_SIZE_UNIT;
1904 
1905 	sport = *(uint16_t *)(data + ipv4_offset + ipv4_hdr_len);
1906 	dport = *(uint16_t *)(data + ipv4_offset + ipv4_hdr_len +
1907 			      sizeof(uint16_t));
1908 
1909 	if (((sport == QDF_SWAP_U16(QDF_NBUF_TRAC_DHCP_SRV_PORT)) &&
1910 	     (dport == QDF_SWAP_U16(QDF_NBUF_TRAC_DHCP_CLI_PORT))) ||
1911 	    ((sport == QDF_SWAP_U16(QDF_NBUF_TRAC_DHCP_CLI_PORT)) &&
1912 	     (dport == QDF_SWAP_U16(QDF_NBUF_TRAC_DHCP_SRV_PORT))))
1913 		return true;
1914 	else
1915 		return false;
1916 }
1917 qdf_export_symbol(__qdf_nbuf_data_is_ipv4_dhcp_pkt);
1918 
1919 /**
1920  * __qdf_nbuf_data_is_ipv4_eapol_pkt() - check if skb data is a eapol packet
1921  * @data: Pointer to network data buffer
1922  *
1923  * This api is for ipv4 packet.
1924  *
1925  * Return: true if packet is EAPOL packet
1926  *	   false otherwise.
1927  */
1928 bool __qdf_nbuf_data_is_ipv4_eapol_pkt(uint8_t *data)
1929 {
1930 	uint16_t ether_type;
1931 
1932 	ether_type = __qdf_nbuf_get_ether_type(data);
1933 
1934 	if (ether_type == QDF_SWAP_U16(QDF_NBUF_TRAC_EAPOL_ETH_TYPE))
1935 		return true;
1936 	else
1937 		return false;
1938 }
1939 qdf_export_symbol(__qdf_nbuf_data_is_ipv4_eapol_pkt);
1940 
1941 /**
1942  * __qdf_nbuf_is_ipv4_wapi_pkt() - check if skb data is a wapi packet
1943  * @skb: Pointer to network buffer
1944  *
1945  * This api is for ipv4 packet.
1946  *
1947  * Return: true if packet is WAPI packet
1948  *	   false otherwise.
1949  */
1950 bool __qdf_nbuf_is_ipv4_wapi_pkt(struct sk_buff *skb)
1951 {
1952 	uint16_t ether_type;
1953 
1954 	ether_type = (uint16_t)(*(uint16_t *)(skb->data +
1955 				QDF_NBUF_TRAC_ETH_TYPE_OFFSET));
1956 
1957 	if (ether_type == QDF_SWAP_U16(QDF_NBUF_TRAC_WAPI_ETH_TYPE))
1958 		return true;
1959 	else
1960 		return false;
1961 }
1962 qdf_export_symbol(__qdf_nbuf_is_ipv4_wapi_pkt);
1963 
1964 /**
1965  * qdf_nbuf_is_ipv6_vlan_pkt() - check whether packet is vlan IPV6
1966  * @data: Pointer to network data buffer
1967  *
1968  * This api is for vlan header included ipv6 packet.
1969  *
1970  * Return: true if packet is vlan header included IPV6
1971  *	   false otherwise.
1972  */
1973 static bool qdf_nbuf_is_ipv6_vlan_pkt(uint8_t *data)
1974 {
1975 	uint16_t ether_type;
1976 
1977 	ether_type = *(uint16_t *)(data + QDF_NBUF_TRAC_ETH_TYPE_OFFSET);
1978 
1979 	if (unlikely(ether_type == QDF_SWAP_U16(QDF_ETH_TYPE_8021Q))) {
1980 		ether_type = *(uint16_t *)(data +
1981 					   QDF_NBUF_TRAC_VLAN_ETH_TYPE_OFFSET);
1982 
1983 		if (ether_type == QDF_SWAP_U16(QDF_NBUF_TRAC_IPV6_ETH_TYPE))
1984 			return true;
1985 	}
1986 	return false;
1987 }
1988 
1989 /**
1990  * qdf_nbuf_is_ipv4_vlan_pkt() - check whether packet is vlan IPV4
1991  * @data: Pointer to network data buffer
1992  *
1993  * This api is for vlan header included ipv4 packet.
1994  *
1995  * Return: true if packet is vlan header included IPV4
1996  *	   false otherwise.
1997  */
1998 static bool qdf_nbuf_is_ipv4_vlan_pkt(uint8_t *data)
1999 {
2000 	uint16_t ether_type;
2001 
2002 	ether_type = *(uint16_t *)(data + QDF_NBUF_TRAC_ETH_TYPE_OFFSET);
2003 
2004 	if (unlikely(ether_type == QDF_SWAP_U16(QDF_ETH_TYPE_8021Q))) {
2005 		ether_type = *(uint16_t *)(data +
2006 					   QDF_NBUF_TRAC_VLAN_ETH_TYPE_OFFSET);
2007 
2008 		if (ether_type == QDF_SWAP_U16(QDF_NBUF_TRAC_IPV4_ETH_TYPE))
2009 			return true;
2010 	}
2011 	return false;
2012 }
2013 
2014 /**
2015  * __qdf_nbuf_data_is_ipv4_igmp_pkt() - check if skb data is a igmp packet
2016  * @data: Pointer to network data buffer
2017  *
2018  * This api is for ipv4 packet.
2019  *
2020  * Return: true if packet is igmp packet
2021  *	   false otherwise.
2022  */
2023 bool __qdf_nbuf_data_is_ipv4_igmp_pkt(uint8_t *data)
2024 {
2025 	uint8_t pkt_type;
2026 
2027 	if (__qdf_nbuf_data_is_ipv4_pkt(data)) {
2028 		pkt_type = (uint8_t)(*(uint8_t *)(data +
2029 				QDF_NBUF_TRAC_IPV4_PROTO_TYPE_OFFSET));
2030 		goto is_igmp;
2031 	}
2032 
2033 	if (qdf_nbuf_is_ipv4_vlan_pkt(data)) {
2034 		pkt_type = (uint8_t)(*(uint8_t *)(
2035 				data +
2036 				QDF_NBUF_TRAC_VLAN_IPV4_PROTO_TYPE_OFFSET));
2037 		goto is_igmp;
2038 	}
2039 
2040 	return false;
2041 is_igmp:
2042 	if (pkt_type == QDF_NBUF_TRAC_IGMP_TYPE)
2043 		return true;
2044 
2045 	return false;
2046 }
2047 
2048 qdf_export_symbol(__qdf_nbuf_data_is_ipv4_igmp_pkt);
2049 
2050 /**
2051  * __qdf_nbuf_data_is_ipv6_igmp_pkt() - check if skb data is a igmp packet
2052  * @data: Pointer to network data buffer
2053  *
2054  * This api is for ipv6 packet.
2055  *
2056  * Return: true if packet is igmp packet
2057  *	   false otherwise.
2058  */
2059 bool __qdf_nbuf_data_is_ipv6_igmp_pkt(uint8_t *data)
2060 {
2061 	uint8_t pkt_type;
2062 	uint8_t next_hdr;
2063 
2064 	if (__qdf_nbuf_data_is_ipv6_pkt(data)) {
2065 		pkt_type = (uint8_t)(*(uint8_t *)(data +
2066 				QDF_NBUF_TRAC_IPV6_PROTO_TYPE_OFFSET));
2067 		next_hdr = (uint8_t)(*(uint8_t *)(
2068 				data +
2069 				QDF_NBUF_TRAC_IPV6_OFFSET +
2070 				QDF_NBUF_TRAC_IPV6_HEADER_SIZE));
2071 		goto is_mld;
2072 	}
2073 
2074 	if (qdf_nbuf_is_ipv6_vlan_pkt(data)) {
2075 		pkt_type = (uint8_t)(*(uint8_t *)(
2076 				data +
2077 				QDF_NBUF_TRAC_VLAN_IPV6_PROTO_TYPE_OFFSET));
2078 		next_hdr = (uint8_t)(*(uint8_t *)(
2079 				data +
2080 				QDF_NBUF_TRAC_VLAN_IPV6_OFFSET +
2081 				QDF_NBUF_TRAC_IPV6_HEADER_SIZE));
2082 		goto is_mld;
2083 	}
2084 
2085 	return false;
2086 is_mld:
2087 	if (pkt_type == QDF_NBUF_TRAC_ICMPV6_TYPE)
2088 		return true;
2089 	if ((pkt_type == QDF_NBUF_TRAC_HOPOPTS_TYPE) &&
2090 	    (next_hdr == QDF_NBUF_TRAC_ICMPV6_TYPE))
2091 		return true;
2092 
2093 	return false;
2094 }
2095 
2096 qdf_export_symbol(__qdf_nbuf_data_is_ipv6_igmp_pkt);
2097 
2098 /**
2099  * __qdf_nbuf_is_ipv4_igmp_leave_pkt() - check if skb is a igmp leave packet
2100  * @data: Pointer to network buffer
2101  *
2102  * This api is for ipv4 packet.
2103  *
2104  * Return: true if packet is igmp packet
2105  *	   false otherwise.
2106  */
2107 bool __qdf_nbuf_is_ipv4_igmp_leave_pkt(__qdf_nbuf_t buf)
2108 {
2109 	qdf_ether_header_t *eh = NULL;
2110 	uint16_t ether_type;
2111 	uint8_t eth_hdr_size = sizeof(qdf_ether_header_t);
2112 
2113 	eh = (qdf_ether_header_t *)qdf_nbuf_data(buf);
2114 	ether_type = eh->ether_type;
2115 
2116 	if (ether_type == htons(ETH_P_8021Q)) {
2117 		struct vlan_ethhdr *veth =
2118 				(struct vlan_ethhdr *)qdf_nbuf_data(buf);
2119 		ether_type = veth->h_vlan_encapsulated_proto;
2120 		eth_hdr_size = sizeof(struct vlan_ethhdr);
2121 	}
2122 
2123 	if (ether_type == QDF_SWAP_U16(QDF_NBUF_TRAC_IPV4_ETH_TYPE)) {
2124 		struct iphdr *iph = NULL;
2125 		struct igmphdr *ih = NULL;
2126 
2127 		iph = (struct iphdr *)(qdf_nbuf_data(buf) + eth_hdr_size);
2128 		ih = (struct igmphdr *)((uint8_t *)iph + iph->ihl * 4);
2129 		switch (ih->type) {
2130 		case IGMP_HOST_LEAVE_MESSAGE:
2131 			return true;
2132 		case IGMPV3_HOST_MEMBERSHIP_REPORT:
2133 		{
2134 			struct igmpv3_report *ihv3 = (struct igmpv3_report *)ih;
2135 			struct igmpv3_grec *grec = NULL;
2136 			int num = 0;
2137 			int i = 0;
2138 			int len = 0;
2139 			int type = 0;
2140 
2141 			num = ntohs(ihv3->ngrec);
2142 			for (i = 0; i < num; i++) {
2143 				grec = (void *)((uint8_t *)(ihv3->grec) + len);
2144 				type = grec->grec_type;
2145 				if ((type == IGMPV3_MODE_IS_INCLUDE) ||
2146 				    (type == IGMPV3_CHANGE_TO_INCLUDE))
2147 					return true;
2148 
2149 				len += sizeof(struct igmpv3_grec);
2150 				len += ntohs(grec->grec_nsrcs) * 4;
2151 			}
2152 			break;
2153 		}
2154 		default:
2155 			break;
2156 		}
2157 	}
2158 
2159 	return false;
2160 }
2161 
2162 qdf_export_symbol(__qdf_nbuf_is_ipv4_igmp_leave_pkt);
2163 
2164 /**
2165  * __qdf_nbuf_is_ipv6_igmp_leave_pkt() - check if skb is a igmp leave packet
2166  * @data: Pointer to network buffer
2167  *
2168  * This api is for ipv6 packet.
2169  *
2170  * Return: true if packet is igmp packet
2171  *	   false otherwise.
2172  */
2173 bool __qdf_nbuf_is_ipv6_igmp_leave_pkt(__qdf_nbuf_t buf)
2174 {
2175 	qdf_ether_header_t *eh = NULL;
2176 	uint16_t ether_type;
2177 	uint8_t eth_hdr_size = sizeof(qdf_ether_header_t);
2178 
2179 	eh = (qdf_ether_header_t *)qdf_nbuf_data(buf);
2180 	ether_type = eh->ether_type;
2181 
2182 	if (ether_type == htons(ETH_P_8021Q)) {
2183 		struct vlan_ethhdr *veth =
2184 				(struct vlan_ethhdr *)qdf_nbuf_data(buf);
2185 		ether_type = veth->h_vlan_encapsulated_proto;
2186 		eth_hdr_size = sizeof(struct vlan_ethhdr);
2187 	}
2188 
2189 	if (ether_type == QDF_SWAP_U16(QDF_NBUF_TRAC_IPV6_ETH_TYPE)) {
2190 		struct ipv6hdr *ip6h = NULL;
2191 		struct icmp6hdr *icmp6h = NULL;
2192 		uint8_t nexthdr;
2193 		uint16_t frag_off = 0;
2194 		int offset;
2195 		qdf_nbuf_t buf_copy = NULL;
2196 
2197 		ip6h = (struct ipv6hdr *)(qdf_nbuf_data(buf) + eth_hdr_size);
2198 		if (ip6h->nexthdr != IPPROTO_HOPOPTS ||
2199 		    ip6h->payload_len == 0)
2200 			return false;
2201 
2202 		buf_copy = qdf_nbuf_copy(buf);
2203 		if (qdf_likely(!buf_copy))
2204 			return false;
2205 
2206 		nexthdr = ip6h->nexthdr;
2207 		offset = ipv6_skip_exthdr(buf_copy,
2208 					  eth_hdr_size + sizeof(*ip6h),
2209 					  &nexthdr,
2210 					  &frag_off);
2211 		qdf_nbuf_free(buf_copy);
2212 		if (offset < 0 || nexthdr != IPPROTO_ICMPV6)
2213 			return false;
2214 
2215 		icmp6h = (struct icmp6hdr *)(qdf_nbuf_data(buf) + offset);
2216 
2217 		switch (icmp6h->icmp6_type) {
2218 		case ICMPV6_MGM_REDUCTION:
2219 			return true;
2220 		case ICMPV6_MLD2_REPORT:
2221 		{
2222 			struct mld2_report *mh = NULL;
2223 			struct mld2_grec *grec = NULL;
2224 			int num = 0;
2225 			int i = 0;
2226 			int len = 0;
2227 			int type = -1;
2228 
2229 			mh = (struct mld2_report *)icmp6h;
2230 			num = ntohs(mh->mld2r_ngrec);
2231 			for (i = 0; i < num; i++) {
2232 				grec = (void *)(((uint8_t *)mh->mld2r_grec) +
2233 						len);
2234 				type = grec->grec_type;
2235 				if ((type == MLD2_MODE_IS_INCLUDE) ||
2236 				    (type == MLD2_CHANGE_TO_INCLUDE))
2237 					return true;
2238 				else if (type == MLD2_BLOCK_OLD_SOURCES)
2239 					return true;
2240 
2241 				len += sizeof(struct mld2_grec);
2242 				len += ntohs(grec->grec_nsrcs) *
2243 						sizeof(struct in6_addr);
2244 			}
2245 			break;
2246 		}
2247 		default:
2248 			break;
2249 		}
2250 	}
2251 
2252 	return false;
2253 }
2254 
2255 qdf_export_symbol(__qdf_nbuf_is_ipv6_igmp_leave_pkt);
2256 
2257 /**
2258  * __qdf_nbuf_is_ipv4_tdls_pkt() - check if skb data is a tdls packet
2259  * @skb: Pointer to network buffer
2260  *
2261  * This api is for ipv4 packet.
2262  *
2263  * Return: true if packet is tdls packet
2264  *	   false otherwise.
2265  */
2266 bool __qdf_nbuf_is_ipv4_tdls_pkt(struct sk_buff *skb)
2267 {
2268 	uint16_t ether_type;
2269 
2270 	ether_type = *(uint16_t *)(skb->data +
2271 				QDF_NBUF_TRAC_ETH_TYPE_OFFSET);
2272 
2273 	if (ether_type == QDF_SWAP_U16(QDF_NBUF_TRAC_TDLS_ETH_TYPE))
2274 		return true;
2275 	else
2276 		return false;
2277 }
2278 qdf_export_symbol(__qdf_nbuf_is_ipv4_tdls_pkt);
2279 
2280 /**
2281  * __qdf_nbuf_data_is_ipv4_arp_pkt() - check if skb data is a arp packet
2282  * @data: Pointer to network data buffer
2283  *
2284  * This api is for ipv4 packet.
2285  *
2286  * Return: true if packet is ARP packet
2287  *	   false otherwise.
2288  */
2289 bool __qdf_nbuf_data_is_ipv4_arp_pkt(uint8_t *data)
2290 {
2291 	uint16_t ether_type;
2292 
2293 	ether_type = __qdf_nbuf_get_ether_type(data);
2294 
2295 	if (ether_type == QDF_SWAP_U16(QDF_NBUF_TRAC_ARP_ETH_TYPE))
2296 		return true;
2297 	else
2298 		return false;
2299 }
2300 qdf_export_symbol(__qdf_nbuf_data_is_ipv4_arp_pkt);
2301 
2302 /**
2303  * __qdf_nbuf_data_is_arp_req() - check if skb data is a arp request
2304  * @data: Pointer to network data buffer
2305  *
2306  * This api is for ipv4 packet.
2307  *
2308  * Return: true if packet is ARP request
2309  *	   false otherwise.
2310  */
2311 bool __qdf_nbuf_data_is_arp_req(uint8_t *data)
2312 {
2313 	uint16_t op_code;
2314 
2315 	op_code = (uint16_t)(*(uint16_t *)(data +
2316 				QDF_NBUF_PKT_ARP_OPCODE_OFFSET));
2317 
2318 	if (op_code == QDF_SWAP_U16(QDF_NBUF_PKT_ARPOP_REQ))
2319 		return true;
2320 	return false;
2321 }
2322 
2323 /**
2324  * __qdf_nbuf_data_is_arp_rsp() - check if skb data is a arp response
2325  * @data: Pointer to network data buffer
2326  *
2327  * This api is for ipv4 packet.
2328  *
2329  * Return: true if packet is ARP response
2330  *	   false otherwise.
2331  */
2332 bool __qdf_nbuf_data_is_arp_rsp(uint8_t *data)
2333 {
2334 	uint16_t op_code;
2335 
2336 	op_code = (uint16_t)(*(uint16_t *)(data +
2337 				QDF_NBUF_PKT_ARP_OPCODE_OFFSET));
2338 
2339 	if (op_code == QDF_SWAP_U16(QDF_NBUF_PKT_ARPOP_REPLY))
2340 		return true;
2341 	return false;
2342 }
2343 
2344 /**
2345  * __qdf_nbuf_data_get_arp_src_ip() - get arp src IP
2346  * @data: Pointer to network data buffer
2347  *
2348  * This api is for ipv4 packet.
2349  *
2350  * Return: ARP packet source IP value.
2351  */
2352 uint32_t  __qdf_nbuf_get_arp_src_ip(uint8_t *data)
2353 {
2354 	uint32_t src_ip;
2355 
2356 	src_ip = (uint32_t)(*(uint32_t *)(data +
2357 				QDF_NBUF_PKT_ARP_SRC_IP_OFFSET));
2358 
2359 	return src_ip;
2360 }
2361 
2362 /**
2363  * __qdf_nbuf_data_get_arp_tgt_ip() - get arp target IP
2364  * @data: Pointer to network data buffer
2365  *
2366  * This api is for ipv4 packet.
2367  *
2368  * Return: ARP packet target IP value.
2369  */
2370 uint32_t  __qdf_nbuf_get_arp_tgt_ip(uint8_t *data)
2371 {
2372 	uint32_t tgt_ip;
2373 
2374 	tgt_ip = (uint32_t)(*(uint32_t *)(data +
2375 				QDF_NBUF_PKT_ARP_TGT_IP_OFFSET));
2376 
2377 	return tgt_ip;
2378 }
2379 
2380 /**
2381  * __qdf_nbuf_get_dns_domain_name() - get dns domain name
2382  * @data: Pointer to network data buffer
2383  * @len: length to copy
2384  *
2385  * This api is for dns domain name
2386  *
2387  * Return: dns domain name.
2388  */
2389 uint8_t *__qdf_nbuf_get_dns_domain_name(uint8_t *data, uint32_t len)
2390 {
2391 	uint8_t *domain_name;
2392 
2393 	domain_name = (uint8_t *)
2394 			(data + QDF_NBUF_PKT_DNS_NAME_OVER_UDP_OFFSET);
2395 	return domain_name;
2396 }
2397 
2398 
2399 /**
2400  * __qdf_nbuf_data_is_dns_query() - check if skb data is a dns query
2401  * @data: Pointer to network data buffer
2402  *
2403  * This api is for dns query packet.
2404  *
2405  * Return: true if packet is dns query packet.
2406  *	   false otherwise.
2407  */
2408 bool __qdf_nbuf_data_is_dns_query(uint8_t *data)
2409 {
2410 	uint16_t op_code;
2411 	uint16_t tgt_port;
2412 
2413 	tgt_port = (uint16_t)(*(uint16_t *)(data +
2414 				QDF_NBUF_PKT_DNS_DST_PORT_OFFSET));
2415 	/* Standard DNS query always happen on Dest Port 53. */
2416 	if (tgt_port == QDF_SWAP_U16(QDF_NBUF_PKT_DNS_STANDARD_PORT)) {
2417 		op_code = (uint16_t)(*(uint16_t *)(data +
2418 				QDF_NBUF_PKT_DNS_OVER_UDP_OPCODE_OFFSET));
2419 		if ((QDF_SWAP_U16(op_code) & QDF_NBUF_PKT_DNSOP_BITMAP) ==
2420 				QDF_NBUF_PKT_DNSOP_STANDARD_QUERY)
2421 			return true;
2422 	}
2423 	return false;
2424 }
2425 
2426 /**
2427  * __qdf_nbuf_data_is_dns_response() - check if skb data is a dns response
2428  * @data: Pointer to network data buffer
2429  *
2430  * This api is for dns query response.
2431  *
2432  * Return: true if packet is dns response packet.
2433  *	   false otherwise.
2434  */
2435 bool __qdf_nbuf_data_is_dns_response(uint8_t *data)
2436 {
2437 	uint16_t op_code;
2438 	uint16_t src_port;
2439 
2440 	src_port = (uint16_t)(*(uint16_t *)(data +
2441 				QDF_NBUF_PKT_DNS_SRC_PORT_OFFSET));
2442 	/* Standard DNS response always comes on Src Port 53. */
2443 	if (src_port == QDF_SWAP_U16(QDF_NBUF_PKT_DNS_STANDARD_PORT)) {
2444 		op_code = (uint16_t)(*(uint16_t *)(data +
2445 				QDF_NBUF_PKT_DNS_OVER_UDP_OPCODE_OFFSET));
2446 
2447 		if ((QDF_SWAP_U16(op_code) & QDF_NBUF_PKT_DNSOP_BITMAP) ==
2448 				QDF_NBUF_PKT_DNSOP_STANDARD_RESPONSE)
2449 			return true;
2450 	}
2451 	return false;
2452 }
2453 
2454 /**
2455  * __qdf_nbuf_data_is_tcp_fin() - check if skb data is a tcp fin
2456  * @data: Pointer to network data buffer
2457  *
2458  * This api is to check if the packet is tcp fin.
2459  *
2460  * Return: true if packet is tcp fin packet.
2461  *         false otherwise.
2462  */
2463 bool __qdf_nbuf_data_is_tcp_fin(uint8_t *data)
2464 {
2465 	uint8_t op_code;
2466 
2467 	op_code = (uint8_t)(*(uint8_t *)(data +
2468 				QDF_NBUF_PKT_TCP_OPCODE_OFFSET));
2469 
2470 	if (op_code == QDF_NBUF_PKT_TCPOP_FIN)
2471 		return true;
2472 
2473 	return false;
2474 }
2475 
2476 /**
2477  * __qdf_nbuf_data_is_tcp_fin_ack() - check if skb data is a tcp fin ack
2478  * @data: Pointer to network data buffer
2479  *
2480  * This api is to check if the tcp packet is fin ack.
2481  *
2482  * Return: true if packet is tcp fin ack packet.
2483  *         false otherwise.
2484  */
2485 bool __qdf_nbuf_data_is_tcp_fin_ack(uint8_t *data)
2486 {
2487 	uint8_t op_code;
2488 
2489 	op_code = (uint8_t)(*(uint8_t *)(data +
2490 				QDF_NBUF_PKT_TCP_OPCODE_OFFSET));
2491 
2492 	if (op_code == QDF_NBUF_PKT_TCPOP_FIN_ACK)
2493 		return true;
2494 
2495 	return false;
2496 }
2497 
2498 /**
2499  * __qdf_nbuf_data_is_tcp_syn() - check if skb data is a tcp syn
2500  * @data: Pointer to network data buffer
2501  *
2502  * This api is for tcp syn packet.
2503  *
2504  * Return: true if packet is tcp syn packet.
2505  *	   false otherwise.
2506  */
2507 bool __qdf_nbuf_data_is_tcp_syn(uint8_t *data)
2508 {
2509 	uint8_t op_code;
2510 
2511 	op_code = (uint8_t)(*(uint8_t *)(data +
2512 				QDF_NBUF_PKT_TCP_OPCODE_OFFSET));
2513 
2514 	if (op_code == QDF_NBUF_PKT_TCPOP_SYN)
2515 		return true;
2516 	return false;
2517 }
2518 
2519 /**
2520  * __qdf_nbuf_data_is_tcp_syn_ack() - check if skb data is a tcp syn ack
2521  * @data: Pointer to network data buffer
2522  *
2523  * This api is for tcp syn ack packet.
2524  *
2525  * Return: true if packet is tcp syn ack packet.
2526  *	   false otherwise.
2527  */
2528 bool __qdf_nbuf_data_is_tcp_syn_ack(uint8_t *data)
2529 {
2530 	uint8_t op_code;
2531 
2532 	op_code = (uint8_t)(*(uint8_t *)(data +
2533 				QDF_NBUF_PKT_TCP_OPCODE_OFFSET));
2534 
2535 	if (op_code == QDF_NBUF_PKT_TCPOP_SYN_ACK)
2536 		return true;
2537 	return false;
2538 }
2539 
2540 /**
2541  * __qdf_nbuf_data_is_tcp_rst() - check if skb data is a tcp rst
2542  * @data: Pointer to network data buffer
2543  *
2544  * This api is to check if the tcp packet is rst.
