xref: /wlan-dirver/qca-wifi-host-cmn/qdf/linux/src/qdf_mem.c (revision d0c05845839e5f2ba5a8dcebe0cd3e4cd4e8dfcf)
1 /*
2  * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /**
21  * DOC: qdf_mem
22  * This file provides OS dependent memory management APIs
23  */
24 
25 #include "qdf_debugfs.h"
26 #include "qdf_mem.h"
27 #include "qdf_nbuf.h"
28 #include "qdf_lock.h"
29 #include "qdf_mc_timer.h"
30 #include "qdf_module.h"
31 #include <qdf_trace.h>
32 #include "qdf_str.h"
33 #include "qdf_talloc.h"
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <qdf_list.h>
38 
39 #ifdef CNSS_MEM_PRE_ALLOC
40 #ifdef CONFIG_CNSS_OUT_OF_TREE
41 #include "cnss_prealloc.h"
42 #else
43 #include <net/cnss_prealloc.h>
44 #endif
45 #endif
46 
47 #if defined(MEMORY_DEBUG) || defined(NBUF_MEMORY_DEBUG)
48 static bool mem_debug_disabled;
49 qdf_declare_param(mem_debug_disabled, bool);
50 qdf_export_symbol(mem_debug_disabled);
51 #endif
52 
53 #ifdef MEMORY_DEBUG
54 static bool is_initial_mem_debug_disabled;
55 #endif
56 
57 /* Preprocessor Definitions and Constants */
58 #define QDF_MEM_MAX_MALLOC (4096 * 1024) /* 4 Mega Bytes */
59 #define QDF_MEM_WARN_THRESHOLD 300 /* ms */
60 #define QDF_DEBUG_STRING_SIZE 512
61 
62 /**
63  * struct __qdf_mem_stat - qdf memory statistics
64  * @kmalloc: total kmalloc allocations
65  * @dma: total dma allocations
66  * @skb: total skb allocations
67  * @skb_total: total skb allocations in host driver
68  * @dp_tx_skb: total Tx skb allocations in datapath
69  * @dp_rx_skb: total Rx skb allocations in datapath
70  * @skb_mem_max: high watermark for skb allocations
71  * @dp_tx_skb_mem_max: high watermark for Tx DP skb allocations
72  * @dp_rx_skb_mem_max: high watermark for Rx DP skb allocations
73  * @dp_tx_skb_count: DP Tx buffer count
74  * @dp_tx_skb_count_max: High watermark for DP Tx buffer count
75  * @dp_rx_skb_count: DP Rx buffer count
76  * @dp_rx_skb_count_max: High watermark for DP Rx buffer count
77  * @tx_descs_outstanding: Current pending Tx descs count
78  * @tx_descs_max: High watermark for pending Tx descs count
79  */
80 static struct __qdf_mem_stat {
81 	qdf_atomic_t kmalloc;
82 	qdf_atomic_t dma;
83 	qdf_atomic_t skb;
84 	qdf_atomic_t skb_total;
85 	qdf_atomic_t dp_tx_skb;
86 	qdf_atomic_t dp_rx_skb;
87 	int32_t skb_mem_max;
88 	int32_t dp_tx_skb_mem_max;
89 	int32_t dp_rx_skb_mem_max;
90 	qdf_atomic_t dp_tx_skb_count;
91 	int32_t dp_tx_skb_count_max;
92 	qdf_atomic_t dp_rx_skb_count;
93 	int32_t dp_rx_skb_count_max;
94 	qdf_atomic_t tx_descs_outstanding;
95 	int32_t tx_descs_max;
96 } qdf_mem_stat;
97 
98 #ifdef MEMORY_DEBUG
99 #include "qdf_debug_domain.h"
100 
101 enum list_type {
102 	LIST_TYPE_MEM = 0,
103 	LIST_TYPE_DMA = 1,
104 	LIST_TYPE_NBUF = 2,
105 	LIST_TYPE_MAX,
106 };
107 
108 /**
109  * major_alloc_priv: private data registered to debugfs entry created to list
110  *                   the list major allocations
111  * @type:            type of the list to be parsed
112  * @threshold:       configured by user by overwriting the respective debugfs
113  *                   sys entry. This is to list the functions which requested
114  *                   memory/dma allocations more than threshold nubmer of times.
115  */
116 struct major_alloc_priv {
117 	enum list_type type;
118 	uint32_t threshold;
119 };
120 
121 static qdf_list_t qdf_mem_domains[QDF_DEBUG_DOMAIN_COUNT];
122 static qdf_spinlock_t qdf_mem_list_lock;
123 
124 static qdf_list_t qdf_mem_dma_domains[QDF_DEBUG_DOMAIN_COUNT];
125 static qdf_spinlock_t qdf_mem_dma_list_lock;
126 
127 static inline qdf_list_t *qdf_mem_list_get(enum qdf_debug_domain domain)
128 {
129 	return &qdf_mem_domains[domain];
130 }
131 
132 static inline qdf_list_t *qdf_mem_dma_list(enum qdf_debug_domain domain)
133 {
134 	return &qdf_mem_dma_domains[domain];
135 }
136 
137 /**
138  * struct qdf_mem_header - memory object to dubug
139  * @node: node to the list
140  * @domain: the active memory domain at time of allocation
141  * @freed: flag set during free, used to detect double frees
142  *	Use uint8_t so we can detect corruption
143  * @func: name of the function the allocation was made from
144  * @line: line number of the file the allocation was made from
145  * @size: size of the allocation in bytes
146  * @caller: Caller of the function for which memory is allocated
147  * @header: a known value, used to detect out-of-bounds access
148  * @time: timestamp at which allocation was made
149  */
150 struct qdf_mem_header {
151 	qdf_list_node_t node;
152 	enum qdf_debug_domain domain;
153 	uint8_t freed;
154 	char func[QDF_MEM_FUNC_NAME_SIZE];
155 	uint32_t line;
156 	uint32_t size;
157 	void *caller;
158 	uint64_t header;
159 	uint64_t time;
160 };
161 
162 /* align the qdf_mem_header to 8 bytes */
163 #define QDF_DMA_MEM_HEADER_ALIGN 8
164 
165 static uint64_t WLAN_MEM_HEADER = 0x6162636465666768;
166 static uint64_t WLAN_MEM_TRAILER = 0x8081828384858687;
167 
168 static inline struct qdf_mem_header *qdf_mem_get_header(void *ptr)
169 {
170 	return (struct qdf_mem_header *)ptr - 1;
171 }
172 
173 /* make sure the header pointer is 8bytes aligned */
174 static inline struct qdf_mem_header *qdf_mem_dma_get_header(void *ptr,
175 							    qdf_size_t size)
176 {
177 	return (struct qdf_mem_header *)
178 				qdf_roundup((size_t)((uint8_t *)ptr + size),
179 					    QDF_DMA_MEM_HEADER_ALIGN);
180 }
181 
182 static inline uint64_t *qdf_mem_get_trailer(struct qdf_mem_header *header)
183 {
184 	return (uint64_t *)((void *)(header + 1) + header->size);
185 }
186 
187 static inline void *qdf_mem_get_ptr(struct qdf_mem_header *header)
188 {
189 	return (void *)(header + 1);
190 }
191 
192 /* number of bytes needed for the qdf memory debug information */
193 #define QDF_MEM_DEBUG_SIZE \
194 	(sizeof(struct qdf_mem_header) + sizeof(WLAN_MEM_TRAILER))
195 
196 /* number of bytes needed for the qdf dma memory debug information */
197 #define QDF_DMA_MEM_DEBUG_SIZE \
198 	(sizeof(struct qdf_mem_header) + QDF_DMA_MEM_HEADER_ALIGN)
199 
200 static void qdf_mem_trailer_init(struct qdf_mem_header *header)
201 {
202 	QDF_BUG(header);
203 	if (!header)
204 		return;
205 	*qdf_mem_get_trailer(header) = WLAN_MEM_TRAILER;
206 }
207 
208 static void qdf_mem_header_init(struct qdf_mem_header *header, qdf_size_t size,
209 				const char *func, uint32_t line, void *caller)
210 {
211 	QDF_BUG(header);
212 	if (!header)
213 		return;
214 
215 	header->domain = qdf_debug_domain_get();
216 	header->freed = false;
217 
218 	qdf_str_lcopy(header->func, func, QDF_MEM_FUNC_NAME_SIZE);
219 
220 	header->line = line;
221 	header->size = size;
222 	header->caller = caller;
223 	header->header = WLAN_MEM_HEADER;
224 	header->time = qdf_get_log_timestamp();
225 }
226 
227 enum qdf_mem_validation_bitmap {
228 	QDF_MEM_BAD_HEADER = 1 << 0,
229 	QDF_MEM_BAD_TRAILER = 1 << 1,
230 	QDF_MEM_BAD_SIZE = 1 << 2,
231 	QDF_MEM_DOUBLE_FREE = 1 << 3,
232 	QDF_MEM_BAD_FREED = 1 << 4,
233 	QDF_MEM_BAD_NODE = 1 << 5,
234 	QDF_MEM_BAD_DOMAIN = 1 << 6,
235 	QDF_MEM_WRONG_DOMAIN = 1 << 7,
236 };
237 
238 static enum qdf_mem_validation_bitmap
239 qdf_mem_trailer_validate(struct qdf_mem_header *header)
240 {
241 	enum qdf_mem_validation_bitmap error_bitmap = 0;
242 
243 	if (*qdf_mem_get_trailer(header) != WLAN_MEM_TRAILER)
244 		error_bitmap |= QDF_MEM_BAD_TRAILER;
245 	return error_bitmap;
246 }
247 
248 static enum qdf_mem_validation_bitmap
249 qdf_mem_header_validate(struct qdf_mem_header *header,
250 			enum qdf_debug_domain domain)
251 {
252 	enum qdf_mem_validation_bitmap error_bitmap = 0;
253 
254 	if (header->header != WLAN_MEM_HEADER)
255 		error_bitmap |= QDF_MEM_BAD_HEADER;
256 
257 	if (header->size > QDF_MEM_MAX_MALLOC)
258 		error_bitmap |= QDF_MEM_BAD_SIZE;
259 
260 	if (header->freed == true)
261 		error_bitmap |= QDF_MEM_DOUBLE_FREE;
262 	else if (header->freed)
263 		error_bitmap |= QDF_MEM_BAD_FREED;
264 
265 	if (!qdf_list_node_in_any_list(&header->node))
266 		error_bitmap |= QDF_MEM_BAD_NODE;
267 
268 	if (header->domain < QDF_DEBUG_DOMAIN_INIT ||
269 	    header->domain >= QDF_DEBUG_DOMAIN_COUNT)
270 		error_bitmap |= QDF_MEM_BAD_DOMAIN;
271 	else if (header->domain != domain)
272 		error_bitmap |= QDF_MEM_WRONG_DOMAIN;
273 
274 	return error_bitmap;
275 }
276 
277 static void
278 qdf_mem_header_assert_valid(struct qdf_mem_header *header,
279 			    enum qdf_debug_domain current_domain,
280 			    enum qdf_mem_validation_bitmap error_bitmap,
281 			    const char *func,
282 			    uint32_t line)
283 {
284 	if (!error_bitmap)
285 		return;
286 
287 	if (error_bitmap & QDF_MEM_BAD_HEADER)
288 		qdf_err("Corrupted memory header 0x%llx (expected 0x%llx)",
289 			header->header, WLAN_MEM_HEADER);
290 
291 	if (error_bitmap & QDF_MEM_BAD_SIZE)
292 		qdf_err("Corrupted memory size %u (expected < %d)",
293 			header->size, QDF_MEM_MAX_MALLOC);
294 
295 	if (error_bitmap & QDF_MEM_BAD_TRAILER)
296 		qdf_err("Corrupted memory trailer 0x%llx (expected 0x%llx)",
297 			*qdf_mem_get_trailer(header), WLAN_MEM_TRAILER);
298 
299 	if (error_bitmap & QDF_MEM_DOUBLE_FREE)
300 		qdf_err("Memory has previously been freed");
301 
302 	if (error_bitmap & QDF_MEM_BAD_FREED)
303 		qdf_err("Corrupted memory freed flag 0x%x", header->freed);
304 
305 	if (error_bitmap & QDF_MEM_BAD_NODE)
306 		qdf_err("Corrupted memory header node or double free");
307 
308 	if (error_bitmap & QDF_MEM_BAD_DOMAIN)
309 		qdf_err("Corrupted memory domain 0x%x", header->domain);
310 
311 	if (error_bitmap & QDF_MEM_WRONG_DOMAIN)
312 		qdf_err("Memory domain mismatch; allocated:%s(%d), current:%s(%d)",
313 			qdf_debug_domain_name(header->domain), header->domain,
314 			qdf_debug_domain_name(current_domain), current_domain);
315 
316 	QDF_MEMDEBUG_PANIC("Fatal memory error detected @ %s:%d", func, line);
317 }
318 
319 /**
320  * struct __qdf_mem_info - memory statistics
321  * @func: the function which allocated memory
322  * @line: the line at which allocation happened
323  * @size: the size of allocation
324  * @caller: Address of the caller function
325  * @count: how many allocations of same type
326  * @time: timestamp at which allocation happened
327  */
328 struct __qdf_mem_info {
329 	char func[QDF_MEM_FUNC_NAME_SIZE];
330 	uint32_t line;
331 	uint32_t size;
332 	void *caller;
333 	uint32_t count;
334 	uint64_t time;
335 };
336 
337 /*
338  * The table depth defines the de-duplication proximity scope.
339  * A deeper table takes more time, so choose any optimum value.
340  */
341 #define QDF_MEM_STAT_TABLE_SIZE 8
342 
343 /**
344  * qdf_mem_debug_print_header() - memory debug header print logic
345  * @print: the print adapter function
346  * @print_priv: the private data to be consumed by @print
347  * @threshold: the threshold value set by user to list top allocations
348  *
349  * Return: None
350  */
351 static void qdf_mem_debug_print_header(qdf_abstract_print print,
352 				       void *print_priv,
353 				       uint32_t threshold)
354 {
355 	if (threshold)
356 		print(print_priv, "APIs requested allocations >= %u no of time",
357 		      threshold);
358 	print(print_priv,
359 	      "--------------------------------------------------------------");
360 	print(print_priv,
361 	      " count    size     total    filename     caller    timestamp");
362 	print(print_priv,
363 	      "--------------------------------------------------------------");
364 }
365 
366 /**
367  * qdf_mem_meta_table_insert() - insert memory metadata into the given table
368  * @table: the memory metadata table to insert into
369  * @meta: the memory metadata to insert
370  *
371  * Return: true if the table is full after inserting, false otherwise
372  */
373 static bool qdf_mem_meta_table_insert(struct __qdf_mem_info *table,
374 				      struct qdf_mem_header *meta)
375 {
376 	int i;
377 
378 	for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
379 		if (!table[i].count) {
380 			qdf_str_lcopy(table[i].func, meta->func,
381 				      QDF_MEM_FUNC_NAME_SIZE);
382 			table[i].line = meta->line;
383 			table[i].size = meta->size;
384 			table[i].count = 1;
385 			table[i].caller = meta->caller;
386 			table[i].time = meta->time;
387 			break;
388 		}
389 
390 		if (qdf_str_eq(table[i].func, meta->func) &&
391 		    table[i].line == meta->line &&
392 		    table[i].size == meta->size &&
393 		    table[i].caller == meta->caller) {
394 			table[i].count++;
395 			break;
396 		}
397 	}
398 
399 	/* return true if the table is now full */
400 	return i >= QDF_MEM_STAT_TABLE_SIZE - 1;
401 }
402 
403 /**
404  * qdf_mem_domain_print() - output agnostic memory domain print logic
405  * @domain: the memory domain to print
406  * @print: the print adapter function
407  * @print_priv: the private data to be consumed by @print
408  * @threshold: the threshold value set by uset to list top allocations
409  * @mem_print: pointer to function which prints the memory allocation data
410  *
411  * Return: None
412  */
413 static void qdf_mem_domain_print(qdf_list_t *domain,
414 				 qdf_abstract_print print,
415 				 void *print_priv,
416 				 uint32_t threshold,
417 				 void (*mem_print)(struct __qdf_mem_info *,
418 						   qdf_abstract_print,
419 						   void *, uint32_t))
420 {
421 	QDF_STATUS status;
422 	struct __qdf_mem_info table[QDF_MEM_STAT_TABLE_SIZE];
423 	qdf_list_node_t *node;
424 
425 	qdf_mem_zero(table, sizeof(table));
426 	qdf_mem_debug_print_header(print, print_priv, threshold);
427 
428 	/* hold lock while inserting to avoid use-after free of the metadata */
429 	qdf_spin_lock(&qdf_mem_list_lock);
430 	status = qdf_list_peek_front(domain, &node);
431 	while (QDF_IS_STATUS_SUCCESS(status)) {
432 		struct qdf_mem_header *meta = (struct qdf_mem_header *)node;
433 		bool is_full = qdf_mem_meta_table_insert(table, meta);
434 
435 		qdf_spin_unlock(&qdf_mem_list_lock);
436 
437 		if (is_full) {
438 			(*mem_print)(table, print, print_priv, threshold);
439 			qdf_mem_zero(table, sizeof(table));
440 		}
441 
442 		qdf_spin_lock(&qdf_mem_list_lock);
443 		status = qdf_list_peek_next(domain, node, &node);
444 	}
445 	qdf_spin_unlock(&qdf_mem_list_lock);
446 
447 	(*mem_print)(table, print, print_priv, threshold);
448 }
449 
450 /**
451  * qdf_mem_meta_table_print() - memory metadata table print logic
452  * @table: the memory metadata table to print
453  * @print: the print adapter function
454  * @print_priv: the private data to be consumed by @print
455  * @threshold: the threshold value set by user to list top allocations
456  *
457  * Return: None
458  */
459 static void qdf_mem_meta_table_print(struct __qdf_mem_info *table,
460 				     qdf_abstract_print print,
461 				     void *print_priv,
462 				     uint32_t threshold)
463 {
464 	int i;
465 	char debug_str[QDF_DEBUG_STRING_SIZE];
466 	size_t len = 0;
467 	char *debug_prefix = "WLAN_BUG_RCA: memory leak detected";
468 
469 	len += qdf_scnprintf(debug_str, sizeof(debug_str) - len,
470 			     "%s", debug_prefix);
471 
472 	for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
473 		if (!table[i].count)
474 			break;
475 
476 		print(print_priv,
477 		      "%6u x %5u = %7uB @ %s:%u   %pS %llu",
478 		      table[i].count,
479 		      table[i].size,
480 		      table[i].count * table[i].size,
481 		      table[i].func,
482 		      table[i].line, table[i].caller,
483 		      table[i].time);
484 		len += qdf_scnprintf(debug_str + len,
485 				     sizeof(debug_str) - len,
486 				     " @ %s:%u %pS",
487 				     table[i].func,
488 				     table[i].line,
489 				     table[i].caller);
490 	}
491 	print(print_priv, "%s", debug_str);
492 }
493 
494 static int qdf_err_printer(void *priv, const char *fmt, ...)
495 {
496 	va_list args;
497 
498 	va_start(args, fmt);
499 	QDF_VTRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, (char *)fmt, args);
500 	va_end(args);
501 
502 	return 0;
503 }
504 
505 #endif /* MEMORY_DEBUG */
506 
507 bool prealloc_disabled = 1;
508 qdf_declare_param(prealloc_disabled, bool);
509 qdf_export_symbol(prealloc_disabled);
510 
511 int qdf_mem_malloc_flags(void)
512 {
513 	if (in_interrupt() || irqs_disabled() || in_atomic())
514 		return GFP_ATOMIC;
515 
516 	return GFP_KERNEL;
517 }
518 
519 qdf_export_symbol(qdf_mem_malloc_flags);
520 
521 /**
522  * qdf_prealloc_disabled_config_get() - Get the user configuration of
523  *                                       prealloc_disabled
524  *
525  * Return: value of prealloc_disabled qdf module argument
526  */
527 bool qdf_prealloc_disabled_config_get(void)
528 {
529 	return prealloc_disabled;
530 }
531 
532 qdf_export_symbol(qdf_prealloc_disabled_config_get);
533 
534 #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
535 /**
536  * qdf_prealloc_disabled_config_set() - Set prealloc_disabled
537  * @str_value: value of the module param
538  *
539  * This function will set qdf module param prealloc_disabled
540  *
541  * Return: QDF_STATUS_SUCCESS on Success
542  */
543 QDF_STATUS qdf_prealloc_disabled_config_set(const char *str_value)
544 {
545 	QDF_STATUS status;
546 
547 	status = qdf_bool_parse(str_value, &prealloc_disabled);
548 	return status;
549 }
550 #endif
551 
552 #if defined WLAN_DEBUGFS
553 
554 /* Debugfs root directory for qdf_mem */
555 static struct dentry *qdf_mem_debugfs_root;
556 
557 #ifdef MEMORY_DEBUG
558 static int seq_printf_printer(void *priv, const char *fmt, ...)
559 {
560 	struct seq_file *file = priv;
561 	va_list args;
562 
563 	va_start(args, fmt);
564 	seq_vprintf(file, fmt, args);
565 	seq_puts(file, "\n");
566 	va_end(args);
567 
568 	return 0;
569 }
570 
571 /**
572  * qdf_print_major_alloc() - memory metadata table print logic
573  * @table: the memory metadata table to print
574  * @print: the print adapter function
575  * @print_priv: the private data to be consumed by @print
576  * @threshold: the threshold value set by uset to list top allocations
577  *
578  * Return: None
579  */
580 static void qdf_print_major_alloc(struct __qdf_mem_info *table,
581 				  qdf_abstract_print print,
582 				  void *print_priv,
583 				  uint32_t threshold)
584 {
585 	int i;
586 
587 	for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
588 		if (!table[i].count)
589 			break;
590 		if (table[i].count >= threshold)
591 			print(print_priv,
592 			      "%6u x %5u = %7uB @ %s:%u   %pS %llu",
593 			      table[i].count,
594 			      table[i].size,
595 			      table[i].count * table[i].size,
596 			      table[i].func,
597 			      table[i].line, table[i].caller,
598 			      table[i].time);
599 	}
600 }
601 
602 /**
603  * qdf_mem_seq_start() - sequential callback to start
604  * @seq: seq_file handle
605  * @pos: The start position of the sequence
606  *
607  * Return: iterator pointer, or NULL if iteration is complete
608  */
609 static void *qdf_mem_seq_start(struct seq_file *seq, loff_t *pos)
610 {
611 	enum qdf_debug_domain domain = *pos;
612 
613 	if (!qdf_debug_domain_valid(domain))
614 		return NULL;
615 
616 	/* just use the current position as our iterator */
617 	return pos;
618 }
619 
620 /**
621  * qdf_mem_seq_next() - next sequential callback
622  * @seq: seq_file handle
623  * @v: the current iterator
624  * @pos: the current position
625  *
626  * Get the next node and release previous node.
627  *
628  * Return: iterator pointer, or NULL if iteration is complete
629  */
630 static void *qdf_mem_seq_next(struct seq_file *seq, void *v, loff_t *pos)
631 {
632 	++*pos;
633 
634 	return qdf_mem_seq_start(seq, pos);
635 }
636 
637 /**
638  * qdf_mem_seq_stop() - stop sequential callback
639  * @seq: seq_file handle
640  * @v: current iterator
641  *
642  * Return: None
643  */
644 static void qdf_mem_seq_stop(struct seq_file *seq, void *v) { }
645 
646 /**
647  * qdf_mem_seq_show() - print sequential callback
648  * @seq: seq_file handle
649  * @v: current iterator
650  *
651  * Return: 0 - success
652  */
653 static int qdf_mem_seq_show(struct seq_file *seq, void *v)
654 {
655 	enum qdf_debug_domain domain_id = *(enum qdf_debug_domain *)v;
656 
657 	seq_printf(seq, "\n%s Memory Domain (Id %d)\n",
658 		   qdf_debug_domain_name(domain_id), domain_id);
659 	qdf_mem_domain_print(qdf_mem_list_get(domain_id),
660 			     seq_printf_printer,
661 			     seq,
662 			     0,
663 			     qdf_mem_meta_table_print);
664 
665 	return 0;
666 }
667 
668 /* sequential file operation table */
669 static const struct seq_operations qdf_mem_seq_ops = {
670 	.start = qdf_mem_seq_start,
671 	.next  = qdf_mem_seq_next,
672 	.stop  = qdf_mem_seq_stop,
673 	.show  = qdf_mem_seq_show,
674 };
675 
676 
677 static int qdf_mem_debugfs_open(struct inode *inode, struct file *file)
678 {
679 	return seq_open(file, &qdf_mem_seq_ops);
680 }
681 
682 /**
683  * qdf_major_alloc_show() - print sequential callback
684  * @seq: seq_file handle
685  * @v: current iterator
686  *
687  * Return: 0 - success
688  */
689 static int qdf_major_alloc_show(struct seq_file *seq, void *v)
690 {
691 	enum qdf_debug_domain domain_id = *(enum qdf_debug_domain *)v;
692 	struct major_alloc_priv *priv;
693 	qdf_list_t *list;
694 
695 	priv = (struct major_alloc_priv *)seq->private;
696 	seq_printf(seq, "\n%s Memory Domain (Id %d)\n",
697 		   qdf_debug_domain_name(domain_id), domain_id);
698 
699 	switch (priv->type) {
700 	case LIST_TYPE_MEM:
701 		list = qdf_mem_list_get(domain_id);
702 		break;
703 	case LIST_TYPE_DMA:
704 		list = qdf_mem_dma_list(domain_id);
705 		break;
706 	default:
707 		list = NULL;
708 		break;
709 	}
710 
711 	if (list)
712 		qdf_mem_domain_print(list,
713 				     seq_printf_printer,
714 				     seq,
715 				     priv->threshold,
716 				     qdf_print_major_alloc);
717 
718 	return 0;
719 }
720 
721 /* sequential file operation table created to track major allocs */
722 static const struct seq_operations qdf_major_allocs_seq_ops = {
723 	.start = qdf_mem_seq_start,
724 	.next = qdf_mem_seq_next,
725 	.stop = qdf_mem_seq_stop,
726 	.show = qdf_major_alloc_show,
727 };
728 
729 static int qdf_major_allocs_open(struct inode *inode, struct file *file)
730 {
731 	void *private = inode->i_private;
732 	struct seq_file *seq;
733 	int rc;
734 
735 	rc = seq_open(file, &qdf_major_allocs_seq_ops);
736 	if (rc == 0) {
737 		seq = file->private_data;
738 		seq->private = private;
739 	}
740 	return rc;
741 }
742 
743 static ssize_t qdf_major_alloc_set_threshold(struct file *file,
744 					     const char __user *user_buf,
745 					     size_t count,
746 					     loff_t *pos)
747 {
748 	char buf[32];
749 	ssize_t buf_size;
750 	uint32_t threshold;
751 	struct seq_file *seq = file->private_data;
752 	struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
753 
754 	buf_size = min(count, (sizeof(buf) - 1));
755 	if (buf_size <= 0)
756 		return 0;
757 	if (copy_from_user(buf, user_buf, buf_size))
758 		return -EFAULT;
759 	buf[buf_size] = '\0';
760 	if (!kstrtou32(buf, 10, &threshold))
761 		priv->threshold = threshold;
762 	return buf_size;
763 }
764 
765 /**
766  * qdf_print_major_nbuf_allocs() - output agnostic nbuf print logic
767  * @threshold: the threshold value set by uset to list top allocations
768  * @print: the print adapter function
769  * @print_priv: the private data to be consumed by @print
770  * @mem_print: pointer to function which prints the memory allocation data
771  *
772  * Return: None
773  */
774 static void
775 qdf_print_major_nbuf_allocs(uint32_t threshold,
776 			    qdf_abstract_print print,
777 			    void *print_priv,
778 			    void (*mem_print)(struct __qdf_mem_info *,
779 					      qdf_abstract_print,
780 					      void *, uint32_t))
781 {
782 	uint32_t nbuf_iter;
783 	unsigned long irq_flag = 0;
784 	QDF_NBUF_TRACK *p_node;
785 	QDF_NBUF_TRACK *p_prev;
786 	struct __qdf_mem_info table[QDF_MEM_STAT_TABLE_SIZE];
787 	struct qdf_mem_header meta;
788 	bool is_full;
789 
790 	qdf_mem_zero(table, sizeof(table));
791 	qdf_mem_debug_print_header(print, print_priv, threshold);
792 
793 	if (is_initial_mem_debug_disabled)
794 		return;
795 
796 	qdf_rl_info("major nbuf print with threshold %u", threshold);
797 
798 	for (nbuf_iter = 0; nbuf_iter < QDF_NET_BUF_TRACK_MAX_SIZE;
799 	     nbuf_iter++) {
800 		qdf_nbuf_acquire_track_lock(nbuf_iter, irq_flag);
801 		p_node = qdf_nbuf_get_track_tbl(nbuf_iter);
802 		while (p_node) {
803 			meta.line = p_node->line_num;
804 			meta.size = p_node->size;
805 			meta.caller = NULL;
806 			meta.time = p_node->time;
807 			qdf_str_lcopy(meta.func, p_node->func_name,
808 				      QDF_MEM_FUNC_NAME_SIZE);
809 
810 			is_full = qdf_mem_meta_table_insert(table, &meta);
811 
812 			if (is_full) {
813 				(*mem_print)(table, print,
814 					     print_priv, threshold);
815 				qdf_mem_zero(table, sizeof(table));
816 			}
817 
818 			p_prev = p_node;
819 			p_node = p_node->p_next;
820 		}
821 		qdf_nbuf_release_track_lock(nbuf_iter, irq_flag);
822 	}
823 
824 	(*mem_print)(table, print, print_priv, threshold);
825 
826 	qdf_rl_info("major nbuf print end");
827 }
828 
829 /**
830  * qdf_major_nbuf_alloc_show() - print sequential callback
831  * @seq: seq_file handle
832  * @v: current iterator
833  *
834  * Return: 0 - success
835  */
836 static int qdf_major_nbuf_alloc_show(struct seq_file *seq, void *v)
837 {
838 	struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
839 
840 	if (!priv) {
841 		qdf_err("priv is null");
842 		return -EINVAL;
843 	}
844 
845 	qdf_print_major_nbuf_allocs(priv->threshold,
846 				    seq_printf_printer,
847 				    seq,
848 				    qdf_print_major_alloc);
849 
850 	return 0;
851 }
852 
853 /**
854  * qdf_nbuf_seq_start() - sequential callback to start
855  * @seq: seq_file handle
856  * @pos: The start position of the sequence
857  *
858  * Return: iterator pointer, or NULL if iteration is complete
859  */
860 static void *qdf_nbuf_seq_start(struct seq_file *seq, loff_t *pos)
861 {
862 	enum qdf_debug_domain domain = *pos;
863 
864 	if (domain > QDF_DEBUG_NBUF_DOMAIN)
865 		return NULL;
866 
867 	return pos;
868 }
869 
870 /**
871  * qdf_nbuf_seq_next() - next sequential callback
872  * @seq: seq_file handle
873  * @v: the current iterator
874  * @pos: the current position
875  *
876  * Get the next node and release previous node.