2545  *
2546  * Return: true if packet is tcp rst packet.
2547  *         false otherwise.
2548  */
2549 bool __qdf_nbuf_data_is_tcp_rst(uint8_t *data)
2550 {
2551 	uint8_t op_code;
2552 
2553 	op_code = (uint8_t)(*(uint8_t *)(data +
2554 				QDF_NBUF_PKT_TCP_OPCODE_OFFSET));
2555 
2556 	if (op_code == QDF_NBUF_PKT_TCPOP_RST)
2557 		return true;
2558 
2559 	return false;
2560 }
2561 
2562 /**
2563  * __qdf_nbuf_data_is_tcp_ack() - check if skb data is a tcp ack
2564  * @data: Pointer to network data buffer
2565  *
2566  * This api is for tcp ack packet.
2567  *
2568  * Return: true if packet is tcp ack packet.
2569  *	   false otherwise.
2570  */
2571 bool __qdf_nbuf_data_is_tcp_ack(uint8_t *data)
2572 {
2573 	uint8_t op_code;
2574 
2575 	op_code = (uint8_t)(*(uint8_t *)(data +
2576 				QDF_NBUF_PKT_TCP_OPCODE_OFFSET));
2577 
2578 	if (op_code == QDF_NBUF_PKT_TCPOP_ACK)
2579 		return true;
2580 	return false;
2581 }
2582 
2583 /**
2584  * __qdf_nbuf_data_get_tcp_src_port() - get tcp src port
2585  * @data: Pointer to network data buffer
2586  *
2587  * This api is for tcp packet.
2588  *
2589  * Return: tcp source port value.
2590  */
2591 uint16_t __qdf_nbuf_data_get_tcp_src_port(uint8_t *data)
2592 {
2593 	uint16_t src_port;
2594 
2595 	src_port = (uint16_t)(*(uint16_t *)(data +
2596 				QDF_NBUF_PKT_TCP_SRC_PORT_OFFSET));
2597 
2598 	return src_port;
2599 }
2600 
2601 /**
2602  * __qdf_nbuf_data_get_tcp_dst_port() - get tcp dst port
2603  * @data: Pointer to network data buffer
2604  *
2605  * This api is for tcp packet.
2606  *
2607  * Return: tcp destination port value.
2608  */
2609 uint16_t __qdf_nbuf_data_get_tcp_dst_port(uint8_t *data)
2610 {
2611 	uint16_t tgt_port;
2612 
2613 	tgt_port = (uint16_t)(*(uint16_t *)(data +
2614 				QDF_NBUF_PKT_TCP_DST_PORT_OFFSET));
2615 
2616 	return tgt_port;
2617 }
2618 
2619 /**
2620  * __qdf_nbuf_data_is_icmpv4_req() - check if skb data is a icmpv4 request
2621  * @data: Pointer to network data buffer
2622  *
2623  * This api is for ipv4 req packet.
2624  *
2625  * Return: true if packet is icmpv4 request
2626  *	   false otherwise.
2627  */
2628 bool __qdf_nbuf_data_is_icmpv4_req(uint8_t *data)
2629 {
2630 	uint8_t op_code;
2631 
2632 	op_code = (uint8_t)(*(uint8_t *)(data +
2633 				QDF_NBUF_PKT_ICMPv4_OPCODE_OFFSET));
2634 
2635 	if (op_code == QDF_NBUF_PKT_ICMPv4OP_REQ)
2636 		return true;
2637 	return false;
2638 }
2639 
2640 /**
2641  * __qdf_nbuf_data_is_icmpv4_rsp() - check if skb data is a icmpv4 res
2642  * @data: Pointer to network data buffer
2643  *
2644  * This api is for ipv4 res packet.
2645  *
2646  * Return: true if packet is icmpv4 response
2647  *	   false otherwise.
2648  */
2649 bool __qdf_nbuf_data_is_icmpv4_rsp(uint8_t *data)
2650 {
2651 	uint8_t op_code;
2652 
2653 	op_code = (uint8_t)(*(uint8_t *)(data +
2654 				QDF_NBUF_PKT_ICMPv4_OPCODE_OFFSET));
2655 
2656 	if (op_code == QDF_NBUF_PKT_ICMPv4OP_REPLY)
2657 		return true;
2658 	return false;
2659 }
2660 
2661 bool __qdf_nbuf_data_is_icmpv4_redirect(uint8_t *data)
2662 {
2663 	uint8_t op_code;
2664 
2665 	op_code = (uint8_t)(*(uint8_t *)(data +
2666 				QDF_NBUF_PKT_ICMPv4_OPCODE_OFFSET));
2667 
2668 	if (op_code == QDF_NBUF_PKT_ICMPV4_REDIRECT)
2669 		return true;
2670 	return false;
2671 }
2672 
2673 qdf_export_symbol(__qdf_nbuf_data_is_icmpv4_redirect);
2674 
2675 bool __qdf_nbuf_data_is_icmpv6_redirect(uint8_t *data)
2676 {
2677 	uint8_t subtype;
2678 
2679 	subtype = (uint8_t)(*(uint8_t *)(data + ICMPV6_SUBTYPE_OFFSET));
2680 
2681 	if (subtype == ICMPV6_REDIRECT)
2682 		return true;
2683 	return false;
2684 }
2685 
2686 qdf_export_symbol(__qdf_nbuf_data_is_icmpv6_redirect);
2687 
2688 /**
2689  * __qdf_nbuf_data_get_icmpv4_src_ip() - get icmpv4 src IP
2690  * @data: Pointer to network data buffer
2691  *
2692  * This api is for ipv4 packet.
2693  *
2694  * Return: icmpv4 packet source IP value.
2695  */
2696 uint32_t __qdf_nbuf_get_icmpv4_src_ip(uint8_t *data)
2697 {
2698 	uint32_t src_ip;
2699 
2700 	src_ip = (uint32_t)(*(uint32_t *)(data +
2701 				QDF_NBUF_PKT_ICMPv4_SRC_IP_OFFSET));
2702 
2703 	return src_ip;
2704 }
2705 
2706 /**
2707  * __qdf_nbuf_data_get_icmpv4_tgt_ip() - get icmpv4 target IP
2708  * @data: Pointer to network data buffer
2709  *
2710  * This api is for ipv4 packet.
2711  *
2712  * Return: icmpv4 packet target IP value.
2713  */
2714 uint32_t __qdf_nbuf_get_icmpv4_tgt_ip(uint8_t *data)
2715 {
2716 	uint32_t tgt_ip;
2717 
2718 	tgt_ip = (uint32_t)(*(uint32_t *)(data +
2719 				QDF_NBUF_PKT_ICMPv4_TGT_IP_OFFSET));
2720 
2721 	return tgt_ip;
2722 }
2723 
2724 
2725 /**
2726  * __qdf_nbuf_data_is_ipv6_pkt() - check if it is IPV6 packet.
2727  * @data: Pointer to IPV6 packet data buffer
2728  *
2729  * This func. checks whether it is a IPV6 packet or not.
2730  *
2731  * Return: TRUE if it is a IPV6 packet
2732  *         FALSE if not
2733  */
2734 bool __qdf_nbuf_data_is_ipv6_pkt(uint8_t *data)
2735 {
2736 	uint16_t ether_type;
2737 
2738 	ether_type = (uint16_t)(*(uint16_t *)(data +
2739 				QDF_NBUF_TRAC_ETH_TYPE_OFFSET));
2740 
2741 	if (ether_type == QDF_SWAP_U16(QDF_NBUF_TRAC_IPV6_ETH_TYPE))
2742 		return true;
2743 	else
2744 		return false;
2745 }
2746 qdf_export_symbol(__qdf_nbuf_data_is_ipv6_pkt);
2747 
2748 /**
2749  * __qdf_nbuf_data_is_ipv6_dhcp_pkt() - check if skb data is a dhcp packet
2750  * @data: Pointer to network data buffer
2751  *
2752  * This api is for ipv6 packet.
2753  *
2754  * Return: true if packet is DHCP packet
2755  *	   false otherwise
2756  */
2757 bool __qdf_nbuf_data_is_ipv6_dhcp_pkt(uint8_t *data)
2758 {
2759 	uint16_t sport;
2760 	uint16_t dport;
2761 	uint8_t ipv6_offset;
2762 
2763 	if (!__qdf_nbuf_data_is_ipv6_pkt(data))
2764 		return false;
2765 
2766 	ipv6_offset = __qdf_nbuf_get_ip_offset(data);
2767 	sport = *(uint16_t *)(data + ipv6_offset +
2768 			      QDF_NBUF_TRAC_IPV6_HEADER_SIZE);
2769 	dport = *(uint16_t *)(data + ipv6_offset +
2770 			      QDF_NBUF_TRAC_IPV6_HEADER_SIZE +
2771 			      sizeof(uint16_t));
2772 
2773 	if (((sport == QDF_SWAP_U16(QDF_NBUF_TRAC_DHCP6_SRV_PORT)) &&
2774 	     (dport == QDF_SWAP_U16(QDF_NBUF_TRAC_DHCP6_CLI_PORT))) ||
2775 	    ((sport == QDF_SWAP_U16(QDF_NBUF_TRAC_DHCP6_CLI_PORT)) &&
2776 	     (dport == QDF_SWAP_U16(QDF_NBUF_TRAC_DHCP6_SRV_PORT))))
2777 		return true;
2778 	else
2779 		return false;
2780 }
2781 qdf_export_symbol(__qdf_nbuf_data_is_ipv6_dhcp_pkt);
2782 
2783 /**
2784  * __qdf_nbuf_data_is_ipv6_mdns_pkt() - check if skb data is a mdns packet
2785  * @data: Pointer to network data buffer
2786  *
2787  * This api is for ipv6 packet.
2788  *
2789  * Return: true if packet is MDNS packet
2790  *	   false otherwise
2791  */
2792 bool __qdf_nbuf_data_is_ipv6_mdns_pkt(uint8_t *data)
2793 {
2794 	uint16_t sport;
2795 	uint16_t dport;
2796 
2797 	sport = *(uint16_t *)(data + QDF_NBUF_TRAC_IPV6_OFFSET +
2798 				QDF_NBUF_TRAC_IPV6_HEADER_SIZE);
2799 	dport = *(uint16_t *)(data + QDF_NBUF_TRAC_IPV6_OFFSET +
2800 					QDF_NBUF_TRAC_IPV6_HEADER_SIZE +
2801 					sizeof(uint16_t));
2802 
2803 	if (sport == QDF_SWAP_U16(QDF_NBUF_TRAC_MDNS_SRC_N_DST_PORT) &&
2804 	    dport == sport)
2805 		return true;
2806 	else
2807 		return false;
2808 }
2809 
2810 qdf_export_symbol(__qdf_nbuf_data_is_ipv6_mdns_pkt);
2811 
2812 /**
2813  * __qdf_nbuf_data_is_ipv4_mcast_pkt() - check if it is IPV4 multicast packet.
2814  * @data: Pointer to IPV4 packet data buffer
2815  *
2816  * This func. checks whether it is a IPV4 multicast packet or not.
2817  *
2818  * Return: TRUE if it is a IPV4 multicast packet
2819  *         FALSE if not
2820  */
2821 bool __qdf_nbuf_data_is_ipv4_mcast_pkt(uint8_t *data)
2822 {
2823 	if (__qdf_nbuf_data_is_ipv4_pkt(data)) {
2824 		uint32_t *dst_addr =
2825 		      (uint32_t *)(data + QDF_NBUF_TRAC_IPV4_DEST_ADDR_OFFSET);
2826 
2827 		/*
2828 		 * Check first word of the IPV4 address and if it is
2829 		 * equal to 0xE then it represents multicast IP.
2830 		 */
2831 		if ((*dst_addr & QDF_NBUF_TRAC_IPV4_ADDR_BCAST_MASK) ==
2832 				QDF_NBUF_TRAC_IPV4_ADDR_MCAST_MASK)
2833 			return true;
2834 		else
2835 			return false;
2836 	} else
2837 		return false;
2838 }
2839 
2840 /**
2841  * __qdf_nbuf_data_is_ipv6_mcast_pkt() - check if it is IPV6 multicast packet.
2842  * @data: Pointer to IPV6 packet data buffer
2843  *
2844  * This func. checks whether it is a IPV6 multicast packet or not.
2845  *
2846  * Return: TRUE if it is a IPV6 multicast packet
2847  *         FALSE if not
2848  */
2849 bool __qdf_nbuf_data_is_ipv6_mcast_pkt(uint8_t *data)
2850 {
2851 	if (__qdf_nbuf_data_is_ipv6_pkt(data)) {
2852 		uint16_t *dst_addr;
2853 
2854 		dst_addr = (uint16_t *)
2855 			(data + QDF_NBUF_TRAC_IPV6_DEST_ADDR_OFFSET);
2856 
2857 		/*
2858 		 * Check first byte of the IP address and if it
2859 		 * 0xFF00 then it is a IPV6 mcast packet.
2860 		 */
2861 		if (*dst_addr ==
2862 		     QDF_SWAP_U16(QDF_NBUF_TRAC_IPV6_DEST_ADDR))
2863 			return true;
2864 		else
2865 			return false;
2866 	} else
2867 		return false;
2868 }
2869 
2870 /**
2871  * __qdf_nbuf_data_is_icmp_pkt() - check if it is IPV4 ICMP packet.
2872  * @data: Pointer to IPV4 ICMP packet data buffer
2873  *
2874  * This func. checks whether it is a ICMP packet or not.
2875  *
2876  * Return: TRUE if it is a ICMP packet
2877  *         FALSE if not
2878  */
2879 bool __qdf_nbuf_data_is_icmp_pkt(uint8_t *data)
2880 {
2881 	if (__qdf_nbuf_data_is_ipv4_pkt(data)) {
2882 		uint8_t pkt_type;
2883 
2884 		pkt_type = (uint8_t)(*(uint8_t *)(data +
2885 				QDF_NBUF_TRAC_IPV4_PROTO_TYPE_OFFSET));
2886 
2887 		if (pkt_type == QDF_NBUF_TRAC_ICMP_TYPE)
2888 			return true;
2889 		else
2890 			return false;
2891 	} else
2892 		return false;
2893 }
2894 
2895 qdf_export_symbol(__qdf_nbuf_data_is_icmp_pkt);
2896 
2897 /**
2898  * __qdf_nbuf_data_is_icmpv6_pkt() - check if it is IPV6 ICMPV6 packet.
2899  * @data: Pointer to IPV6 ICMPV6 packet data buffer
2900  *
2901  * This func. checks whether it is a ICMPV6 packet or not.
2902  *
2903  * Return: TRUE if it is a ICMPV6 packet
2904  *         FALSE if not
2905  */
2906 bool __qdf_nbuf_data_is_icmpv6_pkt(uint8_t *data)
2907 {
2908 	if (__qdf_nbuf_data_is_ipv6_pkt(data)) {
2909 		uint8_t pkt_type;
2910 
2911 		pkt_type = (uint8_t)(*(uint8_t *)(data +
2912 				QDF_NBUF_TRAC_IPV6_PROTO_TYPE_OFFSET));
2913 
2914 		if (pkt_type == QDF_NBUF_TRAC_ICMPV6_TYPE)
2915 			return true;
2916 		else
2917 			return false;
2918 	} else
2919 		return false;
2920 }
2921 
2922 qdf_export_symbol(__qdf_nbuf_data_is_icmpv6_pkt);
2923 
2924 /**
2925  * __qdf_nbuf_data_is_ipv4_udp_pkt() - check if it is IPV4 UDP packet.
2926  * @data: Pointer to IPV4 UDP packet data buffer
2927  *
2928  * This func. checks whether it is a IPV4 UDP packet or not.
2929  *
2930  * Return: TRUE if it is a IPV4 UDP packet
2931  *         FALSE if not
2932  */
2933 bool __qdf_nbuf_data_is_ipv4_udp_pkt(uint8_t *data)
2934 {
2935 	if (__qdf_nbuf_data_is_ipv4_pkt(data)) {
2936 		uint8_t pkt_type;
2937 
2938 		pkt_type = (uint8_t)(*(uint8_t *)(data +
2939 				QDF_NBUF_TRAC_IPV4_PROTO_TYPE_OFFSET));
2940 
2941 		if (pkt_type == QDF_NBUF_TRAC_UDP_TYPE)
2942 			return true;
2943 		else
2944 			return false;
2945 	} else
2946 		return false;
2947 }
2948 
2949 /**
2950  * __qdf_nbuf_data_is_ipv4_tcp_pkt() - check if it is IPV4 TCP packet.
2951  * @data: Pointer to IPV4 TCP packet data buffer
2952  *
2953  * This func. checks whether it is a IPV4 TCP packet or not.
2954  *
2955  * Return: TRUE if it is a IPV4 TCP packet
2956  *         FALSE if not
2957  */
2958 bool __qdf_nbuf_data_is_ipv4_tcp_pkt(uint8_t *data)
2959 {
2960 	if (__qdf_nbuf_data_is_ipv4_pkt(data)) {
2961 		uint8_t pkt_type;
2962 
2963 		pkt_type = (uint8_t)(*(uint8_t *)(data +
2964 				QDF_NBUF_TRAC_IPV4_PROTO_TYPE_OFFSET));
2965 
2966 		if (pkt_type == QDF_NBUF_TRAC_TCP_TYPE)
2967 			return true;
2968 		else
2969 			return false;
2970 	} else
2971 		return false;
2972 }
2973 
2974 /**
2975  * __qdf_nbuf_data_is_ipv6_udp_pkt() - check if it is IPV6 UDP packet.
2976  * @data: Pointer to IPV6 UDP packet data buffer
2977  *
2978  * This func. checks whether it is a IPV6 UDP packet or not.
2979  *
2980  * Return: TRUE if it is a IPV6 UDP packet
2981  *         FALSE if not
2982  */
2983 bool __qdf_nbuf_data_is_ipv6_udp_pkt(uint8_t *data)
2984 {
2985 	if (__qdf_nbuf_data_is_ipv6_pkt(data)) {
2986 		uint8_t pkt_type;
2987 
2988 		pkt_type = (uint8_t)(*(uint8_t *)(data +
2989 				QDF_NBUF_TRAC_IPV6_PROTO_TYPE_OFFSET));
2990 
2991 		if (pkt_type == QDF_NBUF_TRAC_UDP_TYPE)
2992 			return true;
2993 		else
2994 			return false;
2995 	} else
2996 		return false;
2997 }
2998 
2999 /**
3000  * __qdf_nbuf_data_is_ipv6_tcp_pkt() - check if it is IPV6 TCP packet.
3001  * @data: Pointer to IPV6 TCP packet data buffer
3002  *
3003  * This func. checks whether it is a IPV6 TCP packet or not.
3004  *
3005  * Return: TRUE if it is a IPV6 TCP packet
3006  *         FALSE if not
3007  */
3008 bool __qdf_nbuf_data_is_ipv6_tcp_pkt(uint8_t *data)
3009 {
3010 	if (__qdf_nbuf_data_is_ipv6_pkt(data)) {
3011 		uint8_t pkt_type;
3012 
3013 		pkt_type = (uint8_t)(*(uint8_t *)(data +
3014 				QDF_NBUF_TRAC_IPV6_PROTO_TYPE_OFFSET));
3015 
3016 		if (pkt_type == QDF_NBUF_TRAC_TCP_TYPE)
3017 			return true;
3018 		else
3019 			return false;
3020 	} else
3021 		return false;
3022 }
3023 
3024 /**
3025  * __qdf_nbuf_is_bcast_pkt() - is destination address broadcast
3026  * @nbuf - sk buff
3027  *
3028  * Return: true if packet is broadcast
3029  *	   false otherwise
3030  */
3031 bool __qdf_nbuf_is_bcast_pkt(qdf_nbuf_t nbuf)
3032 {
3033 	struct ethhdr *eh = (struct ethhdr *)qdf_nbuf_data(nbuf);
3034 	return qdf_is_macaddr_broadcast((struct qdf_mac_addr *)eh->h_dest);
3035 }
3036 qdf_export_symbol(__qdf_nbuf_is_bcast_pkt);
3037 
3038 /**
3039  * __qdf_nbuf_is_mcast_replay() - is multicast replay packet
3040  * @nbuf - sk buff
3041  *
3042  * Return: true if packet is multicast replay
3043  *	   false otherwise
3044  */
3045 bool __qdf_nbuf_is_mcast_replay(qdf_nbuf_t nbuf)
3046 {
3047 	struct ethhdr *eh = (struct ethhdr *)qdf_nbuf_data(nbuf);
3048 
3049 	if (unlikely(nbuf->pkt_type == PACKET_MULTICAST)) {
3050 		if (unlikely(ether_addr_equal(eh->h_source,
3051 					      nbuf->dev->dev_addr)))
3052 			return true;
3053 	}
3054 	return false;
3055 }
3056 
3057 /**
3058  * __qdf_nbuf_is_arp_local() - check if local or non local arp
3059  * @skb: pointer to sk_buff
3060  *
3061  * Return: true if local arp or false otherwise.
3062  */
3063 bool __qdf_nbuf_is_arp_local(struct sk_buff *skb)
3064 {
3065 	struct arphdr *arp;
3066 	struct in_ifaddr **ifap = NULL;
3067 	struct in_ifaddr *ifa = NULL;
3068 	struct in_device *in_dev;
3069 	unsigned char *arp_ptr;
3070 	__be32 tip;
3071 
3072 	arp = (struct arphdr *)skb->data;
3073 	if (arp->ar_op == htons(ARPOP_REQUEST)) {
3074 		/* if fail to acquire rtnl lock, assume it's local arp */
3075 		if (!rtnl_trylock())
3076 			return true;
3077 
3078 		in_dev = __in_dev_get_rtnl(skb->dev);
3079 		if (in_dev) {
3080 			for (ifap = &in_dev->ifa_list; (ifa = *ifap) != NULL;
3081 				ifap = &ifa->ifa_next) {
3082 				if (!strcmp(skb->dev->name, ifa->ifa_label))
3083 					break;
3084 			}
3085 		}
3086 
3087 		if (ifa && ifa->ifa_local) {
3088 			arp_ptr = (unsigned char *)(arp + 1);
3089 			arp_ptr += (skb->dev->addr_len + 4 +
3090 					skb->dev->addr_len);
3091 			memcpy(&tip, arp_ptr, 4);
3092 			qdf_debug("ARP packet: local IP: %x dest IP: %x",
3093 				  ifa->ifa_local, tip);
3094 			if (ifa->ifa_local == tip) {
3095 				rtnl_unlock();
3096 				return true;
3097 			}
3098 		}
3099 		rtnl_unlock();
3100 	}
3101 
3102 	return false;
3103 }
3104 
3105 #ifdef NBUF_MEMORY_DEBUG
3106 
3107 static spinlock_t g_qdf_net_buf_track_lock[QDF_NET_BUF_TRACK_MAX_SIZE];
3108 
3109 static QDF_NBUF_TRACK *gp_qdf_net_buf_track_tbl[QDF_NET_BUF_TRACK_MAX_SIZE];
3110 static struct kmem_cache *nbuf_tracking_cache;
3111 static QDF_NBUF_TRACK *qdf_net_buf_track_free_list;
3112 static spinlock_t qdf_net_buf_track_free_list_lock;
3113 static uint32_t qdf_net_buf_track_free_list_count;
3114 static uint32_t qdf_net_buf_track_used_list_count;
3115 static uint32_t qdf_net_buf_track_max_used;
3116 static uint32_t qdf_net_buf_track_max_free;
3117 static uint32_t qdf_net_buf_track_max_allocated;
3118 static uint32_t qdf_net_buf_track_fail_count;
3119 
3120 /**
3121  * update_max_used() - update qdf_net_buf_track_max_used tracking variable
3122  *
3123  * tracks the max number of network buffers that the wlan driver was tracking
3124  * at any one time.
3125  *
3126  * Return: none
3127  */
3128 static inline void update_max_used(void)
3129 {
3130 	int sum;
3131 
3132 	if (qdf_net_buf_track_max_used <
3133 	    qdf_net_buf_track_used_list_count)
3134 		qdf_net_buf_track_max_used = qdf_net_buf_track_used_list_count;
3135 	sum = qdf_net_buf_track_free_list_count +
3136 		qdf_net_buf_track_used_list_count;
3137 	if (qdf_net_buf_track_max_allocated < sum)
3138 		qdf_net_buf_track_max_allocated = sum;
3139 }
3140 
3141 /**
3142  * update_max_free() - update qdf_net_buf_track_free_list_count
3143  *
3144  * tracks the max number tracking buffers kept in the freelist.
3145  *
3146  * Return: none
3147  */
3148 static inline void update_max_free(void)
3149 {
3150 	if (qdf_net_buf_track_max_free <
3151 	    qdf_net_buf_track_free_list_count)
3152 		qdf_net_buf_track_max_free = qdf_net_buf_track_free_list_count;
3153 }
3154 
3155 /**
3156  * qdf_nbuf_track_alloc() - allocate a cookie to track nbufs allocated by wlan
3157  *
3158  * This function pulls from a freelist if possible and uses kmem_cache_alloc.
3159  * This function also ads fexibility to adjust the allocation and freelist
3160  * scheems.
3161  *
3162  * Return: a pointer to an unused QDF_NBUF_TRACK structure may not be zeroed.
3163  */
3164 static QDF_NBUF_TRACK *qdf_nbuf_track_alloc(void)
3165 {
3166 	int flags = GFP_KERNEL;
3167 	unsigned long irq_flag;
3168 	QDF_NBUF_TRACK *new_node = NULL;
3169 
3170 	spin_lock_irqsave(&qdf_net_buf_track_free_list_lock, irq_flag);
3171 	qdf_net_buf_track_used_list_count++;
3172 	if (qdf_net_buf_track_free_list) {
3173 		new_node = qdf_net_buf_track_free_list;
3174 		qdf_net_buf_track_free_list =
3175 			qdf_net_buf_track_free_list->p_next;
3176 		qdf_net_buf_track_free_list_count--;
3177 	}
3178 	update_max_used();
3179 	spin_unlock_irqrestore(&qdf_net_buf_track_free_list_lock, irq_flag);
3180 
3181 	if (new_node)
3182 		return new_node;
3183 
3184 	if (in_interrupt() || irqs_disabled() || in_atomic())
3185 		flags = GFP_ATOMIC;
3186 
3187 	return kmem_cache_alloc(nbuf_tracking_cache, flags);
3188 }
3189 
3190 /* FREEQ_POOLSIZE initial and minimum desired freelist poolsize */
3191 #define FREEQ_POOLSIZE 2048
3192 
3193 /**
3194  * qdf_nbuf_track_free() - free the nbuf tracking cookie.