877  *
878  * Return: iterator pointer, or NULL if iteration is complete
879  */
880 static void *qdf_nbuf_seq_next(struct seq_file *seq, void *v, loff_t *pos)
881 {
882 	++*pos;
883 
884 	return qdf_nbuf_seq_start(seq, pos);
885 }
886 
887 /**
888  * qdf_nbuf_seq_stop() - stop sequential callback
889  * @seq: seq_file handle
890  * @v: current iterator
891  *
892  * Return: None
893  */
894 static void qdf_nbuf_seq_stop(struct seq_file *seq, void *v) { }
895 
896 /* sequential file operation table created to track major skb allocs */
897 static const struct seq_operations qdf_major_nbuf_allocs_seq_ops = {
898 	.start = qdf_nbuf_seq_start,
899 	.next = qdf_nbuf_seq_next,
900 	.stop = qdf_nbuf_seq_stop,
901 	.show = qdf_major_nbuf_alloc_show,
902 };
903 
904 static int qdf_major_nbuf_allocs_open(struct inode *inode, struct file *file)
905 {
906 	void *private = inode->i_private;
907 	struct seq_file *seq;
908 	int rc;
909 
910 	rc = seq_open(file, &qdf_major_nbuf_allocs_seq_ops);
911 	if (rc == 0) {
912 		seq = file->private_data;
913 		seq->private = private;
914 	}
915 	return rc;
916 }
917 
918 static ssize_t qdf_major_nbuf_alloc_set_threshold(struct file *file,
919 						  const char __user *user_buf,
920 						  size_t count,
921 						  loff_t *pos)
922 {
923 	char buf[32];
924 	ssize_t buf_size;
925 	uint32_t threshold;
926 	struct seq_file *seq = file->private_data;
927 	struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
928 
929 	buf_size = min(count, (sizeof(buf) - 1));
930 	if (buf_size <= 0)
931 		return 0;
932 	if (copy_from_user(buf, user_buf, buf_size))
933 		return -EFAULT;
934 	buf[buf_size] = '\0';
935 	if (!kstrtou32(buf, 10, &threshold))
936 		priv->threshold = threshold;
937 	return buf_size;
938 }
939 
940 /* file operation table for listing major allocs */
941 static const struct file_operations fops_qdf_major_allocs = {
942 	.owner = THIS_MODULE,
943 	.open = qdf_major_allocs_open,
944 	.read = seq_read,
945 	.llseek = seq_lseek,
946 	.release = seq_release,
947 	.write = qdf_major_alloc_set_threshold,
948 };
949 
950 /* debugfs file operation table */
951 static const struct file_operations fops_qdf_mem_debugfs = {
952 	.owner = THIS_MODULE,
953 	.open = qdf_mem_debugfs_open,
954 	.read = seq_read,
955 	.llseek = seq_lseek,
956 	.release = seq_release,
957 };
958 
959 /* file operation table for listing major allocs */
960 static const struct file_operations fops_qdf_nbuf_major_allocs = {
961 	.owner = THIS_MODULE,
962 	.open = qdf_major_nbuf_allocs_open,
963 	.read = seq_read,
964 	.llseek = seq_lseek,
965 	.release = seq_release,
966 	.write = qdf_major_nbuf_alloc_set_threshold,
967 };
968 
969 static struct major_alloc_priv mem_priv = {
970 	/* List type set to mem */
971 	LIST_TYPE_MEM,
972 	/* initial threshold to list APIs which allocates mem >= 50 times */
973 	50
974 };
975 
976 static struct major_alloc_priv dma_priv = {
977 	/* List type set to DMA */
978 	LIST_TYPE_DMA,
979 	/* initial threshold to list APIs which allocates dma >= 50 times */
980 	50
981 };
982 
983 static struct major_alloc_priv nbuf_priv = {
984 	/* List type set to NBUF */
985 	LIST_TYPE_NBUF,
986 	/* initial threshold to list APIs which allocates nbuf >= 50 times */
987 	50
988 };
989 
990 static QDF_STATUS qdf_mem_debug_debugfs_init(void)
991 {
992 	if (is_initial_mem_debug_disabled)
993 		return QDF_STATUS_SUCCESS;
994 
995 	if (!qdf_mem_debugfs_root)
996 		return QDF_STATUS_E_FAILURE;
997 
998 	debugfs_create_file("list",
999 			    S_IRUSR,
1000 			    qdf_mem_debugfs_root,
1001 			    NULL,
1002 			    &fops_qdf_mem_debugfs);
1003 
1004 	debugfs_create_file("major_mem_allocs",
1005 			    0600,
1006 			    qdf_mem_debugfs_root,
1007 			    &mem_priv,
1008 			    &fops_qdf_major_allocs);
1009 
1010 	debugfs_create_file("major_dma_allocs",
1011 			    0600,
1012 			    qdf_mem_debugfs_root,
1013 			    &dma_priv,
1014 			    &fops_qdf_major_allocs);
1015 
1016 	debugfs_create_file("major_nbuf_allocs",
1017 			    0600,
1018 			    qdf_mem_debugfs_root,
1019 			    &nbuf_priv,
1020 			    &fops_qdf_nbuf_major_allocs);
1021 
1022 	return QDF_STATUS_SUCCESS;
1023 }
1024 
1025 static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
1026 {
1027 	return QDF_STATUS_SUCCESS;
1028 }
1029 
1030 #else /* MEMORY_DEBUG */
1031 
1032 static QDF_STATUS qdf_mem_debug_debugfs_init(void)
1033 {
1034 	return QDF_STATUS_E_NOSUPPORT;
1035 }
1036 
1037 static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
1038 {
1039 	return QDF_STATUS_E_NOSUPPORT;
1040 }
1041 
1042 #endif /* MEMORY_DEBUG */
1043 
1044 
1045 static void qdf_mem_debugfs_exit(void)
1046 {
1047 	debugfs_remove_recursive(qdf_mem_debugfs_root);
1048 	qdf_mem_debugfs_root = NULL;
1049 }
1050 
1051 static QDF_STATUS qdf_mem_debugfs_init(void)
1052 {
1053 	struct dentry *qdf_debugfs_root = qdf_debugfs_get_root();
1054 
1055 	if (!qdf_debugfs_root)
1056 		return QDF_STATUS_E_FAILURE;
1057 
1058 	qdf_mem_debugfs_root = debugfs_create_dir("mem", qdf_debugfs_root);
1059 
1060 	if (!qdf_mem_debugfs_root)
1061 		return QDF_STATUS_E_FAILURE;
1062 
1063 
1064 	debugfs_create_atomic_t("kmalloc",
1065 				S_IRUSR,
1066 				qdf_mem_debugfs_root,
1067 				&qdf_mem_stat.kmalloc);
1068 
1069 	debugfs_create_atomic_t("dma",
1070 				S_IRUSR,
1071 				qdf_mem_debugfs_root,
1072 				&qdf_mem_stat.dma);
1073 
1074 	debugfs_create_atomic_t("skb",
1075 				S_IRUSR,
1076 				qdf_mem_debugfs_root,
1077 				&qdf_mem_stat.skb);
1078 
1079 	return QDF_STATUS_SUCCESS;
1080 }
1081 
1082 #else /* WLAN_DEBUGFS */
1083 
1084 static QDF_STATUS qdf_mem_debugfs_init(void)
1085 {
1086 	return QDF_STATUS_E_NOSUPPORT;
1087 }
1088 static void qdf_mem_debugfs_exit(void) {}
1089 
1090 
1091 static QDF_STATUS qdf_mem_debug_debugfs_init(void)
1092 {
1093 	return QDF_STATUS_E_NOSUPPORT;
1094 }
1095 
1096 static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
1097 {
1098 	return QDF_STATUS_E_NOSUPPORT;
1099 }
1100 
1101 #endif /* WLAN_DEBUGFS */
1102 
1103 void qdf_mem_kmalloc_inc(qdf_size_t size)
1104 {
1105 	qdf_atomic_add(size, &qdf_mem_stat.kmalloc);
1106 }
1107 
1108 static void qdf_mem_dma_inc(qdf_size_t size)
1109 {
1110 	qdf_atomic_add(size, &qdf_mem_stat.dma);
1111 }
1112 
1113 #ifdef CONFIG_WLAN_SYSFS_MEM_STATS
1114 void qdf_mem_skb_inc(qdf_size_t size)
1115 {
1116 	qdf_atomic_add(size, &qdf_mem_stat.skb);
1117 }
1118 
1119 void qdf_mem_skb_dec(qdf_size_t size)
1120 {
1121 	qdf_atomic_sub(size, &qdf_mem_stat.skb);
1122 }
1123 
1124 void qdf_mem_skb_total_inc(qdf_size_t size)
1125 {
1126 	int32_t skb_mem_max = 0;
1127 
1128 	qdf_atomic_add(size, &qdf_mem_stat.skb_total);
1129 	skb_mem_max = qdf_atomic_read(&qdf_mem_stat.skb_total);
1130 	if (qdf_mem_stat.skb_mem_max < skb_mem_max)
1131 		qdf_mem_stat.skb_mem_max = skb_mem_max;
1132 }
1133 
1134 void qdf_mem_skb_total_dec(qdf_size_t size)
1135 {
1136 	qdf_atomic_sub(size, &qdf_mem_stat.skb_total);
1137 }
1138 
1139 void qdf_mem_dp_tx_skb_inc(qdf_size_t size)
1140 {
1141 	int32_t curr_dp_tx_skb_mem_max = 0;
1142 
1143 	qdf_atomic_add(size, &qdf_mem_stat.dp_tx_skb);
1144 	curr_dp_tx_skb_mem_max = qdf_atomic_read(&qdf_mem_stat.dp_tx_skb);
1145 	if (qdf_mem_stat.dp_tx_skb_mem_max < curr_dp_tx_skb_mem_max)
1146 		qdf_mem_stat.dp_tx_skb_mem_max = curr_dp_tx_skb_mem_max;
1147 }
1148 
1149 void qdf_mem_dp_tx_skb_dec(qdf_size_t size)
1150 {
1151 	qdf_atomic_sub(size, &qdf_mem_stat.dp_tx_skb);
1152 }
1153 
1154 void qdf_mem_dp_rx_skb_inc(qdf_size_t size)
1155 {
1156 	int32_t curr_dp_rx_skb_mem_max = 0;
1157 
1158 	qdf_atomic_add(size, &qdf_mem_stat.dp_rx_skb);
1159 	curr_dp_rx_skb_mem_max = qdf_atomic_read(&qdf_mem_stat.dp_rx_skb);
1160 	if (qdf_mem_stat.dp_rx_skb_mem_max < curr_dp_rx_skb_mem_max)
1161 		qdf_mem_stat.dp_rx_skb_mem_max = curr_dp_rx_skb_mem_max;
1162 }
1163 
1164 void qdf_mem_dp_rx_skb_dec(qdf_size_t size)
1165 {
1166 	qdf_atomic_sub(size, &qdf_mem_stat.dp_rx_skb);
1167 }
1168 
1169 void qdf_mem_dp_tx_skb_cnt_inc(void)
1170 {
1171 	int32_t curr_dp_tx_skb_count_max = 0;
1172 
1173 	qdf_atomic_add(1, &qdf_mem_stat.dp_tx_skb_count);
1174 	curr_dp_tx_skb_count_max =
1175 		qdf_atomic_read(&qdf_mem_stat.dp_tx_skb_count);
1176 	if (qdf_mem_stat.dp_tx_skb_count_max < curr_dp_tx_skb_count_max)
1177 		qdf_mem_stat.dp_tx_skb_count_max = curr_dp_tx_skb_count_max;
1178 }
1179 
1180 void qdf_mem_dp_tx_skb_cnt_dec(void)
1181 {
1182 	qdf_atomic_sub(1, &qdf_mem_stat.dp_tx_skb_count);
1183 }
1184 
1185 void qdf_mem_dp_rx_skb_cnt_inc(void)
1186 {
1187 	int32_t curr_dp_rx_skb_count_max = 0;
1188 
1189 	qdf_atomic_add(1, &qdf_mem_stat.dp_rx_skb_count);
1190 	curr_dp_rx_skb_count_max =
1191 		qdf_atomic_read(&qdf_mem_stat.dp_rx_skb_count);
1192 	if (qdf_mem_stat.dp_rx_skb_count_max < curr_dp_rx_skb_count_max)
1193 		qdf_mem_stat.dp_rx_skb_count_max = curr_dp_rx_skb_count_max;
1194 }
1195 
1196 void qdf_mem_dp_rx_skb_cnt_dec(void)
1197 {
1198 	qdf_atomic_sub(1, &qdf_mem_stat.dp_rx_skb_count);
1199 }
1200 #endif
1201 
1202 void qdf_mem_kmalloc_dec(qdf_size_t size)
1203 {
1204 	qdf_atomic_sub(size, &qdf_mem_stat.kmalloc);
1205 }
1206 
1207 static inline void qdf_mem_dma_dec(qdf_size_t size)
1208 {
1209 	qdf_atomic_sub(size, &qdf_mem_stat.dma);
1210 }
1211 
1212 /**
1213  * __qdf_mempool_init() - Create and initialize memory pool
1214  *
1215  * @osdev: platform device object
1216  * @pool_addr: address of the pool created
1217  * @elem_cnt: no. of elements in pool
1218  * @elem_size: size of each pool element in bytes
1219  * @flags: flags
1220  *
1221  * return: Handle to memory pool or NULL if allocation failed
1222  */
1223 int __qdf_mempool_init(qdf_device_t osdev, __qdf_mempool_t *pool_addr,
1224 		       int elem_cnt, size_t elem_size, u_int32_t flags)
1225 {
1226 	__qdf_mempool_ctxt_t *new_pool = NULL;
1227 	u_int32_t align = L1_CACHE_BYTES;
1228 	unsigned long aligned_pool_mem;
1229 	int pool_id;
1230 	int i;
1231 
1232 	if (prealloc_disabled) {
1233 		/* TBD: We can maintain a list of pools in qdf_device_t