3195  *
3196  * Matches calls to qdf_nbuf_track_alloc.
3197  * Either frees the tracking cookie to kernel or an internal
3198  * freelist based on the size of the freelist.
3199  *
3200  * Return: none
3201  */
3202 static void qdf_nbuf_track_free(QDF_NBUF_TRACK *node)
3203 {
3204 	unsigned long irq_flag;
3205 
3206 	if (!node)
3207 		return;
3208 
3209 	/* Try to shrink the freelist if free_list_count > than FREEQ_POOLSIZE
3210 	 * only shrink the freelist if it is bigger than twice the number of
3211 	 * nbufs in use. If the driver is stalling in a consistent bursty
3212 	 * fashion, this will keep 3/4 of thee allocations from the free list
3213 	 * while also allowing the system to recover memory as less frantic
3214 	 * traffic occurs.
3215 	 */
3216 
3217 	spin_lock_irqsave(&qdf_net_buf_track_free_list_lock, irq_flag);
3218 
3219 	qdf_net_buf_track_used_list_count--;
3220 	if (qdf_net_buf_track_free_list_count > FREEQ_POOLSIZE &&
3221 	   (qdf_net_buf_track_free_list_count >
3222 	    qdf_net_buf_track_used_list_count << 1)) {
3223 		kmem_cache_free(nbuf_tracking_cache, node);
3224 	} else {
3225 		node->p_next = qdf_net_buf_track_free_list;
3226 		qdf_net_buf_track_free_list = node;
3227 		qdf_net_buf_track_free_list_count++;
3228 	}
3229 	update_max_free();
3230 	spin_unlock_irqrestore(&qdf_net_buf_track_free_list_lock, irq_flag);
3231 }
3232 
3233 /**
3234  * qdf_nbuf_track_prefill() - prefill the nbuf tracking cookie freelist
3235  *
3236  * Removes a 'warmup time' characteristic of the freelist.  Prefilling
3237  * the freelist first makes it performant for the first iperf udp burst
3238  * as well as steady state.
3239  *
3240  * Return: None
3241  */
3242 static void qdf_nbuf_track_prefill(void)
3243 {
3244 	int i;
3245 	QDF_NBUF_TRACK *node, *head;
3246 
3247 	/* prepopulate the freelist */
3248 	head = NULL;
3249 	for (i = 0; i < FREEQ_POOLSIZE; i++) {
3250 		node = qdf_nbuf_track_alloc();
3251 		if (!node)
3252 			continue;
3253 		node->p_next = head;
3254 		head = node;
3255 	}
3256 	while (head) {
3257 		node = head->p_next;
3258 		qdf_nbuf_track_free(head);
3259 		head = node;
3260 	}
3261 
3262 	/* prefilled buffers should not count as used */
3263 	qdf_net_buf_track_max_used = 0;
3264 }
3265 
3266 /**
3267  * qdf_nbuf_track_memory_manager_create() - manager for nbuf tracking cookies
3268  *
3269  * This initializes the memory manager for the nbuf tracking cookies.  Because
3270  * these cookies are all the same size and only used in this feature, we can
3271  * use a kmem_cache to provide tracking as well as to speed up allocations.
3272  * To avoid the overhead of allocating and freeing the buffers (including SLUB
3273  * features) a freelist is prepopulated here.
3274  *
3275  * Return: None
3276  */
3277 static void qdf_nbuf_track_memory_manager_create(void)
3278 {
3279 	spin_lock_init(&qdf_net_buf_track_free_list_lock);
3280 	nbuf_tracking_cache = kmem_cache_create("qdf_nbuf_tracking_cache",
3281 						sizeof(QDF_NBUF_TRACK),
3282 						0, 0, NULL);
3283 
3284 	qdf_nbuf_track_prefill();
3285 }
3286 
3287 /**
3288  * qdf_nbuf_track_memory_manager_destroy() - manager for nbuf tracking cookies
3289  *
3290  * Empty the freelist and print out usage statistics when it is no longer
3291  * needed. Also the kmem_cache should be destroyed here so that it can warn if
3292  * any nbuf tracking cookies were leaked.
3293  *
3294  * Return: None
3295  */
3296 static void qdf_nbuf_track_memory_manager_destroy(void)
3297 {
3298 	QDF_NBUF_TRACK *node, *tmp;
3299 	unsigned long irq_flag;
3300 
3301 	spin_lock_irqsave(&qdf_net_buf_track_free_list_lock, irq_flag);
3302 	node = qdf_net_buf_track_free_list;
3303 
3304 	if (qdf_net_buf_track_max_used > FREEQ_POOLSIZE * 4)
3305 		qdf_print("%s: unexpectedly large max_used count %d",
3306 			  __func__, qdf_net_buf_track_max_used);
3307 
3308 	if (qdf_net_buf_track_max_used < qdf_net_buf_track_max_allocated)
3309 		qdf_print("%s: %d unused trackers were allocated",
3310 			  __func__,
3311 			  qdf_net_buf_track_max_allocated -
3312 			  qdf_net_buf_track_max_used);
3313 
3314 	if (qdf_net_buf_track_free_list_count > FREEQ_POOLSIZE &&
3315 	    qdf_net_buf_track_free_list_count > 3*qdf_net_buf_track_max_used/4)
3316 		qdf_print("%s: check freelist shrinking functionality",
3317 			  __func__);
3318 
3319 	QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_INFO,
3320 		  "%s: %d residual freelist size",
3321 		  __func__, qdf_net_buf_track_free_list_count);
3322 
3323 	QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_INFO,
3324 		  "%s: %d max freelist size observed",
3325 		  __func__, qdf_net_buf_track_max_free);
3326 
3327 	QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_INFO,
3328 		  "%s: %d max buffers used observed",
3329 		  __func__, qdf_net_buf_track_max_used);
3330 
3331 	QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_INFO,
3332 		  "%s: %d max buffers allocated observed",
3333 		  __func__, qdf_net_buf_track_max_allocated);
3334 
3335 	while (node) {
3336 		tmp = node;
3337 		node = node->p_next;
3338 		kmem_cache_free(nbuf_tracking_cache, tmp);
3339 		qdf_net_buf_track_free_list_count--;
3340 	}
3341 
3342 	if (qdf_net_buf_track_free_list_count != 0)
3343 		qdf_info("%d unfreed tracking memory lost in freelist",
3344 			 qdf_net_buf_track_free_list_count);
3345 
3346 	if (qdf_net_buf_track_used_list_count != 0)
3347 		qdf_info("%d unfreed tracking memory still in use",
3348 			 qdf_net_buf_track_used_list_count);
3349 
3350 	spin_unlock_irqrestore(&qdf_net_buf_track_free_list_lock, irq_flag);
3351 	kmem_cache_destroy(nbuf_tracking_cache);
3352 	qdf_net_buf_track_free_list = NULL;
3353 }
3354 
3355 /**
3356  * qdf_net_buf_debug_init() - initialize network buffer debug functionality
3357  *
3358  * QDF network buffer debug feature tracks all SKBs allocated by WLAN driver
3359  * in a hash table and when driver is unloaded it reports about leaked SKBs.
3360  * WLAN driver module whose allocated SKB is freed by network stack are
3361  * suppose to call qdf_net_buf_debug_release_skb() such that the SKB is not
3362  * reported as memory leak.
3363  *
3364  * Return: none
3365  */
3366 void qdf_net_buf_debug_init(void)
3367 {
3368 	uint32_t i;
3369 
3370 	is_initial_mem_debug_disabled = qdf_mem_debug_config_get();
3371 
3372 	if (is_initial_mem_debug_disabled)
3373 		return;
3374 
3375 	qdf_atomic_set(&qdf_nbuf_history_index, -1);
3376 
3377 	qdf_nbuf_map_tracking_init();
3378 	qdf_nbuf_smmu_map_tracking_init();
3379 	qdf_nbuf_track_memory_manager_create();
3380 
3381 	for (i = 0; i < QDF_NET_BUF_TRACK_MAX_SIZE; i++) {
3382 		gp_qdf_net_buf_track_tbl[i] = NULL;
3383 		spin_lock_init(&g_qdf_net_buf_track_lock[i]);
3384 	}
3385 }
3386 qdf_export_symbol(qdf_net_buf_debug_init);
3387 
3388 /**
3389  * qdf_net_buf_debug_init() - exit network buffer debug functionality
3390  *
3391  * Exit network buffer tracking debug functionality and log SKB memory leaks
3392  * As part of exiting the functionality, free the leaked memory and
3393  * cleanup the tracking buffers.
3394  *
3395  * Return: none
3396  */
3397 void qdf_net_buf_debug_exit(void)
3398 {
3399 	uint32_t i;
3400 	uint32_t count = 0;
3401 	unsigned long irq_flag;
3402 	QDF_NBUF_TRACK *p_node;
3403 	QDF_NBUF_TRACK *p_prev;
3404 
3405 	if (is_initial_mem_debug_disabled)
3406 		return;
3407 
3408 	for (i = 0; i < QDF_NET_BUF_TRACK_MAX_SIZE; i++) {
3409 		spin_lock_irqsave(&g_qdf_net_buf_track_lock[i], irq_flag);
3410 		p_node = gp_qdf_net_buf_track_tbl[i];
3411 		while (p_node) {
3412 			p_prev = p_node;
3413 			p_node = p_node->p_next;
3414 			count++;
3415 			qdf_info("SKB buf memory Leak@ Func %s, @Line %d, size %zu, nbuf %pK",
3416 				 p_prev->func_name, p_prev->line_num,
3417 				 p_prev->size, p_prev->net_buf);
3418 			qdf_info("SKB leak map %s, line %d, unmap %s line %d mapped=%d",
3419 				 p_prev->map_func_name,
3420 				 p_prev->map_line_num,
3421 				 p_prev->unmap_func_name,
3422 				 p_prev->unmap_line_num,
3423 				 p_prev->is_nbuf_mapped);
3424 			qdf_nbuf_track_free(p_prev);
3425 		}
3426 		spin_unlock_irqrestore(&g_qdf_net_buf_track_lock[i], irq_flag);
3427 	}
3428 
3429 	qdf_nbuf_track_memory_manager_destroy();
3430 	qdf_nbuf_map_tracking_deinit();
3431 	qdf_nbuf_smmu_map_tracking_deinit();
3432 
3433 #ifdef CONFIG_HALT_KMEMLEAK
3434 	if (count) {
3435 		qdf_err("%d SKBs leaked .. please fix the SKB leak", count);
3436 		QDF_BUG(0);
3437 	}
3438 #endif
3439 }
3440 qdf_export_symbol(qdf_net_buf_debug_exit);
3441 
3442 /**
3443  * qdf_net_buf_debug_hash() - hash network buffer pointer
3444  *
3445  * Return: hash value
3446  */
3447 static uint32_t qdf_net_buf_debug_hash(qdf_nbuf_t net_buf)
3448 {
3449 	uint32_t i;
3450 
3451 	i = (uint32_t) (((uintptr_t) net_buf) >> 4);
3452 	i += (uint32_t) (((uintptr_t) net_buf) >> 14);
3453 	i &= (QDF_NET_BUF_TRACK_MAX_SIZE - 1);
3454 
3455 	return i;
3456 }
3457 
3458 /**
3459  * qdf_net_buf_debug_look_up() - look up network buffer in debug hash table
3460  *
3461  * Return: If skb is found in hash table then return pointer to network buffer
3462  *	else return %NULL
3463  */
3464 static QDF_NBUF_TRACK *qdf_net_buf_debug_look_up(qdf_nbuf_t net_buf)
3465 {
3466 	uint32_t i;
3467 	QDF_NBUF_TRACK *p_node;
3468 
3469 	i = qdf_net_buf_debug_hash(net_buf);
3470 	p_node = gp_qdf_net_buf_track_tbl[i];
3471 
3472 	while (p_node) {
3473 		if (p_node->net_buf == net_buf)
3474 			return p_node;
3475 		p_node = p_node->p_next;
3476 	}
3477 
3478 	return NULL;
3479 }
3480 
3481 /**
3482  * qdf_net_buf_debug_add_node() - store skb in debug hash table
3483  *
3484  * Return: none
3485  */
3486 void qdf_net_buf_debug_add_node(qdf_nbuf_t net_buf, size_t size,
3487 				const char *func_name, uint32_t line_num)
3488 {
3489 	uint32_t i;
3490 	unsigned long irq_flag;
3491 	QDF_NBUF_TRACK *p_node;
3492 	QDF_NBUF_TRACK *new_node;
3493 
3494 	if (is_initial_mem_debug_disabled)
3495 		return;
3496 
3497 	new_node = qdf_nbuf_track_alloc();
3498 
3499 	i = qdf_net_buf_debug_hash(net_buf);
3500 	spin_lock_irqsave(&g_qdf_net_buf_track_lock[i], irq_flag);
3501 
3502 	p_node = qdf_net_buf_debug_look_up(net_buf);
3503 
3504 	if (p_node) {
3505 		qdf_print("Double allocation of skb ! Already allocated from %pK %s %d current alloc from %pK %s %d",
3506 			  p_node->net_buf, p_node->func_name, p_node->line_num,
3507 			  net_buf, func_name, line_num);
3508 		qdf_nbuf_track_free(new_node);
3509 	} else {
3510 		p_node = new_node;
3511 		if (p_node) {
3512 			p_node->net_buf = net_buf;
3513 			qdf_str_lcopy(p_node->func_name, func_name,
3514 				      QDF_MEM_FUNC_NAME_SIZE);
3515 			p_node->line_num = line_num;
3516 			p_node->is_nbuf_mapped = false;
3517 			p_node->map_line_num = 0;
3518 			p_node->unmap_line_num = 0;
3519 			p_node->map_func_name[0] = '\0';
3520 			p_node->unmap_func_name[0] = '\0';
3521 			p_node->size = size;
3522 			p_node->time = qdf_get_log_timestamp();
3523 			qdf_net_buf_update_smmu_params(p_node);
3524 			qdf_mem_skb_inc(size);
3525 			p_node->p_next = gp_qdf_net_buf_track_tbl[i];
3526 			gp_qdf_net_buf_track_tbl[i] = p_node;
3527 		} else {
3528 			qdf_net_buf_track_fail_count++;
3529 			qdf_print(
3530 				  "Mem alloc failed ! Could not track skb from %s %d of size %zu",
3531 				  func_name, line_num, size);
3532 		}
3533 	}
3534 
3535 	spin_unlock_irqrestore(&g_qdf_net_buf_track_lock[i], irq_flag);
3536 }
3537 qdf_export_symbol(qdf_net_buf_debug_add_node);
3538 
3539 void qdf_net_buf_debug_update_node(qdf_nbuf_t net_buf, const char *func_name,
3540 				   uint32_t line_num)
3541 {
3542 	uint32_t i;
3543 	unsigned long irq_flag;
3544 	QDF_NBUF_TRACK *p_node;
3545 
3546 	if (is_initial_mem_debug_disabled)
3547 		return;
3548 
3549 	i = qdf_net_buf_debug_hash(net_buf);
3550 	spin_lock_irqsave(&g_qdf_net_buf_track_lock[i], irq_flag);
3551 
3552 	p_node = qdf_net_buf_debug_look_up(net_buf);
3553 
3554 	if (p_node) {
3555 		qdf_str_lcopy(p_node->func_name, kbasename(func_name),
3556 			      QDF_MEM_FUNC_NAME_SIZE);
3557 		p_node->line_num = line_num;
3558 	}
3559 
3560 	spin_unlock_irqrestore(&g_qdf_net_buf_track_lock[i], irq_flag);
3561 }
3562 
3563 qdf_export_symbol(qdf_net_buf_debug_update_node);
3564 
3565 void qdf_net_buf_debug_update_map_node(qdf_nbuf_t net_buf,
3566 				       const char *func_name,
3567 				       uint32_t line_num)
3568 {
3569 	uint32_t i;
3570 	unsigned long irq_flag;
3571 	QDF_NBUF_TRACK *p_node;
3572 
3573 	if (is_initial_mem_debug_disabled)
3574 		return;
3575 
3576 	i = qdf_net_buf_debug_hash(net_buf);
3577 	spin_lock_irqsave(&g_qdf_net_buf_track_lock[i], irq_flag);
3578 
3579 	p_node = qdf_net_buf_debug_look_up(net_buf);
3580 
3581 	if (p_node) {
3582 		qdf_str_lcopy(p_node->map_func_name, func_name,
3583 			      QDF_MEM_FUNC_NAME_SIZE);
3584 		p_node->map_line_num = line_num;
3585 		p_node->is_nbuf_mapped = true;
3586 	}
3587 	spin_unlock_irqrestore(&g_qdf_net_buf_track_lock[i], irq_flag);
3588 }
3589 
3590 #ifdef NBUF_SMMU_MAP_UNMAP_DEBUG
3591 void qdf_net_buf_debug_update_smmu_map_node(qdf_nbuf_t nbuf,
3592 					    unsigned long iova,
3593 					    unsigned long pa,
3594 					    const char *func,
3595 					    uint32_t line)
3596 {
3597 	uint32_t i;
3598 	unsigned long irq_flag;
3599 	QDF_NBUF_TRACK *p_node;
3600 
3601 	if (is_initial_mem_debug_disabled)
3602 		return;
3603 
3604 	i = qdf_net_buf_debug_hash(nbuf);
3605 	spin_lock_irqsave(&g_qdf_net_buf_track_lock[i], irq_flag);
3606 
3607 	p_node = qdf_net_buf_debug_look_up(nbuf);
3608 
3609 	if (p_node) {
3610 		qdf_str_lcopy(p_node->smmu_map_func_name, func,
3611 			      QDF_MEM_FUNC_NAME_SIZE);
3612 		p_node->smmu_map_line_num = line;
3613 		p_node->is_nbuf_smmu_mapped = true;
3614 		p_node->smmu_map_iova_addr = iova;
3615 		p_node->smmu_map_pa_addr = pa;
3616 	}
3617 	spin_unlock_irqrestore(&g_qdf_net_buf_track_lock[i], irq_flag);
3618 }
3619 
3620 void qdf_net_buf_debug_update_smmu_unmap_node(qdf_nbuf_t nbuf,
3621 					      unsigned long iova,
3622 					      unsigned long pa,
3623 					      const char *func,
3624 					      uint32_t line)
3625 {
3626 	uint32_t i;
3627 	unsigned long irq_flag;
3628 	QDF_NBUF_TRACK *p_node;
3629 
3630 	if (is_initial_mem_debug_disabled)
3631 		return;
3632 
3633 	i = qdf_net_buf_debug_hash(nbuf);
3634 	spin_lock_irqsave(&g_qdf_net_buf_track_lock[i], irq_flag);
3635 
3636 	p_node = qdf_net_buf_debug_look_up(nbuf);
3637 
3638 	if (p_node) {
3639 		qdf_str_lcopy(p_node->smmu_unmap_func_name, func,
3640 			      QDF_MEM_FUNC_NAME_SIZE);
3641 		p_node->smmu_unmap_line_num = line;
3642 		p_node->is_nbuf_smmu_mapped = false;
3643 		p_node->smmu_unmap_iova_addr = iova;
3644 		p_node->smmu_unmap_pa_addr = pa;
3645 	}
3646 	spin_unlock_irqrestore(&g_qdf_net_buf_track_lock[i], irq_flag);
3647 }
3648 #endif
3649 
3650 void qdf_net_buf_debug_update_unmap_node(qdf_nbuf_t net_buf,
3651 					 const char *func_name,
3652 					 uint32_t line_num)
3653 {
3654 	uint32_t i;
3655 	unsigned long irq_flag;
3656 	QDF_NBUF_TRACK *p_node;
3657 
3658 	if (is_initial_mem_debug_disabled)
3659 		return;
3660 
3661 	i = qdf_net_buf_debug_hash(net_buf);
3662 	spin_lock_irqsave(&g_qdf_net_buf_track_lock[i], irq_flag);
3663 
3664 	p_node = qdf_net_buf_debug_look_up(net_buf);
3665 
3666 	if (p_node) {
3667 		qdf_str_lcopy(p_node->unmap_func_name, func_name,
3668 			      QDF_MEM_FUNC_NAME_SIZE);
3669 		p_node->unmap_line_num = line_num;
3670 		p_node->is_nbuf_mapped = false;
3671 	}
3672 	spin_unlock_irqrestore(&g_qdf_net_buf_track_lock[i], irq_flag);
3673 }
3674 
3675 /**
3676  * qdf_net_buf_debug_delete_node() - remove skb from debug hash table
3677  *
3678  * Return: none
3679  */
3680 void qdf_net_buf_debug_delete_node(qdf_nbuf_t net_buf)
3681 {
3682 	uint32_t i;
3683 	QDF_NBUF_TRACK *p_head;
3684 	QDF_NBUF_TRACK *p_node = NULL;
3685 	unsigned long irq_flag;
3686 	QDF_NBUF_TRACK *p_prev;
3687 
3688 	if (is_initial_mem_debug_disabled)
3689 		return;
3690 
3691 	i = qdf_net_buf_debug_hash(net_buf);
3692 	spin_lock_irqsave(&g_qdf_net_buf_track_lock[i], irq_flag);
3693 
3694 	p_head = gp_qdf_net_buf_track_tbl[i];
3695 
3696 	/* Unallocated SKB */
3697 	if (!p_head)
3698 		goto done;
3699 
3700 	p_node = p_head;
3701 	/* Found at head of the table */
3702 	if (p_head->net_buf == net_buf) {
3703 		gp_qdf_net_buf_track_tbl[i] = p_node->p_next;
3704 		goto done;
3705 	}
3706 
3707 	/* Search in collision list */
3708 	while (p_node) {
3709 		p_prev = p_node;
3710 		p_node = p_node->p_next;
3711 		if ((p_node) && (p_node->net_buf == net_buf)) {
3712 			p_prev->p_next = p_node->p_next;
3713 			break;
3714 		}
3715 	}
3716 
3717 done:
3718 	spin_unlock_irqrestore(&g_qdf_net_buf_track_lock[i], irq_flag);
3719 
3720 	if (p_node) {
3721 		qdf_mem_skb_dec(p_node->size);
3722 		qdf_nbuf_track_free(p_node);
3723 	} else {
3724 		if (qdf_net_buf_track_fail_count) {
3725 			qdf_print("Untracked net_buf free: %pK with tracking failures count: %u",
3726 				  net_buf, qdf_net_buf_track_fail_count);
3727 		} else
3728 			QDF_MEMDEBUG_PANIC("Unallocated buffer ! Double free of net_buf %pK ?",
3729 					   net_buf);
3730 	}
3731 }
3732 qdf_export_symbol(qdf_net_buf_debug_delete_node);
3733 
3734 void qdf_net_buf_debug_acquire_skb(qdf_nbuf_t net_buf,
3735 				   const char *func_name, uint32_t line_num)
3736 {
3737 	qdf_nbuf_t ext_list = qdf_nbuf_get_ext_list(net_buf);
3738 
3739 	if (is_initial_mem_debug_disabled)
3740 		return;
3741 
3742 	while (ext_list) {
3743 		/*
3744 		 * Take care to add if it is Jumbo packet connected using
3745 		 * frag_list
3746 		 */
3747 		qdf_nbuf_t next;
3748 
3749 		next = qdf_nbuf_queue_next(ext_list);
3750 		qdf_net_buf_debug_add_node(ext_list, 0, func_name, line_num);
3751 		ext_list = next;
3752 	}
3753 	qdf_net_buf_debug_add_node(net_buf, 0, func_name, line_num);
3754 }
3755 qdf_export_symbol(qdf_net_buf_debug_acquire_skb);
3756 
3757 /**
3758  * qdf_net_buf_debug_release_skb() - release skb to avoid memory leak
3759  * @net_buf: Network buf holding head segment (single)
3760  *
3761  * WLAN driver module whose allocated SKB is freed by network stack are
3762  * suppose to call this API before returning SKB to network stack such
3763  * that the SKB is not reported as memory leak.