1234 		 * to help debugging
1235 		 * when pre-allocation is not enabled
1236 		 */
1237 		new_pool = (__qdf_mempool_ctxt_t *)
1238 			kmalloc(sizeof(__qdf_mempool_ctxt_t), GFP_KERNEL);
1239 		if (!new_pool)
1240 			return QDF_STATUS_E_NOMEM;
1241 
1242 		memset(new_pool, 0, sizeof(*new_pool));
1243 		/* TBD: define flags for zeroing buffers etc */
1244 		new_pool->flags = flags;
1245 		new_pool->elem_size = elem_size;
1246 		new_pool->max_elem = elem_cnt;
1247 		*pool_addr = new_pool;
1248 		return 0;
1249 	}
1250 
1251 	for (pool_id = 0; pool_id < MAX_MEM_POOLS; pool_id++) {
1252 		if (!osdev->mem_pool[pool_id])
1253 			break;
1254 	}
1255 
1256 	if (pool_id == MAX_MEM_POOLS)
1257 		return -ENOMEM;
1258 
1259 	new_pool = osdev->mem_pool[pool_id] = (__qdf_mempool_ctxt_t *)
1260 		kmalloc(sizeof(__qdf_mempool_ctxt_t), GFP_KERNEL);
1261 	if (!new_pool)
1262 		return -ENOMEM;
1263 
1264 	memset(new_pool, 0, sizeof(*new_pool));
1265 	/* TBD: define flags for zeroing buffers etc */
1266 	new_pool->flags = flags;
1267 	new_pool->pool_id = pool_id;
1268 
1269 	/* Round up the element size to cacheline */
1270 	new_pool->elem_size = roundup(elem_size, L1_CACHE_BYTES);
1271 	new_pool->mem_size = elem_cnt * new_pool->elem_size +
1272 				((align)?(align - 1):0);
1273 
1274 	new_pool->pool_mem = kzalloc(new_pool->mem_size, GFP_KERNEL);
1275 	if (!new_pool->pool_mem) {
1276 			/* TBD: Check if we need get_free_pages above */
1277 		kfree(new_pool);
1278 		osdev->mem_pool[pool_id] = NULL;
1279 		return -ENOMEM;
1280 	}
1281 
1282 	spin_lock_init(&new_pool->lock);
1283 
1284 	/* Initialize free list */
1285 	aligned_pool_mem = (unsigned long)(new_pool->pool_mem) +
1286 			((align) ? (unsigned long)(new_pool->pool_mem)%align:0);
1287 	STAILQ_INIT(&new_pool->free_list);
1288 
1289 	for (i = 0; i < elem_cnt; i++)
1290 		STAILQ_INSERT_TAIL(&(new_pool->free_list),
1291 			(mempool_elem_t *)(aligned_pool_mem +
1292 			(new_pool->elem_size * i)), mempool_entry);
1293 
1294 
1295 	new_pool->free_cnt = elem_cnt;
1296 	*pool_addr = new_pool;
1297 	return 0;
1298 }
1299 qdf_export_symbol(__qdf_mempool_init);
1300 
1301 /**
1302  * __qdf_mempool_destroy() - Destroy memory pool
1303  * @osdev: platform device object
1304  * @Handle: to memory pool
1305  *
1306  * Returns: none
1307  */
1308 void __qdf_mempool_destroy(qdf_device_t osdev, __qdf_mempool_t pool)
1309 {
1310 	int pool_id = 0;
1311 
1312 	if (!pool)
1313 		return;
1314 
1315 	if (prealloc_disabled) {
1316 		kfree(pool);
1317 		return;
1318 	}
1319 
1320 	pool_id = pool->pool_id;
1321 
1322 	/* TBD: Check if free count matches elem_cnt if debug is enabled */
1323 	kfree(pool->pool_mem);
1324 	kfree(pool);
1325 	osdev->mem_pool[pool_id] = NULL;
1326 }
1327 qdf_export_symbol(__qdf_mempool_destroy);
1328 
1329 /**
1330  * __qdf_mempool_alloc() - Allocate an element memory pool
1331  *
1332  * @osdev: platform device object
1333  * @Handle: to memory pool
1334  *
1335  * Return: Pointer to the allocated element or NULL if the pool is empty
1336  */
1337 void *__qdf_mempool_alloc(qdf_device_t osdev, __qdf_mempool_t pool)
1338 {
1339 	void *buf = NULL;
1340 
1341 	if (!pool)
1342 		return NULL;
1343 
1344 	if (prealloc_disabled)
1345 		return  qdf_mem_malloc(pool->elem_size);
1346 
1347 	spin_lock_bh(&pool->lock);
1348 
1349 	buf = STAILQ_FIRST(&pool->free_list);
1350 	if (buf) {
1351 		STAILQ_REMOVE_HEAD(&pool->free_list, mempool_entry);
1352 		pool->free_cnt--;
1353 	}
1354 
1355 	/* TBD: Update free count if debug is enabled */
1356 	spin_unlock_bh(&pool->lock);
1357 
1358 	return buf;
1359 }
1360 qdf_export_symbol(__qdf_mempool_alloc);
1361 
1362 /**
1363  * __qdf_mempool_free() - Free a memory pool element
1364  * @osdev: Platform device object
1365  * @pool: Handle to memory pool
1366  * @buf: Element to be freed
1367  *
1368  * Returns: none
1369  */
1370 void __qdf_mempool_free(qdf_device_t osdev, __qdf_mempool_t pool, void *buf)
1371 {
1372 	if (!pool)
1373 		return;
1374 
1375 
1376 	if (prealloc_disabled)
1377 		return qdf_mem_free(buf);
1378 
1379 	spin_lock_bh(&pool->lock);
1380 	pool->free_cnt++;
1381 
1382 	STAILQ_INSERT_TAIL
1383 		(&pool->free_list, (mempool_elem_t *)buf, mempool_entry);
1384 	spin_unlock_bh(&pool->lock);
1385 }
1386 qdf_export_symbol(__qdf_mempool_free);
1387 
1388 #ifdef CNSS_MEM_PRE_ALLOC
1389 static bool qdf_might_be_prealloc(void *ptr)
1390 {
1391 	if (ksize(ptr) > WCNSS_PRE_ALLOC_GET_THRESHOLD)
1392 		return true;
1393 	else
1394 		return false;
1395 }
1396 
1397 /**
1398  * qdf_mem_prealloc_get() - conditionally pre-allocate memory
1399  * @size: the number of bytes to allocate
1400  *
1401  * If size if greater than WCNSS_PRE_ALLOC_GET_THRESHOLD, this function returns
1402  * a chunk of pre-allocated memory. If size if less than or equal to
1403  * WCNSS_PRE_ALLOC_GET_THRESHOLD, or an error occurs, NULL is returned instead.
1404  *
1405  * Return: NULL on failure, non-NULL on success
1406  */
1407 static void *qdf_mem_prealloc_get(size_t size)
1408 {
1409 	void *ptr;
1410 
1411 	if (size <= WCNSS_PRE_ALLOC_GET_THRESHOLD)
1412 		return NULL;
1413 
1414 	ptr = wcnss_prealloc_get(size);
1415 	if (!ptr)
1416 		return NULL;
1417 
1418 	memset(ptr, 0, size);
1419 
1420 	return ptr;
1421 }
1422 
1423 static inline bool qdf_mem_prealloc_put(void *ptr)
1424 {
1425 	return wcnss_prealloc_put(ptr);
1426 }
1427 #else
1428 static bool qdf_might_be_prealloc(void *ptr)
1429 {
1430 	return false;
1431 }
1432 
1433 static inline void *qdf_mem_prealloc_get(size_t size)
1434 {
1435 	return NULL;
1436 }
1437 
1438 static inline bool qdf_mem_prealloc_put(void *ptr)
1439 {
1440 	return false;
1441 }
1442 #endif /* CNSS_MEM_PRE_ALLOC */
1443 
1444 /* External Function implementation */
1445 #ifdef MEMORY_DEBUG
1446 /**
1447  * qdf_mem_debug_config_get() - Get the user configuration of mem_debug_disabled
1448  *
1449  * Return: value of mem_debug_disabled qdf module argument
1450  */
1451 #ifdef DISABLE_MEM_DBG_LOAD_CONFIG
1452 bool qdf_mem_debug_config_get(void)
1453 {
1454 	/* Return false if DISABLE_LOAD_MEM_DBG_CONFIG flag is enabled */
1455 	return false;
1456 }
1457 #else
1458 bool qdf_mem_debug_config_get(void)
1459 {
1460 	return mem_debug_disabled;
1461 }
1462 #endif /* DISABLE_MEM_DBG_LOAD_CONFIG */
1463 
1464 /**
1465  * qdf_mem_debug_disabled_set() - Set mem_debug_disabled
1466  * @str_value: value of the module param
1467  *
1468  * This function will se qdf module param mem_debug_disabled
1469  *
1470  * Return: QDF_STATUS_SUCCESS on Success
1471  */
1472 #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
1473 QDF_STATUS qdf_mem_debug_disabled_config_set(const char *str_value)
1474 {
1475 	QDF_STATUS status;
1476 
1477 	status = qdf_bool_parse(str_value, &mem_debug_disabled);
1478 	return status;
1479 }
1480 #endif
1481 
1482 /**
1483  * qdf_mem_debug_init() - initialize qdf memory debug functionality
1484  *
1485  * Return: none
1486  */
1487 static void qdf_mem_debug_init(void)
1488 {
1489 	int i;
1490 
1491 	is_initial_mem_debug_disabled = qdf_mem_debug_config_get();
1492 
1493 	if (is_initial_mem_debug_disabled)
1494 		return;
1495 
1496 	/* Initalizing the list with maximum size of 60000 */
1497 	for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
1498 		qdf_list_create(&qdf_mem_domains[i], 60000);
1499 	qdf_spinlock_create(&qdf_mem_list_lock);
1500 
1501 	/* dma */
1502 	for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
1503 		qdf_list_create(&qdf_mem_dma_domains[i], 0);
1504 	qdf_spinlock_create(&qdf_mem_dma_list_lock);
1505 }
1506 
1507 static uint32_t
1508 qdf_mem_domain_check_for_leaks(enum qdf_debug_domain domain,
1509 			       qdf_list_t *mem_list)
1510 {
1511 	if (is_initial_mem_debug_disabled)
1512 		return 0;
1513 
1514 	if (qdf_list_empty(mem_list))
1515 		return 0;
1516 
1517 	qdf_err("Memory leaks detected in %s domain!",
1518 		qdf_debug_domain_name(domain));
1519 	qdf_mem_domain_print(mem_list,
1520 			     qdf_err_printer,
1521 			     NULL,
1522 			     0,
1523 			     qdf_mem_meta_table_print);
1524 
1525 	return mem_list->count;
1526 }
1527 
1528 static void qdf_mem_domain_set_check_for_leaks(qdf_list_t *domains)
1529 {
1530 	uint32_t leak_count = 0;
1531 	int i;
1532 
1533 	if (is_initial_mem_debug_disabled)
1534 		return;
1535 
1536 	/* detect and print leaks */
1537 	for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
1538 		leak_count += qdf_mem_domain_check_for_leaks(i, domains + i);
1539 
1540 	if (leak_count)
1541 		QDF_MEMDEBUG_PANIC("%u fatal memory leaks detected!",
1542 				   leak_count);
1543 }
1544 
1545 /**
1546  * qdf_mem_debug_exit() - exit qdf memory debug functionality
1547  *
1548  * Return: none
1549  */
1550 static void qdf_mem_debug_exit(void)
1551 {
1552 	int i;
1553 
1554 	if (is_initial_mem_debug_disabled)
1555 		return;
1556 
1557 	/* mem */
1558 	qdf_mem_domain_set_check_for_leaks(qdf_mem_domains);
1559 	for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
1560 		qdf_list_destroy(qdf_mem_list_get(i));
1561 
1562 	qdf_spinlock_destroy(&qdf_mem_list_lock);
1563 
1564 	/* dma */
1565 	qdf_mem_domain_set_check_for_leaks(qdf_mem_dma_domains);
1566 	for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
1567 		qdf_list_destroy(&qdf_mem_dma_domains[i]);
1568 	qdf_spinlock_destroy(&qdf_mem_dma_list_lock);
1569 }
1570 
1571 void *qdf_mem_malloc_debug(size_t size, const char *func, uint32_t line,
1572 			   void *caller, uint32_t flag)
1573 {
1574 	QDF_STATUS status;
1575 	enum qdf_debug_domain current_domain = qdf_debug_domain_get();
1576 	qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
1577 	struct qdf_mem_header *header;
1578 	void *ptr;
1579 	unsigned long start, duration;
1580 
1581 	if (is_initial_mem_debug_disabled)
1582 		return __qdf_mem_malloc(size, func, line);
1583 
1584 	if (!size || size > QDF_MEM_MAX_MALLOC) {
1585 		qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
1586 		return NULL;
1587 	}
1588 