3764  *
3765  * Return: none
3766  */
3767 void qdf_net_buf_debug_release_skb(qdf_nbuf_t net_buf)
3768 {
3769 	qdf_nbuf_t ext_list;
3770 
3771 	if (is_initial_mem_debug_disabled)
3772 		return;
3773 
3774 	ext_list = qdf_nbuf_get_ext_list(net_buf);
3775 	while (ext_list) {
3776 		/*
3777 		 * Take care to free if it is Jumbo packet connected using
3778 		 * frag_list
3779 		 */
3780 		qdf_nbuf_t next;
3781 
3782 		next = qdf_nbuf_queue_next(ext_list);
3783 
3784 		if (qdf_nbuf_get_users(ext_list) > 1) {
3785 			ext_list = next;
3786 			continue;
3787 		}
3788 
3789 		qdf_net_buf_debug_delete_node(ext_list);
3790 		ext_list = next;
3791 	}
3792 
3793 	if (qdf_nbuf_get_users(net_buf) > 1)
3794 		return;
3795 
3796 	qdf_net_buf_debug_delete_node(net_buf);
3797 }
3798 qdf_export_symbol(qdf_net_buf_debug_release_skb);
3799 
3800 qdf_nbuf_t qdf_nbuf_alloc_debug(qdf_device_t osdev, qdf_size_t size,
3801 				int reserve, int align, int prio,
3802 				const char *func, uint32_t line)
3803 {
3804 	qdf_nbuf_t nbuf;
3805 
3806 	if (is_initial_mem_debug_disabled)
3807 		return __qdf_nbuf_alloc(osdev, size,
3808 					reserve, align,
3809 					prio, func, line);
3810 
3811 	nbuf = __qdf_nbuf_alloc(osdev, size, reserve, align, prio, func, line);
3812 
3813 	/* Store SKB in internal QDF tracking table */
3814 	if (qdf_likely(nbuf)) {
3815 		qdf_net_buf_debug_add_node(nbuf, size, func, line);
3816 		qdf_nbuf_history_add(nbuf, func, line, QDF_NBUF_ALLOC);
3817 	} else {
3818 		qdf_nbuf_history_add(nbuf, func, line, QDF_NBUF_ALLOC_FAILURE);
3819 	}
3820 
3821 	return nbuf;
3822 }
3823 qdf_export_symbol(qdf_nbuf_alloc_debug);
3824 
3825 qdf_nbuf_t qdf_nbuf_alloc_no_recycler_debug(size_t size, int reserve, int align,
3826 					    const char *func, uint32_t line)
3827 {
3828 	qdf_nbuf_t nbuf;
3829 
3830 	if (is_initial_mem_debug_disabled)
3831 		return __qdf_nbuf_alloc_no_recycler(size, reserve, align, func,
3832 						    line);
3833 
3834 	nbuf = __qdf_nbuf_alloc_no_recycler(size, reserve, align, func, line);
3835 
3836 	/* Store SKB in internal QDF tracking table */
3837 	if (qdf_likely(nbuf)) {
3838 		qdf_net_buf_debug_add_node(nbuf, size, func, line);
3839 		qdf_nbuf_history_add(nbuf, func, line, QDF_NBUF_ALLOC);
3840 	} else {
3841 		qdf_nbuf_history_add(nbuf, func, line, QDF_NBUF_ALLOC_FAILURE);
3842 	}
3843 
3844 	return nbuf;
3845 }
3846 
3847 qdf_export_symbol(qdf_nbuf_alloc_no_recycler_debug);
3848 
3849 void qdf_nbuf_free_debug(qdf_nbuf_t nbuf, const char *func, uint32_t line)
3850 {
3851 	qdf_nbuf_t ext_list;
3852 	qdf_frag_t p_frag;
3853 	uint32_t num_nr_frags;
3854 	uint32_t idx = 0;
3855 
3856 	if (qdf_unlikely(!nbuf))
3857 		return;
3858 
3859 	if (is_initial_mem_debug_disabled)
3860 		goto free_buf;
3861 
3862 	if (qdf_nbuf_get_users(nbuf) > 1)
3863 		goto free_buf;
3864 
3865 	/* Remove SKB from internal QDF tracking table */
3866 	qdf_nbuf_panic_on_free_if_smmu_mapped(nbuf, func, line);
3867 	qdf_nbuf_panic_on_free_if_mapped(nbuf, func, line);
3868 	qdf_net_buf_debug_delete_node(nbuf);
3869 	qdf_nbuf_history_add(nbuf, func, line, QDF_NBUF_FREE);
3870 
3871 	/* Take care to delete the debug entries for frags */
3872 	num_nr_frags = qdf_nbuf_get_nr_frags(nbuf);
3873 
3874 	qdf_assert_always(num_nr_frags <= QDF_NBUF_MAX_FRAGS);
3875 
3876 	while (idx < num_nr_frags) {
3877 		p_frag = qdf_nbuf_get_frag_addr(nbuf, idx);
3878 		if (qdf_likely(p_frag))
3879 			qdf_frag_debug_refcount_dec(p_frag, func, line);
3880 		idx++;
3881 	}
3882 
3883 	/**
3884 	 * Take care to update the debug entries for frag_list and also
3885 	 * for the frags attached to frag_list
3886 	 */
3887 	ext_list = qdf_nbuf_get_ext_list(nbuf);
3888 	while (ext_list) {
3889 		if (qdf_nbuf_get_users(ext_list) == 1) {
3890 			qdf_nbuf_panic_on_free_if_smmu_mapped(ext_list, func,
3891 							      line);
3892 			qdf_nbuf_panic_on_free_if_mapped(ext_list, func, line);
3893 			idx = 0;
3894 			num_nr_frags = qdf_nbuf_get_nr_frags(ext_list);
3895 			qdf_assert_always(num_nr_frags <= QDF_NBUF_MAX_FRAGS);
3896 			while (idx < num_nr_frags) {
3897 				p_frag = qdf_nbuf_get_frag_addr(ext_list, idx);
3898 				if (qdf_likely(p_frag))
3899 					qdf_frag_debug_refcount_dec(p_frag,
3900 								    func, line);
3901 				idx++;
3902 			}
3903 			qdf_net_buf_debug_delete_node(ext_list);
3904 		}
3905 
3906 		ext_list = qdf_nbuf_queue_next(ext_list);
3907 	}
3908 
3909 free_buf:
3910 	__qdf_nbuf_free(nbuf);
3911 }
3912 qdf_export_symbol(qdf_nbuf_free_debug);
3913 
3914 struct sk_buff *__qdf_nbuf_alloc_simple(qdf_device_t osdev, size_t size,
3915 					const char *func, uint32_t line)
3916 {
3917 	struct sk_buff *skb;
3918 	int flags = GFP_KERNEL;
3919 
3920 	if (in_interrupt() || irqs_disabled() || in_atomic()) {
3921 		flags = GFP_ATOMIC;
3922 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0)
3923 		/*
3924 		 * Observed that kcompactd burns out CPU to make order-3 page.
3925 		 *__netdev_alloc_skb has 4k page fallback option just in case of
3926 		 * failing high order page allocation so we don't need to be
3927 		 * hard. Make kcompactd rest in piece.
3928 		 */
3929 		flags = flags & ~__GFP_KSWAPD_RECLAIM;
3930 #endif
3931 	}
3932 
3933 	skb = __netdev_alloc_skb(NULL, size, flags);
3934 
3935 
3936 	if (qdf_likely(is_initial_mem_debug_disabled)) {
3937 		if (qdf_likely(skb))
3938 			qdf_nbuf_count_inc(skb);
3939 	} else {
3940 		if (qdf_likely(skb)) {
3941 			qdf_nbuf_count_inc(skb);
3942 			qdf_net_buf_debug_add_node(skb, size, func, line);
3943 			qdf_nbuf_history_add(skb, func, line, QDF_NBUF_ALLOC);
3944 		} else {
3945 			qdf_nbuf_history_add(skb, func, line, QDF_NBUF_ALLOC_FAILURE);
3946 		}
3947 	}
3948 
3949 
3950 	return skb;
3951 }
3952 
3953 qdf_export_symbol(__qdf_nbuf_alloc_simple);
3954 
3955 void qdf_nbuf_free_debug_simple(qdf_nbuf_t nbuf, const char *func,
3956 				uint32_t line)
3957 {
3958 	if (qdf_likely(nbuf)) {
3959 		if (is_initial_mem_debug_disabled) {
3960 			dev_kfree_skb_any(nbuf);
3961 		} else {
3962 			qdf_nbuf_free_debug(nbuf, func, line);
3963 		}
3964 	}
3965 }
3966 
3967 qdf_export_symbol(qdf_nbuf_free_debug_simple);
3968 
3969 qdf_nbuf_t qdf_nbuf_clone_debug(qdf_nbuf_t buf, const char *func, uint32_t line)
3970 {
3971 	uint32_t num_nr_frags;
3972 	uint32_t idx = 0;
3973 	qdf_nbuf_t ext_list;
3974 	qdf_frag_t p_frag;
3975 
3976 	qdf_nbuf_t cloned_buf = __qdf_nbuf_clone(buf);
3977 
3978 	if (is_initial_mem_debug_disabled)
3979 		return cloned_buf;
3980 
3981 	if (qdf_unlikely(!cloned_buf))
3982 		return NULL;
3983 
3984 	/* Take care to update the debug entries for frags */
3985 	num_nr_frags = qdf_nbuf_get_nr_frags(cloned_buf);
3986 
3987 	qdf_assert_always(num_nr_frags <= QDF_NBUF_MAX_FRAGS);
3988 
3989 	while (idx < num_nr_frags) {
3990 		p_frag = qdf_nbuf_get_frag_addr(cloned_buf, idx);
3991 		if (qdf_likely(p_frag))
3992 			qdf_frag_debug_refcount_inc(p_frag, func, line);
3993 		idx++;
3994 	}
3995 
3996 	/* Take care to update debug entries for frags attached to frag_list */
3997 	ext_list = qdf_nbuf_get_ext_list(cloned_buf);
3998 	while (ext_list) {
3999 		idx = 0;
4000 		num_nr_frags = qdf_nbuf_get_nr_frags(ext_list);
4001 
4002 		qdf_assert_always(num_nr_frags <= QDF_NBUF_MAX_FRAGS);
4003 
4004 		while (idx < num_nr_frags) {
4005 			p_frag = qdf_nbuf_get_frag_addr(ext_list, idx);
4006 			if (qdf_likely(p_frag))
4007 				qdf_frag_debug_refcount_inc(p_frag, func, line);
4008 			idx++;
4009 		}
4010 		ext_list = qdf_nbuf_queue_next(ext_list);
4011 	}
4012 
4013 	/* Store SKB in internal QDF tracking table */
4014 	qdf_net_buf_debug_add_node(cloned_buf, 0, func, line);
4015 	qdf_nbuf_history_add(cloned_buf, func, line, QDF_NBUF_ALLOC_CLONE);
4016 
4017 	return cloned_buf;
4018 }
4019 qdf_export_symbol(qdf_nbuf_clone_debug);
4020 
4021 qdf_nbuf_t qdf_nbuf_copy_debug(qdf_nbuf_t buf, const char *func, uint32_t line)
4022 {
4023 	qdf_nbuf_t copied_buf = __qdf_nbuf_copy(buf);
4024 
4025 	if (is_initial_mem_debug_disabled)
4026 		return copied_buf;
4027 
4028 	if (qdf_unlikely(!copied_buf))
4029 		return NULL;
4030 
4031 	/* Store SKB in internal QDF tracking table */
4032 	qdf_net_buf_debug_add_node(copied_buf, 0, func, line);
4033 	qdf_nbuf_history_add(copied_buf, func, line, QDF_NBUF_ALLOC_COPY);
4034 
4035 	return copied_buf;
4036 }
4037 qdf_export_symbol(qdf_nbuf_copy_debug);
4038 
4039 qdf_nbuf_t
4040 qdf_nbuf_copy_expand_debug(qdf_nbuf_t buf, int headroom, int tailroom,
4041 			   const char *func, uint32_t line)
4042 {
4043 	qdf_nbuf_t copied_buf = __qdf_nbuf_copy_expand(buf, headroom, tailroom);
4044 
4045 	if (qdf_unlikely(!copied_buf))
4046 		return NULL;
4047 
4048 	if (is_initial_mem_debug_disabled)
4049 		return copied_buf;
4050 
4051 	/* Store SKB in internal QDF tracking table */
4052 	qdf_net_buf_debug_add_node(copied_buf, 0, func, line);
4053 	qdf_nbuf_history_add(copied_buf, func, line,
4054 			     QDF_NBUF_ALLOC_COPY_EXPAND);
4055 
4056 	return copied_buf;
4057 }
4058 
4059 qdf_export_symbol(qdf_nbuf_copy_expand_debug);
4060 
4061 qdf_nbuf_t
4062 qdf_nbuf_unshare_debug(qdf_nbuf_t buf, const char *func_name,
4063 		       uint32_t line_num)
4064 {
4065 	qdf_nbuf_t unshared_buf;
4066 	qdf_frag_t p_frag;
4067 	uint32_t num_nr_frags;
4068 	uint32_t idx = 0;
4069 	qdf_nbuf_t ext_list, next;
4070 
4071 	if (is_initial_mem_debug_disabled)
4072 		return __qdf_nbuf_unshare(buf);
4073 
4074 	/* Not a shared buffer, nothing to do */
4075 	if (!qdf_nbuf_is_cloned(buf))
4076 		return buf;
4077 
4078 	if (qdf_nbuf_get_users(buf) > 1)
4079 		goto unshare_buf;
4080 
4081 	/* Take care to delete the debug entries for frags */
4082 	num_nr_frags = qdf_nbuf_get_nr_frags(buf);
4083 
4084 	while (idx < num_nr_frags) {
4085 		p_frag = qdf_nbuf_get_frag_addr(buf, idx);
4086 		if (qdf_likely(p_frag))
4087 			qdf_frag_debug_refcount_dec(p_frag, func_name,
4088 						    line_num);
4089 		idx++;
4090 	}
4091 
4092 	qdf_net_buf_debug_delete_node(buf);
4093 
4094 	 /* Take care of jumbo packet connected using frag_list and frags */
4095 	ext_list = qdf_nbuf_get_ext_list(buf);
4096 	while (ext_list) {
4097 		idx = 0;
4098 		next = qdf_nbuf_queue_next(ext_list);
4099 		num_nr_frags = qdf_nbuf_get_nr_frags(ext_list);
4100 
4101 		if (qdf_nbuf_get_users(ext_list) > 1) {
4102 			ext_list = next;
4103 			continue;
4104 		}
4105 
4106 		while (idx < num_nr_frags) {
4107 			p_frag = qdf_nbuf_get_frag_addr(ext_list, idx);
4108 			if (qdf_likely(p_frag))
4109 				qdf_frag_debug_refcount_dec(p_frag, func_name,
4110 							    line_num);
4111 			idx++;
4112 		}
4113 
4114 		qdf_net_buf_debug_delete_node(ext_list);
4115 		ext_list = next;
4116 	}
4117 
4118 unshare_buf:
4119 	unshared_buf = __qdf_nbuf_unshare(buf);
4120 
4121 	if (qdf_likely(unshared_buf))
4122 		qdf_net_buf_debug_add_node(unshared_buf, 0, func_name,
4123 					   line_num);
4124 
4125 	return unshared_buf;
4126 }
4127 
4128 qdf_export_symbol(qdf_nbuf_unshare_debug);
4129 
4130 void
4131 qdf_nbuf_dev_kfree_list_debug(__qdf_nbuf_queue_head_t *nbuf_queue_head,
4132 			      const char *func, uint32_t line)
4133 {
4134 	qdf_nbuf_t  buf;
4135 
4136 	if (qdf_nbuf_queue_empty(nbuf_queue_head))
4137 		return;
4138 
4139 	if (is_initial_mem_debug_disabled)
4140 		return __qdf_nbuf_dev_kfree_list(nbuf_queue_head);
4141 
4142 	while ((buf = qdf_nbuf_queue_head_dequeue(nbuf_queue_head)) != NULL)
4143 		qdf_nbuf_free_debug(buf, func, line);
4144 }
4145 
4146 qdf_export_symbol(qdf_nbuf_dev_kfree_list_debug);
4147 #endif /* NBUF_MEMORY_DEBUG */
4148 
4149 #if defined(QCA_DP_NBUF_FAST_PPEDS)
4150 struct sk_buff *__qdf_nbuf_alloc_ppe_ds(qdf_device_t osdev, size_t size,
4151 					const char *func, uint32_t line)
4152 {
4153 	struct sk_buff *skb;
4154 	int flags = GFP_KERNEL;
4155 
4156 	if (in_interrupt() || irqs_disabled() || in_atomic()) {
4157 		flags = GFP_ATOMIC;
4158 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0)
4159 		/*
4160 		 * Observed that kcompactd burns out CPU to make order-3
4161 		 * page.__netdev_alloc_skb has 4k page fallback option
4162 		 * just in case of
4163 		 * failing high order page allocation so we don't need
4164 		 * to be hard. Make kcompactd rest in piece.
4165 		 */
4166 		flags = flags & ~__GFP_KSWAPD_RECLAIM;
4167 #endif
4168 	}
4169 	skb = __netdev_alloc_skb_no_skb_reset(NULL, size, flags);
4170 	if (qdf_likely(is_initial_mem_debug_disabled)) {
4171 		if (qdf_likely(skb))
4172 			qdf_nbuf_count_inc(skb);
4173 	} else {
4174 		if (qdf_likely(skb)) {
4175 			qdf_nbuf_count_inc(skb);
4176 			qdf_net_buf_debug_add_node(skb, size, func, line);
4177 			qdf_nbuf_history_add(skb, func, line,
4178 					     QDF_NBUF_ALLOC);
4179 		} else {
4180 			qdf_nbuf_history_add(skb, func, line,
4181 					     QDF_NBUF_ALLOC_FAILURE);
4182 		}
4183 	}
4184 	return skb;
4185 }
4186 
4187 qdf_export_symbol(__qdf_nbuf_alloc_ppe_ds);
4188 #endif
4189 
4190 #if defined(FEATURE_TSO)
4191 
4192 /**
4193  * struct qdf_tso_cmn_seg_info_t - TSO common info structure
4194  *
4195  * @ethproto: ethernet type of the msdu
4196  * @ip_tcp_hdr_len: ip + tcp length for the msdu
4197  * @l2_len: L2 length for the msdu
4198  * @eit_hdr: pointer to EIT header
4199  * @eit_hdr_len: EIT header length for the msdu
4200  * @eit_hdr_dma_map_addr: dma addr for EIT header
4201  * @tcphdr: pointer to tcp header
4202  * @ipv4_csum_en: ipv4 checksum enable
4203  * @tcp_ipv4_csum_en: TCP ipv4 checksum enable
4204  * @tcp_ipv6_csum_en: TCP ipv6 checksum enable
4205  * @ip_id: IP id
4206  * @tcp_seq_num: TCP sequence number
4207  *
4208  * This structure holds the TSO common info that is common
4209  * across all the TCP segments of the jumbo packet.
4210  */
4211 struct qdf_tso_cmn_seg_info_t {
4212 	uint16_t ethproto;
4213 	uint16_t ip_tcp_hdr_len;
4214 	uint16_t l2_len;
4215 	uint8_t *eit_hdr;
4216 	uint32_t eit_hdr_len;
4217 	qdf_dma_addr_t eit_hdr_dma_map_addr;
4218 	struct tcphdr *tcphdr;
4219 	uint16_t ipv4_csum_en;
4220 	uint16_t tcp_ipv4_csum_en;
4221 	uint16_t tcp_ipv6_csum_en;
4222 	uint16_t ip_id;
4223 	uint32_t tcp_seq_num;
4224 };
4225 
4226 /**
4227  * qdf_nbuf_adj_tso_frag() - adjustment for buffer address of tso fragment
4228  *
4229  * @skb: network buffer
4230  *
4231  * Return: byte offset length of 8 bytes aligned.
4232  */
4233 #ifdef FIX_TXDMA_LIMITATION
4234 static uint8_t qdf_nbuf_adj_tso_frag(struct sk_buff *skb)
4235 {
4236 	uint32_t eit_hdr_len;
4237 	uint8_t *eit_hdr;
4238 	uint8_t byte_8_align_offset;
4239 
4240 	eit_hdr = skb->data;
4241 	eit_hdr_len = (skb_transport_header(skb)
4242 		 - skb_mac_header(skb)) + tcp_hdrlen(skb);
4243 	byte_8_align_offset = ((unsigned long)(eit_hdr) + eit_hdr_len) & 0x7L;
4244 	if (qdf_unlikely(byte_8_align_offset)) {
4245 		TSO_DEBUG("%pK,Len %d %d",
4246 			  eit_hdr, eit_hdr_len, byte_8_align_offset);
4247 		if (unlikely(skb_headroom(skb) < byte_8_align_offset)) {
4248 			TSO_DEBUG("[%d]Insufficient headroom,[%pK],[%pK],[%d]",
4249 				  __LINE__, skb->head, skb->data,
4250 				 byte_8_align_offset);
4251 			return 0;
4252 		}
4253 		qdf_nbuf_push_head(skb, byte_8_align_offset);
4254 		qdf_mem_move(skb->data,
4255 			     skb->data + byte_8_align_offset,
4256 			     eit_hdr_len);
4257 		skb->len -= byte_8_align_offset;
4258 		skb->mac_header -= byte_8_align_offset;
4259 		skb->network_header -= byte_8_align_offset;
4260 		skb->transport_header -= byte_8_align_offset;
4261 	}
4262 	return byte_8_align_offset;
4263 }
4264 #else
4265 static uint8_t qdf_nbuf_adj_tso_frag(struct sk_buff *skb)
4266 {
4267 	return 0;
4268 }
4269 #endif
4270 
4271 #ifdef CONFIG_WLAN_SYSFS_MEM_STATS
4272 void qdf_record_nbuf_nbytes(
4273 	uint32_t nbytes, qdf_dma_dir_t dir, bool is_mapped)
4274 {
4275 	__qdf_record_nbuf_nbytes(nbytes, dir, is_mapped);
4276 }
4277 
4278 qdf_export_symbol(qdf_record_nbuf_nbytes);
4279 
4280 #endif /* CONFIG_WLAN_SYSFS_MEM_STATS */
4281 
4282 /**
4283  * qdf_nbuf_tso_map_frag() - Map TSO segment
4284  * @osdev: qdf device handle
4285  * @tso_frag_vaddr: addr of tso fragment
4286  * @nbytes: number of bytes
4287  * @dir: direction
4288  *
4289  * Map TSO segment and for MCL record the amount of memory mapped
4290  *
4291  * Return: DMA address of mapped TSO fragment in success and
4292  * NULL in case of DMA mapping failure
4293  */
4294 static inline qdf_dma_addr_t qdf_nbuf_tso_map_frag(
4295 	qdf_device_t osdev, void *tso_frag_vaddr,
4296 	uint32_t nbytes, qdf_dma_dir_t dir)
4297 {
4298 	qdf_dma_addr_t tso_frag_paddr = 0;
4299 
4300 	tso_frag_paddr = dma_map_single(osdev->dev, tso_frag_vaddr,
4301 					nbytes, __qdf_dma_dir_to_os(dir));
4302 	if (unlikely(dma_mapping_error(osdev->dev, tso_frag_paddr))) {
4303 		qdf_err("DMA mapping error!");
4304 		qdf_assert_always(0);
4305 		return 0;
4306 	}
4307 	qdf_record_nbuf_nbytes(nbytes, dir, true);
4308 	return tso_frag_paddr;
4309 }
4310 
4311 /**
4312  * qdf_nbuf_tso_unmap_frag() - Unmap TSO segment
4313  * @osdev: qdf device handle
4314  * @tso_frag_paddr: DMA addr of tso fragment
4315  * @dir: direction
4316  * @nbytes: number of bytes
4317  *
4318  * Unmap TSO segment and for MCL record the amount of memory mapped
4319  *
4320  * Return: None
4321  */
4322 static inline void qdf_nbuf_tso_unmap_frag(
4323 	qdf_device_t osdev, qdf_dma_addr_t tso_frag_paddr,
4324 	uint32_t nbytes, qdf_dma_dir_t dir)
4325 {
4326 	qdf_record_nbuf_nbytes(nbytes, dir, false);
4327 	dma_unmap_single(osdev->dev, tso_frag_paddr,
4328 			 nbytes, __qdf_dma_dir_to_os(dir));
4329 }
4330 
4331 /**
4332  * __qdf_nbuf_get_tso_cmn_seg_info() - get TSO common
4333  * information
4334  * @osdev: qdf device handle
4335  * @skb: skb buffer
4336  * @tso_info: Parameters common to all segments
4337  *
4338  * Get the TSO information that is common across all the TCP
4339  * segments of the jumbo packet
4340  *
4341  * Return: 0 - success 1 - failure
4342  */
4343 static uint8_t __qdf_nbuf_get_tso_cmn_seg_info(qdf_device_t osdev,
4344 			struct sk_buff *skb,
4345 			struct qdf_tso_cmn_seg_info_t *tso_info)
4346 {
4347 	/* Get ethernet type and ethernet header length */
4348 	tso_info->ethproto = vlan_get_protocol(skb);
4349 
4350 	/* Determine whether this is an IPv4 or IPv6 packet */
4351 	if (tso_info->ethproto == htons(ETH_P_IP)) { /* IPv4 */
4352 		/* for IPv4, get the IP ID and enable TCP and IP csum */
4353 		struct iphdr *ipv4_hdr = ip_hdr(skb);
4354 
4355 		tso_info->ip_id = ntohs(ipv4_hdr->id);
4356 		tso_info->ipv4_csum_en = 1;
4357 		tso_info->tcp_ipv4_csum_en = 1;
4358 		if (qdf_unlikely(ipv4_hdr->protocol != IPPROTO_TCP)) {
4359 			qdf_err("TSO IPV4 proto 0x%x not TCP",
4360 				ipv4_hdr->protocol);
4361 			return 1;
4362 		}
4363 	} else if (tso_info->ethproto == htons(ETH_P_IPV6)) { /* IPv6 */
4364 		/* for IPv6, enable TCP csum. No IP ID or IP csum */
4365 		tso_info->tcp_ipv6_csum_en = 1;
4366 	} else {
4367 		qdf_err("TSO: ethertype 0x%x is not supported!",
4368 			tso_info->ethproto);
4369 		return 1;
4370 	}
4371 	tso_info->l2_len = (skb_network_header(skb) - skb_mac_header(skb));
4372 	tso_info->tcphdr = tcp_hdr(skb);
4373 	tso_info->tcp_seq_num = ntohl(tcp_hdr(skb)->seq);
4374 	/* get pointer to the ethernet + IP + TCP header and their length */
4375 	tso_info->eit_hdr = skb->data;
4376 	tso_info->eit_hdr_len = (skb_transport_header(skb)
4377 		 - skb_mac_header(skb)) + tcp_hdrlen(skb);
4378 	tso_info->eit_hdr_dma_map_addr = qdf_nbuf_tso_map_frag(
4379 						osdev, tso_info->eit_hdr,
4380 						tso_info->eit_hdr_len,
4381 						QDF_DMA_TO_DEVICE);
4382 	if (qdf_unlikely(!tso_info->eit_hdr_dma_map_addr))
4383 		return 1;
4384 
4385 	if (tso_info->ethproto == htons(ETH_P_IP)) {
4386 		/* include IPv4 header length for IPV4 (total length) */
4387 		tso_info->ip_tcp_hdr_len =
4388 			tso_info->eit_hdr_len - tso_info->l2_len;
4389 	} else if (tso_info->ethproto == htons(ETH_P_IPV6)) {
4390 		/* exclude IPv6 header length for IPv6 (payload length) */
4391 		tso_info->ip_tcp_hdr_len = tcp_hdrlen(skb);
4392 	}
4393 	/*
4394 	 * The length of the payload (application layer data) is added to
4395 	 * tso_info->ip_tcp_hdr_len before passing it on to the msdu link ext
4396 	 * descriptor.
4397 	 */
4398 
4399 	TSO_DEBUG("%s seq# %u eit hdr len %u l2 len %u  skb len %u\n", __func__,
4400 		tso_info->tcp_seq_num,
4401 		tso_info->eit_hdr_len,
4402 		tso_info->l2_len,
4403 		skb->len);
4404 	return 0;
4405 }
4406 
4407 
4408 /**
4409  * __qdf_nbuf_fill_tso_cmn_seg_info() - Init function for each TSO nbuf segment
4410  *
4411  * @curr_seg: Segment whose contents are initialized
4412  * @tso_cmn_info: Parameters common to all segments
4413  *
4414  * Return: None
4415  */
4416 static inline void __qdf_nbuf_fill_tso_cmn_seg_info(
4417 				struct qdf_tso_seg_elem_t *curr_seg,
4418 				struct qdf_tso_cmn_seg_info_t *tso_cmn_info)
4419 {
4420 	/* Initialize the flags to 0 */
4421 	memset(&curr_seg->seg, 0x0, sizeof(curr_seg->seg));
4422 
4423 	/*
4424 	 * The following fields remain the same across all segments of
4425 	 * a jumbo packet
4426 	 */
4427 	curr_seg->seg.tso_flags.tso_enable = 1;
4428 	curr_seg->seg.tso_flags.ipv4_checksum_en =
4429 		tso_cmn_info->ipv4_csum_en;
4430 	curr_seg->seg.tso_flags.tcp_ipv6_checksum_en =
4431 		tso_cmn_info->tcp_ipv6_csum_en;
4432 	curr_seg->seg.tso_flags.tcp_ipv4_checksum_en =
4433 		tso_cmn_info->tcp_ipv4_csum_en;
4434 	curr_seg->seg.tso_flags.tcp_flags_mask = 0x1FF;
4435 
4436 	/* The following fields change for the segments */
4437 	curr_seg->seg.tso_flags.ip_id = tso_cmn_info->ip_id;
4438 	tso_cmn_info->ip_id++;
4439 
4440 	curr_seg->seg.tso_flags.syn = tso_cmn_info->tcphdr->syn;
4441 	curr_seg->seg.tso_flags.rst = tso_cmn_info->tcphdr->rst;
4442 	curr_seg->seg.tso_flags.ack = tso_cmn_info->tcphdr->ack;
4443 	curr_seg->seg.tso_flags.urg = tso_cmn_info->tcphdr->urg;
4444 	curr_seg->seg.tso_flags.ece = tso_cmn_info->tcphdr->ece;
4445 	curr_seg->seg.tso_flags.cwr = tso_cmn_info->tcphdr->cwr;
4446 
4447 	curr_seg->seg.tso_flags.tcp_seq_num = tso_cmn_info->tcp_seq_num;
4448 
4449 	/*
4450 	 * First fragment for each segment always contains the ethernet,
4451 	 * IP and TCP header
4452 	 */
4453 	curr_seg->seg.tso_frags[0].vaddr = tso_cmn_info->eit_hdr;
4454 	curr_seg->seg.tso_frags[0].length = tso_cmn_info->eit_hdr_len;
4455 	curr_seg->seg.total_len = curr_seg->seg.tso_frags[0].length;
4456 	curr_seg->seg.tso_frags[0].paddr = tso_cmn_info->eit_hdr_dma_map_addr;
4457 
4458 	TSO_DEBUG("%s %d eit hdr %pK eit_hdr_len %d tcp_seq_num %u tso_info->total_len %u\n",
4459 		   __func__, __LINE__, tso_cmn_info->eit_hdr,
4460 		   tso_cmn_info->eit_hdr_len,
4461 		   curr_seg->seg.tso_flags.tcp_seq_num,
4462 		   curr_seg->seg.total_len);
4463 	qdf_tso_seg_dbg_record(curr_seg, TSOSEG_LOC_FILLCMNSEG);
4464 }
4465 
4466 /**
4467  * __qdf_nbuf_get_tso_info() - function to divide a TSO nbuf
4468  * into segments
4469  * @nbuf: network buffer to be segmented
4470  * @tso_info: This is the output. The information about the
4471  *           TSO segments will be populated within this.
4472  *
4473  * This function fragments a TCP jumbo packet into smaller
4474  * segments to be transmitted by the driver. It chains the TSO
4475  * segments created into a list.
4476  *
4477  * Return: number of TSO segments
4478  */
4479 uint32_t __qdf_nbuf_get_tso_info(qdf_device_t osdev, struct sk_buff *skb,
4480 		struct qdf_tso_info_t *tso_info)
4481 {
4482 	/* common across all segments */
4483 	struct qdf_tso_cmn_seg_info_t tso_cmn_info;
4484 	/* segment specific */
4485 	void *tso_frag_vaddr;
4486 	qdf_dma_addr_t tso_frag_paddr = 0;
4487 	uint32_t num_seg = 0;
4488 	struct qdf_tso_seg_elem_t *curr_seg;
4489 	struct qdf_tso_num_seg_elem_t *total_num_seg;
4490 	skb_frag_t *frag = NULL;
4491 	uint32_t tso_frag_len = 0; /* tso segment's fragment length*/
4492 	uint32_t skb_frag_len = 0; /* skb's fragment length (contiguous memory)*/
4493 	uint32_t skb_proc = skb->len; /* bytes of skb pending processing */
4494 	uint32_t tso_seg_size = skb_shinfo(skb)->gso_size;
4495 	int j = 0; /* skb fragment index */
4496 	uint8_t byte_8_align_offset;
4497 
4498 	memset(&tso_cmn_info, 0x0, sizeof(tso_cmn_info));
4499 	total_num_seg = tso_info->tso_num_seg_list;
4500 	curr_seg = tso_info->tso_seg_list;
4501 	total_num_seg->num_seg.tso_cmn_num_seg = 0;
4502 
4503 	byte_8_align_offset = qdf_nbuf_adj_tso_frag(skb);
4504 
4505 	if (qdf_unlikely(__qdf_nbuf_get_tso_cmn_seg_info(osdev,
4506 						skb, &tso_cmn_info))) {
4507 		qdf_warn("TSO: error getting common segment info");
4508 		return 0;
4509 	}
4510 
4511 	/* length of the first chunk of data in the skb */
4512 	skb_frag_len = skb_headlen(skb);
4513 
4514 	/* the 0th tso segment's 0th fragment always contains the EIT header */
4515 	/* update the remaining skb fragment length and TSO segment length */
4516 	skb_frag_len -= tso_cmn_info.eit_hdr_len;
4517 	skb_proc -= tso_cmn_info.eit_hdr_len;
4518 
4519 	/* get the address to the next tso fragment */
4520 	tso_frag_vaddr = skb->data +
4521 			 tso_cmn_info.eit_hdr_len +
4522 			 byte_8_align_offset;
4523 	/* get the length of the next tso fragment */
4524 	tso_frag_len = min(skb_frag_len, tso_seg_size);
4525 
4526 	if (tso_frag_len != 0) {
4527 		tso_frag_paddr = qdf_nbuf_tso_map_frag(
4528 					osdev, tso_frag_vaddr, tso_frag_len,
4529 					QDF_DMA_TO_DEVICE);
4530 		if (qdf_unlikely(!tso_frag_paddr))
4531 			return 0;
4532 	}
4533 
4534 	TSO_DEBUG("%s[%d] skb frag len %d tso frag len %d\n", __func__,
4535 		__LINE__, skb_frag_len, tso_frag_len);
4536 	num_seg = tso_info->num_segs;
4537 	tso_info->num_segs = 0;
4538 	tso_info->is_tso = 1;
4539 
4540 	while (num_seg && curr_seg) {
4541 		int i = 1; /* tso fragment index */
4542 		uint8_t more_tso_frags = 1;
4543 
4544 		curr_seg->seg.num_frags = 0;
4545 		tso_info->num_segs++;
4546 		total_num_seg->num_seg.tso_cmn_num_seg++;
4547 
4548 		__qdf_nbuf_fill_tso_cmn_seg_info(curr_seg,
4549 						 &tso_cmn_info);
4550 
4551 		/* If TCP PSH flag is set, set it in the last or only segment */
4552 		if (num_seg == 1)
4553 			curr_seg->seg.tso_flags.psh = tso_cmn_info.tcphdr->psh;
4554 
4555 		if (unlikely(skb_proc == 0))
4556 			return tso_info->num_segs;
4557 
4558 		curr_seg->seg.tso_flags.ip_len = tso_cmn_info.ip_tcp_hdr_len;
4559 		curr_seg->seg.tso_flags.l2_len = tso_cmn_info.l2_len;
4560 		/* frag len is added to ip_len in while loop below*/
4561 
4562 		curr_seg->seg.num_frags++;
4563 
4564 		while (more_tso_frags) {
4565 			if (tso_frag_len != 0) {
4566 				curr_seg->seg.tso_frags[i].vaddr =
4567 					tso_frag_vaddr;
4568 				curr_seg->seg.tso_frags[i].length =
4569 					tso_frag_len;
4570 				curr_seg->seg.total_len += tso_frag_len;
4571 				curr_seg->seg.tso_flags.ip_len +=  tso_frag_len;
4572 				curr_seg->seg.num_frags++;
4573 				skb_proc = skb_proc - tso_frag_len;
4574 
4575 				/* increment the TCP sequence number */
4576 
4577 				tso_cmn_info.tcp_seq_num += tso_frag_len;
4578 				curr_seg->seg.tso_frags[i].paddr =
4579 					tso_frag_paddr;
4580 
4581 				qdf_assert_always(curr_seg->seg.tso_frags[i].paddr);
4582 			}
4583 
4584 			TSO_DEBUG("%s[%d] frag %d frag len %d total_len %u vaddr %pK\n",
4585 					__func__, __LINE__,
4586 					i,
4587 					tso_frag_len,
4588 					curr_seg->seg.total_len,
4589 					curr_seg->seg.tso_frags[i].vaddr);
4590 
4591 			/* if there is no more data left in the skb */
4592 			if (!skb_proc)
4593 				return tso_info->num_segs;
4594 
4595 			/* get the next payload fragment information */
4596 			/* check if there are more fragments in this segment */
4597 			if (tso_frag_len < tso_seg_size) {
4598 				more_tso_frags = 1;
4599 				if (tso_frag_len != 0) {
4600 					tso_seg_size = tso_seg_size -
4601 						tso_frag_len;
4602 					i++;
4603 					if (curr_seg->seg.num_frags ==
4604 								FRAG_NUM_MAX) {
4605 						more_tso_frags = 0;
4606 						/*
4607 						 * reset i and the tso
4608 						 * payload size
4609 						 */
4610 						i = 1;
4611 						tso_seg_size =
4612 							skb_shinfo(skb)->
4613 								gso_size;
4614 					}
4615 				}
4616 			} else {
4617 				more_tso_frags = 0;
4618 				/* reset i and the tso payload size */
4619 				i = 1;
4620 				tso_seg_size = skb_shinfo(skb)->gso_size;
4621 			}
4622 
4623 			/* if the next fragment is contiguous */
4624 			if ((tso_frag_len != 0)  && (tso_frag_len < skb_frag_len)) {
4625 				tso_frag_vaddr = tso_frag_vaddr + tso_frag_len;
4626 				skb_frag_len = skb_frag_len - tso_frag_len;
4627 				tso_frag_len = min(skb_frag_len, tso_seg_size);
4628 
4629 			} else { /* the next fragment is not contiguous */
4630 				if (skb_shinfo(skb)->nr_frags == 0) {
4631 					qdf_info("TSO: nr_frags == 0!");
4632 					qdf_assert(0);
4633 					return 0;
4634 				}
4635 				if (j >= skb_shinfo(skb)->nr_frags) {
4636 					qdf_info("TSO: nr_frags %d j %d",
4637 						 skb_shinfo(skb)->nr_frags, j);
4638 					qdf_assert(0);
4639 					return 0;
4640 				}
4641 				frag = &skb_shinfo(skb)->frags[j];
4642 				skb_frag_len = skb_frag_size(frag);
4643 				tso_frag_len = min(skb_frag_len, tso_seg_size);
4644 				tso_frag_vaddr = skb_frag_address_safe(frag);
4645 				j++;
4646 			}
4647 
4648 			TSO_DEBUG("%s[%d] skb frag len %d tso frag %d len tso_seg_size %d\n",
4649 				__func__, __LINE__, skb_frag_len, tso_frag_len,
4650 				tso_seg_size);
4651 
4652 			if (!(tso_frag_vaddr)) {
4653 				TSO_DEBUG("%s: Fragment virtual addr is NULL",
4654 						__func__);
4655 				return 0;
4656 			}
4657 
4658 			tso_frag_paddr = qdf_nbuf_tso_map_frag(
4659 						osdev, tso_frag_vaddr,
4660 						tso_frag_len,
4661 						QDF_DMA_TO_DEVICE);
4662 			if (qdf_unlikely(!tso_frag_paddr))
4663 				return 0;
4664 		}
4665 		TSO_DEBUG("%s tcp_seq_num: %u", __func__,
4666 				curr_seg->seg.tso_flags.tcp_seq_num);
4667 		num_seg--;
4668 		/* if TCP FIN flag was set, set it in the last segment */
4669 		if (!num_seg)
4670 			curr_seg->seg.tso_flags.fin = tso_cmn_info.tcphdr->fin;
4671 
4672 		qdf_tso_seg_dbg_record(curr_seg, TSOSEG_LOC_GETINFO);
4673 		curr_seg = curr_seg->next;
4674 	}
4675 	return tso_info->num_segs;
4676 }
4677 qdf_export_symbol(__qdf_nbuf_get_tso_info);
4678 
4679 /**
4680  * __qdf_nbuf_unmap_tso_segment() - function to dma unmap TSO segment element
4681  *
4682  * @osdev: qdf device handle
4683  * @tso_seg: TSO segment element to be unmapped
4684  * @is_last_seg: whether this is last tso seg or not
4685  *
4686  * Return: none
4687  */
4688 void __qdf_nbuf_unmap_tso_segment(qdf_device_t osdev,
4689 			  struct qdf_tso_seg_elem_t *tso_seg,
4690 			  bool is_last_seg)
4691 {
4692 	uint32_t num_frags = 0;
4693 
4694 	if (tso_seg->seg.num_frags > 0)
4695 		num_frags = tso_seg->seg.num_frags - 1;
4696 
4697 	/*Num of frags in a tso seg cannot be less than 2 */
4698 	if (num_frags < 1) {
4699 		/*
4700 		 * If Num of frags is 1 in a tso seg but is_last_seg true,
4701 		 * this may happen when qdf_nbuf_get_tso_info failed,
4702 		 * do dma unmap for the 0th frag in this seg.
4703 		 */
4704 		if (is_last_seg && tso_seg->seg.num_frags == 1)
4705 			goto last_seg_free_first_frag;
4706 
4707 		qdf_assert(0);
4708 		qdf_err("ERROR: num of frags in a tso segment is %d",
4709 			(num_frags + 1));
4710 		return;
4711 	}
4712 
4713 	while (num_frags) {
4714 		/*Do dma unmap the tso seg except the 0th frag */
4715 		if (0 ==  tso_seg->seg.tso_frags[num_frags].paddr) {
4716 			qdf_err("ERROR: TSO seg frag %d mapped physical address is NULL",
4717 				num_frags);
4718 			qdf_assert(0);
4719 			return;
4720 		}
4721 		qdf_nbuf_tso_unmap_frag(
4722 			osdev,
4723 			tso_seg->seg.tso_frags[num_frags].paddr,
4724 			tso_seg->seg.tso_frags[num_frags].length,
4725 			QDF_DMA_TO_DEVICE);
4726 		tso_seg->seg.tso_frags[num_frags].paddr = 0;
4727 		num_frags--;
4728 		qdf_tso_seg_dbg_record(tso_seg, TSOSEG_LOC_UNMAPTSO);
4729 	}
4730 
4731 last_seg_free_first_frag:
4732 	if (is_last_seg) {
4733 		/*Do dma unmap for the tso seg 0th frag */
4734 		if (0 ==  tso_seg->seg.tso_frags[0].paddr) {
4735 			qdf_err("ERROR: TSO seg frag 0 mapped physical address is NULL");
4736 			qdf_assert(0);
4737 			return;
4738 		}
4739 		qdf_nbuf_tso_unmap_frag(osdev,
4740 					tso_seg->seg.tso_frags[0].paddr,
4741 					tso_seg->seg.tso_frags[0].length,
4742 					QDF_DMA_TO_DEVICE);
4743 		tso_seg->seg.tso_frags[0].paddr = 0;
4744 		qdf_tso_seg_dbg_record(tso_seg, TSOSEG_LOC_UNMAPLAST);
4745 	}
4746 }
4747 qdf_export_symbol(__qdf_nbuf_unmap_tso_segment);
4748 
4749 size_t __qdf_nbuf_get_tcp_payload_len(struct sk_buff *skb)
4750 {
4751 	size_t packet_len;
4752 
4753 	packet_len = skb->len -
4754 		((skb_transport_header(skb) - skb_mac_header(skb)) +
4755 		 tcp_hdrlen(skb));
4756 
4757 	return packet_len;
4758 }
4759 
4760 qdf_export_symbol(__qdf_nbuf_get_tcp_payload_len);
4761 
4762 /**
4763  * __qdf_nbuf_get_tso_num_seg() - function to divide a TSO nbuf
4764  * into segments
4765  * @nbuf:   network buffer to be segmented
4766  * @tso_info:  This is the output. The information about the
4767  *      TSO segments will be populated within this.
4768  *
4769  * This function fragments a TCP jumbo packet into smaller
4770  * segments to be transmitted by the driver. It chains the TSO
4771  * segments created into a list.
4772  *
4773  * Return: 0 - success, 1 - failure
4774  */
4775 #ifndef BUILD_X86
4776 uint32_t __qdf_nbuf_get_tso_num_seg(struct sk_buff *skb)
4777 {
4778 	uint32_t tso_seg_size = skb_shinfo(skb)->gso_size;
4779 	uint32_t remainder, num_segs = 0;
4780 	uint8_t skb_nr_frags = skb_shinfo(skb)->nr_frags;
4781 	uint8_t frags_per_tso = 0;
4782 	uint32_t skb_frag_len = 0;
4783 	uint32_t eit_hdr_len = (skb_transport_header(skb)
4784 			 - skb_mac_header(skb)) + tcp_hdrlen(skb);
4785 	skb_frag_t *frag = NULL;
4786 	int j = 0;
4787 	uint32_t temp_num_seg = 0;
4788 
4789 	/* length of the first chunk of data in the skb minus eit header*/
4790 	skb_frag_len = skb_headlen(skb) - eit_hdr_len;
4791 
4792 	/* Calculate num of segs for skb's first chunk of data*/
4793 	remainder = skb_frag_len % tso_seg_size;
4794 	num_segs = skb_frag_len / tso_seg_size;
4795 	/**
4796 	 * Remainder non-zero and nr_frags zero implies end of skb data.
4797 	 * In that case, one more tso seg is required to accommodate
4798 	 * remaining data, hence num_segs++. If nr_frags is non-zero,
4799 	 * then remaining data will be accommodated while doing the calculation
4800 	 * for nr_frags data. Hence, frags_per_tso++.
4801 	 */
4802 	if (remainder) {
4803 		if (!skb_nr_frags)
4804 			num_segs++;
4805 		else
4806 			frags_per_tso++;
4807 	}
4808 
4809 	while (skb_nr_frags) {
4810 		if (j >= skb_shinfo(skb)->nr_frags) {
4811 			qdf_info("TSO: nr_frags %d j %d",
4812 				 skb_shinfo(skb)->nr_frags, j);
4813 			qdf_assert(0);
4814 			return 0;
4815 		}
4816 		/**
4817 		 * Calculate the number of tso seg for nr_frags data:
4818 		 * Get the length of each frag in skb_frag_len, add to
4819 		 * remainder.Get the number of segments by dividing it to
4820 		 * tso_seg_size and calculate the new remainder.
4821 		 * Decrement the nr_frags value and keep
4822 		 * looping all the skb_fragments.
4823 		 */
4824 		frag = &skb_shinfo(skb)->frags[j];
4825 		skb_frag_len = skb_frag_size(frag);
4826 		temp_num_seg = num_segs;
4827 		remainder += skb_frag_len;
4828 		num_segs += remainder / tso_seg_size;
4829 		remainder = remainder % tso_seg_size;
4830 		skb_nr_frags--;
4831 		if (remainder) {
4832 			if (num_segs > temp_num_seg)
4833 				frags_per_tso = 0;
4834 			/**
4835 			 * increment the tso per frags whenever remainder is
4836 			 * positive. If frags_per_tso reaches the (max-1),
4837 			 * [First frags always have EIT header, therefore max-1]
4838 			 * increment the num_segs as no more data can be
4839 			 * accommodated in the curr tso seg. Reset the remainder
4840 			 * and frags per tso and keep looping.
4841 			 */
4842 			frags_per_tso++;
4843 			if (frags_per_tso == FRAG_NUM_MAX - 1) {
4844 				num_segs++;
4845 				frags_per_tso = 0;
4846 				remainder = 0;
4847 			}
4848 			/**
4849 			 * If this is the last skb frag and still remainder is
4850 			 * non-zero(frags_per_tso is not reached to the max-1)
4851 			 * then increment the num_segs to take care of the
4852 			 * remaining length.
4853 			 */
4854 			if (!skb_nr_frags && remainder) {
4855 				num_segs++;
4856 				frags_per_tso = 0;
4857 			}
4858 		} else {
4859 			 /* Whenever remainder is 0, reset the frags_per_tso. */
4860 			frags_per_tso = 0;
4861 		}
4862 		j++;
4863 	}
4864 
4865 	return num_segs;
4866 }
4867 #elif !defined(QCA_WIFI_QCN9000)
4868 uint32_t __qdf_nbuf_get_tso_num_seg(struct sk_buff *skb)
4869 {
4870 	uint32_t i, gso_size, tmp_len, num_segs = 0;
4871 	skb_frag_t *frag = NULL;
4872 
4873 	/*
4874 	 * Check if the head SKB or any of frags are allocated in < 0x50000000
4875 	 * region which cannot be accessed by Target
4876 	 */
4877 	if (virt_to_phys(skb->data) < 0x50000040) {
4878 		TSO_DEBUG("%s %d: Invalid Address nr_frags = %d, paddr = %pK \n",
4879 				__func__, __LINE__, skb_shinfo(skb)->nr_frags,
4880 				virt_to_phys(skb->data));
4881 		goto fail;
4882 
4883 	}
4884 
4885 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4886 		frag = &skb_shinfo(skb)->frags[i];
4887 
4888 		if (!frag)
4889 			goto fail;
4890 
4891 		if (virt_to_phys(skb_frag_address_safe(frag)) < 0x50000040)
4892 			goto fail;
4893 	}
4894 
4895 
4896 	gso_size = skb_shinfo(skb)->gso_size;
4897 	tmp_len = skb->len - ((skb_transport_header(skb) - skb_mac_header(skb))
4898 			+ tcp_hdrlen(skb));
4899 	while (tmp_len) {
4900 		num_segs++;
4901 		if (tmp_len > gso_size)
4902 			tmp_len -= gso_size;
4903 		else
4904 			break;
4905 	}
4906 
4907 	return num_segs;
4908 
4909 	/*
4910 	 * Do not free this frame, just do socket level accounting
4911 	 * so that this is not reused.
4912 	 */
4913 fail:
4914 	if (skb->sk)
4915 		atomic_sub(skb->truesize, &(skb->sk->sk_wmem_alloc));
4916 
4917 	return 0;
4918 }
4919 #else
4920 uint32_t __qdf_nbuf_get_tso_num_seg(struct sk_buff *skb)
4921 {
4922 	uint32_t i, gso_size, tmp_len, num_segs = 0;
4923 	skb_frag_t *frag = NULL;
4924 
4925 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4926 		frag = &skb_shinfo(skb)->frags[i];
4927 
4928 		if (!frag)
4929 			goto fail;
4930 	}
4931 
4932 	gso_size = skb_shinfo(skb)->gso_size;
4933 	tmp_len = skb->len - ((skb_transport_header(skb) - skb_mac_header(skb))
4934 			+ tcp_hdrlen(skb));
4935 	while (tmp_len) {
4936 		num_segs++;
4937 		if (tmp_len > gso_size)
4938 			tmp_len -= gso_size;
4939 		else
4940 			break;
4941 	}
4942 
4943 	return num_segs;
4944 
4945 	/*
4946 	 * Do not free this frame, just do socket level accounting
4947 	 * so that this is not reused.
4948 	 */
4949 fail:
4950 	if (skb->sk)
4951 		atomic_sub(skb->truesize, &(skb->sk->sk_wmem_alloc));
4952 
4953 	return 0;
4954 }
4955 #endif
4956 qdf_export_symbol(__qdf_nbuf_get_tso_num_seg);
4957 
4958 #endif /* FEATURE_TSO */
4959 
4960 /**
4961  * qdf_dmaaddr_to_32s - return high and low parts of dma_addr
4962  *
4963  * Returns the high and low 32-bits of the DMA addr in the provided ptrs
4964  *
4965  * Return: N/A
4966  */
4967 void __qdf_dmaaddr_to_32s(qdf_dma_addr_t dmaaddr,
4968 			  uint32_t *lo, uint32_t *hi)
4969 {
4970 	if (sizeof(dmaaddr) > sizeof(uint32_t)) {
4971 		*lo = lower_32_bits(dmaaddr);
4972 		*hi = upper_32_bits(dmaaddr);
4973 	} else {
4974 		*lo = dmaaddr;
4975 		*hi = 0;
4976 	}
4977 }
4978 
4979 qdf_export_symbol(__qdf_dmaaddr_to_32s);
4980 
4981 struct sk_buff *__qdf_nbuf_inc_users(struct sk_buff *skb)
4982 {
4983 	qdf_nbuf_users_inc(&skb->users);
4984 	return skb;
4985 }
4986 qdf_export_symbol(__qdf_nbuf_inc_users);
4987 
4988 int __qdf_nbuf_get_users(struct sk_buff *skb)
4989 {
4990 	return qdf_nbuf_users_read(&skb->users);
4991 }
4992 qdf_export_symbol(__qdf_nbuf_get_users);
4993 
4994 /**
4995  * __qdf_nbuf_ref() - Reference the nbuf so it can get held until the last free.
4996  * @skb: sk_buff handle
4997  *
4998  * Return: none
4999  */
5000 
5001 void __qdf_nbuf_ref(struct sk_buff *skb)
5002 {
5003 	skb_get(skb);
5004 }
5005 qdf_export_symbol(__qdf_nbuf_ref);
5006 
5007 /**
5008  * __qdf_nbuf_shared() - Check whether the buffer is shared
5009  *  @skb: sk_buff buffer
5010  *
5011  *  Return: true if more than one person has a reference to this buffer.
5012  */
5013 int __qdf_nbuf_shared(struct sk_buff *skb)
5014 {
5015 	return skb_shared(skb);
5016 }
5017 qdf_export_symbol(__qdf_nbuf_shared);
5018 
5019 /**
5020  * __qdf_nbuf_dmamap_create() - create a DMA map.