1589 	ptr = qdf_mem_prealloc_get(size);
1590 	if (ptr)
1591 		return ptr;
1592 
1593 	if (!flag)
1594 		flag = qdf_mem_malloc_flags();
1595 
1596 	start = qdf_mc_timer_get_system_time();
1597 	header = kzalloc(size + QDF_MEM_DEBUG_SIZE, flag);
1598 	duration = qdf_mc_timer_get_system_time() - start;
1599 
1600 	if (duration > QDF_MEM_WARN_THRESHOLD)
1601 		qdf_warn("Malloc slept; %lums, %zuB @ %s:%d",
1602 			 duration, size, func, line);
1603 
1604 	if (!header) {
1605 		qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
1606 		return NULL;
1607 	}
1608 
1609 	qdf_mem_header_init(header, size, func, line, caller);
1610 	qdf_mem_trailer_init(header);
1611 	ptr = qdf_mem_get_ptr(header);
1612 
1613 	qdf_spin_lock_irqsave(&qdf_mem_list_lock);
1614 	status = qdf_list_insert_front(mem_list, &header->node);
1615 	qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
1616 	if (QDF_IS_STATUS_ERROR(status))
1617 		qdf_err("Failed to insert memory header; status %d", status);
1618 
1619 	qdf_mem_kmalloc_inc(ksize(header));
1620 
1621 	return ptr;
1622 }
1623 qdf_export_symbol(qdf_mem_malloc_debug);
1624 
1625 void *qdf_mem_malloc_atomic_debug(size_t size, const char *func,
1626 				  uint32_t line, void *caller)
1627 {
1628 	QDF_STATUS status;
1629 	enum qdf_debug_domain current_domain = qdf_debug_domain_get();
1630 	qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
1631 	struct qdf_mem_header *header;
1632 	void *ptr;
1633 	unsigned long start, duration;
1634 
1635 	if (is_initial_mem_debug_disabled)
1636 		return qdf_mem_malloc_atomic_debug_fl(size, func, line);
1637 
1638 	if (!size || size > QDF_MEM_MAX_MALLOC) {
1639 		qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
1640 		return NULL;
1641 	}
1642 
1643 	ptr = qdf_mem_prealloc_get(size);
1644 	if (ptr)
1645 		return ptr;
1646 
1647 	start = qdf_mc_timer_get_system_time();
1648 	header = kzalloc(size + QDF_MEM_DEBUG_SIZE, GFP_ATOMIC);
1649 	duration = qdf_mc_timer_get_system_time() - start;
1650 
1651 	if (duration > QDF_MEM_WARN_THRESHOLD)
1652 		qdf_warn("Malloc slept; %lums, %zuB @ %s:%d",
1653 			 duration, size, func, line);
1654 
1655 	if (!header) {
1656 		qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
1657 		return NULL;
1658 	}
1659 
1660 	qdf_mem_header_init(header, size, func, line, caller);
1661 	qdf_mem_trailer_init(header);
1662 	ptr = qdf_mem_get_ptr(header);
1663 
1664 	qdf_spin_lock_irqsave(&qdf_mem_list_lock);
1665 	status = qdf_list_insert_front(mem_list, &header->node);
1666 	qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
1667 	if (QDF_IS_STATUS_ERROR(status))
1668 		qdf_err("Failed to insert memory header; status %d", status);
1669 
1670 	qdf_mem_kmalloc_inc(ksize(header));
1671 
1672 	return ptr;
1673 }
1674 
1675 qdf_export_symbol(qdf_mem_malloc_atomic_debug);
1676 
1677 void *qdf_mem_malloc_atomic_debug_fl(size_t size, const char *func,
1678 				     uint32_t line)
1679 {
1680 	void *ptr;
1681 
1682 	if (!size || size > QDF_MEM_MAX_MALLOC) {
1683 		qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
1684 			     line);
1685 		return NULL;
1686 	}
1687 
1688 	ptr = qdf_mem_prealloc_get(size);
1689 	if (ptr)
1690 		return ptr;
1691 
1692 	ptr = kzalloc(size, GFP_ATOMIC);
1693 	if (!ptr) {
1694 		qdf_nofl_warn("Failed to malloc %zuB @ %s:%d",
1695 			      size, func, line);
1696 		return NULL;
1697 	}
1698 
1699 	qdf_mem_kmalloc_inc(ksize(ptr));
1700 
1701 	return ptr;
1702 }
1703 
1704 qdf_export_symbol(qdf_mem_malloc_atomic_debug_fl);
1705 
1706 void qdf_mem_free_debug(void *ptr, const char *func, uint32_t line)
1707 {
1708 	enum qdf_debug_domain current_domain = qdf_debug_domain_get();
1709 	struct qdf_mem_header *header;
1710 	enum qdf_mem_validation_bitmap error_bitmap;
1711 
1712 	if (is_initial_mem_debug_disabled) {
1713 		__qdf_mem_free(ptr);
1714 		return;
1715 	}
1716 
1717 	/* freeing a null pointer is valid */
1718 	if (qdf_unlikely(!ptr))
1719 		return;
1720 
1721 	if (qdf_mem_prealloc_put(ptr))
1722 		return;
1723 
1724 	if (qdf_unlikely((qdf_size_t)ptr <= sizeof(*header)))
1725 		QDF_MEMDEBUG_PANIC("Failed to free invalid memory location %pK",
1726 				   ptr);
1727 
1728 	qdf_talloc_assert_no_children_fl(ptr, func, line);
1729 
1730 	qdf_spin_lock_irqsave(&qdf_mem_list_lock);
1731 	header = qdf_mem_get_header(ptr);
1732 	error_bitmap = qdf_mem_header_validate(header, current_domain);
1733 	error_bitmap |= qdf_mem_trailer_validate(header);
1734 
1735 	if (!error_bitmap) {
1736 		header->freed = true;
1737 		qdf_list_remove_node(qdf_mem_list_get(header->domain),
1738 				     &header->node);
1739 	}
1740 	qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
1741 
1742 	qdf_mem_header_assert_valid(header, current_domain, error_bitmap,
1743 				    func, line);
1744 
1745 	qdf_mem_kmalloc_dec(ksize(header));
1746 	kfree(header);
1747 }
1748 qdf_export_symbol(qdf_mem_free_debug);
1749 
1750 void qdf_mem_check_for_leaks(void)
1751 {
1752 	enum qdf_debug_domain current_domain = qdf_debug_domain_get();
1753 	qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
1754 	qdf_list_t *dma_list = qdf_mem_dma_list(current_domain);
1755 	uint32_t leaks_count = 0;
1756 
1757 	if (is_initial_mem_debug_disabled)
1758 		return;
1759 
1760 	leaks_count += qdf_mem_domain_check_for_leaks(current_domain, mem_list);
1761 	leaks_count += qdf_mem_domain_check_for_leaks(current_domain, dma_list);
1762 
1763 	if (leaks_count)
1764 		QDF_MEMDEBUG_PANIC("%u fatal memory leaks detected!",
1765 				   leaks_count);
1766 }
1767 
1768 /**
1769  * qdf_mem_multi_pages_alloc_debug() - Debug version of
1770  * qdf_mem_multi_pages_alloc
1771  * @osdev: OS device handle pointer
1772  * @pages: Multi page information storage
1773  * @element_size: Each element size
1774  * @element_num: Total number of elements should be allocated
1775  * @memctxt: Memory context
1776  * @cacheable: Coherent memory or cacheable memory
1777  * @func: Caller of this allocator
1778  * @line: Line number of the caller
1779  * @caller: Return address of the caller
1780  *
1781  * This function will allocate large size of memory over multiple pages.
1782  * Large size of contiguous memory allocation will fail frequently, then
1783  * instead of allocate large memory by one shot, allocate through multiple, non
1784  * contiguous memory and combine pages when actual usage
1785  *
1786  * Return: None
1787  */
1788 void qdf_mem_multi_pages_alloc_debug(qdf_device_t osdev,
1789 				     struct qdf_mem_multi_page_t *pages,
1790 				     size_t element_size, uint32_t element_num,
1791 				     qdf_dma_context_t memctxt, bool cacheable,
1792 				     const char *func, uint32_t line,
1793 				     void *caller)
1794 {
1795 	uint16_t page_idx;
1796 	struct qdf_mem_dma_page_t *dma_pages;
1797 	void **cacheable_pages = NULL;
1798 	uint16_t i;
1799 
1800 	if (!pages->page_size)
1801 		pages->page_size = qdf_page_size;
1802 
1803 	pages->num_element_per_page = pages->page_size / element_size;
1804 	if (!pages->num_element_per_page) {
1805 		qdf_print("Invalid page %d or element size %d",
1806 			  (int)pages->page_size, (int)element_size);
1807 		goto out_fail;
1808 	}
1809 
1810 	pages->num_pages = element_num / pages->num_element_per_page;
1811 	if (element_num % pages->num_element_per_page)
1812 		pages->num_pages++;
1813 
1814 	if (cacheable) {
1815 		/* Pages information storage */
1816 		pages->cacheable_pages = qdf_mem_malloc_debug(
1817 			pages->num_pages * sizeof(pages->cacheable_pages),
1818 			func, line, caller, 0);
1819 		if (!pages->cacheable_pages)
1820 			goto out_fail;
1821 
1822 		cacheable_pages = pages->cacheable_pages;
1823 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
1824 			cacheable_pages[page_idx] = qdf_mem_malloc_debug(
1825 				pages->page_size, func, line, caller, 0);
1826 			if (!cacheable_pages[page_idx])
1827 				goto page_alloc_fail;
1828 		}
1829 		pages->dma_pages = NULL;
1830 	} else {
1831 		pages->dma_pages = qdf_mem_malloc_debug(
1832 			pages->num_pages * sizeof(struct qdf_mem_dma_page_t),
1833 			func, line, caller, 0);
1834 		if (!pages->dma_pages)
1835 			goto out_fail;
1836 
1837 		dma_pages = pages->dma_pages;
1838 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
1839 			dma_pages->page_v_addr_start =
1840 				qdf_mem_alloc_consistent_debug(
1841 					osdev, osdev->dev, pages->page_size,
1842 					&dma_pages->page_p_addr,
1843 					func, line, caller);
1844 			if (!dma_pages->page_v_addr_start) {
1845 				qdf_print("dmaable page alloc fail pi %d",
1846 					  page_idx);
1847 				goto page_alloc_fail;
1848 			}
1849 			dma_pages->page_v_addr_end =
1850 				dma_pages->page_v_addr_start + pages->page_size;
1851 			dma_pages++;
1852 		}
1853 		pages->cacheable_pages = NULL;
1854 	}
1855 	return;
1856 
1857 page_alloc_fail:
1858 	if (cacheable) {
1859 		for (i = 0; i < page_idx; i++)
1860 			qdf_mem_free_debug(pages->cacheable_pages[i],
1861 					   func, line);
1862 		qdf_mem_free_debug(pages->cacheable_pages, func, line);
1863 	} else {
1864 		dma_pages = pages->dma_pages;
1865 		for (i = 0; i < page_idx; i++) {
1866 			qdf_mem_free_consistent_debug(
1867 				osdev, osdev->dev,
1868 				pages->page_size, dma_pages->page_v_addr_start,
1869 				dma_pages->page_p_addr, memctxt, func, line);
1870 			dma_pages++;
1871 		}
1872 		qdf_mem_free_debug(pages->dma_pages, func, line);
1873 	}
1874 
1875 out_fail:
1876 	pages->cacheable_pages = NULL;
1877 	pages->dma_pages = NULL;
1878 	pages->num_pages = 0;
1879 }
1880 
1881 qdf_export_symbol(qdf_mem_multi_pages_alloc_debug);
1882 
1883 /**
1884  * qdf_mem_multi_pages_free_debug() - Debug version of qdf_mem_multi_pages_free
1885  * @osdev: OS device handle pointer
1886  * @pages: Multi page information storage
1887  * @memctxt: Memory context
1888  * @cacheable: Coherent memory or cacheable memory
1889  * @func: Caller of this allocator
1890  * @line: Line number of the caller
1891  *
1892  * This function will free large size of memory over multiple pages.
1893  *
1894  * Return: None
1895  */
1896 void qdf_mem_multi_pages_free_debug(qdf_device_t osdev,
1897 				    struct qdf_mem_multi_page_t *pages,
1898 				    qdf_dma_context_t memctxt, bool cacheable,
1899 				    const char *func, uint32_t line)
1900 {
1901 	unsigned int page_idx;
1902 	struct qdf_mem_dma_page_t *dma_pages;
1903 
1904 	if (!pages->page_size)
1905 		pages->page_size = qdf_page_size;
1906 
1907 	if (cacheable) {
1908 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
1909 			qdf_mem_free_debug(pages->cacheable_pages[page_idx],
1910 					   func, line);
1911 		qdf_mem_free_debug(pages->cacheable_pages, func, line);
1912 	} else {
1913 		dma_pages = pages->dma_pages;
1914 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
1915 			qdf_mem_free_consistent_debug(
1916 				osdev, osdev->dev, pages->page_size,
1917 				dma_pages->page_v_addr_start,
1918 				dma_pages->page_p_addr, memctxt, func, line);
1919 			dma_pages++;
1920 		}
1921 		qdf_mem_free_debug(pages->dma_pages, func, line);
1922 	}
1923 
1924 	pages->cacheable_pages = NULL;
1925 	pages->dma_pages = NULL;
1926 	pages->num_pages = 0;
1927 }
1928 
1929 qdf_export_symbol(qdf_mem_multi_pages_free_debug);
1930 
1931 #else
1932 static void qdf_mem_debug_init(void) {}
1933 
1934 static void qdf_mem_debug_exit(void) {}
1935 
1936 void *qdf_mem_malloc_atomic_fl(size_t size, const char *func, uint32_t line)
1937 {
1938 	void *ptr;
1939 
1940 	if (!size || size > QDF_MEM_MAX_MALLOC) {
1941 		qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
1942 			     line);
1943 		return NULL;
1944 	}
1945 
1946 	ptr = qdf_mem_prealloc_get(size);
1947 	if (ptr)
1948 		return ptr;
1949 
1950 	ptr = kzalloc(size, GFP_ATOMIC);
1951 	if (!ptr) {
1952 		qdf_nofl_warn("Failed to malloc %zuB @ %s:%d",
1953 			      size, func, line);
1954 		return NULL;
1955 	}
1956 
1957 	qdf_mem_kmalloc_inc(ksize(ptr));
1958 
1959 	return ptr;
1960 }
1961 qdf_export_symbol(qdf_mem_malloc_atomic_fl);
1962 
1963 /**
1964  * qdf_mem_multi_pages_alloc() - allocate large size of kernel memory
1965  * @osdev: OS device handle pointer
1966  * @pages: Multi page information storage
1967  * @element_size: Each element size
1968  * @element_num: Total number of elements should be allocated
1969  * @memctxt: Memory context
1970  * @cacheable: Coherent memory or cacheable memory
1971  *
1972  * This function will allocate large size of memory over multiple pages.
1973  * Large size of contiguous memory allocation will fail frequently, then
1974  * instead of allocate large memory by one shot, allocate through multiple, non
1975  * contiguous memory and combine pages when actual usage
1976  *
1977  * Return: None
1978  */
1979 void qdf_mem_multi_pages_alloc(qdf_device_t osdev,
1980 			       struct qdf_mem_multi_page_t *pages,
1981 			       size_t element_size, uint32_t element_num,
1982 			       qdf_dma_context_t memctxt, bool cacheable)
1983 {
1984 	uint16_t page_idx;
1985 	struct qdf_mem_dma_page_t *dma_pages;
1986 	void **cacheable_pages = NULL;
1987 	uint16_t i;
1988 
1989 	if (!pages->page_size)
1990 		pages->page_size = qdf_page_size;
1991 
1992 	pages->num_element_per_page = pages->page_size / element_size;
1993 	if (!pages->num_element_per_page) {
1994 		qdf_print("Invalid page %d or element size %d",
1995 			  (int)pages->page_size, (int)element_size);
1996 		goto out_fail;
1997 	}
1998 
1999 	pages->num_pages = element_num / pages->num_element_per_page;
2000 	if (element_num % pages->num_element_per_page)
2001 		pages->num_pages++;
2002 
2003 	if (cacheable) {
2004 		/* Pages information storage */
2005 		pages->cacheable_pages = qdf_mem_malloc(
2006 			pages->num_pages * sizeof(pages->cacheable_pages));
2007 		if (!pages->cacheable_pages)
2008 			goto out_fail;
2009 
2010 		cacheable_pages = pages->cacheable_pages;
2011 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
2012 			cacheable_pages[page_idx] =
2013 				qdf_mem_malloc(pages->page_size);
2014 			if (!cacheable_pages[page_idx])
2015 				goto page_alloc_fail;
2016 		}
2017 		pages->dma_pages = NULL;
2018 	} else {
2019 		pages->dma_pages = qdf_mem_malloc(
2020 			pages->num_pages * sizeof(struct qdf_mem_dma_page_t));
2021 		if (!pages->dma_pages)
2022 			goto out_fail;
2023 
2024 		dma_pages = pages->dma_pages;
2025 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
2026 			dma_pages->page_v_addr_start =
2027 				qdf_mem_alloc_consistent(osdev, osdev->dev,
2028 					 pages->page_size,
2029 					&dma_pages->page_p_addr);
2030 			if (!dma_pages->page_v_addr_start) {
2031 				qdf_print("dmaable page alloc fail pi %d",
2032 					page_idx);
2033 				goto page_alloc_fail;
2034 			}
2035 			dma_pages->page_v_addr_end =
2036 				dma_pages->page_v_addr_start + pages->page_size;
2037 			dma_pages++;
2038 		}
2039 		pages->cacheable_pages = NULL;
2040 	}
2041 	return;
2042 
2043 page_alloc_fail:
2044 	if (cacheable) {
2045 		for (i = 0; i < page_idx; i++)
2046 			qdf_mem_free(pages->cacheable_pages[i]);
2047 		qdf_mem_free(pages->cacheable_pages);
2048 	} else {
2049 		dma_pages = pages->dma_pages;
2050 		for (i = 0; i < page_idx; i++) {
2051 			qdf_mem_free_consistent(
2052 				osdev, osdev->dev, pages->page_size,
2053 				dma_pages->page_v_addr_start,
2054 				dma_pages->page_p_addr, memctxt);
2055 			dma_pages++;
2056 		}
2057 		qdf_mem_free(pages->dma_pages);
2058 	}
2059 
2060 out_fail:
2061 	pages->cacheable_pages = NULL;
2062 	pages->dma_pages = NULL;
2063 	pages->num_pages = 0;
2064 	return;
2065 }
2066 qdf_export_symbol(qdf_mem_multi_pages_alloc);
2067 
2068 /**
2069  * qdf_mem_multi_pages_free() - free large size of kernel memory
2070  * @osdev: OS device handle pointer
2071  * @pages: Multi page information storage
2072  * @memctxt: Memory context
2073  * @cacheable: Coherent memory or cacheable memory
2074  *
2075  * This function will free large size of memory over multiple pages.
2076  *
2077  * Return: None
2078  */
2079 void qdf_mem_multi_pages_free(qdf_device_t osdev,
2080 			      struct qdf_mem_multi_page_t *pages,
2081 			      qdf_dma_context_t memctxt, bool cacheable)
2082 {
2083 	unsigned int page_idx;
2084 	struct qdf_mem_dma_page_t *dma_pages;
2085 
2086 	if (!pages->page_size)
2087 		pages->page_size = qdf_page_size;
2088 
2089 	if (cacheable) {
2090 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
2091 			qdf_mem_free(pages->cacheable_pages[page_idx]);
2092 		qdf_mem_free(pages->cacheable_pages);
2093 	} else {
2094 		dma_pages = pages->dma_pages;
2095 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
2096 			qdf_mem_free_consistent(
2097 				osdev, osdev->dev, pages->page_size,
2098 				dma_pages->page_v_addr_start,
2099 				dma_pages->page_p_addr, memctxt);
2100 			dma_pages++;
2101 		}
2102 		qdf_mem_free(pages->dma_pages);
2103 	}
2104 
2105 	pages->cacheable_pages = NULL;
2106 	pages->dma_pages = NULL;
2107 	pages->num_pages = 0;
2108 	return;
2109 }
2110 qdf_export_symbol(qdf_mem_multi_pages_free);
2111 #endif
2112 
2113 void qdf_mem_multi_pages_zero(struct qdf_mem_multi_page_t *pages,
2114 			      bool cacheable)
2115 {
2116 	unsigned int page_idx;
2117 	struct qdf_mem_dma_page_t *dma_pages;
2118 
2119 	if (!pages->page_size)
2120 		pages->page_size = qdf_page_size;
2121 
2122 	if (cacheable) {
2123 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
2124 			qdf_mem_zero(pages->cacheable_pages[page_idx],
2125 				     pages->page_size);
2126 	} else {
2127 		dma_pages = pages->dma_pages;
2128 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
2129 			qdf_mem_zero(dma_pages->page_v_addr_start,
2130 				     pages->page_size);
2131 			dma_pages++;
2132 		}
2133 	}
2134 }
2135 
2136 qdf_export_symbol(qdf_mem_multi_pages_zero);
2137 
2138 void __qdf_mem_free(void *ptr)
2139 {
2140 	if (!ptr)
2141 		return;
2142 
2143 	if (qdf_might_be_prealloc(ptr)) {
2144 		if (qdf_mem_prealloc_put(ptr))
2145 			return;
2146 	}
2147 
2148 	qdf_mem_kmalloc_dec(ksize(ptr));
2149 
2150 	kfree(ptr);
2151 }
2152 
2153 qdf_export_symbol(__qdf_mem_free);
2154 
2155 void *__qdf_mem_malloc(size_t size, const char *func, uint32_t line)
2156 {
2157 	void *ptr;
2158 
2159 	if (!size || size > QDF_MEM_MAX_MALLOC) {
2160 		qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
2161 			     line);
2162 		return NULL;
2163 	}
2164 
2165 	ptr = qdf_mem_prealloc_get(size);
2166 	if (ptr)
2167 		return ptr;
2168 
2169 	ptr = kzalloc(size, qdf_mem_malloc_flags());
2170 	if (!ptr)
2171 		return NULL;
2172 
2173 	qdf_mem_kmalloc_inc(ksize(ptr));
2174 
2175 	return ptr;
2176 }
2177 
2178 qdf_export_symbol(__qdf_mem_malloc);
2179 
2180 #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
2181 void __qdf_untracked_mem_free(void *ptr)
2182 {
2183 	if (!ptr)
2184 		return;
2185 
2186 	kfree(ptr);
2187 }
2188 
2189 void *__qdf_untracked_mem_malloc(size_t size, const char *func, uint32_t line)
2190 {
2191 	void *ptr;
2192 
2193 	if (!size || size > QDF_MEM_MAX_MALLOC) {
2194 		qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
2195 			     line);
2196 		return NULL;
2197 	}
2198 
2199 	ptr = kzalloc(size, qdf_mem_malloc_flags());
2200 	if (!ptr)
2201 		return NULL;
2202 
2203 	return ptr;
2204 }
2205 #endif
2206 
2207 void *qdf_aligned_malloc_fl(uint32_t *size,
2208 			    void **vaddr_unaligned,
2209 				qdf_dma_addr_t *paddr_unaligned,
2210 				qdf_dma_addr_t *paddr_aligned,
2211 				uint32_t align,
2212 			    const char *func, uint32_t line)
2213 {
2214 	void *vaddr_aligned;
2215 	uint32_t align_alloc_size;
2216 
2217 	*vaddr_unaligned = qdf_mem_malloc_fl((qdf_size_t)*size, func,
2218 			line);
2219 	if (!*vaddr_unaligned) {
2220 		qdf_warn("Failed to alloc %uB @ %s:%d", *size, func, line);
2221 		return NULL;
2222 	}
2223 
2224 	*paddr_unaligned = qdf_mem_virt_to_phys(*vaddr_unaligned);
2225 
2226 	/* Re-allocate additional bytes to align base address only if
2227 	 * above allocation returns unaligned address. Reason for
2228 	 * trying exact size allocation above is, OS tries to allocate
2229 	 * blocks of size power-of-2 pages and then free extra pages.
2230 	 * e.g., of a ring size of 1MB, the allocation below will
2231 	 * request 1MB plus 7 bytes for alignment, which will cause a
2232 	 * 2MB block allocation,and that is failing sometimes due to
2233 	 * memory fragmentation.
2234 	 */
2235 	if ((unsigned long)(*paddr_unaligned) & (align - 1)) {
2236 		align_alloc_size = *size + align - 1;
2237 
2238 		qdf_mem_free(*vaddr_unaligned);
2239 		*vaddr_unaligned = qdf_mem_malloc_fl(
2240 				(qdf_size_t)align_alloc_size, func, line);
2241 		if (!*vaddr_unaligned) {
2242 			qdf_warn("Failed to alloc %uB @ %s:%d",
2243 				 align_alloc_size, func, line);
2244 			return NULL;
2245 		}
2246 
2247 		*paddr_unaligned = qdf_mem_virt_to_phys(
2248 				*vaddr_unaligned);
2249 		*size = align_alloc_size;
2250 	}
2251 
2252 	*paddr_aligned = (qdf_dma_addr_t)qdf_align
2253 		((unsigned long)(*paddr_unaligned), align);
2254 
2255 	vaddr_aligned = (void *)((unsigned long)(*vaddr_unaligned) +
2256 			((unsigned long)(*paddr_aligned) -
2257 			 (unsigned long)(*paddr_unaligned)));
2258 
2259 	return vaddr_aligned;
2260 }
2261 
2262 qdf_export_symbol(qdf_aligned_malloc_fl);
2263 
2264 /**
2265  * qdf_mem_multi_page_link() - Make links for multi page elements
2266  * @osdev: OS device handle pointer
2267  * @pages: Multi page information storage
2268  * @elem_size: Single element size
2269  * @elem_count: elements count should be linked
2270  * @cacheable: Coherent memory or cacheable memory
2271  *
2272  * This function will make links for multi page allocated structure
2273  *
2274  * Return: 0 success
2275  */
2276 int qdf_mem_multi_page_link(qdf_device_t osdev,
2277 		struct qdf_mem_multi_page_t *pages,
2278 		uint32_t elem_size, uint32_t elem_count, uint8_t cacheable)
2279 {
2280 	uint16_t i, i_int;
2281 	void *page_info;
2282 	void **c_elem = NULL;
2283 	uint32_t num_link = 0;
2284 
2285 	for (i = 0; i < pages->num_pages; i++) {
2286 		if (cacheable)
2287 			page_info = pages->cacheable_pages[i];
2288 		else
2289 			page_info = pages->dma_pages[i].page_v_addr_start;
2290 
2291 		if (!page_info)
2292 			return -ENOMEM;
2293 
2294 		c_elem = (void **)page_info;
2295 		for (i_int = 0; i_int < pages->num_element_per_page; i_int++) {
2296 			if (i_int == (pages->num_element_per_page - 1)) {
2297 				if ((i + 1) == pages->num_pages)
2298 					break;
2299 				if (cacheable)
2300 					*c_elem = pages->
2301 						cacheable_pages[i + 1];
2302 				else
2303 					*c_elem = pages->
2304 						dma_pages[i + 1].