5021  * @osdev: qdf device handle
5022  * @dmap: dma map handle
5023  *
5024  * This can later be used to map networking buffers. They :
5025  * - need space in adf_drv's software descriptor
5026  * - are typically created during adf_drv_create
5027  * - need to be created before any API(qdf_nbuf_map) that uses them
5028  *
5029  * Return: QDF STATUS
5030  */
5031 QDF_STATUS
5032 __qdf_nbuf_dmamap_create(qdf_device_t osdev, __qdf_dma_map_t *dmap)
5033 {
5034 	QDF_STATUS error = QDF_STATUS_SUCCESS;
5035 	/*
5036 	 * driver can tell its SG capability, it must be handled.
5037 	 * Bounce buffers if they are there
5038 	 */
5039 	(*dmap) = kzalloc(sizeof(struct __qdf_dma_map), GFP_KERNEL);
5040 	if (!(*dmap))
5041 		error = QDF_STATUS_E_NOMEM;
5042 
5043 	return error;
5044 }
5045 qdf_export_symbol(__qdf_nbuf_dmamap_create);
5046 /**
5047  * __qdf_nbuf_dmamap_destroy() - delete a dma map
5048  * @osdev: qdf device handle
5049  * @dmap: dma map handle
5050  *
5051  * Return: none
5052  */
5053 void
5054 __qdf_nbuf_dmamap_destroy(qdf_device_t osdev, __qdf_dma_map_t dmap)
5055 {
5056 	kfree(dmap);
5057 }
5058 qdf_export_symbol(__qdf_nbuf_dmamap_destroy);
5059 
5060 /**
5061  * __qdf_nbuf_map_nbytes() - get the dma map of the nbuf
5062  * @osdev: os device
5063  * @skb: skb handle
5064  * @dir: dma direction
5065  * @nbytes: number of bytes to be mapped
5066  *
5067  * Return: QDF_STATUS
5068  */
5069 #ifdef QDF_OS_DEBUG
5070 QDF_STATUS
5071 __qdf_nbuf_map_nbytes(
5072 	qdf_device_t osdev,
5073 	struct sk_buff *skb,
5074 	qdf_dma_dir_t dir,
5075 	int nbytes)
5076 {
5077 	struct skb_shared_info  *sh = skb_shinfo(skb);
5078 
5079 	qdf_assert((dir == QDF_DMA_TO_DEVICE) || (dir == QDF_DMA_FROM_DEVICE));
5080 
5081 	/*
5082 	 * Assume there's only a single fragment.
5083 	 * To support multiple fragments, it would be necessary to change
5084 	 * adf_nbuf_t to be a separate object that stores meta-info
5085 	 * (including the bus address for each fragment) and a pointer
5086 	 * to the underlying sk_buff.
5087 	 */
5088 	qdf_assert(sh->nr_frags == 0);
5089 
5090 	return __qdf_nbuf_map_nbytes_single(osdev, skb, dir, nbytes);
5091 }
5092 qdf_export_symbol(__qdf_nbuf_map_nbytes);
5093 #else
5094 QDF_STATUS
5095 __qdf_nbuf_map_nbytes(
5096 	qdf_device_t osdev,
5097 	struct sk_buff *skb,
5098 	qdf_dma_dir_t dir,
5099 	int nbytes)
5100 {
5101 	return __qdf_nbuf_map_nbytes_single(osdev, skb, dir, nbytes);
5102 }
5103 qdf_export_symbol(__qdf_nbuf_map_nbytes);
5104 #endif
5105 /**
5106  * __qdf_nbuf_unmap_nbytes() - to unmap a previously mapped buf
5107  * @osdev: OS device
5108  * @skb: skb handle
5109  * @dir: direction
5110  * @nbytes: number of bytes
5111  *
5112  * Return: none
5113  */
5114 void
5115 __qdf_nbuf_unmap_nbytes(
5116 	qdf_device_t osdev,
5117 	struct sk_buff *skb,
5118 	qdf_dma_dir_t dir,
5119 	int nbytes)
5120 {
5121 	qdf_assert((dir == QDF_DMA_TO_DEVICE) || (dir == QDF_DMA_FROM_DEVICE));
5122 
5123 	/*
5124 	 * Assume there's a single fragment.
5125 	 * If this is not true, the assertion in __adf_nbuf_map will catch it.
5126 	 */
5127 	__qdf_nbuf_unmap_nbytes_single(osdev, skb, dir, nbytes);
5128 }
5129 qdf_export_symbol(__qdf_nbuf_unmap_nbytes);
5130 
5131 /**
5132  * __qdf_nbuf_dma_map_info() - return the dma map info
5133  * @bmap: dma map
5134  * @sg: dma map info
5135  *
5136  * Return: none
5137  */
5138 void
5139 __qdf_nbuf_dma_map_info(__qdf_dma_map_t bmap, qdf_dmamap_info_t *sg)
5140 {
5141 	qdf_assert(bmap->mapped);
5142 	qdf_assert(bmap->nsegs <= QDF_MAX_SCATTER);
5143 
5144 	memcpy(sg->dma_segs, bmap->seg, bmap->nsegs *
5145 			sizeof(struct __qdf_segment));
5146 	sg->nsegs = bmap->nsegs;
5147 }
5148 qdf_export_symbol(__qdf_nbuf_dma_map_info);
5149 /**
5150  * __qdf_nbuf_frag_info() - return the frag data & len, where frag no. is
5151  *			specified by the index
5152  * @skb: sk buff
5153  * @sg: scatter/gather list of all the frags
5154  *
5155  * Return: none
5156  */
5157 #if defined(__QDF_SUPPORT_FRAG_MEM)
5158 void
5159 __qdf_nbuf_frag_info(struct sk_buff *skb, qdf_sglist_t  *sg)
5160 {
5161 	qdf_assert(skb);
5162 	sg->sg_segs[0].vaddr = skb->data;
5163 	sg->sg_segs[0].len   = skb->len;
5164 	sg->nsegs            = 1;
5165 
5166 	for (int i = 1; i <= sh->nr_frags; i++) {
5167 		skb_frag_t    *f        = &sh->frags[i - 1];
5168 
5169 		sg->sg_segs[i].vaddr    = (uint8_t *)(page_address(f->page) +
5170 			f->page_offset);
5171 		sg->sg_segs[i].len      = f->size;
5172 
5173 		qdf_assert(i < QDF_MAX_SGLIST);
5174 	}
5175 	sg->nsegs += i;
5176 
5177 }
5178 qdf_export_symbol(__qdf_nbuf_frag_info);
5179 #else
5180 #ifdef QDF_OS_DEBUG
5181 void
5182 __qdf_nbuf_frag_info(struct sk_buff *skb, qdf_sglist_t  *sg)
5183 {
5184 
5185 	struct skb_shared_info  *sh = skb_shinfo(skb);
5186 
5187 	qdf_assert(skb);
5188 	sg->sg_segs[0].vaddr = skb->data;
5189 	sg->sg_segs[0].len   = skb->len;
5190 	sg->nsegs            = 1;
5191 
5192 	qdf_assert(sh->nr_frags == 0);
5193 }
5194 qdf_export_symbol(__qdf_nbuf_frag_info);
5195 #else
5196 void
5197 __qdf_nbuf_frag_info(struct sk_buff *skb, qdf_sglist_t  *sg)
5198 {
5199 	sg->sg_segs[0].vaddr = skb->data;
5200 	sg->sg_segs[0].len   = skb->len;
5201 	sg->nsegs            = 1;
5202 }
5203 qdf_export_symbol(__qdf_nbuf_frag_info);
5204 #endif
5205 #endif
5206 /**
5207  * __qdf_nbuf_get_frag_size() - get frag size
5208  * @nbuf: sk buffer
5209  * @cur_frag: current frag
5210  *
5211  * Return: frag size
5212  */
5213 uint32_t
5214 __qdf_nbuf_get_frag_size(__qdf_nbuf_t nbuf, uint32_t cur_frag)
5215 {
5216 	struct skb_shared_info  *sh = skb_shinfo(nbuf);
5217 	const skb_frag_t *frag = sh->frags + cur_frag;
5218 
5219 	return skb_frag_size(frag);
5220 }
5221 qdf_export_symbol(__qdf_nbuf_get_frag_size);
5222 
5223 /**
5224  * __qdf_nbuf_frag_map() - dma map frag
5225  * @osdev: os device
5226  * @nbuf: sk buff
5227  * @offset: offset
5228  * @dir: direction
5229  * @cur_frag: current fragment
5230  *
5231  * Return: QDF status
5232  */
5233 #ifdef A_SIMOS_DEVHOST
5234 QDF_STATUS __qdf_nbuf_frag_map(
5235 	qdf_device_t osdev, __qdf_nbuf_t nbuf,
5236 	int offset, qdf_dma_dir_t dir, int cur_frag)
5237 {
5238 	int32_t paddr, frag_len;
5239 
5240 	QDF_NBUF_CB_PADDR(nbuf) = paddr = nbuf->data;
5241 	return QDF_STATUS_SUCCESS;
5242 }
5243 qdf_export_symbol(__qdf_nbuf_frag_map);
5244 #else
5245 QDF_STATUS __qdf_nbuf_frag_map(
5246 	qdf_device_t osdev, __qdf_nbuf_t nbuf,
5247 	int offset, qdf_dma_dir_t dir, int cur_frag)
5248 {
5249 	dma_addr_t paddr, frag_len;
5250 	struct skb_shared_info *sh = skb_shinfo(nbuf);
5251 	const skb_frag_t *frag = sh->frags + cur_frag;
5252 
5253 	frag_len = skb_frag_size(frag);
5254 
5255 	QDF_NBUF_CB_TX_EXTRA_FRAG_PADDR(nbuf) = paddr =
5256 		skb_frag_dma_map(osdev->dev, frag, offset, frag_len,
5257 					__qdf_dma_dir_to_os(dir));
5258 	return dma_mapping_error(osdev->dev, paddr) ?
5259 			QDF_STATUS_E_FAULT : QDF_STATUS_SUCCESS;
5260 }
5261 qdf_export_symbol(__qdf_nbuf_frag_map);
5262 #endif
5263 /**
5264  * __qdf_nbuf_dmamap_set_cb() - setup the map callback for a dma map
5265  * @dmap: dma map
5266  * @cb: callback
5267  * @arg: argument
5268  *
5269  * Return: none
5270  */
5271 void
5272 __qdf_nbuf_dmamap_set_cb(__qdf_dma_map_t dmap, void *cb, void *arg)
5273 {
5274 	return;
5275 }
5276 qdf_export_symbol(__qdf_nbuf_dmamap_set_cb);
5277 
5278 
5279 /**
5280  * __qdf_nbuf_sync_single_for_cpu() - nbuf sync
5281  * @osdev: os device
5282  * @buf: sk buff
5283  * @dir: direction
5284  *
5285  * Return: none
5286  */
5287 #if defined(A_SIMOS_DEVHOST)
5288 static void __qdf_nbuf_sync_single_for_cpu(
5289 	qdf_device_t osdev, qdf_nbuf_t buf, qdf_dma_dir_t dir)
5290 {
5291 	return;
5292 }
5293 #else
5294 static void __qdf_nbuf_sync_single_for_cpu(
5295 	qdf_device_t osdev, qdf_nbuf_t buf, qdf_dma_dir_t dir)
5296 {
5297 	if (0 ==  QDF_NBUF_CB_PADDR(buf)) {
5298 		qdf_err("ERROR: NBUF mapped physical address is NULL");
5299 		return;
5300 	}
5301 	dma_sync_single_for_cpu(osdev->dev, QDF_NBUF_CB_PADDR(buf),
5302 		skb_end_offset(buf) - skb_headroom(buf),
5303 		__qdf_dma_dir_to_os(dir));
5304 }
5305 #endif
5306 /**
5307  * __qdf_nbuf_sync_for_cpu() - nbuf sync
5308  * @osdev: os device
5309  * @skb: sk buff
5310  * @dir: direction
5311  *
5312  * Return: none
5313  */
5314 void
5315 __qdf_nbuf_sync_for_cpu(qdf_device_t osdev,
5316 	struct sk_buff *skb, qdf_dma_dir_t dir)
5317 {
5318 	qdf_assert(
5319 	(dir == QDF_DMA_TO_DEVICE) || (dir == QDF_DMA_FROM_DEVICE));
5320 
5321 	/*
5322 	 * Assume there's a single fragment.
5323 	 * If this is not true, the assertion in __adf_nbuf_map will catch it.
5324 	 */
5325 	__qdf_nbuf_sync_single_for_cpu(osdev, skb, dir);
5326 }
5327 qdf_export_symbol(__qdf_nbuf_sync_for_cpu);
5328 
5329 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 10, 0))
5330 /**
5331  * qdf_nbuf_update_radiotap_vht_flags() - Update radiotap header VHT flags
5332  * @rx_status: Pointer to rx_status.
5333  * @rtap_buf: Buf to which VHT info has to be updated.
5334  * @rtap_len: Current length of radiotap buffer
5335  *
5336  * Return: Length of radiotap after VHT flags updated.
5337  */
5338 static unsigned int qdf_nbuf_update_radiotap_vht_flags(
5339 					struct mon_rx_status *rx_status,
5340 					int8_t *rtap_buf,
5341 					uint32_t rtap_len)
5342 {
5343 	uint16_t vht_flags = 0;
5344 	struct mon_rx_user_status *rx_user_status = rx_status->rx_user_status;
5345 
5346 	rtap_len = qdf_align(rtap_len, 2);
5347 
5348 	/* IEEE80211_RADIOTAP_VHT u16, u8, u8, u8[4], u8, u8, u16 */
5349 	vht_flags |= IEEE80211_RADIOTAP_VHT_KNOWN_STBC |
5350 		IEEE80211_RADIOTAP_VHT_KNOWN_GI |
5351 		IEEE80211_RADIOTAP_VHT_KNOWN_LDPC_EXTRA_OFDM_SYM |
5352 		IEEE80211_RADIOTAP_VHT_KNOWN_BEAMFORMED |
5353 		IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH |
5354 		IEEE80211_RADIOTAP_VHT_KNOWN_GROUP_ID;
5355 	put_unaligned_le16(vht_flags, &rtap_buf[rtap_len]);
5356 	rtap_len += 2;
5357 
5358 	rtap_buf[rtap_len] |=
5359 		(rx_status->is_stbc ?
5360 		 IEEE80211_RADIOTAP_VHT_FLAG_STBC : 0) |
5361 		(rx_status->sgi ? IEEE80211_RADIOTAP_VHT_FLAG_SGI : 0) |
5362 		(rx_status->ldpc ?
5363 		 IEEE80211_RADIOTAP_VHT_FLAG_LDPC_EXTRA_OFDM_SYM : 0) |
5364 		(rx_status->beamformed ?
5365 		 IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED : 0);
5366 	rtap_len += 1;
5367 
5368 	if (!rx_user_status) {
5369 		switch (rx_status->vht_flag_values2) {
5370 		case IEEE80211_RADIOTAP_VHT_BW_20:
5371 			rtap_buf[rtap_len] = RADIOTAP_VHT_BW_20;
5372 			break;
5373 		case IEEE80211_RADIOTAP_VHT_BW_40:
5374 			rtap_buf[rtap_len] = RADIOTAP_VHT_BW_40;
5375 			break;
5376 		case IEEE80211_RADIOTAP_VHT_BW_80:
5377 			rtap_buf[rtap_len] = RADIOTAP_VHT_BW_80;
5378 			break;
5379 		case IEEE80211_RADIOTAP_VHT_BW_160:
5380 			rtap_buf[rtap_len] = RADIOTAP_VHT_BW_160;
5381 			break;
5382 		}
5383 		rtap_len += 1;
5384 		rtap_buf[rtap_len] = (rx_status->vht_flag_values3[0]);
5385 		rtap_len += 1;
5386 		rtap_buf[rtap_len] = (rx_status->vht_flag_values3[1]);
5387 		rtap_len += 1;
5388 		rtap_buf[rtap_len] = (rx_status->vht_flag_values3[2]);
5389 		rtap_len += 1;
5390 		rtap_buf[rtap_len] = (rx_status->vht_flag_values3[3]);
5391 		rtap_len += 1;
5392 		rtap_buf[rtap_len] = (rx_status->vht_flag_values4);
5393 		rtap_len += 1;
5394 		rtap_buf[rtap_len] = (rx_status->vht_flag_values5);
5395 		rtap_len += 1;
5396 		put_unaligned_le16(rx_status->vht_flag_values6,
5397 				   &rtap_buf[rtap_len]);
5398 		rtap_len += 2;
5399 	} else {
5400 		switch (rx_user_status->vht_flag_values2) {
5401 		case IEEE80211_RADIOTAP_VHT_BW_20:
5402 			rtap_buf[rtap_len] = RADIOTAP_VHT_BW_20;
5403 			break;
5404 		case IEEE80211_RADIOTAP_VHT_BW_40:
5405 			rtap_buf[rtap_len] = RADIOTAP_VHT_BW_40;
5406 			break;
5407 		case IEEE80211_RADIOTAP_VHT_BW_80:
5408 			rtap_buf[rtap_len] = RADIOTAP_VHT_BW_80;
5409 			break;
5410 		case IEEE80211_RADIOTAP_VHT_BW_160:
5411 			rtap_buf[rtap_len] = RADIOTAP_VHT_BW_160;
5412 			break;
5413 		}
5414 		rtap_len += 1;
5415 		rtap_buf[rtap_len] = (rx_user_status->vht_flag_values3[0]);
5416 		rtap_len += 1;
5417 		rtap_buf[rtap_len] = (rx_user_status->vht_flag_values3[1]);
5418 		rtap_len += 1;
5419 		rtap_buf[rtap_len] = (rx_user_status->vht_flag_values3[2]);
5420 		rtap_len += 1;
5421 		rtap_buf[rtap_len] = (rx_user_status->vht_flag_values3[3]);
5422 		rtap_len += 1;
5423 		rtap_buf[rtap_len] = (rx_user_status->vht_flag_values4);
5424 		rtap_len += 1;
5425 		rtap_buf[rtap_len] = (rx_user_status->vht_flag_values5);
5426 		rtap_len += 1;
5427 		put_unaligned_le16(rx_user_status->vht_flag_values6,
5428 				   &rtap_buf[rtap_len]);
5429 		rtap_len += 2;
5430 	}
5431 
5432 	return rtap_len;
5433 }
5434 
5435 /**
5436  * qdf_nbuf_update_radiotap_he_flags() - Update radiotap header from rx_status
5437  * @rx_status: Pointer to rx_status.
5438  * @rtap_buf: buffer to which radiotap has to be updated
5439  * @rtap_len: radiotap length
5440  *
5441  * API update high-efficiency (11ax) fields in the radiotap header
5442  *
5443  * Return: length of rtap_len updated.
5444  */
5445 static unsigned int
5446 qdf_nbuf_update_radiotap_he_flags(struct mon_rx_status *rx_status,
5447 				     int8_t *rtap_buf, uint32_t rtap_len)
5448 {
5449 	/*
5450 	 * IEEE80211_RADIOTAP_HE u16, u16, u16, u16, u16, u16
5451 	 * Enable all "known" HE radiotap flags for now
5452 	 */
5453 	struct mon_rx_user_status *rx_user_status = rx_status->rx_user_status;
5454 
5455 	rtap_len = qdf_align(rtap_len, 2);
5456 
5457 	if (!rx_user_status) {
5458 		put_unaligned_le16(rx_status->he_data1, &rtap_buf[rtap_len]);
5459 		rtap_len += 2;
5460 
5461 		put_unaligned_le16(rx_status->he_data2, &rtap_buf[rtap_len]);
5462 		rtap_len += 2;
5463 
5464 		put_unaligned_le16(rx_status->he_data3, &rtap_buf[rtap_len]);
5465 		rtap_len += 2;
5466 
5467 		put_unaligned_le16(rx_status->he_data4, &rtap_buf[rtap_len]);
5468 		rtap_len += 2;
5469 
5470 		put_unaligned_le16(rx_status->he_data5, &rtap_buf[rtap_len]);
5471 		rtap_len += 2;
5472 
5473 		put_unaligned_le16(rx_status->he_data6, &rtap_buf[rtap_len]);
5474 		rtap_len += 2;
5475 		qdf_rl_debug("he data %x %x %x %x %x %x",
5476 			     rx_status->he_data1,
5477 			     rx_status->he_data2, rx_status->he_data3,
5478 			     rx_status->he_data4, rx_status->he_data5,
5479 			     rx_status->he_data6);
5480 	} else {
5481 		put_unaligned_le16(rx_user_status->he_data1,
5482 				   &rtap_buf[rtap_len]);
5483 		rtap_len += 2;
5484 
5485 		put_unaligned_le16(rx_user_status->he_data2,
5486 				   &rtap_buf[rtap_len]);
5487 		rtap_len += 2;
5488 
5489 		put_unaligned_le16(rx_user_status->he_data3,
5490 				   &rtap_buf[rtap_len]);
5491 		rtap_len += 2;
5492 
5493 		put_unaligned_le16(rx_user_status->he_data4,
5494 				   &rtap_buf[rtap_len]);
5495 		rtap_len += 2;
5496 
5497 		put_unaligned_le16(rx_user_status->he_data5,
5498 				   &rtap_buf[rtap_len]);
5499 		rtap_len += 2;
5500 
5501 		put_unaligned_le16(rx_user_status->he_data6,
5502 				   &rtap_buf[rtap_len]);
5503 		rtap_len += 2;
5504 		qdf_rl_debug("he data %x %x %x %x %x %x",
5505 			     rx_user_status->he_data1,
5506 			     rx_user_status->he_data2, rx_user_status->he_data3,
5507 			     rx_user_status->he_data4, rx_user_status->he_data5,
5508 			     rx_user_status->he_data6);
5509 	}
5510 
5511 	return rtap_len;
5512 }
5513 
5514 
5515 /**
5516  * qdf_nbuf_update_radiotap_he_mu_flags() - update he-mu radiotap flags
5517  * @rx_status: Pointer to rx_status.
5518  * @rtap_buf: buffer to which radiotap has to be updated
5519  * @rtap_len: radiotap length
5520  *
5521  * API update HE-MU fields in the radiotap header
5522  *
5523  * Return: length of rtap_len updated.
5524  */
5525 static unsigned int
5526 qdf_nbuf_update_radiotap_he_mu_flags(struct mon_rx_status *rx_status,
5527 				     int8_t *rtap_buf, uint32_t rtap_len)
5528 {
5529 	struct mon_rx_user_status *rx_user_status = rx_status->rx_user_status;
5530 
5531 	rtap_len = qdf_align(rtap_len, 2);
5532 
5533 	/*
5534 	 * IEEE80211_RADIOTAP_HE_MU u16, u16, u8[4]
5535 	 * Enable all "known" he-mu radiotap flags for now
5536 	 */
5537 
5538 	if (!rx_user_status) {
5539 		put_unaligned_le16(rx_status->he_flags1, &rtap_buf[rtap_len]);
5540 		rtap_len += 2;
5541 
5542 		put_unaligned_le16(rx_status->he_flags2, &rtap_buf[rtap_len]);
5543 		rtap_len += 2;
5544 
5545 		rtap_buf[rtap_len] = rx_status->he_RU[0];
5546 		rtap_len += 1;
5547 
5548 		rtap_buf[rtap_len] = rx_status->he_RU[1];
5549 		rtap_len += 1;
5550 
5551 		rtap_buf[rtap_len] = rx_status->he_RU[2];
5552 		rtap_len += 1;
5553 
5554 		rtap_buf[rtap_len] = rx_status->he_RU[3];
5555 		rtap_len += 1;
5556 		qdf_debug("he_flags %x %x he-RU %x %x %x %x",
5557 			  rx_status->he_flags1,
5558 			  rx_status->he_flags2, rx_status->he_RU[0],
5559 			  rx_status->he_RU[1], rx_status->he_RU[2],
5560 			  rx_status->he_RU[3]);
5561 	} else {
5562 		put_unaligned_le16(rx_user_status->he_flags1,
5563 				   &rtap_buf[rtap_len]);
5564 		rtap_len += 2;
5565 
5566 		put_unaligned_le16(rx_user_status->he_flags2,
5567 				   &rtap_buf[rtap_len]);
5568 		rtap_len += 2;
5569 
5570 		rtap_buf[rtap_len] = rx_user_status->he_RU[0];
5571 		rtap_len += 1;
5572 
5573 		rtap_buf[rtap_len] = rx_user_status->he_RU[1];
5574 		rtap_len += 1;
5575 
5576 		rtap_buf[rtap_len] = rx_user_status->he_RU[2];
5577 		rtap_len += 1;
5578 
5579 		rtap_buf[rtap_len] = rx_user_status->he_RU[3];
5580 		rtap_len += 1;
5581 		qdf_debug("he_flags %x %x he-RU %x %x %x %x",
5582 			  rx_user_status->he_flags1,
5583 			  rx_user_status->he_flags2, rx_user_status->he_RU[0],
5584 			  rx_user_status->he_RU[1], rx_user_status->he_RU[2],
5585 			  rx_user_status->he_RU[3]);
5586 	}
5587 
5588 	return rtap_len;
5589 }
5590 
5591 /**
5592  * qdf_nbuf_update_radiotap_he_mu_other_flags() - update he_mu_other flags
5593  * @rx_status: Pointer to rx_status.
5594  * @rtap_buf: buffer to which radiotap has to be updated
5595  * @rtap_len: radiotap length
5596  *
5597  * API update he-mu-other fields in the radiotap header
5598  *
5599  * Return: length of rtap_len updated.