2305 							page_v_addr_start;
2306 				num_link++;
2307 				break;
2308 			} else {
2309 				*c_elem =
2310 					(void *)(((char *)c_elem) + elem_size);
2311 			}
2312 			num_link++;
2313 			c_elem = (void **)*c_elem;
2314 
2315 			/* Last link established exit */
2316 			if (num_link == (elem_count - 1))
2317 				break;
2318 		}
2319 	}
2320 
2321 	if (c_elem)
2322 		*c_elem = NULL;
2323 
2324 	return 0;
2325 }
2326 qdf_export_symbol(qdf_mem_multi_page_link);
2327 
2328 void qdf_mem_copy(void *dst_addr, const void *src_addr, uint32_t num_bytes)
2329 {
2330 	/* special case where dst_addr or src_addr can be NULL */
2331 	if (!num_bytes)
2332 		return;
2333 
2334 	QDF_BUG(dst_addr);
2335 	QDF_BUG(src_addr);
2336 	if (!dst_addr || !src_addr)
2337 		return;
2338 
2339 	memcpy(dst_addr, src_addr, num_bytes);
2340 }
2341 qdf_export_symbol(qdf_mem_copy);
2342 
2343 qdf_shared_mem_t *qdf_mem_shared_mem_alloc(qdf_device_t osdev, uint32_t size)
2344 {
2345 	qdf_shared_mem_t *shared_mem;
2346 	qdf_dma_addr_t dma_addr, paddr;
2347 	int ret;
2348 
2349 	shared_mem = qdf_mem_malloc(sizeof(*shared_mem));
2350 	if (!shared_mem)
2351 		return NULL;
2352 
2353 	shared_mem->vaddr = qdf_mem_alloc_consistent(osdev, osdev->dev,
2354 				size, qdf_mem_get_dma_addr_ptr(osdev,
2355 						&shared_mem->mem_info));
2356 	if (!shared_mem->vaddr) {
2357 		qdf_err("Unable to allocate DMA memory for shared resource");
2358 		qdf_mem_free(shared_mem);
2359 		return NULL;
2360 	}
2361 
2362 	qdf_mem_set_dma_size(osdev, &shared_mem->mem_info, size);
2363 	size = qdf_mem_get_dma_size(osdev, &shared_mem->mem_info);
2364 
2365 	qdf_mem_zero(shared_mem->vaddr, size);
2366 	dma_addr = qdf_mem_get_dma_addr(osdev, &shared_mem->mem_info);
2367 	paddr = qdf_mem_paddr_from_dmaaddr(osdev, dma_addr);
2368 
2369 	qdf_mem_set_dma_pa(osdev, &shared_mem->mem_info, paddr);
2370 	ret = qdf_mem_dma_get_sgtable(osdev->dev, &shared_mem->sgtable,
2371 				      shared_mem->vaddr, dma_addr, size);
2372 	if (ret) {
2373 		qdf_err("Unable to get DMA sgtable");
2374 		qdf_mem_free_consistent(osdev, osdev->dev,
2375 					shared_mem->mem_info.size,
2376 					shared_mem->vaddr,
2377 					dma_addr,
2378 					qdf_get_dma_mem_context(shared_mem,
2379 								memctx));
2380 		qdf_mem_free(shared_mem);
2381 		return NULL;
2382 	}
2383 
2384 	qdf_dma_get_sgtable_dma_addr(&shared_mem->sgtable);
2385 
2386 	return shared_mem;
2387 }
2388 
2389 qdf_export_symbol(qdf_mem_shared_mem_alloc);
2390 
2391 /**
2392  * qdf_mem_copy_toio() - copy memory
2393  * @dst_addr: Pointer to destination memory location (to copy to)
2394  * @src_addr: Pointer to source memory location (to copy from)
2395  * @num_bytes: Number of bytes to copy.
2396  *
2397  * Return: none
2398  */
2399 void qdf_mem_copy_toio(void *dst_addr, const void *src_addr, uint32_t num_bytes)
2400 {
2401 	if (0 == num_bytes) {
2402 		/* special case where dst_addr or src_addr can be NULL */
2403 		return;
2404 	}
2405 
2406 	if ((!dst_addr) || (!src_addr)) {
2407 		QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
2408 			  "%s called with NULL parameter, source:%pK destination:%pK",
2409 			  __func__, src_addr, dst_addr);
2410 		QDF_ASSERT(0);
2411 		return;
2412 	}
2413 	memcpy_toio(dst_addr, src_addr, num_bytes);
2414 }
2415 
2416 qdf_export_symbol(qdf_mem_copy_toio);
2417 
2418 /**
2419  * qdf_mem_set_io() - set (fill) memory with a specified byte value.
2420  * @ptr: Pointer to memory that will be set
2421  * @value: Byte set in memory
2422  * @num_bytes: Number of bytes to be set
2423  *
2424  * Return: None
2425  */
2426 void qdf_mem_set_io(void *ptr, uint32_t num_bytes, uint32_t value)
2427 {
2428 	if (!ptr) {
2429 		qdf_print("%s called with NULL parameter ptr", __func__);
2430 		return;
2431 	}
2432 	memset_io(ptr, value, num_bytes);
2433 }
2434 
2435 qdf_export_symbol(qdf_mem_set_io);
2436 
2437 void qdf_mem_set(void *ptr, uint32_t num_bytes, uint32_t value)
2438 {
2439 	QDF_BUG(ptr);
2440 	if (!ptr)
2441 		return;
2442 
2443 	memset(ptr, value, num_bytes);
2444 }
2445 qdf_export_symbol(qdf_mem_set);
2446 
2447 void qdf_mem_move(void *dst_addr, const void *src_addr, uint32_t num_bytes)
2448 {
2449 	/* special case where dst_addr or src_addr can be NULL */
2450 	if (!num_bytes)
2451 		return;
2452 
2453 	QDF_BUG(dst_addr);
2454 	QDF_BUG(src_addr);
2455 	if (!dst_addr || !src_addr)
2456 		return;
2457 
2458 	memmove(dst_addr, src_addr, num_bytes);
2459 }
2460 qdf_export_symbol(qdf_mem_move);
2461 
2462 int qdf_mem_cmp(const void *left, const void *right, size_t size)
2463 {
2464 	QDF_BUG(left);
2465 	QDF_BUG(right);
2466 
2467 	return memcmp(left, right, size);
2468 }
2469 qdf_export_symbol(qdf_mem_cmp);
2470 
2471 #if defined(A_SIMOS_DEVHOST) || defined(HIF_SDIO) || defined(HIF_USB)
2472 /**
2473  * qdf_mem_dma_alloc() - allocates memory for dma
2474  * @osdev: OS device handle
2475  * @dev: Pointer to device handle
2476  * @size: Size to be allocated
2477  * @phy_addr: Physical address
2478  *
2479  * Return: pointer of allocated memory or null if memory alloc fails
2480  */
2481 static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
2482 				      qdf_size_t size,
2483 				      qdf_dma_addr_t *phy_addr)
2484 {
2485 	void *vaddr;
2486 
2487 	vaddr = qdf_mem_malloc(size);
2488 	*phy_addr = ((uintptr_t) vaddr);
2489 	/* using this type conversion to suppress "cast from pointer to integer
2490 	 * of different size" warning on some platforms
2491 	 */
2492 	BUILD_BUG_ON(sizeof(*phy_addr) < sizeof(vaddr));
2493 	return vaddr;
2494 }
2495 
2496 #elif defined(CONFIG_WIFI_EMULATION_WIFI_3_0) && defined(BUILD_X86) && \
2497 	!defined(QCA_WIFI_QCN9000)
2498 
2499 #define QCA8074_RAM_BASE 0x50000000
2500 #define QDF_MEM_ALLOC_X86_MAX_RETRIES 10
2501 void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev, qdf_size_t size,
2502 			qdf_dma_addr_t *phy_addr)
2503 {
2504 	void *vaddr = NULL;
2505 	int i;
2506 
2507 	*phy_addr = 0;
2508 
2509 	for (i = 0; i < QDF_MEM_ALLOC_X86_MAX_RETRIES; i++) {
2510 		vaddr = dma_alloc_coherent(dev, size, phy_addr,
2511 					   qdf_mem_malloc_flags());
2512 
2513 		if (!vaddr) {
2514 			qdf_err("%s failed , size: %zu!", __func__, size);
2515 			return NULL;
2516 		}
2517 
2518 		if (*phy_addr >= QCA8074_RAM_BASE)
2519 			return vaddr;
2520 
2521 		dma_free_coherent(dev, size, vaddr, *phy_addr);
2522 	}
2523 
2524 	return NULL;
2525 }
2526 
2527 #else
2528 static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
2529 				      qdf_size_t size, qdf_dma_addr_t *paddr)
2530 {
2531 	return dma_alloc_coherent(dev, size, paddr, qdf_mem_malloc_flags());
2532 }
2533 #endif
2534 
2535 #if defined(A_SIMOS_DEVHOST) || defined(HIF_SDIO) || defined(HIF_USB)
2536 static inline void
2537 qdf_mem_dma_free(void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr)
2538 {
2539 	qdf_mem_free(vaddr);
2540 }
2541 #else
2542 
2543 static inline void
2544 qdf_mem_dma_free(void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr)
2545 {
2546 	dma_free_coherent(dev, size, vaddr, paddr);
2547 }
2548 #endif
2549 
2550 #ifdef MEMORY_DEBUG
2551 void *qdf_mem_alloc_consistent_debug(qdf_device_t osdev, void *dev,
2552 				     qdf_size_t size, qdf_dma_addr_t *paddr,
2553 				     const char *func, uint32_t line,
2554 				     void *caller)
2555 {
2556 	QDF_STATUS status;
2557 	enum qdf_debug_domain current_domain = qdf_debug_domain_get();
2558 	qdf_list_t *mem_list = qdf_mem_dma_list(current_domain);
2559 	struct qdf_mem_header *header;
2560 	void *vaddr;
2561 
2562 	if (is_initial_mem_debug_disabled)
2563 		return __qdf_mem_alloc_consistent(osdev, dev,
2564 						  size, paddr,
2565 						  func, line);
2566 
2567 	if (!size || size > QDF_MEM_MAX_MALLOC) {
2568 		qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
2569 		return NULL;
2570 	}
2571 
2572 	vaddr = qdf_mem_dma_alloc(osdev, dev, size + QDF_DMA_MEM_DEBUG_SIZE,
2573 				   paddr);
2574 
2575 	if (!vaddr) {
2576 		qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
2577 		return NULL;
2578 	}
2579 
2580 	header = qdf_mem_dma_get_header(vaddr, size);
2581 	/* For DMA buffers we only add trailers, this function will init
2582 	 * the header structure at the tail
2583 	 * Prefix the header into DMA buffer causes SMMU faults, so
2584 	 * do not prefix header into the DMA buffers
2585 	 */
2586 	qdf_mem_header_init(header, size, func, line, caller);
2587 
2588 	qdf_spin_lock_irqsave(&qdf_mem_dma_list_lock);
2589 	status = qdf_list_insert_front(mem_list, &header->node);
2590 	qdf_spin_unlock_irqrestore(&qdf_mem_dma_list_lock);
2591 	if (QDF_IS_STATUS_ERROR(status))
2592 		qdf_err("Failed to insert memory header; status %d", status);
2593 
2594 	qdf_mem_dma_inc(size);
2595 
2596 	return vaddr;
2597 }
2598 qdf_export_symbol(qdf_mem_alloc_consistent_debug);
2599 
2600 void qdf_mem_free_consistent_debug(qdf_device_t osdev, void *dev,
2601 				   qdf_size_t size, void *vaddr,
2602 				   qdf_dma_addr_t paddr,
2603 				   qdf_dma_context_t memctx,
2604 				   const char *func, uint32_t line)
2605 {
2606 	enum qdf_debug_domain domain = qdf_debug_domain_get();
2607 	struct qdf_mem_header *header;
2608 	enum qdf_mem_validation_bitmap error_bitmap;
2609 
2610 	if (is_initial_mem_debug_disabled) {
2611 		__qdf_mem_free_consistent(
2612 					  osdev, dev,
2613 					  size, vaddr,
2614 					  paddr, memctx);
2615 		return;
2616 	}
2617 
2618 	/* freeing a null pointer is valid */
2619 	if (qdf_unlikely(!vaddr))
2620 		return;
2621 
2622 	qdf_talloc_assert_no_children_fl(vaddr, func, line);
2623 
2624 	qdf_spin_lock_irqsave(&qdf_mem_dma_list_lock);
2625 	/* For DMA buffers we only add trailers, this function will retrieve
2626 	 * the header structure at the tail
2627 	 * Prefix the header into DMA buffer causes SMMU faults, so
2628 	 * do not prefix header into the DMA buffers
2629 	 */
2630 	header = qdf_mem_dma_get_header(vaddr, size);
2631 	error_bitmap = qdf_mem_header_validate(header, domain);
2632 	if (!error_bitmap) {
2633 		header->freed = true;
2634 		qdf_list_remove_node(qdf_mem_dma_list(header->domain),
2635 				     &header->node);
2636 	}
2637 	qdf_spin_unlock_irqrestore(&qdf_mem_dma_list_lock);
2638 
2639 	qdf_mem_header_assert_valid(header, domain, error_bitmap, func, line);
2640 
2641 	qdf_mem_dma_dec(header->size);
2642 	qdf_mem_dma_free(dev, size + QDF_DMA_MEM_DEBUG_SIZE, vaddr, paddr);
2643 }
2644 qdf_export_symbol(qdf_mem_free_consistent_debug);
2645 #endif /* MEMORY_DEBUG */
2646 
2647 void __qdf_mem_free_consistent(qdf_device_t osdev, void *dev,
2648 			       qdf_size_t size, void *vaddr,
2649 			       qdf_dma_addr_t paddr, qdf_dma_context_t memctx)
2650 {
2651 	qdf_mem_dma_dec(size);
2652 	qdf_mem_dma_free(dev, size, vaddr, paddr);
2653 }
2654 
2655 qdf_export_symbol(__qdf_mem_free_consistent);
2656 
2657 void *__qdf_mem_alloc_consistent(qdf_device_t osdev, void *dev,
2658 				 qdf_size_t size, qdf_dma_addr_t *paddr,
2659 				 const char *func, uint32_t line)
2660 {
2661 	void *vaddr;
2662 
2663 	if (!size || size > QDF_MEM_MAX_MALLOC) {
2664 		qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d",
2665 			     size, func, line);
2666 		return NULL;
2667 	}
2668 
2669 	vaddr = qdf_mem_dma_alloc(osdev, dev, size, paddr);
2670 
2671 	if (vaddr)
2672 		qdf_mem_dma_inc(size);
2673 
2674 	return vaddr;
2675 }
2676 
2677 qdf_export_symbol(__qdf_mem_alloc_consistent);
2678 
2679 void *qdf_aligned_mem_alloc_consistent_fl(
2680 	qdf_device_t osdev, uint32_t *size,
2681 	void **vaddr_unaligned, qdf_dma_addr_t *paddr_unaligned,
2682 	qdf_dma_addr_t *paddr_aligned, uint32_t align,
2683 	const char *func, uint32_t line)
2684 {
2685 	void *vaddr_aligned;
2686 	uint32_t align_alloc_size;
2687 
2688 	*vaddr_unaligned = qdf_mem_alloc_consistent(
2689 			osdev, osdev->dev, (qdf_size_t)*size, paddr_unaligned);
2690 	if (!*vaddr_unaligned) {
2691 		qdf_warn("Failed to alloc %uB @ %s:%d",
2692 			 *size, func, line);
2693 		return NULL;
2694 	}
2695 
2696 	/* Re-allocate additional bytes to align base address only if
2697 	 * above allocation returns unaligned address. Reason for
2698 	 * trying exact size allocation above is, OS tries to allocate
2699 	 * blocks of size power-of-2 pages and then free extra pages.