5600  */
5601 static unsigned int
5602 qdf_nbuf_update_radiotap_he_mu_other_flags(struct mon_rx_status *rx_status,
5603 				     int8_t *rtap_buf, uint32_t rtap_len)
5604 {
5605 	struct mon_rx_user_status *rx_user_status = rx_status->rx_user_status;
5606 
5607 	rtap_len = qdf_align(rtap_len, 2);
5608 
5609 	/*
5610 	 * IEEE80211_RADIOTAP_HE-MU-OTHER u16, u16, u8, u8
5611 	 * Enable all "known" he-mu-other radiotap flags for now
5612 	 */
5613 	if (!rx_user_status) {
5614 		put_unaligned_le16(rx_status->he_per_user_1,
5615 				   &rtap_buf[rtap_len]);
5616 		rtap_len += 2;
5617 
5618 		put_unaligned_le16(rx_status->he_per_user_2,
5619 				   &rtap_buf[rtap_len]);
5620 		rtap_len += 2;
5621 
5622 		rtap_buf[rtap_len] = rx_status->he_per_user_position;
5623 		rtap_len += 1;
5624 
5625 		rtap_buf[rtap_len] = rx_status->he_per_user_known;
5626 		rtap_len += 1;
5627 		qdf_debug("he_per_user %x %x pos %x knwn %x",
5628 			  rx_status->he_per_user_1,
5629 			  rx_status->he_per_user_2,
5630 			  rx_status->he_per_user_position,
5631 			  rx_status->he_per_user_known);
5632 	} else {
5633 		put_unaligned_le16(rx_user_status->he_per_user_1,
5634 				   &rtap_buf[rtap_len]);
5635 		rtap_len += 2;
5636 
5637 		put_unaligned_le16(rx_user_status->he_per_user_2,
5638 				   &rtap_buf[rtap_len]);
5639 		rtap_len += 2;
5640 
5641 		rtap_buf[rtap_len] = rx_user_status->he_per_user_position;
5642 		rtap_len += 1;
5643 
5644 		rtap_buf[rtap_len] = rx_user_status->he_per_user_known;
5645 		rtap_len += 1;
5646 		qdf_debug("he_per_user %x %x pos %x knwn %x",
5647 			  rx_user_status->he_per_user_1,
5648 			  rx_user_status->he_per_user_2,
5649 			  rx_user_status->he_per_user_position,
5650 			  rx_user_status->he_per_user_known);
5651 	}
5652 
5653 	return rtap_len;
5654 }
5655 
5656 /**
5657  * qdf_nbuf_update_radiotap_usig_flags() - Update radiotap header with USIG data
5658  *						from rx_status
5659  * @rx_status: Pointer to rx_status.
5660  * @rtap_buf: buffer to which radiotap has to be updated
5661  * @rtap_len: radiotap length
5662  *
5663  * API update Extra High Throughput (11be) fields in the radiotap header
5664  *
5665  * Return: length of rtap_len updated.
5666  */
5667 static unsigned int
5668 qdf_nbuf_update_radiotap_usig_flags(struct mon_rx_status *rx_status,
5669 				    int8_t *rtap_buf, uint32_t rtap_len)
5670 {
5671 	/*
5672 	 * IEEE80211_RADIOTAP_USIG:
5673 	 *		u32, u32, u32
5674 	 */
5675 	rtap_len = qdf_align(rtap_len, 4);
5676 
5677 	put_unaligned_le32(rx_status->usig_common, &rtap_buf[rtap_len]);
5678 	rtap_len += 4;
5679 
5680 	put_unaligned_le32(rx_status->usig_value, &rtap_buf[rtap_len]);
5681 	rtap_len += 4;
5682 
5683 	put_unaligned_le32(rx_status->usig_mask, &rtap_buf[rtap_len]);
5684 	rtap_len += 4;
5685 
5686 	qdf_rl_debug("U-SIG data %x %x %x",
5687 		     rx_status->usig_common, rx_status->usig_value,
5688 		     rx_status->usig_mask);
5689 
5690 	return rtap_len;
5691 }
5692 
5693 /**
5694  * qdf_nbuf_update_radiotap_eht_flags() - Update radiotap header with EHT data
5695  *					from rx_status
5696  * @rx_status: Pointer to rx_status.
5697  * @rtap_buf: buffer to which radiotap has to be updated
5698  * @rtap_len: radiotap length
5699  *
5700  * API update Extra High Throughput (11be) fields in the radiotap header
5701  *
5702  * Return: length of rtap_len updated.
5703  */
5704 static unsigned int
5705 qdf_nbuf_update_radiotap_eht_flags(struct mon_rx_status *rx_status,
5706 				   int8_t *rtap_buf, uint32_t rtap_len)
5707 {
5708 	uint32_t user;
5709 
5710 	/*
5711 	 * IEEE80211_RADIOTAP_EHT:
5712 	 *		u32, u32, u32, u32, u32, u32, u32, u16, [u32, u32, u32]
5713 	 */
5714 	rtap_len = qdf_align(rtap_len, 4);
5715 
5716 	put_unaligned_le32(rx_status->eht_known, &rtap_buf[rtap_len]);
5717 	rtap_len += 4;
5718 
5719 	put_unaligned_le32(rx_status->eht_data[0], &rtap_buf[rtap_len]);
5720 	rtap_len += 4;
5721 
5722 	put_unaligned_le32(rx_status->eht_data[1], &rtap_buf[rtap_len]);
5723 	rtap_len += 4;
5724 
5725 	put_unaligned_le32(rx_status->eht_data[2], &rtap_buf[rtap_len]);
5726 	rtap_len += 4;
5727 
5728 	put_unaligned_le32(rx_status->eht_data[3], &rtap_buf[rtap_len]);
5729 	rtap_len += 4;
5730 
5731 	put_unaligned_le32(rx_status->eht_data[4], &rtap_buf[rtap_len]);
5732 	rtap_len += 4;
5733 
5734 	put_unaligned_le32(rx_status->eht_data[5], &rtap_buf[rtap_len]);
5735 	rtap_len += 4;
5736 
5737 	for (user = 0; user < rx_status->num_eht_user_info_valid; user++) {
5738 		put_unaligned_le32(rx_status->eht_user_info[user],
5739 				   &rtap_buf[rtap_len]);
5740 		rtap_len += 4;
5741 	}
5742 
5743 	qdf_rl_debug("EHT data %x %x %x %x %x %x %x",
5744 		     rx_status->eht_known, rx_status->eht_data[0],
5745 		     rx_status->eht_data[1], rx_status->eht_data[2],
5746 		     rx_status->eht_data[3], rx_status->eht_data[4],
5747 		     rx_status->eht_data[5]);
5748 
5749 	return rtap_len;
5750 }
5751 
5752 #define IEEE80211_RADIOTAP_TX_STATUS 0
5753 #define IEEE80211_RADIOTAP_RETRY_COUNT 1
5754 #define IEEE80211_RADIOTAP_EXTENSION2 2
5755 uint8_t ATH_OUI[] = {0x00, 0x03, 0x7f}; /* Atheros OUI */
5756 
5757 /**
5758  * qdf_nbuf_update_radiotap_ampdu_flags() - Update radiotap header ampdu flags
5759  * @rx_status: Pointer to rx_status.
5760  * @rtap_buf: Buf to which AMPDU info has to be updated.
5761  * @rtap_len: Current length of radiotap buffer
5762  *
5763  * Return: Length of radiotap after AMPDU flags updated.
5764  */
5765 static unsigned int qdf_nbuf_update_radiotap_ampdu_flags(
5766 					struct mon_rx_status *rx_status,
5767 					uint8_t *rtap_buf,
5768 					uint32_t rtap_len)
5769 {
5770 	/*
5771 	 * IEEE80211_RADIOTAP_AMPDU_STATUS u32 u16 u8 u8
5772 	 * First 32 bits of AMPDU represents the reference number
5773 	 */
5774 
5775 	uint32_t ampdu_reference_num = rx_status->ppdu_id;
5776 	uint16_t ampdu_flags = 0;
5777 	uint16_t ampdu_reserved_flags = 0;
5778 
5779 	rtap_len = qdf_align(rtap_len, 4);
5780 
5781 	put_unaligned_le32(ampdu_reference_num, &rtap_buf[rtap_len]);
5782 	rtap_len += 4;
5783 	put_unaligned_le16(ampdu_flags, &rtap_buf[rtap_len]);
5784 	rtap_len += 2;
5785 	put_unaligned_le16(ampdu_reserved_flags, &rtap_buf[rtap_len]);
5786 	rtap_len += 2;
5787 
5788 	return rtap_len;
5789 }
5790 
5791 #ifdef DP_MON_RSSI_IN_DBM
5792 #define QDF_MON_STATUS_GET_RSSI_IN_DBM(rx_status) \
5793 (rx_status->rssi_comb)
5794 #else
5795 #ifdef QCA_RSSI_DB2DBM
5796 #define QDF_MON_STATUS_GET_RSSI_IN_DBM(rx_status) \
5797 (((rx_status)->rssi_dbm_conv_support) ? \
5798 ((rx_status)->rssi_comb + (rx_status)->rssi_offset) :\
5799 ((rx_status)->rssi_comb + (rx_status)->chan_noise_floor))
5800 #else
5801 #define QDF_MON_STATUS_GET_RSSI_IN_DBM(rx_status) \
5802 (rx_status->rssi_comb + rx_status->chan_noise_floor)
5803 #endif
5804 #endif
5805 
5806 /**
5807  * qdf_nbuf_update_radiotap_tx_flags() - Update radiotap header tx flags
5808  * @rx_status: Pointer to rx_status.
5809  * @rtap_buf: Buf to which tx info has to be updated.
5810  * @rtap_len: Current length of radiotap buffer
5811  *
5812  * Return: Length of radiotap after tx flags updated.
5813  */
5814 static unsigned int qdf_nbuf_update_radiotap_tx_flags(
5815 						struct mon_rx_status *rx_status,
5816 						uint8_t *rtap_buf,
5817 						uint32_t rtap_len)
5818 {
5819 	/*
5820 	 * IEEE80211_RADIOTAP_TX_FLAGS u16
5821 	 */
5822 
5823 	uint16_t tx_flags = 0;
5824 
5825 	rtap_len = qdf_align(rtap_len, 2);
5826 
5827 	switch (rx_status->tx_status) {
5828 	case RADIOTAP_TX_STATUS_FAIL:
5829 		tx_flags |= IEEE80211_RADIOTAP_F_TX_FAIL;
5830 		break;
5831 	case RADIOTAP_TX_STATUS_NOACK:
5832 		tx_flags |= IEEE80211_RADIOTAP_F_TX_NOACK;
5833 		break;
5834 	}
5835 	put_unaligned_le16(tx_flags, &rtap_buf[rtap_len]);
5836 	rtap_len += 2;
5837 
5838 	return rtap_len;
5839 }
5840 
5841 /**
5842  * qdf_nbuf_update_radiotap() - Update radiotap header from rx_status
5843  * @rx_status: Pointer to rx_status.
5844  * @nbuf:      nbuf pointer to which radiotap has to be updated
5845  * @headroom_sz: Available headroom size.
5846  *
5847  * Return: length of rtap_len updated.
5848  */
5849 unsigned int qdf_nbuf_update_radiotap(struct mon_rx_status *rx_status,
5850 				      qdf_nbuf_t nbuf, uint32_t headroom_sz)
5851 {
5852 	uint8_t rtap_buf[RADIOTAP_HEADER_LEN] = {0};
5853 	struct ieee80211_radiotap_header *rthdr =
5854 		(struct ieee80211_radiotap_header *)rtap_buf;
5855 	uint32_t rtap_hdr_len = sizeof(struct ieee80211_radiotap_header);
5856 	uint32_t rtap_len = rtap_hdr_len;
5857 	uint8_t length = rtap_len;
5858 	struct qdf_radiotap_vendor_ns_ath *radiotap_vendor_ns_ath;
5859 	struct qdf_radiotap_ext2 *rtap_ext2;
5860 	struct mon_rx_user_status *rx_user_status = rx_status->rx_user_status;
5861 
5862 	/* per user info */
5863 	qdf_le32_t *it_present;
5864 	uint32_t it_present_val;
5865 	bool radiotap_ext1_hdr_present = false;
5866 
5867 	it_present = &rthdr->it_present;
5868 
5869 	/* Adding Extended Header space */
5870 	if (rx_status->add_rtap_ext || rx_status->add_rtap_ext2 ||
5871 	    rx_status->usig_flags || rx_status->eht_flags) {
5872 		rtap_hdr_len += RADIOTAP_HEADER_EXT_LEN;
5873 		rtap_len = rtap_hdr_len;
5874 		radiotap_ext1_hdr_present = true;
5875 	}
5876 
5877 	length = rtap_len;
5878 
5879 	/* IEEE80211_RADIOTAP_TSFT              __le64       microseconds*/
5880 	it_present_val = (1 << IEEE80211_RADIOTAP_TSFT);
5881 	put_unaligned_le64(rx_status->tsft, &rtap_buf[rtap_len]);
5882 	rtap_len += 8;
5883 
5884 	/* IEEE80211_RADIOTAP_FLAGS u8 */
5885 	it_present_val |= (1 << IEEE80211_RADIOTAP_FLAGS);
5886 
5887 	if (rx_status->rs_fcs_err)
5888 		rx_status->rtap_flags |= IEEE80211_RADIOTAP_F_BADFCS;
5889 
5890 	rtap_buf[rtap_len] = rx_status->rtap_flags;
5891 	rtap_len += 1;
5892 
5893 	/* IEEE80211_RADIOTAP_RATE  u8           500kb/s */
5894 	if (!rx_status->ht_flags && !rx_status->vht_flags &&
5895 	    !rx_status->he_flags) {
5896 		it_present_val |= (1 << IEEE80211_RADIOTAP_RATE);
5897 		rtap_buf[rtap_len] = rx_status->rate;
5898 	} else
5899 		rtap_buf[rtap_len] = 0;
5900 	rtap_len += 1;
5901 
5902 	/* IEEE80211_RADIOTAP_CHANNEL 2 x __le16   MHz, bitmap */
5903 	it_present_val |= (1 << IEEE80211_RADIOTAP_CHANNEL);
5904 	put_unaligned_le16(rx_status->chan_freq, &rtap_buf[rtap_len]);
5905 	rtap_len += 2;
5906 	/* Channel flags. */
5907 	if (rx_status->chan_freq > CHANNEL_FREQ_5150)
5908 		rx_status->chan_flags = RADIOTAP_5G_SPECTRUM_CHANNEL;
5909 	else
5910 		rx_status->chan_flags = RADIOTAP_2G_SPECTRUM_CHANNEL;
5911 	if (rx_status->cck_flag)
5912 		rx_status->chan_flags |= RADIOTAP_CCK_CHANNEL;
5913 	if (rx_status->ofdm_flag)
5914 		rx_status->chan_flags |= RADIOTAP_OFDM_CHANNEL;
5915 	put_unaligned_le16(rx_status->chan_flags, &rtap_buf[rtap_len]);
5916 	rtap_len += 2;
5917 
5918 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL s8  decibels from one milliwatt
5919 	 *					(dBm)
5920 	 */
5921 	it_present_val |= (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
5922 	/*
5923 	 * rssi_comb is int dB, need to convert it to dBm.
5924 	 * normalize value to noise floor of -96 dBm
5925 	 */
5926 	rtap_buf[rtap_len] = QDF_MON_STATUS_GET_RSSI_IN_DBM(rx_status);
5927 	rtap_len += 1;
5928 
5929 	/* RX signal noise floor */
5930 	it_present_val |= (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE);
5931 	rtap_buf[rtap_len] = (uint8_t)rx_status->chan_noise_floor;
5932 	rtap_len += 1;
5933 
5934 	/* IEEE80211_RADIOTAP_ANTENNA   u8      antenna index */
5935 	it_present_val |= (1 << IEEE80211_RADIOTAP_ANTENNA);
5936 	rtap_buf[rtap_len] = rx_status->nr_ant;
5937 	rtap_len += 1;
5938 
5939 	if ((rtap_len - length) > RADIOTAP_FIXED_HEADER_LEN) {
5940 		qdf_print("length is greater than RADIOTAP_FIXED_HEADER_LEN");
5941 		return 0;
5942 	}
5943 
5944 	/* update tx flags for pkt capture*/
5945 	if (rx_status->add_rtap_ext) {
5946 		rthdr->it_present |=
5947 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TX_FLAGS);
5948 		rtap_len = qdf_nbuf_update_radiotap_tx_flags(rx_status,
5949 							     rtap_buf,
5950 							     rtap_len);
5951 
5952 		if ((rtap_len - length) > RADIOTAP_TX_FLAGS_LEN) {
5953 			qdf_print("length is greater than RADIOTAP_TX_FLAGS_LEN");
5954 			return 0;
5955 		}
5956 	}
5957 
5958 	if (rx_status->ht_flags) {
5959 		length = rtap_len;
5960 		/* IEEE80211_RADIOTAP_VHT u8, u8, u8 */
5961 		it_present_val |= (1 << IEEE80211_RADIOTAP_MCS);
5962 		rtap_buf[rtap_len] = IEEE80211_RADIOTAP_MCS_HAVE_BW |
5963 					IEEE80211_RADIOTAP_MCS_HAVE_MCS |
5964 					IEEE80211_RADIOTAP_MCS_HAVE_GI;
5965 		rtap_len += 1;
5966 
5967 		if (rx_status->sgi)
5968 			rtap_buf[rtap_len] |= IEEE80211_RADIOTAP_MCS_SGI;
5969 		if (rx_status->bw)
5970 			rtap_buf[rtap_len] |= IEEE80211_RADIOTAP_MCS_BW_40;
5971 		else
5972 			rtap_buf[rtap_len] |= IEEE80211_RADIOTAP_MCS_BW_20;
5973 		rtap_len += 1;
5974 
5975 		rtap_buf[rtap_len] = rx_status->ht_mcs;
5976 		rtap_len += 1;
5977 
5978 		if ((rtap_len - length) > RADIOTAP_HT_FLAGS_LEN) {
5979 			qdf_print("length is greater than RADIOTAP_HT_FLAGS_LEN");
5980 			return 0;
5981 		}
5982 	}
5983 
5984 	if (rx_status->rs_flags & IEEE80211_AMPDU_FLAG) {
5985 		/* IEEE80211_RADIOTAP_AMPDU_STATUS u32 u16 u8 u8 */
5986 		it_present_val |= (1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
5987 		rtap_len = qdf_nbuf_update_radiotap_ampdu_flags(rx_status,
5988 								rtap_buf,
5989 								rtap_len);
5990 	}
5991 
5992 	if (rx_status->vht_flags) {
5993 		length = rtap_len;
5994 		/* IEEE80211_RADIOTAP_VHT u16, u8, u8, u8[4], u8, u8, u16 */
5995 		it_present_val |= (1 << IEEE80211_RADIOTAP_VHT);
5996 		rtap_len = qdf_nbuf_update_radiotap_vht_flags(rx_status,
5997 								rtap_buf,
5998 								rtap_len);
5999 
6000 		if ((rtap_len - length) > RADIOTAP_VHT_FLAGS_LEN) {
6001 			qdf_print("length is greater than RADIOTAP_VHT_FLAGS_LEN");
6002 			return 0;
6003 		}
6004 	}
6005 
6006 	if (rx_status->he_flags) {
6007 		length = rtap_len;
6008 		/* IEEE80211_RADIOTAP_HE */
6009 		it_present_val |= (1 << IEEE80211_RADIOTAP_HE);
6010 		rtap_len = qdf_nbuf_update_radiotap_he_flags(rx_status,
6011 								rtap_buf,
6012 								rtap_len);
6013 
6014 		if ((rtap_len - length) > RADIOTAP_HE_FLAGS_LEN) {
6015 			qdf_print("length is greater than RADIOTAP_HE_FLAGS_LEN");
6016 			return 0;
6017 		}
6018 	}
6019 
6020 	if (rx_status->he_mu_flags) {
6021 		length = rtap_len;
6022 		/* IEEE80211_RADIOTAP_HE-MU */
6023 		it_present_val |= (1 << IEEE80211_RADIOTAP_HE_MU);
6024 		rtap_len = qdf_nbuf_update_radiotap_he_mu_flags(rx_status,
6025 								rtap_buf,
6026 								rtap_len);
6027 
6028 		if ((rtap_len - length) > RADIOTAP_HE_MU_FLAGS_LEN) {
6029 			qdf_print("length is greater than RADIOTAP_HE_MU_FLAGS_LEN");
6030 			return 0;
6031 		}
6032 	}
6033 
6034 	if (rx_status->he_mu_other_flags) {
6035 		length = rtap_len;
6036 		/* IEEE80211_RADIOTAP_HE-MU-OTHER */
6037 		it_present_val |= (1 << IEEE80211_RADIOTAP_HE_MU_OTHER);
6038 		rtap_len =
6039 			qdf_nbuf_update_radiotap_he_mu_other_flags(rx_status,
6040 								rtap_buf,
6041 								rtap_len);
6042 
6043 		if ((rtap_len - length) > RADIOTAP_HE_MU_OTHER_FLAGS_LEN) {
6044 			qdf_print("length is greater than RADIOTAP_HE_MU_OTHER_FLAGS_LEN");
6045 			return 0;
6046 		}
6047 	}
6048 
6049 	rtap_len = qdf_align(rtap_len, 2);
6050 	/*
6051 	 * Radiotap Vendor Namespace
6052 	 */
6053 	it_present_val |= (1 << IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
6054 	radiotap_vendor_ns_ath = (struct qdf_radiotap_vendor_ns_ath *)
6055 					(rtap_buf + rtap_len);
6056 	/*
6057 	 * Copy Atheros OUI - 3 bytes (4th byte is 0)
6058 	 */
6059 	qdf_mem_copy(radiotap_vendor_ns_ath->hdr.oui, ATH_OUI, sizeof(ATH_OUI));
6060 	/*
6061 	 * Name space selector = 0
6062 	 * We only will have one namespace for now
6063 	 */
6064 	radiotap_vendor_ns_ath->hdr.selector = 0;
6065 	radiotap_vendor_ns_ath->hdr.skip_length = cpu_to_le16(
6066 					sizeof(*radiotap_vendor_ns_ath) -
6067 					sizeof(radiotap_vendor_ns_ath->hdr));
6068 	radiotap_vendor_ns_ath->device_id = cpu_to_le32(rx_status->device_id);
6069 	radiotap_vendor_ns_ath->lsig = cpu_to_le32(rx_status->l_sig_a_info);
6070 	radiotap_vendor_ns_ath->lsig_b = cpu_to_le32(rx_status->l_sig_b_info);
6071 	radiotap_vendor_ns_ath->ppdu_start_timestamp =
6072 				cpu_to_le32(rx_status->ppdu_timestamp);
6073 	rtap_len += sizeof(*radiotap_vendor_ns_ath);
6074 
6075 	/* Move to next it_present */
6076 	if (radiotap_ext1_hdr_present) {
6077 		it_present_val |= (1 << IEEE80211_RADIOTAP_EXT);
6078 		put_unaligned_le32(it_present_val, it_present);
6079 		it_present_val = 0;
6080 		it_present++;
6081 	}
6082 
6083 	/* Add Extension to Radiotap Header & corresponding data */
6084 	if (rx_status->add_rtap_ext) {
6085 		it_present_val |= (1 << IEEE80211_RADIOTAP_TX_STATUS);
6086 		it_present_val |= (1 << IEEE80211_RADIOTAP_RETRY_COUNT);
6087 
6088 		rtap_buf[rtap_len] = rx_status->tx_status;
6089 		rtap_len += 1;
6090 		rtap_buf[rtap_len] = rx_status->tx_retry_cnt;
6091 		rtap_len += 1;
6092 	}
6093 
6094 	/* Add Extension2 to Radiotap Header */
6095 	if (rx_status->add_rtap_ext2) {
6096 		it_present_val |= (1 << IEEE80211_RADIOTAP_EXTENSION2);
6097 
6098 		rtap_ext2 = (struct qdf_radiotap_ext2 *)(rtap_buf + rtap_len);
6099 		rtap_ext2->ppdu_id = rx_status->ppdu_id;
6100 		rtap_ext2->prev_ppdu_id = rx_status->prev_ppdu_id;
6101 		if (!rx_user_status) {
6102 			rtap_ext2->tid = rx_status->tid;
6103 			rtap_ext2->start_seq = rx_status->start_seq;
6104 			qdf_mem_copy(rtap_ext2->ba_bitmap,
6105 				     rx_status->ba_bitmap,
6106 				     8 * (sizeof(uint32_t)));
6107 		} else {
6108 			uint8_t ba_bitmap_sz = rx_user_status->ba_bitmap_sz;
6109 
6110 			/* set default bitmap sz if not set */
6111 			ba_bitmap_sz = ba_bitmap_sz ? ba_bitmap_sz : 8;
6112 			rtap_ext2->tid = rx_user_status->tid;
6113 			rtap_ext2->start_seq = rx_user_status->start_seq;
6114 			qdf_mem_copy(rtap_ext2->ba_bitmap,
6115 				     rx_user_status->ba_bitmap,
6116 				     ba_bitmap_sz * (sizeof(uint32_t)));
6117 		}
6118 
6119 		rtap_len += sizeof(*rtap_ext2);
6120 	}
6121 
6122 	if (rx_status->usig_flags) {
6123 		length = rtap_len;
6124 		/* IEEE80211_RADIOTAP_USIG */
6125 		it_present_val |= (1 << IEEE80211_RADIOTAP_EXT1_USIG);
6126 		rtap_len = qdf_nbuf_update_radiotap_usig_flags(rx_status,
6127 							       rtap_buf,
6128 							       rtap_len);
6129 
6130 		if ((rtap_len - length) > RADIOTAP_EHT_FLAGS_LEN) {
6131 			qdf_print("length is greater than RADIOTAP_EHT_FLAGS_LEN");
6132 			return 0;
6133 		}
6134 	}
6135 
6136 	if (rx_status->eht_flags) {
6137 		length = rtap_len;
6138 		/* IEEE80211_RADIOTAP_EHT */
6139 		it_present_val |= (1 << IEEE80211_RADIOTAP_EXT1_EHT);
6140 		rtap_len = qdf_nbuf_update_radiotap_eht_flags(rx_status,
6141 							      rtap_buf,
6142 							      rtap_len);
6143 
6144 		if ((rtap_len - length) > RADIOTAP_EHT_FLAGS_LEN) {
6145 			qdf_print("length is greater than RADIOTAP_EHT_FLAGS_LEN");
6146 			return 0;
6147 		}
6148 	}
6149 
6150 	put_unaligned_le32(it_present_val, it_present);
6151 	rthdr->it_len = cpu_to_le16(rtap_len);
6152 
6153 	if (headroom_sz < rtap_len) {
6154 		qdf_debug("DEBUG: Not enough space to update radiotap");
6155 		return 0;
6156 	}
6157 
6158 	qdf_nbuf_push_head(nbuf, rtap_len);
6159 	qdf_mem_copy(qdf_nbuf_data(nbuf), rtap_buf, rtap_len);
6160 	return rtap_len;
6161 }
6162 #else
6163 static unsigned int qdf_nbuf_update_radiotap_vht_flags(
6164 					struct mon_rx_status *rx_status,
6165 					int8_t *rtap_buf,
6166 					uint32_t rtap_len)
6167 {
6168 	qdf_err("ERROR: struct ieee80211_radiotap_header not supported");
6169 	return 0;
6170 }
6171 
6172 unsigned int qdf_nbuf_update_radiotap_he_flags(struct mon_rx_status *rx_status,
6173 				      int8_t *rtap_buf, uint32_t rtap_len)
6174 {
6175 	qdf_err("ERROR: struct ieee80211_radiotap_header not supported");
6176 	return 0;
6177 }
6178 
6179 static unsigned int qdf_nbuf_update_radiotap_ampdu_flags(
6180 					struct mon_rx_status *rx_status,
6181 					uint8_t *rtap_buf,
6182 					uint32_t rtap_len)
6183 {
6184 	qdf_err("ERROR: struct ieee80211_radiotap_header not supported");
6185 	return 0;
6186 }
6187 
6188 unsigned int qdf_nbuf_update_radiotap(struct mon_rx_status *rx_status,
6189 				      qdf_nbuf_t nbuf, uint32_t headroom_sz)
6190 {
6191 	qdf_err("ERROR: struct ieee80211_radiotap_header not supported");
6192 	return 0;
6193 }
6194 #endif
6195 qdf_export_symbol(qdf_nbuf_update_radiotap);
6196 
6197 /**
6198  * __qdf_nbuf_reg_free_cb() - register nbuf free callback
6199  * @cb_func_ptr: function pointer to the nbuf free callback
6200  *
6201  * This function registers a callback function for nbuf free.