2700 	 * e.g., of a ring size of 1MB, the allocation below will
2701 	 * request 1MB plus 7 bytes for alignment, which will cause a
2702 	 * 2MB block allocation,and that is failing sometimes due to
2703 	 * memory fragmentation.
2704 	 */
2705 	if ((unsigned long)(*paddr_unaligned) & (align - 1)) {
2706 		align_alloc_size = *size + align - 1;
2707 
2708 		qdf_mem_free_consistent(osdev, osdev->dev, *size,
2709 					*vaddr_unaligned,
2710 					*paddr_unaligned, 0);
2711 
2712 		*vaddr_unaligned = qdf_mem_alloc_consistent(
2713 				osdev, osdev->dev, align_alloc_size,
2714 				paddr_unaligned);
2715 		if (!*vaddr_unaligned) {
2716 			qdf_warn("Failed to alloc %uB @ %s:%d",
2717 				 align_alloc_size, func, line);
2718 			return NULL;
2719 		}
2720 
2721 		*size = align_alloc_size;
2722 	}
2723 
2724 	*paddr_aligned = (qdf_dma_addr_t)qdf_align(
2725 			(unsigned long)(*paddr_unaligned), align);
2726 
2727 	vaddr_aligned = (void *)((unsigned long)(*vaddr_unaligned) +
2728 				 ((unsigned long)(*paddr_aligned) -
2729 				  (unsigned long)(*paddr_unaligned)));
2730 
2731 	return vaddr_aligned;
2732 }
2733 qdf_export_symbol(qdf_aligned_mem_alloc_consistent_fl);
2734 
2735 /**
2736  * qdf_mem_dma_sync_single_for_device() - assign memory to device
2737  * @osdev: OS device handle
2738  * @bus_addr: dma address to give to the device
2739  * @size: Size of the memory block
2740  * @direction: direction data will be DMAed
2741  *
2742  * Assign memory to the remote device.
2743  * The cache lines are flushed to ram or invalidated as needed.
2744  *
2745  * Return: none
2746  */
2747 void qdf_mem_dma_sync_single_for_device(qdf_device_t osdev,
2748 					qdf_dma_addr_t bus_addr,
2749 					qdf_size_t size,
2750 					enum dma_data_direction direction)
2751 {
2752 	dma_sync_single_for_device(osdev->dev, bus_addr,  size, direction);
2753 }
2754 qdf_export_symbol(qdf_mem_dma_sync_single_for_device);
2755 
2756 /**
2757  * qdf_mem_dma_sync_single_for_cpu() - assign memory to CPU
2758  * @osdev: OS device handle
2759  * @bus_addr: dma address to give to the cpu
2760  * @size: Size of the memory block
2761  * @direction: direction data will be DMAed
2762  *
2763  * Assign memory to the CPU.
2764  *
2765  * Return: none
2766  */
2767 void qdf_mem_dma_sync_single_for_cpu(qdf_device_t osdev,
2768 				     qdf_dma_addr_t bus_addr,
2769 				     qdf_size_t size,
2770 				     enum dma_data_direction direction)
2771 {
2772 	dma_sync_single_for_cpu(osdev->dev, bus_addr,  size, direction);
2773 }
2774 qdf_export_symbol(qdf_mem_dma_sync_single_for_cpu);
2775 
2776 void qdf_mem_init(void)
2777 {
2778 	qdf_mem_debug_init();
2779 	qdf_net_buf_debug_init();
2780 	qdf_frag_debug_init();
2781 	qdf_mem_debugfs_init();
2782 	qdf_mem_debug_debugfs_init();
2783 }
2784 qdf_export_symbol(qdf_mem_init);
2785 
2786 void qdf_mem_exit(void)
2787 {
2788 	qdf_mem_debug_debugfs_exit();
2789 	qdf_mem_debugfs_exit();
2790 	qdf_frag_debug_exit();
2791 	qdf_net_buf_debug_exit();
2792 	qdf_mem_debug_exit();
2793 }
2794 qdf_export_symbol(qdf_mem_exit);
2795 
2796 /**
2797  * qdf_ether_addr_copy() - copy an Ethernet address
2798  *
2799  * @dst_addr: A six-byte array Ethernet address destination
2800  * @src_addr: A six-byte array Ethernet address source
2801  *
2802  * Please note: dst & src must both be aligned to u16.
2803  *
2804  * Return: none
2805  */
2806 void qdf_ether_addr_copy(void *dst_addr, const void *src_addr)
2807 {
2808 	if ((!dst_addr) || (!src_addr)) {
2809 		QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
2810 			  "%s called with NULL parameter, source:%pK destination:%pK",
2811 			  __func__, src_addr, dst_addr);
2812 		QDF_ASSERT(0);
2813 		return;
2814 	}
2815 	ether_addr_copy(dst_addr, src_addr);
2816 }
2817 qdf_export_symbol(qdf_ether_addr_copy);
2818 
2819 int32_t qdf_dma_mem_stats_read(void)
2820 {
2821 	return qdf_atomic_read(&qdf_mem_stat.dma);
2822 }
2823 
2824 qdf_export_symbol(qdf_dma_mem_stats_read);
2825 
2826 int32_t qdf_heap_mem_stats_read(void)
2827 {
2828 	return qdf_atomic_read(&qdf_mem_stat.kmalloc);
2829 }
2830 
2831 qdf_export_symbol(qdf_heap_mem_stats_read);
2832 
2833 int32_t qdf_skb_mem_stats_read(void)
2834 {
2835 	return qdf_atomic_read(&qdf_mem_stat.skb);
2836 }
2837 
2838 qdf_export_symbol(qdf_skb_mem_stats_read);
2839 
2840 int32_t qdf_skb_total_mem_stats_read(void)
2841 {
2842 	return qdf_atomic_read(&qdf_mem_stat.skb_total);
2843 }
2844 
2845 qdf_export_symbol(qdf_skb_total_mem_stats_read);
2846 
2847 int32_t qdf_skb_max_mem_stats_read(void)
2848 {
2849 	return qdf_mem_stat.skb_mem_max;
2850 }
2851 
2852 qdf_export_symbol(qdf_skb_max_mem_stats_read);
2853 
2854 int32_t qdf_dp_tx_skb_mem_stats_read(void)
2855 {
2856 	return qdf_atomic_read(&qdf_mem_stat.dp_tx_skb);
2857 }
2858 
2859 qdf_export_symbol(qdf_dp_tx_skb_mem_stats_read);
2860 
2861 int32_t qdf_dp_rx_skb_mem_stats_read(void)
2862 {
2863 	return qdf_atomic_read(&qdf_mem_stat.dp_rx_skb);
2864 }
2865 
2866 qdf_export_symbol(qdf_dp_rx_skb_mem_stats_read);
2867 
2868 int32_t qdf_mem_dp_tx_skb_cnt_read(void)
2869 {
2870 	return qdf_atomic_read(&qdf_mem_stat.dp_tx_skb_count);
2871 }
2872 
2873 qdf_export_symbol(qdf_mem_dp_tx_skb_cnt_read);
2874 
2875 int32_t qdf_mem_dp_tx_skb_max_cnt_read(void)
2876 {
2877 	return qdf_mem_stat.dp_tx_skb_count_max;
2878 }
2879 
2880 qdf_export_symbol(qdf_mem_dp_tx_skb_max_cnt_read);
2881 
2882 int32_t qdf_mem_dp_rx_skb_cnt_read(void)
2883 {
2884 	return qdf_atomic_read(&qdf_mem_stat.dp_rx_skb_count);
2885 }
2886 
2887 qdf_export_symbol(qdf_mem_dp_rx_skb_cnt_read);
2888 
2889 int32_t qdf_mem_dp_rx_skb_max_cnt_read(void)
2890 {
2891 	return qdf_mem_stat.dp_rx_skb_count_max;
2892 }
2893 
2894 qdf_export_symbol(qdf_mem_dp_rx_skb_max_cnt_read);
2895 
2896 int32_t qdf_dp_tx_skb_max_mem_stats_read(void)
2897 {
2898 	return qdf_mem_stat.dp_tx_skb_mem_max;
2899 }
2900 
2901 qdf_export_symbol(qdf_dp_tx_skb_max_mem_stats_read);
2902 
2903 int32_t qdf_dp_rx_skb_max_mem_stats_read(void)
2904 {
2905 	return qdf_mem_stat.dp_rx_skb_mem_max;
2906 }
2907 
2908 qdf_export_symbol(qdf_dp_rx_skb_max_mem_stats_read);
2909 
2910 int32_t qdf_mem_tx_desc_cnt_read(void)
2911 {
2912 	return qdf_atomic_read(&qdf_mem_stat.tx_descs_outstanding);
2913 }
2914 
2915 qdf_export_symbol(qdf_mem_tx_desc_cnt_read);
2916 
2917 int32_t qdf_mem_tx_desc_max_read(void)
2918 {
2919 	return qdf_mem_stat.tx_descs_max;
2920 }
2921 
2922 qdf_export_symbol(qdf_mem_tx_desc_max_read);
2923 
2924 void qdf_mem_tx_desc_cnt_update(qdf_atomic_t pending_tx_descs,
2925 				int32_t tx_descs_max)
2926 {
2927 	qdf_mem_stat.tx_descs_outstanding = pending_tx_descs;
2928 	qdf_mem_stat.tx_descs_max = tx_descs_max;
2929 }
2930 
2931 qdf_export_symbol(qdf_mem_tx_desc_cnt_update);
2932 
2933 void qdf_mem_stats_init(void)
2934 {
2935 	qdf_mem_stat.skb_mem_max = 0;
2936 	qdf_mem_stat.dp_tx_skb_mem_max = 0;
2937 	qdf_mem_stat.dp_rx_skb_mem_max = 0;
2938 	qdf_mem_stat.dp_tx_skb_count_max = 0;
2939 	qdf_mem_stat.dp_rx_skb_count_max = 0;
2940 	qdf_mem_stat.tx_descs_max = 0;
2941 }
2942 
2943 qdf_export_symbol(qdf_mem_stats_init);
2944 
2945 void *__qdf_mem_valloc(size_t size, const char *func, uint32_t line)
2946 {
2947 	void *ptr;
2948 
2949 	if (!size) {
2950 		qdf_err("Valloc called with 0 bytes @ %s:%d", func, line);
2951 		return NULL;
2952 	}
2953 
2954 	ptr = vzalloc(size);
2955 
2956 	return ptr;
2957 }
2958 
2959 qdf_export_symbol(__qdf_mem_valloc);
2960 
2961 void __qdf_mem_vfree(void *ptr)
2962 {
2963 	if (qdf_unlikely(!ptr))
2964 		return;
2965 
2966 	vfree(ptr);
2967 }
2968 
2969 qdf_export_symbol(__qdf_mem_vfree);
2970 
2971 #if IS_ENABLED(CONFIG_ARM_SMMU) && defined(ENABLE_SMMU_S1_TRANSLATION)
2972 int
2973 qdf_iommu_domain_get_attr(qdf_iommu_domain_t *domain,
2974 			  enum qdf_iommu_attr attr, void *data)
2975 {
2976 	return __qdf_iommu_domain_get_attr(domain, attr, data);
2977 }
2978 
2979 qdf_export_symbol(qdf_iommu_domain_get_attr);
2980 #endif
2981 
2982 #ifdef ENHANCED_OS_ABSTRACTION
2983 void qdf_update_mem_map_table(qdf_device_t osdev,
2984 			      qdf_mem_info_t *mem_info,
2985 			      qdf_dma_addr_t dma_addr,
2986 			      uint32_t mem_size)
2987 {
2988 	if (!mem_info) {
2989 		qdf_nofl_err("%s: NULL mem_info", __func__);
2990 		return;
2991 	}
2992 
2993 	__qdf_update_mem_map_table(osdev, mem_info, dma_addr, mem_size);
2994 }
2995 
2996 qdf_export_symbol(qdf_update_mem_map_table);
2997 
2998 qdf_dma_addr_t qdf_mem_paddr_from_dmaaddr(qdf_device_t osdev,
2999 					  qdf_dma_addr_t dma_addr)
3000 {
3001 	return __qdf_mem_paddr_from_dmaaddr(osdev, dma_addr);
3002 }
3003 
3004 qdf_export_symbol(qdf_mem_paddr_from_dmaaddr);
3005 #endif
3006