6202  *
6203  * Return: none
6204  */
6205 void __qdf_nbuf_reg_free_cb(qdf_nbuf_free_t cb_func_ptr)
6206 {
6207 	nbuf_free_cb = cb_func_ptr;
6208 }
6209 
6210 qdf_export_symbol(__qdf_nbuf_reg_free_cb);
6211 
6212 /**
6213  * qdf_nbuf_classify_pkt() - classify packet
6214  * @skb - sk buff
6215  *
6216  * Return: none
6217  */
6218 void qdf_nbuf_classify_pkt(struct sk_buff *skb)
6219 {
6220 	struct ethhdr *eh = (struct ethhdr *)skb->data;
6221 
6222 	/* check destination mac address is broadcast/multicast */
6223 	if (is_broadcast_ether_addr((uint8_t *)eh))
6224 		QDF_NBUF_CB_SET_BCAST(skb);
6225 	else if (is_multicast_ether_addr((uint8_t *)eh))
6226 		QDF_NBUF_CB_SET_MCAST(skb);
6227 
6228 	if (qdf_nbuf_is_ipv4_arp_pkt(skb))
6229 		QDF_NBUF_CB_GET_PACKET_TYPE(skb) =
6230 			QDF_NBUF_CB_PACKET_TYPE_ARP;
6231 	else if (qdf_nbuf_is_ipv4_dhcp_pkt(skb))
6232 		QDF_NBUF_CB_GET_PACKET_TYPE(skb) =
6233 			QDF_NBUF_CB_PACKET_TYPE_DHCP;
6234 	else if (qdf_nbuf_is_ipv4_eapol_pkt(skb))
6235 		QDF_NBUF_CB_GET_PACKET_TYPE(skb) =
6236 			QDF_NBUF_CB_PACKET_TYPE_EAPOL;
6237 	else if (qdf_nbuf_is_ipv4_wapi_pkt(skb))
6238 		QDF_NBUF_CB_GET_PACKET_TYPE(skb) =
6239 			QDF_NBUF_CB_PACKET_TYPE_WAPI;
6240 }
6241 qdf_export_symbol(qdf_nbuf_classify_pkt);
6242 
6243 void __qdf_nbuf_init(__qdf_nbuf_t nbuf)
6244 {
6245 	qdf_nbuf_users_set(&nbuf->users, 1);
6246 	nbuf->data = nbuf->head + NET_SKB_PAD;
6247 	skb_reset_tail_pointer(nbuf);
6248 }
6249 qdf_export_symbol(__qdf_nbuf_init);
6250 
6251 #ifdef WLAN_FEATURE_FASTPATH
6252 void qdf_nbuf_init_fast(qdf_nbuf_t nbuf)
6253 {
6254 	qdf_nbuf_users_set(&nbuf->users, 1);
6255 	nbuf->data = nbuf->head + NET_SKB_PAD;
6256 	skb_reset_tail_pointer(nbuf);
6257 }
6258 qdf_export_symbol(qdf_nbuf_init_fast);
6259 #endif /* WLAN_FEATURE_FASTPATH */
6260 
6261 
6262 #ifdef QDF_NBUF_GLOBAL_COUNT
6263 /**
6264  * __qdf_nbuf_mod_init() - Initialization routine for qdf_nuf
6265  *
6266  * Return void
6267  */
6268 void __qdf_nbuf_mod_init(void)
6269 {
6270 	is_initial_mem_debug_disabled = qdf_mem_debug_config_get();
6271 	qdf_atomic_init(&nbuf_count);
6272 	qdf_debugfs_create_atomic(NBUF_DEBUGFS_NAME, S_IRUSR, NULL, &nbuf_count);
6273 }
6274 
6275 /**
6276  * __qdf_nbuf_mod_exit() - Unintialization routine for qdf_nuf
6277  *
6278  * Return void
6279  */
6280 void __qdf_nbuf_mod_exit(void)
6281 {
6282 }
6283 #endif
6284 
6285 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 4, 0))
6286 QDF_STATUS __qdf_nbuf_move_frag_page_offset(__qdf_nbuf_t nbuf, uint8_t idx,
6287 					    int offset)
6288 {
6289 	unsigned int frag_offset;
6290 	skb_frag_t *frag;
6291 
6292 	if (qdf_unlikely(idx >= __qdf_nbuf_get_nr_frags(nbuf)))
6293 		return QDF_STATUS_E_FAILURE;
6294 
6295 	frag = &skb_shinfo(nbuf)->frags[idx];
6296 	frag_offset = skb_frag_off(frag);
6297 
6298 	frag_offset += offset;
6299 	skb_frag_off_set(frag, frag_offset);
6300 
6301 	__qdf_nbuf_trim_add_frag_size(nbuf, idx, -(offset), 0);
6302 
6303 	return QDF_STATUS_SUCCESS;
6304 }
6305 
6306 #else
6307 QDF_STATUS __qdf_nbuf_move_frag_page_offset(__qdf_nbuf_t nbuf, uint8_t idx,
6308 					    int offset)
6309 {
6310 	uint16_t frag_offset;
6311 	skb_frag_t *frag;
6312 
6313 	if (qdf_unlikely(idx >= __qdf_nbuf_get_nr_frags(nbuf)))
6314 		return QDF_STATUS_E_FAILURE;
6315 
6316 	frag = &skb_shinfo(nbuf)->frags[idx];
6317 	frag_offset = frag->page_offset;
6318 
6319 	frag_offset += offset;
6320 	frag->page_offset = frag_offset;
6321 
6322 	__qdf_nbuf_trim_add_frag_size(nbuf, idx, -(offset), 0);
6323 
6324 	return QDF_STATUS_SUCCESS;
6325 }
6326 #endif
6327 
6328 qdf_export_symbol(__qdf_nbuf_move_frag_page_offset);
6329 
6330 void __qdf_nbuf_remove_frag(__qdf_nbuf_t nbuf,
6331 			    uint16_t idx,
6332 			    uint16_t truesize)
6333 {
6334 	struct page *page;
6335 	uint16_t frag_len;
6336 
6337 	page = skb_frag_page(&skb_shinfo(nbuf)->frags[idx]);
6338 
6339 	if (qdf_unlikely(!page))
6340 		return;
6341 
6342 	frag_len = qdf_nbuf_get_frag_size_by_idx(nbuf, idx);
6343 	put_page(page);
6344 	nbuf->len -= frag_len;
6345 	nbuf->data_len -= frag_len;
6346 	nbuf->truesize -= truesize;
6347 	skb_shinfo(nbuf)->nr_frags--;
6348 }
6349 
6350 qdf_export_symbol(__qdf_nbuf_remove_frag);
6351 
6352 void __qdf_nbuf_add_rx_frag(__qdf_frag_t buf, __qdf_nbuf_t nbuf,
6353 			    int offset, int frag_len,
6354 			    unsigned int truesize, bool take_frag_ref)
6355 {
6356 	struct page *page;
6357 	int frag_offset;
6358 	uint8_t nr_frag;
6359 
6360 	nr_frag = __qdf_nbuf_get_nr_frags(nbuf);
6361 	qdf_assert_always(nr_frag < QDF_NBUF_MAX_FRAGS);
6362 
6363 	page = virt_to_head_page(buf);
6364 	frag_offset = buf - page_address(page);
6365 
6366 	skb_add_rx_frag(nbuf, nr_frag, page,
6367 			(frag_offset + offset),
6368 			frag_len, truesize);
6369 
6370 	if (unlikely(take_frag_ref)) {
6371 		qdf_frag_count_inc(QDF_NBUF_FRAG_DEBUG_COUNT_ONE);
6372 		skb_frag_ref(nbuf, nr_frag);
6373 	}
6374 }
6375 
6376 qdf_export_symbol(__qdf_nbuf_add_rx_frag);
6377 
6378 void __qdf_nbuf_ref_frag(__qdf_frag_t buf)
6379 {
6380 	struct page *page;
6381 	skb_frag_t frag = {0};
6382 
6383 	page = virt_to_head_page(buf);
6384 	__skb_frag_set_page(&frag, page);
6385 
6386 	/*
6387 	 * since __skb_frag_ref() just use page to increase ref
6388 	 * we just decode page alone
6389 	 */
6390 	qdf_frag_count_inc(QDF_NBUF_FRAG_DEBUG_COUNT_ONE);
6391 	__skb_frag_ref(&frag);
6392 }
6393 
6394 qdf_export_symbol(__qdf_nbuf_ref_frag);
6395 
6396 #ifdef NBUF_FRAG_MEMORY_DEBUG
6397 
6398 QDF_STATUS qdf_nbuf_move_frag_page_offset_debug(qdf_nbuf_t nbuf, uint8_t idx,
6399 						int offset, const char *func,
6400 						uint32_t line)
6401 {
6402 	QDF_STATUS result;
6403 	qdf_frag_t p_fragp, n_fragp;
6404 
6405 	p_fragp = qdf_nbuf_get_frag_addr(nbuf, idx);
6406 	result = __qdf_nbuf_move_frag_page_offset(nbuf, idx, offset);
6407 
6408 	if (qdf_likely(is_initial_mem_debug_disabled))
6409 		return result;
6410 
6411 	n_fragp = qdf_nbuf_get_frag_addr(nbuf, idx);
6412 
6413 	/*
6414 	 * Update frag address in frag debug tracker
6415 	 * when frag offset is successfully changed in skb
6416 	 */
6417 	if (result == QDF_STATUS_SUCCESS)
6418 		qdf_frag_debug_update_addr(p_fragp, n_fragp, func, line);
6419 
6420 	return result;
6421 }
6422 
6423 qdf_export_symbol(qdf_nbuf_move_frag_page_offset_debug);
6424 
6425 void qdf_nbuf_add_rx_frag_debug(qdf_frag_t buf, qdf_nbuf_t nbuf,
6426 				int offset, int frag_len,
6427 				unsigned int truesize, bool take_frag_ref,
6428 				const char *func, uint32_t line)
6429 {
6430 	qdf_frag_t fragp;
6431 	uint32_t num_nr_frags;
6432 
6433 	__qdf_nbuf_add_rx_frag(buf, nbuf, offset,
6434 			       frag_len, truesize, take_frag_ref);
6435 
6436 	if (qdf_likely(is_initial_mem_debug_disabled))
6437 		return;
6438 
6439 	num_nr_frags = qdf_nbuf_get_nr_frags(nbuf);
6440 
6441 	qdf_assert_always(num_nr_frags <= QDF_NBUF_MAX_FRAGS);
6442 
6443 	fragp = qdf_nbuf_get_frag_addr(nbuf, num_nr_frags - 1);
6444 
6445 	/* Update frag address in frag debug tracking table */
6446 	if (fragp != buf && !take_frag_ref)
6447 		qdf_frag_debug_update_addr(buf, fragp, func, line);
6448 
6449 	/* Update frag refcount in frag debug tracking table */
6450 	qdf_frag_debug_refcount_inc(fragp, func, line);
6451 }
6452 
6453 qdf_export_symbol(qdf_nbuf_add_rx_frag_debug);
6454 
6455 /**
6456  * qdf_nbuf_ref_frag_debug() - get frag reference
6457  * @buf: Frag pointer needs to be taken reference.
6458  *
6459  * return: void
6460  */
6461 void qdf_nbuf_ref_frag_debug(qdf_frag_t buf, const char *func, uint32_t line)
6462 {
6463 	__qdf_nbuf_ref_frag(buf);
6464 
6465 	if (qdf_likely(is_initial_mem_debug_disabled))
6466 		return;
6467 
6468 	/* Update frag refcount in frag debug tracking table */
6469 	qdf_frag_debug_refcount_inc(buf, func, line);
6470 }
6471 
6472 qdf_export_symbol(qdf_nbuf_ref_frag_debug);
6473 
6474 void qdf_net_buf_debug_acquire_frag(qdf_nbuf_t buf, const char *func,
6475 				    uint32_t line)
6476 {
6477 	uint32_t num_nr_frags;
6478 	uint32_t idx = 0;
6479 	qdf_nbuf_t ext_list;
6480 	qdf_frag_t p_frag;
6481 
6482 	if (qdf_likely(is_initial_mem_debug_disabled))
6483 		return;
6484 
6485 	if (qdf_unlikely(!buf))
6486 		return;
6487 
6488 	/* Take care to update the refcount in the debug entries for frags */
6489 	num_nr_frags = qdf_nbuf_get_nr_frags(buf);
6490 
6491 	qdf_assert_always(num_nr_frags <= QDF_NBUF_MAX_FRAGS);
6492 
6493 	while (idx < num_nr_frags) {
6494 		p_frag = qdf_nbuf_get_frag_addr(buf, idx);
6495 		if (qdf_likely(p_frag))
6496 			qdf_frag_debug_refcount_inc(p_frag, func, line);
6497 		idx++;
6498 	}
6499 
6500 	/**
6501 	 * Take care to update the refcount in the debug entries for the
6502 	 * frags attached to frag_list
6503 	 */
6504 	ext_list = qdf_nbuf_get_ext_list(buf);
6505 	while (ext_list) {
6506 		idx = 0;
6507 		num_nr_frags = qdf_nbuf_get_nr_frags(ext_list);
6508 
6509 		qdf_assert_always(num_nr_frags <= QDF_NBUF_MAX_FRAGS);
6510 
6511 		while (idx < num_nr_frags) {
6512 			p_frag = qdf_nbuf_get_frag_addr(ext_list, idx);
6513 			if (qdf_likely(p_frag))
6514 				qdf_frag_debug_refcount_inc(p_frag, func, line);
6515 			idx++;
6516 		}
6517 		ext_list = qdf_nbuf_queue_next(ext_list);
6518 	}
6519 }
6520 
6521 qdf_export_symbol(qdf_net_buf_debug_acquire_frag);
6522 
6523 void qdf_net_buf_debug_release_frag(qdf_nbuf_t buf, const char *func,
6524 				    uint32_t line)
6525 {
6526 	uint32_t num_nr_frags;
6527 	qdf_nbuf_t ext_list;
6528 	uint32_t idx = 0;
6529 	qdf_frag_t p_frag;
6530 
6531 	if (qdf_likely(is_initial_mem_debug_disabled))
6532 		return;
6533 
6534 	if (qdf_unlikely(!buf))
6535 		return;
6536 
6537 	/**
6538 	 * Decrement refcount for frag debug nodes only when last user
6539 	 * of nbuf calls this API so as to avoid decrementing refcount
6540 	 * on every call expect the last one in case where nbuf has multiple
6541 	 * users
6542 	 */
6543 	if (qdf_nbuf_get_users(buf) > 1)
6544 		return;
6545 
6546 	/* Take care to update the refcount in the debug entries for frags */
6547 	num_nr_frags = qdf_nbuf_get_nr_frags(buf);
6548 
6549 	qdf_assert_always(num_nr_frags <= QDF_NBUF_MAX_FRAGS);
6550 
6551 	while (idx < num_nr_frags) {
6552 		p_frag = qdf_nbuf_get_frag_addr(buf, idx);
6553 		if (qdf_likely(p_frag))
6554 			qdf_frag_debug_refcount_dec(p_frag, func, line);
6555 		idx++;
6556 	}
6557 
6558 	/* Take care to update debug entries for frags attached to frag_list */
6559 	ext_list = qdf_nbuf_get_ext_list(buf);
6560 	while (ext_list) {
6561 		if (qdf_nbuf_get_users(ext_list) == 1) {
6562 			idx = 0;
6563 			num_nr_frags = qdf_nbuf_get_nr_frags(ext_list);
6564 			qdf_assert_always(num_nr_frags <= QDF_NBUF_MAX_FRAGS);
6565 			while (idx < num_nr_frags) {
6566 				p_frag = qdf_nbuf_get_frag_addr(ext_list, idx);
6567 				if (qdf_likely(p_frag))
6568 					qdf_frag_debug_refcount_dec(p_frag,
6569 								    func, line);
6570 				idx++;
6571 			}
6572 		}
6573 		ext_list = qdf_nbuf_queue_next(ext_list);
6574 	}
6575 }
6576 
6577 qdf_export_symbol(qdf_net_buf_debug_release_frag);
6578 
6579 /**
6580  * qdf_nbuf_remove_frag_debug - Remove frag from nbuf
6581  * @nbuf: nbuf  where frag will be removed
6582  * @idx: frag index
6583  * @truesize: truesize of frag
6584  * @func: Caller function name
6585  * @line:  Caller function line no.
6586  *
6587  * Return: QDF_STATUS
6588  *
6589  */
6590 QDF_STATUS
6591 qdf_nbuf_remove_frag_debug(qdf_nbuf_t nbuf,
6592 			   uint16_t idx,
6593 			   uint16_t truesize,
6594 			   const char *func,
6595 			   uint32_t line)
6596 {
6597 	uint16_t num_frags;
6598 	qdf_frag_t frag;
6599 
6600 	if (qdf_unlikely(!nbuf))
6601 		return QDF_STATUS_E_INVAL;
6602 
6603 	num_frags = qdf_nbuf_get_nr_frags(nbuf);
6604 	if (idx >= num_frags)
6605 		return QDF_STATUS_E_INVAL;
6606 
6607 	if (qdf_likely(is_initial_mem_debug_disabled)) {
6608 		__qdf_nbuf_remove_frag(nbuf, idx, truesize);
6609 		return QDF_STATUS_SUCCESS;
6610 	}
6611 
6612 	frag = qdf_nbuf_get_frag_addr(nbuf, idx);
6613 	if (qdf_likely(frag))
6614 		qdf_frag_debug_refcount_dec(frag, func, line);
6615 
6616 	__qdf_nbuf_remove_frag(nbuf, idx, truesize);
6617 
6618 	return QDF_STATUS_SUCCESS;
6619 }
6620 
6621 qdf_export_symbol(qdf_nbuf_remove_frag_debug);
6622 
6623 #endif /* NBUF_FRAG_MEMORY_DEBUG */
6624 
6625 /**
6626  * qdf_get_nbuf_valid_frag() - Get nbuf to store frag
6627  * @nbuf: qdf_nbuf_t master nbuf
6628  *
6629  * Return: qdf_nbuf_t
6630  */
6631 qdf_nbuf_t qdf_get_nbuf_valid_frag(qdf_nbuf_t nbuf)
6632 {
6633 	qdf_nbuf_t last_nbuf;
6634 	uint32_t num_frags;
6635 
6636 	if (qdf_unlikely(!nbuf))
6637 		return NULL;
6638 
6639 	num_frags = qdf_nbuf_get_nr_frags(nbuf);
6640 
6641 	/* Check nbuf has enough memory to store frag memory */
6642 	if (num_frags < QDF_NBUF_MAX_FRAGS)
6643 		return nbuf;
6644 
6645 	if (!__qdf_nbuf_has_fraglist(nbuf))
6646 		return NULL;
6647 
6648 	last_nbuf = __qdf_nbuf_get_last_frag_list_nbuf(nbuf);
6649 	if (qdf_unlikely(!last_nbuf))
6650 		return NULL;
6651 
6652 	num_frags = qdf_nbuf_get_nr_frags(last_nbuf);
6653 	if (num_frags < QDF_NBUF_MAX_FRAGS)
6654 		return last_nbuf;
6655 
6656 	return NULL;
6657 }
6658 
6659 qdf_export_symbol(qdf_get_nbuf_valid_frag);
6660 
6661 /**
6662  * qdf_nbuf_add_frag_debug() - Add frag to nbuf
6663  * @osdev: Device handle
6664  * @buf: Frag pointer needs to be added in nbuf frag
6665  * @nbuf: qdf_nbuf_t where frag will be added
6666  * @offset: Offset in frag to be added to nbuf_frags
6667  * @frag_len: Frag length
6668  * @truesize: truesize
6669  * @take_frag_ref: Whether to take ref for frag or not
6670  *      This bool must be set as per below comdition:
6671  *      1. False: If this frag is being added in any nbuf
6672  *              for the first time after allocation
6673  *      2. True: If frag is already attached part of any
6674  *              nbuf
6675  * @minsize: Minimum size to allocate
6676  * @func: Caller function name
6677  * @line: Caller function line no.
6678  *
6679  * if number of frag exceed maximum frag array. A new nbuf is allocated
6680  * with minimum headroom and frag it added to that nbuf.
6681  * new nbuf is added as frag_list to the master nbuf.
6682  *
6683  * Return: QDF_STATUS
6684  */
6685 QDF_STATUS
6686 qdf_nbuf_add_frag_debug(qdf_device_t osdev, qdf_frag_t buf,
6687 			qdf_nbuf_t nbuf, int offset,
6688 			int frag_len, unsigned int truesize,
6689 			bool take_frag_ref, unsigned int minsize,
6690 			const char *func, uint32_t line)
6691 {
6692 	qdf_nbuf_t cur_nbuf;
6693 	qdf_nbuf_t this_nbuf;
6694 
6695 	cur_nbuf = nbuf;
6696 	this_nbuf = nbuf;
6697 
6698 	if (qdf_unlikely(!frag_len || !buf)) {
6699 		qdf_nofl_err("%s : %d frag[ buf[%pK] len[%d]] not valid\n",
6700 			     func, line,
6701 			     buf, frag_len);
6702 		return QDF_STATUS_E_INVAL;
6703 	}
6704 
6705 	this_nbuf = qdf_get_nbuf_valid_frag(this_nbuf);
6706 
6707 	if (this_nbuf) {
6708 		cur_nbuf = this_nbuf;
6709 	} else {
6710 		/* allocate a dummy mpdu buffer of 64 bytes headroom */
6711 		this_nbuf = qdf_nbuf_alloc(osdev, minsize, minsize, 4, false);
6712 		if (qdf_unlikely(!this_nbuf)) {
6713 			qdf_nofl_err("%s : %d no memory to allocate\n",
6714 				     func, line);
6715 			return QDF_STATUS_E_NOMEM;
6716 		}
6717 	}
6718 
6719 	qdf_nbuf_add_rx_frag(buf, this_nbuf, offset, frag_len, truesize,
6720 			     take_frag_ref);
6721 
6722 	if (this_nbuf != cur_nbuf) {
6723 		/* add new skb to frag list */
6724 		qdf_nbuf_append_ext_list(nbuf, this_nbuf,
6725 					 qdf_nbuf_len(this_nbuf));
6726 	}
6727 
6728 	return QDF_STATUS_SUCCESS;
6729 }
6730 
6731 qdf_export_symbol(qdf_nbuf_add_frag_debug);
6732 
6733 #ifdef MEMORY_DEBUG
6734 void qdf_nbuf_acquire_track_lock(uint32_t index,
6735 				 unsigned long irq_flag)
6736 {
6737 	spin_lock_irqsave(&g_qdf_net_buf_track_lock[index],
6738 			  irq_flag);
6739 }
6740 
6741 void qdf_nbuf_release_track_lock(uint32_t index,
6742 				 unsigned long irq_flag)
6743 {
6744 	spin_unlock_irqrestore(&g_qdf_net_buf_track_lock[index],
6745 			       irq_flag);
6746 }
6747 
6748 QDF_NBUF_TRACK *qdf_nbuf_get_track_tbl(uint32_t index)
6749 {
6750 	return gp_qdf_net_buf_track_tbl[index];
6751 }
6752 #endif /* MEMORY_DEBUG */
6753 
6754 #ifdef ENHANCED_OS_ABSTRACTION
6755 void qdf_nbuf_set_timestamp(qdf_nbuf_t buf)
6756 {
6757 	__qdf_nbuf_set_timestamp(buf);
6758 }
6759 
6760 qdf_export_symbol(qdf_nbuf_set_timestamp);
6761 
6762 uint64_t qdf_nbuf_get_timestamp(qdf_nbuf_t buf)
6763 {
6764 	return __qdf_nbuf_get_timestamp(buf);
6765 }
6766 
6767 qdf_export_symbol(qdf_nbuf_get_timestamp);
6768 
6769 uint64_t qdf_nbuf_get_timestamp_us(qdf_nbuf_t buf)
6770 {
6771 	return __qdf_nbuf_get_timestamp_us(buf);
6772 }
6773 
6774 qdf_export_symbol(qdf_nbuf_get_timestamp_us);
6775 
6776 uint64_t qdf_nbuf_get_timedelta_us(qdf_nbuf_t buf)
6777 {
6778 	return __qdf_nbuf_get_timedelta_us(buf);
6779 }
6780 
6781 qdf_export_symbol(qdf_nbuf_get_timedelta_us);
6782 
6783 uint64_t qdf_nbuf_get_timedelta_ms(qdf_nbuf_t buf)
6784 {
6785 	return __qdf_nbuf_get_timedelta_ms(buf);
6786 }
6787 
6788 qdf_export_symbol(qdf_nbuf_get_timedelta_ms);
6789 
6790 qdf_ktime_t qdf_nbuf_net_timedelta(qdf_ktime_t t)
6791 {
6792 	return __qdf_nbuf_net_timedelta(t);
6793 }
6794 
6795 qdf_export_symbol(qdf_nbuf_net_timedelta);
6796 #endif
6797